
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 1

S-Blocks: Lightweight and Trusted Virtual
Security Function with SGX

Juan Wang, Shirong Hao, Hongxin Hu, Bo Zhao, Hongda Li, Wenhui Zhang, Jun Xu, Peng Liu and Jing Ma

Abstract—Despite the advantages of scalability and flexibility, Security Function Virtualization (SFV) raises concerns about its own

security. To enhance the security of SFV, a promising approach is to run critical components of off-the-shelf security software inside

Software Guard Extensions (SGX) enclaves. This idea, however, is hardly practical due to the difficulty of detaching components from

the monolithic security function and the unacceptable cost of executing them inside enclaves. In this paper, we propose S-Blocks, an

architecture to modularize virtual security functions (VSFs) and protect crucial modules with SGX in an efficient manner. S-Blocks

decomposes VSFs into trusted and untrusted modules and provides dedicated APIs systematically. Only crucial VSF modules are

hardened with enclaves. Furthermore, aiming at addressing state consistency and secure migration issues of security function scaling,

we design a fine-grained state synchronization and migration mechanism to ensure loss-free, order-preserving, and state security for

VSFs. To demonstrate the effectiveness of our approach, we prototype S-Blocks using Fast-Click on a real Skylake platform and

implement three critical types of virtual security functions based on the S-Blocks architecture. Our evaluation results show that

S-Blocks only imposes a manageable performance overhead, and low latency and resource consumption when protecting VSFs.

Index Terms—Security Virtual Function, Virtual Security Function, Software Guard Extensions, Intrusion Detection System.

✦

1 INTRODUCTION

S ECURITY functions are of vital importance to an enter-
prise network. Traditional security functions are built in

hardware boxes. These hardware boxes are protected with
isolated and closed hardware devices. They have their own
CPU, memory, I/O, and OS. Currently, Security Function
Virtualization (SFV) [73] provides a promising way to
implement security functions in software, while deploying
the security functions on high-volume standard servers and
executing them as virtual instances instead of proprietary
hardware. SFV can not only reduce both Capital Expen-
ditures (CAPEX) and Operating Expenditures (OPEX), but
also speed up software-oriented network innovation so as
to bring new security services. Most importantly, it enables
network operators and service providers to use virtual
instances to easily add or remove security functions, which
greatly improves flexibility and scalability. Recently, more
and more companies are coming to embrace SFV so as to
adapt to increasingly complex network environments and
IT virtualization.

Despite many benefits, SFV faces some serious secu-
rity issues. The first critical threat is that virtual security
functions (VSFs) lack strong isolated protection provided
by proprietary hardware because VSFs are executed in a

• Associate Professor Juan Wang and Master Shirong Hao, and Professor
Bo Zhao are with Key Laboratory of Aerospace Information Security and
Trust Computing, Ministry of Education, school of cyber science and
engineering, Wuhan University, Wuhan, China.
E-mail: jwang@whu.edu.cn, shirong@whu.edu.cn, zhaobo@whu.edu.cn.

• Associate Professor Hongxin Hu and PhD Hongda Li are with Clemson
University.

• Professor Peng Liu and PhD Wenhui Zhang are with Pennsylvania State
University.

• Assistant Professor Jun Xu is with Stevens Institute of Technology.
• Jing Ma is with Science and Technology on Information Assurance

Laboratory, Beijing, China.

Manuscript received January 23, 2019.

shared and open environment with same priviliage of other
functions [9], [21]. For example, a virtual Intrusion Detection
System (IDS) is usually deployed as a virtual instance on a
standard server. It shares CPU, memory, I/O and host OS
with other virtual instances, which incurs a larger attack
surface. To better secure VSFs, one should provide VSFs
with isolation protection similar to dedicated hardware
boxes. Most important of all is protection for network states
and security policies of VSFs. Network states and security
policies are stored in network sensitive data formats (e.g. IP,
ports number and communication state, etc.). Leaving these
sensitive data in an untrusted environment can cause fatal
damage to networks. This threat often occurs in VSFs scaling
scenarios. When processing capability of a VSF instance
reaches a bottleneck or some traffic needs to be processed
separately, programmers and administration operators start
new virtual instance and migrate current states to the new
instance. In this way, they achieve dynamic scaling. During
the scaling, if the new virtual security instance lacks the
required detection states and obtains forged states. It may
misidentify some attacks as non-attacks.

Existing virtualization techniques enable elastic secu-
rity [41], [74]. They consider a virtual network function
as a monolithic piece of software executing in a virtual
machine or container. However, this monolithic design has
its own limitations. First, it is difficult to customize a se-
curity function if it is provisioned as a monolith. How-
ever, security function customization is critical in terms of
resource efficiency for advanced network attack defense.
Second, the monolithic design of VSFs makes it difficult to
create a new VSF agilely. However, our modular design of
VSFs decomposes a VSF to several relatively independent
elements, which make smaller chained security functions
reusable. It is also quick and flexible to create a new VSF
based on the existing tiny security functions. Third, pro-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 2

tecting monolithic VSFs in run-time with Software Guard
Extensions (SGX) has an intractable problem, which could
result in a large performance overhead. Taking Snort [65]
as an example, we divide Snort code into security-sensitive
modules and none security-sensitive modules, and only
execute security-sensitive modules in a SGX enclave. The
performance overhead of executing security-sensitive Snort
modules in the SGX enclave is about 10 times higher than
executing them without SGX protection [62]. Such an over-
head is mainly introduced by (1) memory encryption and
decryption of SGX, and (2) ECall and OCall transition in
the enclave. Moreover, we have found that it is impractical
to protect security policies and their enforcing procedure in
Snort, since the policy processing of Snort almost penetrates
all operating procedures and modules of Snort. Hence, if
we intend to protect the security policies and network
states in Snort, almost all modules of Snort need to be
executed in the SGX enclave. This could cause unaccept-
able performance overhead. Furthermore, previous research
studies [29], [34], [35], [45], [60] focus on the protection of
general virtual network functions. They couldn’t consider
the trusted protection of policies and processing states of
those policies. For example, in previous work, a virtual
machine migration mechanism [13], [43] is adopted for
virtual instance scaling. However, such a mechanism can
only perform coarse-grained state migration, which may
cause the missing detection of some attacks. Besides, those
approaches mainly make use of shared and unencrypted
buffers, which may leak sensitive network data, for state
migration. Therefore, our design goal is to enable a modular
architecture for virtual security functions, and protect their
code, states and policies using SGX, while achieving lower
performance overhead.

To address these issues, we propose S-Blocks, a novel,
lightweight and trusted VSF architecture based on SGX.
S-Blocks leverages a modular and microservice-oriented
architecture to design VSFs. It decomposes modules of VSFs
to trusted elements and untrusted elements, and provides
proprietary APIs. This makes it easy to build a new security
function and put its critical modules and elements into an
enclave with low performance overhead. Moreover, aiming
at addressing state consistency and secure migration issue of
virtual security function scaling, we present a fine-grained
state synchronization and migration mechanism to ensure
loss-free, order-preserving and state security for VSFs. To
demonstrate the effectiveness of our approach, we proto-
type S-Blocks using Fast-Click on real Skylake platform.
We design and implement three types of VSFs, including
Distributed Denial of Service (DDoS) detection and defense,
firewall and Intrusion Detection System (IDS).

To our knowledge, S-Blocks is the first practical work
that achieve chain-able Click-based security functions while
protects their code, state, policy with SGX. S-Blocks achieves
a reasonable performance overhead. In this work, we make
the following contributions.

• We propose S-Blocks, a novel lightweight and trusted
VSF architecture based on SGX. It protects code, poli-
cies, and sensitive states of VSFs. It provides isolated
and trusted box similar to the dedicated hardware.
S-Blocks provides the modular design and achieves

better trade-off between performance and security.
• We propose a fine-grained state synchronization

scheme to address the issue of secure state syn-
chronization for VSFs. It considers a data flow as
a processing unit to synchronize different types of
flow states. It achieves loss-free and order-preserving
at a smaller granularity. Furthermore, we leverage
SGX remote attestation mechanism to protect inter-
nal sensitive states during the scaling and migration
of VSFs. We also design and implement the state
synchronization scheme and provide corresponding
APIs.

• We evaluate function and performance of S-Blocks
using three types of virtual security functions as use
cases. We design and implement the DDoS detection
and defense function, firewall and IDS. We validate
them based on real Sky-lake platform. Our evalua-
tion results show that S-Blocks introduces a manage-
able performance overhead while providing security
functions with trusted protection. S-Blocks is open-
source and is available at https://github.com/S-
Blocks-impl/S-Blocks.

The rest of this paper is organized as follows. In Section
2, we present background. Section 3 gives an illustration of
our threat model and S-Blocks overview. Section 4 presents
our detailed design. We describe the implementation of S-
Blocks in Section 5. Section 6 discusses the evaluation of
S-Blocks . Section 7 introduces the related work. Discussion
and future work are presented in Section 8. Section 9 con-
cludes the paper.

2 BACKGROUND

In this section, we describe background of Security Function
Virtualization and Intel SGX.

2.1 SFV

Security Function Virtualization (SFV) [5], [32], [73] is an
emerging architecture that migrates security functions from
dedicated hardware appliances to software. It makes se-
curity functions easily execute in commodity computers
or cloud. Traditional network security functions consist of
proprietary hardware boxes, usually including Application
Specific Integrated Circuits (ASIC) to perform specific se-
curity tasks (e.g. IDS). These security devices are often
costly and cannot be customized. In addition to this, tradi-
tional network security devices can hardly provide scalable
defense adapted with attack traffic volume. For example,
when DDoS traffic volume grows, a DDoS detection and
defense function should also increase its processing power
accordingly.

2.2 Intel SGX

Intel’s Software Guard Extensions (SGX) [14] technology is
a set of Instruction Set Architecture (ISA) extensions for the
Trusted Execution Environment (TEE). It is released as part
of Skylake processor architecture. It contains two sets of
extended instruction sets, SGX1 and SGX2. SGX1 allows ap-
plications to instantiate a protected container called enclave.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 3

The enclave is a protected area of the application’s address
space. Even with malicious privileged software, SGX can
guarantee confidentiality and integrity of program code and
data in the enclave. SGX1 can prevent any unauthorized
programs, even privileged ones, from accessing an enclave
that does not belong to them. SGX2 provides greater flex-
ibility for resource management and thread management
during enclave operation, such as adding memory after
enclave creation, and adding threads. However, SGX2 is not
available on off-the-shelf commodity computers.

Enclave Page Cache (EPC) is a trusted memory area,
currently restricted to 128M. It is encrypted and protected by
a memory encryption engine (MEE). Processor uses Enclave
Page Cache Map (EPCM) to track the metadata of EPC.
This structure can only be accessed by CPU. The MEE exe-
cutes memory encryption and decryption while writing and
reading the EPC. When the EPC is insufficient, the rarely
used EPC pages will be swapped to untrusted DRAM pages
outside Processor Reserved Memory (PRM) range by using
a secure paging mechanism. It incurs very high performance
overhead due to memory encryption and decryption and
translation look-aside buffer (TLB) flush during swapping
EPC pages. Hence, the code and data put in enclaves should
be minimized.

The code executing in an enclave is prohibited by system
calls (i.e. ECall and OCall). The fundamental reason is that
code in the enclave runs in user mode, and these user
mode code should go through ECall to evoke kernel mode
functions. OCall is just the opposite, which is used when the
code in the enclave needs to call the external untrusted code.
The enclave needs to perform security checks during ECall
and OCall. This brings large overhead cost. Although SGX
has been optimized in this respect, the overhead still cannot
be avoided in most cases. Therefore, it requires limiting the
number of ECalls and OCalls when separating program and
putting the trusted part into an enclave.

SGX remote attestation is a mechanism by which a third
party validates that an application is executing in enclave
on the Intel SGX enabled platform. The remote attestation
process requires the attestation service provided by the Intel
Attestation Server (IAS). IAS is responsible for providing
a public critical certificate that verifies the report by the
authentication platform. The services provided by using IAS
need to be registered with Intel and provide certificates ob-
tained from Intel-approved certificate authorities. For test-
ing purposes, the Independent Software Vendor (ISV) may
use a self-signed certificate generated using OpenSSL [52]
instead of one signed by an authority. After the registra-
tion is passed, the public critical certificate of the Service
Provider ID (SPID) and the verification report is obtained.

3 OVERVIEW

In this section, threat model and system architecture is
briefly explained.

3.1 Threat Model

In this paper, we aim at building an isolated box for virtual
security functions and protecting their internal states and
policies. In addition, we also focus on the security issues

Fig. 1. Overview of S-Blocks.

that exist during the dynamic scaling of virtual security
functions. Virtual security functions are usually deployed
as virtual instances, hence they suffer security threats from
virtualization platform. For instance, the vulnerable privi-
leged entities, such as VMM, OS and cloud administrators,
often have access to memory and virtual instances so that
they may leak sensitive data of virtual security functions.
Meanwhile, other vulnerable virtual security instances may
also obtain private data due to weak isolation mechanism of
cloud platforms.

Therefore, our threat model assumes that only CPU
and the code executing in enclave are trusted. Privileged
software (i.e. operating systems, hypervisor and BIOS) is
untrusted because they may be vulnerable and exploited
by attackers. Attackers also can launch physical attacks on
memory and I/O devices. Side channel attacks [12], [23],
[68], such as time-based side channel and cache-based side
channel attacks, on SGX are beyond the scope of this paper.
S-Blocks can be compromised if the code in the enclaves
contains software vulnerabilities and is subject to controlled
side channel attacks [72]. Recently, a number of approaches
have been presented to solve and mitigate those attacks [11],
[15], [27], [63], [64]. Solutions to preventing SGX side attacks
are orthogonal to our contribution.

3.2 System Architecture

Our goal is to design a lightweight and trusted execution
environment for virtual security functions based on SGX.
Lightweight refers to that the system has a small overhead
and minimal modules for a specific security requirement.
Our architecture supports extensible and stackable security
functions.

Aiming at this goal, we propose S-Blocks, a lightweight
and trusted virtual security function architecture. S-Blocks
has three advantages. First, the modular architecture of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 4

S-Blocks allows developers to quickly build new virtual
security function by using the basic and stackable elements.
It is easy to put critical modules and elements into an
enclave without decoupling a security function while only
imposing a little performance overhead. Second, S-Blocks
provides the approach of fine-grained state consistency and
secure migration. It can securely process packets in flow
context so as to support VSFs working on L2-L6 traffic and
enable dynamic and trusted VSFs scaling. Finally, S-Blocks
provides trusted protection for the policy of virtual security
functions.

Fig. 1 shows the critical components of S-blocks. In the
design of S-Blocks, a virtual security function is divided
into several critical modules including Preprocessor, Detector,
Actor, Encrypt/Decrypt, Attestation, State synchronization, Ele-
ments manager, and others communication processing mod-
ules, such as Packet transform, FromDevice, ToDevice, DPDK,
Socket, etc.. Every module can contain one or more elements.
When a virtual security function receives network packets,
the Preprocessor module performs some basic packets pro-
cessing operations, such as assembling and so on. Then De-
tector module sends data packets to different action elements
in the Actor module based on the packets processing results
and the security policy rules. The Encrypt/Decrypt and At-
testation module are mainly responsible for encrypt/decrypt
packets, seal/unseal policy file and build a secure communi-
cation channel. The State synchronization module is designed
for fine-grained state consistency. In addition, we add the
Elements manager module in order to connect the related
elements and modules.

In order to provide security protection for the critical
code, policies and internal states of the virtual security func-
tion, we put critical modules into SGX enclaves. Therefore,
we carefully divide a virtual security function into two
parts: trusted part and untrusted part. The trusted part
is run in the SGX enclave and the untrusted part is run
outside the enclave. Since, the protected memory size of
SGX is restricted to 128M (the available maximum memory
is less than 90 MB), the trusted modules or elements put in
enclaves should be minimal. In S-Blocks, the trusted part is
composed of seven critical modules related with sensitive
packets, state and policy processing: Preprocessor, Detector,
Actor, Encrypt/Decrypt, Attestation, State synchronization, and
Elements manager. These modules will be elaborated in the
following section.

Considering that the trusted base should be as small as
possible, we place security insensitive modules (i.e. Socket,
and DPDK) out of the SGX enclave. The untrusted compo-
nents include the FromDevice module, the ToDevice module,
the Packet transform module, etc.. FromDevice module reads
packets from network device using Intel’s DPDK. Each en-
crypted packet arriving from the network is first copied into
the enclave by Packet transform module, where its signature
is checked and its content is decrypted. It is then processed
by middlebox functions, accepted or discarded, and finally
encrypted and copied outside the enclave and passed to the
network. Todevice element sends packets to network device
using Intel’s DPDK.

Fig. 2. Workflow of S-Blocks.

4 DESIGN

S-Blocks presents an isolated and trusted box for VSFs. The
critical elements of virtual security functions are put into
the SGX enclave, which is an isolated environment like the
propriety hardware device. Furthermore, we propose a state
consistency scheme and secure state migration approach
to achieve trusted state protection during multiple virtual
security instance scaling. Last but not least, we present
our policy protection approach. The details about S-blocks
design are described as follows.

4.1 Isolated and Trusted Box

Aiming to provide an isolated box similar to a hardware
device for a virtual security function using SGX, we put the
critical modules that are related to sensitive data into en-
claves. In S-Blocks, we design and put the code of Preproces-
sor module, Detector module, Actor module, Encrypt/Decrypt
module, Attestation module, State synchronization module
and Elements manager module into enclaves.

There are two solutions to achieve code protection of
virtual security functions. The first one is that we put
each module in a separate enclave. The system performs
local authentication between enclaves and then enclaves call
each other to enable packet processing between different
modules. Although this scheme can achieve better isolation
and flexibility, it incurs huge performance overhead due to
authentication and packet transmission between enclaves.
Even when only the header of packets are checked when
packets are passed between elementsthe performance of S-
Blocks overhead is non-trivial. The second solution is to put
the important and sensitive modules in an enclave. This
solution reduces the overhead when packets are received by
and sent from enclaves. Considering performance, we fol-
low the second option. The critical modules and workflow
of S-Blocks are shown in Fig. 2.

Trusted components: Trusted code in the SGX enclave
performs core functionality on sensitive data, policies, and
states. As a result, the trusted code contains several compo-
nents, which implements the following functions:

(1) Preprocessor module: The Preprocessor module con-
tains many different elements that perform various packet
processing operations depending on its functionality. For
example, one Preprocessor elements can check the length
of the packet or classifier the packets by contents.

(2) Detector module: This module receives the output of
the Preprocessor module. It is responsible for forwarding
packets according to the security policies and the labels

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 5

of the packets. For example, firewall function uses firewall
rule-set, a set of security policy, to filter network traffic.

(3) Actor module: The Action module contains a number
of elements that conduct different defense actions on pack-
ets, such as discarding, rate limiting, quarantining, alerting,
logging, outputting and so on.

(4) Encrypt/Decrypt module: This module mainly pro-
vides secure cryptography operations for S-Blocks. The
critical functions of this module include keys generation,
keys storage, encrypt/decrypt operations and seal/unseal
operations.

(5) Attestation module: This module is responsible for
building secure communication between virtual instances
or user and virtual functions based on the remote attestation
function provided by SGX.

(6) State synchronization module: This module provides a
fine-grained state consistency and migration, which will be
described in detail in Section 4.2.

(7) Elements manager module: Elements manager module
is responsible for initializing and managing the elements in
the aforementioned modules. In addition, it passes pack-
ets to other modules in the enclave. When initialized, the
Elements manager module converts the network function
configuration issued by the SFV controller into a directed
graph and corresponding policies. The all the other modules
are connected according to the directed graph.

After initialization, the Elements manager module starts to
manage the other modules. The Elements manager has three
major tasks. First, it receives packets from Packet transform
module and sends packets to the Packet processor module.
After finishing processing of packets in enclave, Elements
manager module sends the results to the Packet transform
module. Second, it collects the states of each module in the
enclave when it needs to copy an instance or copy a packet
processing state. Third, it restores the state of each module
and communicates with the State synchronization module
and the Attestation module when a new VSF instance is
launched.

For S-Blocks, we define generic APIs to assist developers
developing security functions with enclaves. Developers
provide a configuration file written in Click configuration
language, which can define which modules should be put
in the enclave and the connections between different mod-
ules, for a new security function. Then, the int CreateSF
(file *) API can create the security function according to
the configuration file and returns the id of this security
function. Meanwhile, the code of the related elements in the
configuration file is put into the enclave. Finally, this enclave
code is recompiled to generate a new element. The new
element implements the original functionality of the security
function. When a security function needs to be updated,
the int UpdateSF (file *, int SFid) API can be used to update
the security function according to a new configuration file,
which contains the new modules that should be run in
enclave. In addition, int DestorySF (int SFid) API can be
used to directly destroy a security function based on its
ID. If S-Blocks defines the system call in common use with
the Ocall function previously, we can avoid hand-tuning to
ensure all modules indeed fit in an enclave to some extend.
However, if the module contains the system call, which was

not defined previously, we need to hand tune the code to
ensure all modules could run in an enclave.

In order to facilitate developers to better handle policy
file and data packets, we design four APIs for the encryption
and decryption module. When the policy file needs to be
stored on the hard disk, the void Seal (file *) function will
encrypt the policy file and write it to the disk. The void Seal
(file *) function seals the policy file to the current enclave
using the current version of the enclave measurement(i.e.
MRENCLAVE). Only an enclave with the same MREN-
CLAVE measurement will be able to unseal the data that
was sealed in this manner, which prevents attackers from
illegally unsealing policy file.

When S-Blocks starts up, the void Unseal (file *) function
reads the file from the disk, then decrypts the policy file. In
addition, the void EncryptPacket (packet *, int EncryptLength)
and void DecryptPacket (packet *, int DecryptLength) functions
are used to process encrypted network traffic. Since packets
may be processed by multiple network functions, it is not
necessary to seal packets. Therefore we only provide the
encrypt/decrypt APIs for secure processing of packets. The
functional description of the above APIs is shown in Table
1.

S-Blocks workflow: When the system starts, a directed
graph is generated by parsing the configuration file. Then
FromDevice element reads encrypted packets from network
device using Intel’s DPDK and sends them to the Packet
transform module. The ECalls of Packet transform module
indirectly bootstrap S-Blocks enclave and copy the traffic
into the enclave, where the signature of packets is checked
and the content of packets is decrypted. Traffic is then
processed by detector and actor modules. After finishing
the processing, Elements manager module sends the results
to the Packet transform module. Finally, the Packet transform
element sends packets to ToDevice element. ToDevice element
sends packets to network device using Intel’s DPDK.

Although we have presented a design and recom-
mended that some trusted modules should be protected
by the enclave in S-Blocks, developers can determine which
modules should run in the enclave according to their secu-
rity requirements, and define them by a configuration file.
Then, those modules can be loaded and run in the enclave
by calling the API int CreateSF (file *) shown in Table 1. In
addition, S-Blocks decomposes VSFs into several separately
deployable and smaller elements. Different elements can
be reused to reduce code redundancy, which can further
reduce the size of enclave usage. When enclaves are larger
than the total memory available to the Enclave Page Cache
(EPC), EPC paging [76] can evict the rarely used memory
pages to DRAM pages outside the PRM (Processor Reserved
Memory) range with the encrypted mode. Since such a
process may introduce some overhead, developers should
carefully consider the minimum modules that need to be
protected in enclaves.

4.2 Trusted State

When processing capability of a VSF instance reaches bot-
tlenecks or some data flows need to be processed separately,
we need to create a new VSF instance and migrate the state
of the original VSF instance to the new instance. In this way,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 6

TABLE 1
APIs for Security Function Development

API Functionality

int CreateSF (file *) Create a security function based on a configure file, return the id of security function.

int UpdateSF (file *, int SFid) Update the configure file of a security function according to the SFid.

int DestroySF (int SFid) Destroy a security function according the security function id.

void EncryptPacket (packet *, int EncryptLength) Encrypt packets.

void DecryptPacket (packet *, int DecryptLength) Decrypt packets.

void Seal (file *) Seal a policy file.

void Unseal (file *) Unseal a policy file.

the dynamic scaling can be achieved. SFV has the ability to
instantiate multiple instances executing on different virtual
machines and dynamically scale by destroying or creating
instances. Each instance takes a part of traffic and maintains
its own detection states. If the traffic is delivered to an in-
stance that lacks the required detection states, the VSFs may
miss some attacks. For example, a scanning detector usually
maintains a counter to count how many flows are generated
by each host. If a flow is delivered to an instance that does
not maintain its counter, this flow may be overlooked.

When an security function is scaled out, the SFV con-
troller not only needs to reroute traffic to the new instance,
but also needs to transmit the state information needed
by the new VSFs. Currently, state sharing approach has
been proposed that enables state sharing among instances
by maintaining global detection states in the shared data
storage, such as RAMCloud [53], FaRM [19], and Algo-
logic [46]. This approach does not need to migrate state
among virtual instances. However, this approach needs
additional tools to extract the states of VSFs and introduces
a significant performance overhead [42]. In StatelessNF [36],
it is shown that the remote-only state share approach can
lead to a 2-3x times of degradation in throughput and a 100-
fold increase in packet latency. StatelessNF uses distributed
shared object (DSO) to access states of an instance. However,
it needs to obtain the states of the instance by Remote
Procedure Call (RPC). This also introduces high cost when
many states need to be shared. Hence, S-Blocks leverages
state migration [13], [43] approach to share states between
instances.

In many scenarios, virtual machine migration schemes
are adopted. However, such schemes only perform coarse-
grained state migration. State consistency issue is not cru-
cial to these schemes. Another thread of works, such as
Split/Merge [56] and OpenNF [26], aims to implement state
consistency during instance migration. Those schemes stop
sending traffic to the instance and cache them in an NFV
controller when instances are cloned. Until all states are suc-
cessfully migrated to new instances, the cached traffic will
then be sent to the new instances. These methods introduce
high latency and memory usage to to NFV controller.

In S-Blocks, we propose a fine-grained state consistency
approach, which ensures loss-free and order-preserving
during virtual security functions scaling. Loss-free means
that all packets should be processed without any packet loss.
Order-preserving indicates that packets should be processed
according to the original order when they are forwarded

Fig. 3. Timing Diagram of State Synchronization.

to new VSF instances. Satisfying these two critical points
can achieve strong consistency of state. Our method exe-
cutes a classifier and caches the packets in the migrated
instance. The classifier is used to fulfill fine-grained flow
differentiation. In addition, we propose a states serialization
algorithm to copy group states and flow states of elements.
Furthermore, we present the loss-free and order-preserving
mechanism to avoid missing migrated states and guarantee
correctness of migrated states. Moreover, we design and
implement secure state migration based on SGX attestation.

As is shown in Fig.3, an SFV controller is used to man-
age, schedule the VSFs, such as VSFs creation and migration,
and reroute flows between VSFs. The VSFs are connected
with SDN switches. When a new instance B needs to be
created, the state of the existing instance A will be migrated
to the new instance B. The SFV controller copies the con-
figuration of the instance A to the instance B. According to
the configuration, the instance B completes its launching.
Then the instance B waits to synchronize with the instance
A, caching the packets forwarded by the switch. Then the
controller updates the flow tables, and the switch forwards
part of the data flows to the instance B. The controller
sends the command of copying instance to the instance
A. The command contains the characteristics of the traffic,
and the information of instance B. Then characteristics of
the traffic will be sent to instance B. Instance A runs a
classifier and caches the packets that should have been sent
to the instance B. The data packets are actually sent to the
instance A, because the flow table has not taken effect due
to the time delay. Then, the instance A and the instance

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 7

Fig. 4. Packets Processing with Flow Classifier.

B perform remote authentication and exchange keys. The
instance A sends the encrypted internal states of the traffic,
which needs to be synchronized to the instance B. After
the instance B has synchronized all the states, the instance
A sends buffered packets to the instance B. The instance
B firstly processes the packets from the instance A, and
then processes the packets from switch. In the end, the new
instance B can process the migrated data flows.

Flow classifier: To distinguish flows from all traffic of
a security function instance, we design the <SrcIP, Src-
Port, DstIP, DstPort, Protocol> five-tuple and the Aggre-
gateIpFlows element depicted in Fig. 4. The AggregateIpFlows
element calculates the flowIDs based on the five-tuple for
the distinguished flows in the order of those flows being
received. We also design two hash tables for the Aggre-
gateIpFlows element to store TCP and UDP flows. The
critical of the hash table is the pair of IP Addresses including
SrcIP and DstIP, and the value of the hash table is the
flows corresponding to the host IP pair. We use FlowInfo,
which includes the FlowID, Port, and a pointer to the next
record, to describe the flows. After data flow differentiation
is finished, data flow is processed by Preprocessor mod-
ule, Detector module, and Actor module. Each element can
recognize different data flow and realize fine-grain state
processing. Below are the three categories of states which
an element needs to handle.

• ElementStates: states related to elements themselves
but not related to traffic, such as the states corre-
sponding elements configuration.

• GroupStates: a set of states corresponding to multiple
flows. For example, when packets that belong to
multiple flows are processed, GroupStates will be
updated or read.

• FlowStates: the private states that only belong to each
flow. Only when packets belonging to this flow are
processed, will FlowStates be updated or read.

In order to support copying only partial flow states,
we design an element-states serialization interface that can
serialize the states of an element itself. This interface will
be called by the Elements manager module when the state is
migrated or synchronized. At the same time, we design de-
serialization interface for state recovery, which will restore
the states of each element.

The pseudo-code of element states serialization algo-
rithm is shown in Algorithm 1. The state serialization algo-
rithm has three input parameters. The first parameter rep-
resents whether to serialize all states. The second parameter
identifies a set of flowID that needs to be serialized. The
last parameter shows the state structure after serialization.
The state serialization algorithm returns whether the seri-
alization is successful. In the scenario of fine-grained state

serialization, an element firstly looks for groupID set corre-
sponding to the flowID set (line 7-8). Secondly, the element
serializes group states corresponding to the groupID set and
the flow states corresponding to the flowID set (line 10-11).
Finally, the elements serialize the element states and add
meta information, such as the size of states, the hash value
of states, etc. (line 15-16).

Algorithm 1 States Serialization

Input:
1: all: whether serializing all states;
2: flowIDs: unique ID for each flow that needs to be

transformed;
3: state: serialized state structure;

Output: whether the serialization operation is successful
4: if state == null then return false
5: end if
6: if all == false & flowIDs!=null then
7: for flowID in flowIDs do
8: groupIDs.add(find(flowID))
9: end for

10: serialiseGroupStates(groupIDs,state)
11: serialiseFlowStates(flowIDs,state)
12: else
13: serialiseAllFlowStates(state)
14: end if
15: serialiseElementStates(state)
16: fillMetaInfo(state)

Then we design four APIs, which are shown in Table 2,
for the state processing. The void getflowIDinfo(vector<int>
flowIDs) API is responsible for identifying and providing all
flow states that match the flowIDs, such as the number of
packets, characteristics of packets from a single endpoint,
etc. The void delflowIDinfo(vector<int> flowIDs) API is used
to delete the obsolete flows, which do not appear for a long
time, corresponding to the flowIDs. The function of void
chflowIDinfo(vector<int> flowIDs) is to change the flow state
that matches the flowIDs. In the end, void migrate(srcInst,
dstInst, state and flowIDs) API is designed to migrate the
states of the source instance to the destination instance.

Our approach also guarantees loss-free and order-
preserving when achieving fine-grained state consistency.

Loss-free: In order to achieve loss-free, it’s necessary
to get fine-grained states based on traffic. In S-Blocks, we
distinguish traffic with the <SrcIP, SrcPort, DstIP, DstPort,
protocol> five-tuple, and attach a flowID to each packet
to realize the data flow classification. Then, we implement
state storage for each element at data flow granularity
and provide the migration module with a serialization and
deserialization interface. However, we notice that not all
elements need to distinguish the fine-grained internal state.
For example, CheckLength element processes each packet
independently, thus does not need to determine the gran-
ularity of the traffic. Since complex elements based on
entropy detection need different data streams to calculate
entropy values, we cannot implement a uniform serializa-
tion method. Therefore, the process of the state serialization
and deserialization can only be defined within the element.

In addition, the new instance needs to process the new
traffic belonging to the new instance that was not processed

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 8

TABLE 2
APIs for Trusted State Management

API Functionality

void getflowIDinfo(vector<int> flowIDs) get the information according to flowIDs

void delflowIDinfo(vector<int> flowIDs) make the information of flowIDs invalid

void chflowIDinfo(vector<int> flowIDs) change the information according to flowIDs

void migrate(srcInst, dstInst, state, flowIDs) migrate states (i.e. srcInst, dstInst, state and flowIDs) between two instances

during the state migration. Our migration scheme uses
the traffic classifier to classify and cache the data packets
belonging to the new instance, and the cached packets will
be handled by new instances when the state synchronization
and remote authentication has been finished. The traffic
classifier can distinguish the data packets that should be
sent to the new instance by determining the characteristic
information such as the IP address of the data packet. The
distinguished packets are then sent to the new instance,
which will process the packets after the state is synchro-
nized.

Order-preserving: The new virtual security instance im-
plements order-processing by first processing the cached
data packets from the original instance and then processing
the data packets of the new instance itself. The new instance
will also run the traffic classifier to distinguish the packet
from the switch and the original instance. The original
instance sends the data packets to the new instance through
socket communication, hence they can be distinguished
by the classifier of the new instance. After differentiation,
the packets forwarded by the switch are buffered. Then
the packets sent from the original instance are processed.
Until the packets sent from the original instance have been
processed, the packets forwarded by the switch will be read
from the buffer and processed.

Secure state migration: During virtual security func-
tions scaling, the states of virtual security function should
be securely migrated from original instance to destination
instance. Previous work migrates the state mainly based on
the shared buffer and plain channel that may lead the states
to be tampered with and leaked by malicious programs.
Therefore, we present a secure state migration mechanism
using SGX attestation in S-Blocks.

Our secure state migration mechanism is depicted in
Fig. 5. Before the migration, we should find flows states
to be migrated according to Flow Classifier. The states are
then serialized for implementing the state synchronization
with order-preserving. Then the migration module in the
untrusted part performs the migration operation. It com-
municates with the state encryption module in the enclave,
which is responsible for obtaining states of the virtual func-
tion. The state protected by the enclave will be encrypted as
a disk file outside of the enclave and sent to the destination
VSF through a secure channel.

The remote attestation function [33] provided by SGX
is used in our architecture to build a secure channel. Both
source VSF and destination VSF leverage Diffie-Hellman
key exchange protocol to negotiate a shared symmetric
key. During the negotiation process, they use the Quote
enclave to get the singed measurement value, which con-
tains enclave information and platform information. They

Fig. 5. State Migration.

communicate with IAS to verify the quote and obtains
authentication results. When the validation is passed, both
instances obtain two elliptic curve public keys of ga and gb.
The symmetric critical can be calculated through the Elliptic-
Curve Diffie-Hellman (ECDH) protocol.

After the secure channel is created, the original instance
can synchronize the states to the new instance. The SGX
decryption library is used to decrypt the states, after which
the states will be recovered. Through the secure state migra-
tion, the states are securely protected during state migration.
We also transmit the migrated packets by the cipher-text
through the secure channel and design a migration API for
transferring both state and traffic for a set of flowIDs from
one instance to another instance (as shown in Table 2).

4.3 Trusted Policy

The trust of policy is crucial to virtual security functions
because the rules of policy include lots of sensitive infor-
mation about a network. Once those sensitive rules have
been tampered with or leaked by adversaries, the network
security is endangered. However, it is still a challenge to
ensure the trust of virtual security function policy while
using SGX. Take Snort as an example, its policy processing
is almost related to all processing procedures and involves
a large number of modules and plugins. If we want to
provide complete protection for the policy processing, we
need to put almost all modules of Snort into enclaves. That is
impractical because it will bring huge expenses since some
modules and plugins cannot be put into enclaves due to
involving a lot of system calls.

S-Blocks architecture is different from Snort. The archi-
tecture makes the complete protection of policy possible.
S-Blocks abstracts each function into a separate component
(i.e. element), which carries out a single and non-conflicting
traffic processing. Therefore, it’s easy to extract the modules
that are independent with policy processing and only put
those modules in enclaves for better protection.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 9

In S-Blocks, the rules of a policy are implemented by
assembling multiple package processing elements. For ex-
ample, a rule is defined as:

drop tcp any any → any 3306 (msg: "rule

detection"; falg:S; content: "|03|"; offset:

4; dsize: <300;)

This rule indicates that the system discards TCP syn
packets coming from any port and destination port 3306,
and the packets payload includes specific content ”|03|”
after the first 4 bytes of the payload while the packet pay-
load size is less than 300. In addition, the system prints the
message ”rule detection” when detecting packets according
to the rule. In order to implement this rule in S-Blocks,
we use Classifier element to classify IP packets with special
content. Then IPClassifier element classifies syn packets with
destination port 3306 and CheckLength Element checks the
length of packets. After packets conforming to this rule
are distinguished, Print element will print the message
and Discard element will discard the packets. Meanwhile,
elements relating to the policy such as Classifier, IPClassifier,
Discard, and CheckLength are put into the enclave so as to
provide protection for the policy processing.

In S-Blocks, we use a configuration file to describe how
the elements are configured and connected in detail. An
element implements a simple packet processing function
which depends on the element configuration. For example,
Classifier element classifies different types of packets accord-
ing to the element configuration. Users can connect various
elements to achieve various and complex rule processing. If
users want to support new types of rules, they can create
new elements to support complex rules. Based on the rules,
the elements are connected and executed to realize packets
detection. In order to realize complete protection for the
policy processing, we also design some specific modules or
elements which are as shown in Fig. 6.

1© Seal/Unseal policy: The policy file stored in plain
in disks needs to be protected carefully. We design two
APIs, void Seal(file *) (i.e. PolicyFile) and void Unseal(file *)
(i.e. PolicyFile) based on SGX for policy file protection of
VSFs. The keys used in two APIs are generated based on
platform information so that keys cannot be retrieved and
policy file can only be decrypted on the same platform.
When the policy file needs to be stored on the hard disk,
the Seal function will encrypt the policy file and write it to
the disk. When S-Blocks starts up, the Unseal function reads
the file from the disk, then decrypts the policy file.

2© Policy processor: Policy Processor module parses the
policy and generates the elements which are responsible
for processing policy. The lexical analyzer in PolicyParse
element converts the decrypted policy file into four array
structures: (1) an array of elements, (2) an array of element
configuration, (3) an array of reading handlers and (4) an
array of element connections. These elements are connected
to each other according to the array of element connections.
The relation of element connection defines the process of
rules. The elements will be configured according to the
array of elements and the array of element configuration,
and then generate a router. After that, elements query flow-
based router context and place themselves in the task queue.
PolicyChange element is responsible for changing the policy.
Then users can dynamically reconfigure some elements with

Fig. 6. Trusted Policy.

handlers according to the new policy as the router is execut-
ing and the PolicyParse will regenerate the new elements
which support the new policy.

3© Policy detector and Policy actor: Policy detector mod-
ule implements various elements to detect the traffic based
on the policy rules, such as UDPFlood element, TCPFlood
element. UDPFlood element and TCPFlood element filter
malicious TCP/UDP traffic based on policy rules. Policy
actor module performs corresponding actions on data pack-
ets based on the rules of security policy, such as Discard
element, Log element, Alert element.

In S-Blocks, the policy file and the elements related to
policy processing are put into the enclave of SGX. Hence,
it can provide security protection in whole life cycle of
policy. Thus it prevents the policy from being tampered
with and leaked by malicious cloud administrator, tenants
or programs.

If a security function is moved from an old Intel SGX
system to a new Intel SGX system (i.e. this happens during
platform upgrade) or from one processor to another (i.e. this
happens in CPU replacement in a system or load balancing
in a cloud environment). The enclave will not be able to
unseal the policy in the new platform. There are two ways to
migrate the policy file. One is based on SGX migration [28]
where the original instance and the new instance establish
a secure channel based on SGX remote attestation. Then the
old instance unseals the policy file, encrypts the policy file
with a negotiated session key and sends the policy to a new
instance. After receiving the policy file, the new instance
decrypts policy file using the session key, then the new
instance seals the policy in order to implement the security
policy protection of VSFs. The other approach is to use an
SFV controller to deliver the policy file of the old instance
to the new instance. The policy file is transferred to the new
instance over the TLS channel from the SFV controller and
then the policy file will be sealed and loaded into the enclave
of the new VSF for protection.

5 IMPLEMENTATION

We prototype S-Blocks leveraging Fast-Click [3], [24] based
on SGX SDK v2.13, and instantiate it for three uses cases.
FastClick is an extension of the Click modular router [37],
which is a most commonly used software architecture
for building modular and extensible network function.
FastClick features an improved Netmap support and a new
DPDK [18] support and provides fast user-space packet I/O
and easy configuration via automatic handling of multi-
threading and multiple hardware queues. However, Fast-
Click currently does not support any security functions.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 10

5.1 Case Studies

We design and implement three types of virtual security
functions on S-Blocks architecture, including virtual DDoS
detection and defense, firewall and IDS. We implement
several new elements for virtual security functions. We use
Element manager to provide management functions such as
policy analysis, configuration, initialization and operational
state management. We also modify some basic FastClick
elements such as Discard, ToDevice, Packet, Element and so
on. At last, we put the critical elements related to security
functions to the enclave.

• DDoS Detection and Defense: As is shown in Fig.
7, we implement UDP Flood, SYN Flood, ICMP Flood,
Packet Switch elements as DDoS detection and de-
fense module. The UDP Flood, SYN Flood, ICMP Flood
elements receive a packet and output a tagged packet
to Packet Switch element. The Packet Switch element
sends the packet to different action elements such as
ToDevice, Discard, Delay according to the tag and rule
tables.

• Firewall: We develop a stateful firewall that consists
of the rule table, state table, match engine, and manager
modules. Each module is realized via one or multiple
elements. The rule table is the basic storage of firewall
rules, and the state table maintains corresponding
states of each firewall rule. When the packet comes
in it is handled by the match engine, which first
matches the packet against state table. If the packet
is not matched with any states, the match engine
matches the packet against the rule table to determine
the actions for this packet. The manager handles the
control commands from the user, such as inserting,
removing, and updating the firewall rules.

• IDS: We implement four differnt protocol analyzer
elements: (1)httpanalyzer, (2)sshanalyzer, (3)ftpanalyzer
and (4)dnsanalyzer) and six different detection logic
programs (DNS Tunneling Detector, Cookie Hijacking
Detector, Trojan Detector, Scanner Detector, Flow Moni-
tor, and HTTP Monitor) for the IDS. When a packet is
sent to the IDS, the packet is first classified based on
its header information. Packets belonging to different
application protocols are sent to different protocol
analyzers for analysis. The protocol analyzers then
generate events according to the analysis results.
Those events are passed to various detection logic
programs according to the configuration of the IDS.
The detection logic programs are responsible for
detecting any threats and reporting the threats. By
connecting the IDS to the action elements, such as
Discard, Delay, and ToDevice elements, IDS can block
or redirect the traffic.

In State synchronization module, we implement the in-
terface of states serialization and deserialization to support
copying the partial state. When the state is migrated or syn-
chronized, the state information is serialized. After remote
authentication between the two VSFs, the state is trans-
mitted through socket communication. At the same time,
we achieve the recovery state through the deserialization
interface which will restore the state of each element. On
the other hand, we offer four state-related APIs to get, delete

or change the states information according to flowIDs and
migrate states between two instances.

5.2 Performance Optimization

S-Blocks builds on hardware-assisted memory protection
based on Intel SGX to provide strong confidentiality and
integrity guarantees. However, the architecture of SGX suf-
fers from two major limitations which incur performance
overhead in VSFs.

• For strong security, SGX allows neither system calls
within enclaves nor instructions that could lead to
a VMEXIT. Enclave transitions are expensive, intro-
ducing a high runtime overhead due to the cost of
saving/restoring the state of the secure environment.
Each enclave transition imposes a cost of 8,400 CPU
cycles [2].

• The Enclave Page Cache (EPC) is restricted to 128MB.
To overcome this limitation, SGX supports a secure
paging mechanism to an unprotected memory re-
gion. However, the paging mechanism incurs some
overheads depending on the memory access pat-
tern [1].

In order to achieve high performance despite the in-
herent limitations of the SGX architecture, we have imple-
mented the following performance optimization in S-Blocks:

Reduced system call. As one of the goals of the S-
Blocks is high performance, we minimize the number of
system calls. We find that many VSFs simply do not make
system calls or execute instructions that require VMEXIT.
In S-Blocks , the sum of ECalls and Ocalls is about ten.
However, we need system call to get time when we need
to judge where S-Blocks suffers a DDoS attack according
to the rate of receiving packets. In the previous work,
researchers have thus sought a few alternatives for in-
enclave timing. The most common one uses OS time service
with system call by using enclave exit or shared memory.
However, they all emphasize that it is still an open problem
to provide trusted and high-resolution for SGX applications.
For example, SafeBricks [55] relies on the host I/O to get
timestamps but it does not guarantee the timestamp is cor-
rect. Taking overhead into consideration, S-Blocks leverages
the FromDevice element to capture the timestamp from the
per incoming packet batch. The following elements can
directly obtain the timestamp of the packet. In addition,
I/O for maintaining logs requires Ocall operations which
cause system overhead. Therefore, we have optimized the
code to reduce some unimportant logs information for better
performance.

Batch operation. Every packet receiving or sending op-
eration will result in an invocation of the I/O interface and
an enclave transition, hence we exclude the packet capture
library from the TCB. Using batch processing can reduce
the number of enclave transition and improve system per-
formance. In practical work, we add batch operation to the
security function to improve performance of S-Blocks.

DPDK. DPDK allows achieving line speed throughput
in software-based network function. The design of putting
DPDK code and state inside the enclave would bring high
performance and inflate the size of the TCB. Therefore, we
put DPDK out of the enclave.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 11

Fig. 7. A Virtual Security Function Case based on S-Blocks: DDoS Detection and Defense.

6 EVALUATION

S-Blocks uses SGX and Fast-Click to achieve trusted protec-
tion for VSFs. However, SGX will bring additional overhead
that affects system throughput, traffic processing time, and
hardware resources. In this section, we will perform a
detailed performance analysis of S-Blocks and present its
security analysis.

6.1 Experimental Set-up

We evaluate the performance of S-Blocks using the real
Skylake platform with an Intel E3-1280 v6 CPU with 4 cores
executing at 3.9GHz. The server has 16GB of memory and
runs Ubuntu 18.04.1 LTS with Linux kernel version 4.15.
Besides, we use Mininet [48] and Floodlight [22] as net-
work simulation and controller to build SFV experimental
environment. Mininet is a network simulation system. It
runs a series of hosts, switches, and links on a single Linux
kernel. It uses lightweight virtualization technology to build
a virtual network. Floodlight is based on Java and it can
modify the behavior of network device with a well-defined
instruction sets.

We evaluated S-Blocks using three types of security func-
tions for the case-studies: (1) DDoS detection and defense;
(2) firewall; and (3) IDS. For the performance measurements,
we consider several cases of S-Blocks :

• Baseline: the system executing VSF based on Fast-
Click without SGX protection.

• S-Blocks: the system executing VSF based on Fast-
Click with SGX protection.

In addition, we also make a performance comparison be-
tween three types of security functions based on S-Blocks
to complex, full-featured applications such as Dshield, IPta-
bles, Snort.

6.2 Performance of System

For monitoring the systems elasticity, we deployed a client
generating traffic in varied sizes and rates to S-Blocks.
Then the traffic was passed to and processed by the virtual
DDoS detection and defense, Firewall, and IDS. In the DDoS
scenario, we use Scapy [58] and TFN [66] to generate normal
traffics and attack traffics. Attack traffic contains UDP flood
traffic, SYN flood traffic, ICMP flood traffic and so on. TFN
is a set of computer programs to conduct various DDoS
attacks such as ICMP flood, SYN flood, UDP flood, and
Smurf attack. It can be used to control any number of remote

machines to generate random anonymous denial of service
attacks and remote access. In Firewall and IDS scenario, we
use Scapy [58] to generate traffic in various sizes and rates to
the system. Scapy is a powerful interactive packet handler
based on python. It can forge or decode mostly protocols
packets, send them online, capture them, match requests
and replies, etc..

6.2.1 Throughput

Throughput is the most important performance criteria for
evaluating our approach. We evaluate the throughput of our
approach through traces of different packet sizes, from 64
Bytes to 1500 Bytes, in two different modes: a Baseline mode
and a S-Blocks mode, where the Baseline mode means we
run the virtual functions developed in Click without SGX
protection. We then compare the throughput of those two
different modes for three different virtual security functions,
including a DDoS detection and defense function, a fire-
wall function, and an IDS function. We also compare those
two modes with three state-of-the-art open-source security
applications. Fig. 8 (a), Fig. 8 (b) and Fig. 8 (c) show our
throughput comparison results.

It is clear that increasing packet sizes reduces the
throughput of all three virtual security functions in both
Baseline mode and S-Blocks mode. The throughput in the
Baseline mode for three virtual security functions is a
little bit lower than the S-Blocks mode, since in the S-
Blocks mode, running virtual functions in SGX enclaves
increases memory and CPU consumption. We additionally
compare the throughout overhead of our approach with
three state-of-the-art security applications. Fig. 8 (a) shows
a throughout comparison between our DDoS detection and
defense function implementation based on S-Blocks and an
open-source DDoS detection tool, Dshield. The result shows
that the throughput of Dshield is 1.03x than our solution.
Fig. 8 (b) shows a throughout comparison of our firewall
implementation and IPtables. The result shows that the
throughput of IPtables is 1.04x than our solution. Fig. 8 (c)
shows a throughout comparison considering IDS. The result
depicts that the throughput of Snort is 1.05x than our IDS
implementation. In summary, the evaluation results show
that S-Blocks only impacts overall throughput of security
functions slightly due to SGX protection.

6.2.2 Latency

We also measure the latency of average packet processing
considering two different modes and three different types
of security functions by using Scapy to send both UDP and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 12

(a) The Throughput of DDoS Detection and
Defense

(b) The Throughput of Firewall (c) The Throughput of IDS

Fig. 8. The Throughput Measurement of Virtual Security Functions.

(a) The Latency of DDoS Detection and De-
fense

(b) The Latency of Firewall (c) The Latency of IDS

Fig. 9. The Latency Measurement of Virtual Security Functions.

TCP traffic with different packet sizes in our experiments.
Our evaluation results are summarized in Fig. 9.

Fig. 9 (a) presents the latency measurements for the
DDoS detection and defense function with various packet
sizes. In the Baseline mode, the average processing time is
about 1.125us. In the S-Blocks mode, the average processing
time is about 1.4us. On the whole, the DDoS detection
and defense system executing on top of SGX in the S-
Blocks mode gives 24% additional executing time delay
compared to the Baseline mode. Fig. 9 (b) and Fig. 9 (c)
show the latency measurements for the firewall and the IDS,
respectively, with various packets sizes.

In the Baseline mode, the average processing time of
the firewall is about 0.80us, and the average processing
time of the IDS is about 1.55us. In the S-Blocks mode, the
average processing time of the firewall is about 1.05us,
which gives 31% additional executing time delay compared
to the Baseline mode. The average processing time of the
IDS is about 1.92us, which gives 23.8% additional executing
time delay compared to the Baseline mode. we also show the
latency comparison between our solutions and the state-of-
the-art applications with various packets sizes, respectively.
The average processing time of the Dshield is about 1.2us,
which is 86% of S-Blocks, the average processing time of IPt-
ables is 0.955us, which is 91% of S-Blocks, and the average
processing time of Snort is 1.75us, which is 91% of S-Blocks.

6.2.3 State Synchronization

We then evaluate the overhead of state synchronization in
S-Blocks. The measurement results are presented in Fig. 10.

Fig. 10. State Synchronization Latency.

The average time of state synchronization in 15-time
tests is 326ms. This time is primarily dictated by the time
required for the S-Blocks to serialize and deserialize states.
The results show that these data consumption is within
the acceptable range of the system and do not result in
significant overhead in the system.

6.2.4 CPU consumption

Finally, we compare the CPU consumption with respect
to two different modes and three state-of-the-art security
functions by sending traffic with various packet sizes, which
are generated by Scapy in the maximum rate.

As is shown in Fig 11, in the Baseline mode, the average
CPU usages of the DDoS detection and defense function,
the firewall, and the IDS are about 5.9%, 6.2%, and 7.2%,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 13

respectively. In the SGX mode, the average CPU usages of
the DDoS detection and defense function, the firewall, and
the IDS are about 6.4%, 7%, and 7.6%, respectively. The
results show that the CPU usages in two different modes
for three security functions are increased slightly.

In addition, the average CPU usages of Dshield is 6.06%
shown in Fig. 11 (a), which is 95% of the CPU usage of
the DDoS detection and defense function based on S-Blocks.
Fig. 11 (b) presents that the average CPU usages of IPtables
is 5.8%, which is 83% of the average CPU usage of firewall
based on S-Blocks. Fig. 11 (c) depicts that the average CPU
usages of Snort is 7.2%, which is 95% of the average CPU
usage of IDS based on S-Blocks.

6.3 Security Analysis

In this section, we conduct security analysis from two as-
pects: (1) security analysis of VSF and (2) security analysis
of state migration.

6.3.1 VSF Security

Our lightweight and trusted VSF architecture, S-Blocks, uses
Intel SGX to protect the code, state, and policy of VSFs. The
security architecture is mainly that packets out of VSFs are
encrypted so that attackers from the cloud can only intercept
encrypted traffic. Attackers cannot get the contents of the
packets and can only observe the size and time of packets. It
also protects the packets and policies of IDSes and data flow
status in such a way. The system is divided into trusted parts
and untrusted parts. The trusted part stores sensitive data,
sensitive states. DDoS attack processing detection includes
a data packet preprocessing module, an action processing
module, a rule matching module, and other sensitive mod-
ules. The operating system, drivers, BIOS, and VMM cannot
obtain the code and data in the enclave. Using SGX security
mechanisms, S-Blocks protects against security threats, such
as data and sensitive rules leakage, code tamper, targeting
VSFs in an untrusted cloud environment, to realize the
security of VSF internal states and policies. It also provides
the trusted part with the interface of the system call and
implements the packets transfer between the trusted and
untrusted parts.

6.3.2 State Migration Security

In the process of state migration [51], a critical issue is how
to establish a secure channel between two VSF instances
for secure state migration. In order to solve this problem,
S-Blocks uses the SGX remote attestation mechanism [33]
to achieve the integrity certification between two instances.
In the process of remote attestation, the developer’s server
and the SGX remote authentication server communicate
through a standard TLS network protocol. The SGX remote
attestation service provides necessary infrastructure to al-
low the server to determine whether the client is requesting
the service executing in a secure and trusted environment
(hardware + software) and establish an encrypted channel.
After successful attestation, the server sends the confidential
data to the client.

7 RELATED WORK

In this section, we review previous works on security hard-
ening of NFV and state migration of OpenNF and VMs.

7.1 Security of NFV

ESTI NFV Security and Trust Guidance [9] propose to pro-
vide trusted protection based on Hardware Security Module
(HSM), Trusted Platform Module (TPM) [49], and virtual
Trusted Platform Module (vTPM) [6]. OpenNetVM [75]
runs network functions in Docker containers based on
the NetVM architecture. It provides isolation between NFs
based on container mechanisms, such as namespace and
capability. NetBricks [10] leverages a safe language (Rust)
and LLVM [39] to enable zero copy soft isolation. It pro-
vides memory isolation by using the type-safe language and
achieves high performance by adopting LLVM as an opti-
mization back-end of compilers. However, those approaches
cannot provide the virtual network function with strong
security level protection since they lack strict memory en-
cryption and isolation mechanisms [31], [47].

Recently, some research efforts have proposed to use In-
tel SGX to protect virtual network functions. SGX can isolate
an application with a hardware sandbox, called enclave,
using memory encryption and access control mechanism so
that OS, driver, BIOS, or virtual machine monitor (VMM)
cannot access the code and data in the enclave. S-NFV [62]
attempts to use SGX to protect Snort. However, it ignores
the policy protection and state trust, and is implemented
with an open-source simulator, OpenSGX [35], instead of
a real SGX platform. In addition, the authors simply put
the entire Snort into the SGX enclave, which could cause
a large performance overhead. LightBox [20] introduces
etap, a virtual network device, to access the fully protected
network packets so as to secure the traffic based on TSL,
which is put in the SGX enclave. However, this work uses
monolithic architecture, which has significant limitations to
protect the virtualized environments since users can not
customize VNFs and reuse existing modules to create new
network functions. Trusted Click [16] extends the Click
modular router to perform secure packet processing with
SGX, but it does not discuss the flow-based state pro-
tection because Click lacks the stateful traffic processing
functionality. ShieldBox [67] securely processes encrypted
traffic by using SCONE [1] and Click. It lacks the neces-
sary state serialization routines. SafeBricks [55] builds upon
NetBricks [54] and leverages SGX and Rust language-based
enforcement to keep network function outsourcing secure.
However, this work only provides the isolation based on
processes and does not consider the state protection and mi-
gration. SGX-Box [30] proposes a high-level programming
language, called SB Lang for handling encrypted traffic in
SGX-protected middleboxes. This work provides a few of
API based on SB Lang and automatically convert SB Lang
code to C/C++ code. AirBox [7] proposes a platform for
fast, scalable and secure onloading of edge function with
SGX. SPX [8] presents a solution for edge-ready and end-to-
end secure protocol extensions, which allows edge functions
to operate on encrypted traffic while ensuring that security
semantics of secure protocols still hold. Nevertheless, they
do not consider state security of middleboxes.

Compared with above work, the goal of S-Blocks is to
design a new modular security architecture and implement
a platform so that users can leverage the platform and its
elements to easily create new security functions and enable

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 14

(a) The CPU Usage of DDoS Detection and
Defense

(b) The CPU Usage of Firewall (c) The CPU Usage of IDS

Fig. 11. CPU Usage Measurement of Virtual Security Functions.

the SGX protection of those functions. S-Blocks focuses
on the modular design and run-time protection of virtual
security functions instead of general network functions. We
propose the modular architecture of virtual security func-
tions while considering their code, state, policy protection
using SGX, and achieving lower performance overhead. We
also design several APIs for developers to produce new
security functions and put them into enclaves for protec-
tion. Furthermore, a fine-grained state synchronization and
migration approach is proposed for secure state sharing
among virtual instances. Finally, we provide an extensive
evaluation based on three typical security functions, includ-
ing DDoS detection and defense, firewall, and IDS.

In Table 2, we have summarize the state of art of the SGX-
based network function protection frameworks and shown
the difference between the previous works and S-Blocks. As
can be seen from the table, S-Blocks is the first practical work
that proposes the design architecture of Click-based security
functions while considering their code, state, policy protec-
tion using SGX, and achieving low performance overhead.

7.2 State Migration

The state sharing is crucial for virtual instance scaling. Cur-
rently, enabling state sharing among instances by maintain-
ing global detection states in the shared data storage, such
as RAMCloud [53], FaRM [19], and Algo-logic [46], has been
proposed. Such an approach does not need to migrate states
among virtual instances. However, this approach needs ad-
ditional tools to extract the states of VSFs and introduces an
additional performance overhead [42]. In StatelessNF [36],
its evaluation results show that the remote-only state share
approach can lead to a 2-3x degradation in throughput and a
100-fold increase in packet latency. Stateless uses distributed
shared object(DSO) to access states of an instance. However,
it needs to obtain the states of the instance by RPC, which
also causes high cost when many states need to be shared.

VM (Virtual Machine) cloning [4] allows full cloning
of NF (Network Function) instances. This will result in
additional resource consumption because some unwanted
states will also be migrated when cloning NF instances. In
addition, this approach cannot move and merge states from
multiple NF instances, so it cannot realize fast and elastic
scale-in.

Some research work [25], [44], [50], [71] has proposed
to mitigate and replicate internal NF states, allowing

us to maintain correct NF behaviors during NF scaling.
Split/Merge [56] proposes a state consistency approach by
suspending current traffic, caching them in a controller, and
sending the packets after migration. However, when the
current traffic is suspended, some data packets may have
arrived at the network. Split/Merge directly discards these
data packets, which loses some state information and cause
processing packets out of order. Furthermore, caching a
large amount of data stream in the controller requires a large
cache memory in the controller. OpenNF [26] proposes to
cache the data traffic to be synchronized in the controller
and then performs state synchronization operation. After
the state synchronization is completed, the buffered data
traffic is sent to the destination instance for processing.
The destination instance processes the cached data packets
firstly and then processes the subsequent new data pack-
ets to implement loss-free and order-preserving. However,
OpenNF has the same problem as Split/Merge: these meth-
ods cause high delay and require the controller to have
enough memory capacity.

Aiming at this issue, we propose the fine-grained state
consistency and secure migration approach. Compared to
the previous works, our approach proposes to cache data
traffic to be synchronized in an instance rather than a con-
troller in order to reduce the overhead of the controller. Our
approach synchronizes different types of flow states through
fine-grained flow classification and state serialization. In
addition, our approach uses the remote attestation provided
by SGX to establish a trusted channel between two instances
for secure state migration.

8 DISCUSSION

In this section, we discuss over limitations and future work
of S-Blocks.

8.1 Limitations

S-Blocks has some limitations that are mainly caused by
using SGX.

First, SGX needs ECall and OCall interfaces between
the enclave and the untrusted part incurring expensive
overhead. To mitigate such a limitation, at high level, S-
Blocks puts all elements together in one enclave instead of
multiple enclaves (as described in Section 4) so as to reduce
the performance overhead. If developers define the system

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 15

TABLE 3
Properties of the Representative Frameworks for SGX-based NFV Security

Frameworks Modular Click Support Isolation State Protection Policy Security DPDK
Overhead

Throughput Latency

SafeBricks [55] X × X(Rust+SGX) N/A N/A X low N/A
ShieldBox [67] X X X(SGX) N/A N/A X low high
LightBox [20] × × X(SGX) X N/A × low N/A
SGX-Box [30] N/A × X(SGX) × × × low N/A

TrustedClick [16] X X X(SGX) X × × low N/A
S-NFV [62] × × X(SGX) X × × high N/A
S-Blocks X X X(SGX) X X X low low

* N/A: the feature is not considered or not explicitly elaborated in a work.

call in common use with the Ocall function previously, we
can avoid recompiling to ensure all modules indeed fit in
an enclave to some extend. However, if the module contains
the system call, which was not defined previously, we need
to hand tune the code to ensure all modules could run in
an enclave. In addition, a large number of system calls also
incur extra performance overhead. However, we found that
the process of VSFs almost does not make system calls or
execute instructions that lead to VMEXIT except the system
calla related to time, such as timestamp measurements using
rdtsc. In S-Blocks , we use FromDevice element to make
timestamp measurements. When the FromDevice element
gets an incoming packet, it captures the timestamp and
writes it to the annotation part of the packet. VSFs that
need timestamps for their functionalities just simply read
it from the elements, though these timestamps are not
guaranteed to be very precise. Intel SGX SDK provides a
trusted time, however it is coarse-grained, which can’t fulfill
the requirement of VFS. SGX needs to make changes to the
hardware to support a trusted, efficient, and precise time
source for SGX enclaves [61].

Secondly, the available memory of enclaves provided
by SGX is limited. Hence, we must control the size of
sensitive code and data. In our implementation, we use
an enclave to protect the trusted elements. However, when
the number and size of the programs are increased, more
pages are required to be swapped in and out. In order
to ensure security, the system should protect the integrity
and confidentiality of the pages, which results in some
system overheads. Fortunately, several solutions [76] have
been proposed recently to improve the performance of EPC
paging to an acceptable range.

Thirdly, provisioning VSF as a monolithic piece of soft-
ware executing as a whole has significant limitations to
protect the virtual environments. Hence, S-Blocks only sup-
ports the modular security functions based on Click. Other
monolithic security applications such as Snort can not be
supported. Modifying a monolithic security application like
Snort to adapt to S-Blocks is a daunting and complicated
task, which changes the logic of the original application and
increases the possibility of errors. In the future, we may
try this task, but the cost is very high, probably more than
rewriting a modular security function based on S-Blocks.

Finally, S-Blocks does not address the defense mech-
anism to side-channel attacks on SGX. The side channel
attacks to SGX can be used to obtain the enclaves code
and data information, such as encryption keys and pri-

vacy data. There are various types of side channel attacks,
such as timing-based side channel attacks, cache-based side
channel attacks [59], TLB-based side channel attacks, Page-
table-based side channel attacks, attacks based on the CPU
internal structure [40] and mixed side channel attacks [70].
It is possible to defend those side channel attacks by hiding
the control flow and data flow. Recently, Recently, a number
of solutions have been proposed to solve and mitigate these
attacks [11], [15], [27], [63], [64], which are orthogonal to our
work.

8.2 Future Work

We have implemented three types of VSFs to verify S-Blocks
design and performance. In the future, we plan to develop
more security functions. Besides, we plan to increase the
flexibility of S-Blocks so that the developers and users can
more easily add and put other elements to the SGX plat-
form. Furthermore, we should also consider the architecture
with multiple enclaves and dynamic configuration so as to
increase the flexibility of S-Blocks.

In addition, we plan to make S-Blocks support hot swap-
ping in order to dynamically modify and delete elements in
the future.

Hot swapping is a method that can implement new ele-
ments and realize new configurations without stopping the
current system. One solution for supporting hot swapping
is launching a new enclave and put both new elements
and old elements into the enclave. Another solution is to
put each element in a separate enclave. However, some
issues should be considered for the above solutions. For
example, the frequency of enclave transition can introduce
additional performance overhead, and how to handle the
shared elements.

9 CONCLUSION

In this paper, we have proposed S-Blocks, a lightweight
and trusted VSF architecture based on SGX. Aiming to
achieve practical high performance, address the high cost
challenges, and employ the SGX to protect the large-
scale security applications, S-blocks leverages modular and
microservice-oriented architecture to achieve a trade-off be-
tween security and performance. Moreover, we have pro-
posed trusted state synchronization and migration mech-
anisms to provide fine-grained state consistency and en-
sure loss-free and order-preserving migration for security
function scaling. Furthermore, we have presented a trusted

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 16

policy mechanism in S-Blocks to protect security policies in
VSFs. We have implemented a DDoS detection and defense
function, a firewall function, and an IDS function based on
our architecture as use cases. We have also evaluated S-
Blocks and our evaluation results showed that S-Blocks only
introduces very low performance overhead when securing
VSFs.

10 ACKNOWLEDGMENT

This work is sponsored by the National Natural Sci-
ence Foundation of China granted No.61872430, 61402342,
61772384 and the National Basic Research Program of China
973 Program granted No.2014CB340601, and Foundation of
Science and Technology on Information Assurance Labora-
tory (No. KJ-17-103).

REFERENCES

[1] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth,
Andre Martin, Christian Priebe, Joshua Lind, Divya Muthuku-
maran, Dan O’keeffe, Mark Stillwell, et al. Scone: Secure linux
containers with intel sgx. In OSDI, volume 16, pages 689–703,
2016.

[2] Pierre-Louis Aublin, Florian Kelbert, Dan OKeeffe, Divya
Muthukumaran, Christian Priebe, Joshua Lind, Robert Krahn,
Christof Fetzer, David Eyers, and Peter Pietzuch. Talos: Secure and
transparent tls termination inside sgx enclaves. Imperial College
London, Tech. Rep, 5, 2017.

[3] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace
packet processing. In Architectures for Networking and Communica-
tions Systems (ANCS), 2015 ACM/IEEE Symposium on, pages 5–16.
IEEE, 2015.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven H, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen
and the art of virtualization. Proc. of SOSP 2003, 37(5):164–177,
2003.

[5] L. R. Battula. Network security function virtualization(nsfv) to-
wards cloud computing with nfv over openflow infrastructure:
Challenges and novel approaches. In International Conference
on Advances in Computing, Communications and Informatics, pages
1622–1628, 2014.

[6] Stefan Berger, Ramn Cceres, Kenneth A Goldman, Ronald Perez,
Reiner Sailer, and Leendert Van Doorn. vtpm: virtualizing the
trusted platform module. In Conference on Usenix Security Sympo-
sium, page 21, 2006.

[7] Ketan Bhardwaj, Ming-Wei Shih, Pragya Agarwal, Ada
Gavrilovska, Taesoo Kim, and Karsten Schwan. Fast, scalable
and secure onloading of edge functions using airbox. In 2016
IEEE/ACM Symposium on Edge Computing (SEC), pages 14–27.
IEEE, 2016.

[8] Ketan Bhardwaj, Ming-Wei Shih, Ada Gavrilovska, Taesoo Kim,
and Chengyu Song. Spx: Preserving end-to-end security for edge
computing. arXiv preprint arXiv:1809.09038, 2018.

[9] B Briscoe et al. Network functions virtualisation (nfv)-nfv security:
Problem statement. White paper, ETSI NFV ISG, 2014.

[10] Romolo Camplani, Gabriele Viscardi, Manuel Roveri, and Cesare
Alippi. Netbrick: A high-performance, low-power hardware plat-
form for wireless and hybrid sensor networks. In IEEE Interna-
tional Conference on Mobile Ad-hoc & Sensor Systems, 2012.

[11] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen,
Yinqian Zhang, XiaoFeng Wang, Ten-Hwang Lai, and Dongdai
Lin. Racing in hyperspace: closing hyper-threading side channels
on sgx with contrived data races. In Racing in Hyperspace: Closing
Hyper-Threading Side Channels on SGX with Contrived Data Races,
page 0. IEEE, 2018.

[12] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian
Zhang. Detecting privileged side-channel attacks in shielded
execution with dj vu. In ACM on Asia Conference on Computer and
Communications Security, pages 7–18, 2017.

[13] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,
Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live
migration of virtual machines. In Nsdi’05 Proceedings of the Confer-
ence on Symposium on Networked Systems Design & Implementation,
Boston, U.s.a, pages 273–286, 2005.

[14] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR
Cryptology ePrint Archive, 2016:86, 2016.

[15] Victor Costan, Ilia A Lebedev, and Srinivas Devadas. Sanctum:
Minimal hardware extensions for strong software isolation. In
USENIX Security Symposium, pages 857–874, 2016.

[16] Michael Coughlin, Eric Keller, and Eric Wustrow. Trusted click:
Overcoming security issues of nfv in the cloud. In ACM Interna-
tional Workshop on Security in Software Defined Networks & Network
Function Virtualization, pages 31–36, 2017.

[17] Wanfu Ding, Wen Qi, Jianping Wang, and Biao Chen. Openscaas:
an open service chain as a service platform toward the integration
of sdn and nfv. IEEE Network, 29(3):30–35, 2015.

[18] DPDK. http://dpdk.org/.
[19] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro,

and Orion Hodson. Farm: Fast remote memory. In 11th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 14), pages 401–414, 2014.

[20] Huayi Duan, Xingliang Yuan, and Cong Wang. Lightbox: Sgx-
assisted secure network functions at near-native speed. arXiv
preprint arXiv:1706.06261, 2017.

[21] Mahdi Daghmehchi Firoozjaei, Jaehoon Jeong, Hoon Ko, and
Hyoungshick Kim. Security challenges with network functions
virtualization. Future Generation Computer Systems, 2016.

[22] Floodlight. http://www.projectfloodlight.org/.
[23] Yangchun Fu, Erick Bauman, Raul Quinonez, and Zhiqiang Lin.

Sgx-lapd: Thwarting controlled side channel attacks via enclave
verifiable page faults. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 357–380. Springer, 2017.

[24] Massimo Gallo and Rafael Laufer. Clicknf: a modular stack for
custom network functions. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18), pages 745–757, 2018.

[25] Aaron Gember-Jacobson and Aditya Akella. Improving the safety,
scalability, and efficiency of network function state transfers. In
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, pages 43–48, 2015.

[26] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella.
Opennf: Enabling innovation in network function control. In ACM
Conference on SIGCOMM, pages 163–174, 2014.

[27] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko,
Istvan Haller, and Manuel Costa. Strong and efficient cache
side-channel protection using hardware transactional memory. In
USENIX Security Symposium, pages 217–233, 2017.

[28] Jinyu Gu, Zhichao Hua, Yubin Xia, Haibo Chen, Binyu Zang,
Haibing Guan, and Jinming Li. Secure live migration of sgx
enclaves on untrusted cloud. In 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pages 225–236. IEEE, 2017.

[29] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee.
Network function virtualization: Challenges and opportunities for
innovations. IEEE Communications Magazine, 53(2):90–97, 2015.

[30] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu Han.
Sgx-box: Enabling visibility on encrypted traffic using a secure
middlebox module. In Proceedings of the First Asia-Pacific Workshop
on Networking, pages 99–105. ACM, 2017.

[31] Hassan Hawilo, Abdallah Shami, Maysam Mirahmadi, and Rasool
Asal. Nfv: State of the art, challenges and implementation in next
generation mobile networks (vepc). IEEE Network, 28(6):18–26,
2014.

[32] Huawei Huang, Song Guo, Jinsong Wu, and Jie Li. Service
chaining for hybrid network function. IEEE Transactions on Cloud
Computing. to be published.

[33] Intel. Intel software guard extensions remote attestation end-to-
end example. https://software.intel.com/en-us/articles/intel-so
ftware-guard-extensions-remote-attestation-end-to-end-example.

[34] Bernd Jaeger. Security orchestrator: Introducing a security orches-
trator in the context of the etsi nfv reference architecture. In IEEE
Trustcom/bigdatase/ispa, pages 1255–1260, 2015.

[35] Prerit Jain, Soham Jayesh Desai, Ming-Wei Shih, Taesoo Kim,
Seong Min Kim, Jae-Hyuk Lee, Changho Choi, Youjung Shin,
Brent Byunghoon Kang, and Dongsu Han. Opensgx: An open
platform for sgx research. In NDSS, 2016.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 17

[36] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. State-
less network functions: Breaking the tight coupling of state and
processing. In 14th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 17), pages 97–112, 2017.

[37] Eddie Kohler. The click modular router. 2001.
[38] Eddie Kohler. Click for measurement. UCLA Computer Science

Department, Tech. Rep, 2006.
[39] Chris Lattner and Vikram Adve. Llvm: A compilation framework

for lifelong program analysis & transformation. In Proceedings
of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, page 75. IEEE Computer
Society, 2004.

[40] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. Inferring fine-grained control flow
inside sgx enclaves with branch shadowing. In 26th USENIX
Security Symposium, USENIX Security, pages 16–18, 2017.

[41] Hongda Li, Juan Deng, Hongxin Hu, Kuang-Ching Wang, Gail-
Joon Ahn, Ziming Zhao, and Wonkyu Han. Poster: On the safety
and efficiency of virtual firewall elasticity control. In Proceedings
of the 22nd ACM on Symposium on Access Control Models and
Technologies, pages 129–131. ACM, 2017.

[42] Hongda Li, Hongxin Hu, Guofei Gu, Gail-Joon Ahn, and Fuqiang
Zhang. vnids: Towards elastic security with safe and efficient
virtualization of network intrusion detection systems. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 17–34. ACM, 2018.

[43] Liu, Haikun, Jin, Hai, Liao, Xiaofei, Xu, and Cheng-Zhong. Per-
formance and energy modeling for live migration of virtual ma-
chines. Cluster Computing, 16(2):249–264, 2013.

[44] Libin Liu, Hong Xu, Zhixiong Niu, Peng Wang, and Dongsu Han.
U-haul: Efficient state migration in nfv. In ACM Sigops Asia-Pacific
Workshop on Systems, pages 1–8, 2016.

[45] Yeping Liu, Zhigang Guo, Guochu Shou, and Yihong Hu. To
achieve a security service chain by integration of nfv and sdn.
In International Conference on Instrumentation & Measurement, pages
974–977, 2016.

[46] Algo logic systems. http://algo-logic:com/.
[47] Rashid Mijumbi, Joan Serrat, Juan Luis Gorricho, Niels Bouten,

Filip De Turck, and Raouf Boutaba. Network function virtualiza-
tion: State-of-the-art and research challenges. IEEE Communica-
tions Surveys and Tutorials, 18(1):236–262, 2016.

[48] Mininet. http://mininet.org/.
[49] Thomas Morris. Trusted platform module. 2011.
[50] Leonhard Nobach, Ivica Rimac, Volker Hilt, and David Hausheer.

Slim: Enabling efficient, seamless nfv state migration. In IEEE
International Conference on Network Protocols, pages 1–2, 2016.

[51] Vladimir Andrei Olteanu and Costin Raiciu. Efficiently migrating
stateful middleboxes. ACM SIGCOMM Computer Communication
Review, 42(4):93–94, 2012.

[52] openssl. https://www.openssl.org/.
[53] John Ousterhout, Parag Agrawal, David Erickson, Christos

Kozyrakis, Jacob Leverich, David Mazières, Subhasish Mitra, Ar-
avind Narayanan, Guru Parulkar, Mendel Rosenblum, et al. The
case for ramclouds: scalable high-performance storage entirely in
dram. ACM SIGOPS Operating Systems Review, 43(4):92–105, 2010.

[54] Aurojit Panda, Keon Jang, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. Netbricks: taking the v out of nfv. In
Usenix Conference on Operating Systems Design and Implementation,
pages 203–216, 2016.

[55] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Rat-
nasamy. Safebricks: Shielding network functions in the cloud. In
15th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI’18), Renton, WA, 2018.

[56] Shriram Rajagopalan, Williams Dan, Hani Jamjoom, and Andrew
Warfield. Split/merge: System support for elastic execution in
virtual middleboxes. In Usenix Conference on Networked Systems
Design and Implementation, pages 227–240, 2013.

[57] Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Ste-
fan Saroiu. Policy-sealed data: a new abstraction for building
trusted cloud services. In Usenix Conference on Security Symposium,
pages 10–10, 2012.

[58] Scapy. https://scapy.net/.
[59] Sebastian Schinzel and Sebastian Schinzel. Cache attacks on intel

sgx. In European Workshop on Systems Security, page 2, 2017.
[60] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis,

Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. Vc3:

Trustworthy data analytics in the cloud using sgx. In IEEE
Symposium on Security and Privacy, pages 38–54, 2015.

[61] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware guard extension: Using sgx
to conceal cache attacks. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 3–24.
Springer, 2017.

[62] Ming-Wei Shih, Mohan Kumar, Taesoo Kim, and Ada Gavrilovska.
S-nfv: Securing nfv states by using sgx. In Proceedings of the 2016
ACM International Workshop on Security in Software Defined Networks
& Network Function Virtualization, pages 45–48. ACM, 2016.

[63] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado.
T-sgx: Eradicating controlled-channel attacks against enclave pro-
grams. In Proceedings of the 2017 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, 2017.

[64] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and
Prateek Saxena. Preventing page faults from telling your secrets.
In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, pages 317–328. ACM, 2016.

[65] Snort. https://www.snort.org/.
[66] TFN. https://en.wikipedia.org/wiki/Tribe Flood Network.
[67] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov,

Pramod Bhatotia, and Christof Fetzer. Shieldbox: Secure middle-
boxes using shielded execution. In Proceedings of the Symposium on
SDN Research, page 2. ACM, 2018.

[68] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the keys
to the intel {SGX} kingdom with transient out-of-order execution.
In 27th {USENIX} Security Symposium ({USENIX} Security 18),
pages 991–1008, 2018.

[69] Ricard Vilalta, Arturo Mayoral, Raul Munoz, Ramon Casellas, and
Ricardo Martı́nez. Multitenant transport networks with sdn/nfv.
Journal of Lightwave Technology, 34(6):1509–1515, 2015.

[70] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, Xi-
aoFeng Wang, Vincent Bindschaedler, Haixu Tang, and Carl A
Gunter. Leaky cauldron on the dark land: Understanding memory
side-channel hazards in sgx. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages
2421–2434. ACM, 2017.

[71] Yang Wang, Gaogang Xie, Zhenyu Li, Peng He, and Kavé Salama-
tian. Transparent flow migration for nfv. In Network Protocols
(ICNP), 2016 IEEE 24th International Conference on, pages 1–10.
IEEE, 2016.

[72] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
channel attacks: Deterministic side channels for untrusted operat-
ing systems. In Security and Privacy, pages 640–656, 2015.

[73] Pouya Yasrebi, Sina Monfared, Hadi Bannazadeh, and Alberto
Leongarcia. Security function virtualization in software defined
infrastructure. integrated network management, pages 778–781, 2015.

[74] Tianlong Yu, Seyed Kaveh Fayaz, Michael P Collins, Vyas Sekar,
and Srinivasan Seshan. Psi: Precise security instrumentation for
enterprise networks. In NDSS, 2017.

[75] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip
Lopreiato, Gregoire Todeschi, KK Ramakrishnan, and Timothy
Wood. Opennetvm: A platform for high performance network
service chains. In Proceedings of the 2016 workshop on Hot topics in
Middleboxes and Network Function Virtualization, pages 26–31. ACM,
2016.

[76] Taassori, Meysam and Shafiee, Ali and Balasubramonian, Rajeev.
: Reducing Paging Overheads in SGX with Efficient Integrity
Verification Structures. In Proceedings of the ASPLOS, March 2428,
2018, Williamsburg, VA, USA, pages 665–678. ACM, 2018.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2985045, IEEE

Transactions on Cloud Computing

JOURNAL OF LATEX CLASS FILES, JANUARY 2019 18

Wang Juan is an Associate Professor at School
of Cyber Science and Engineering of Wuhan
University. She received her M.E. and Ph.D de-
grees in computer school from Wuhan Univer-
sity, China in 2004 and 2008. In 2018 and Jan.
2010, she did research as a visiting scholar
in Pennsylvania State University and Arizona
State University, USA. Her research has been
supported by NSF projects. She has authored
and co-authored over 40 papers and holds 10
patents in security areas. Her current research

interests include cloud security, trust computing, SDN and NFV security.
Email: jwang@whu.edu.cn.

Shirong Hao received her bachelors degree in
information security from Wuhan University in
2017. And she is currently working towards the
masters degree at School of Cyber Science and
Engineering of Wuhan University. Her research
interests include NFV, system security and IoT
security.

Hongxin Hu is an Associate Professor with
the Division of Computer Science, School of
Computing, Clemson University. He received his
Ph.D. degree in computer science from Arizona
State University, Tempe, AZ, USA, in 2012. He
has published over 100 refereed technical pa-
pers, many of which appeared in top confer-
ences and journals. His current research spans
security, privacy, networking, and systems. He
received the NSF CAREER Award in 2019. He
was a recipient of the Best Paper Award from

ACM SIGCSE 2018 and ACM CODASPY 2014 and the Best Paper
Award Honorable Mention from ACM SACMAT 2016, IEEE ICNP 2015,
and ACM SACMAT 2011.

Bo Zhao is a Professor at School of Cyber Sci-
ence and Engineering of Wuhan University. He
is engaged in the research of trusted comput-
ing theory and technology. At present, he is the
director of China cryptography society, Senior
member of CCF (China Computer Society). He
presided over two national 863 projects, NSFC
key projects of Hubei natural fund, and many
cooperation projects of ministries, departments,
enterprises and institutions, practiced and ap-
plied trusted computing and information system

security theory and technology in Cyberspace Security, and achieved
certain results. He has published more than 70 papers on SCI, EI and
core journals. He has 12 domestic patents and 1 international patent.

Hongda Li is a PhD student in the School of
Computing at Clemson University. He received
his M.S. in Computer Science from Clemson
University and M.E. in Software Engineering
from University of Science and Technology of
China. His research interest lies in network and
system security. Networks and systems keep
evolving in the past decade, especially thanks
to the advances in softwarization, Internet of
Things (IoT), and artificial intelligence (AI).

Wenhui Zhang is a PhD student in Pennsylvania
State University. Her research interests include
systems security, which includes IoT security,
PLC security and network system security (e.g.
NFV security) and security and verification for
distributed systems. She is serving as committee
members and committer roles in several popu-
lar NFV related open source projects, including
OpenNetVM and Akraino Edge Stack.

Jun Xu is an Assistant Professor in the Com-
puter Science Department at Stevens Institute
of Technology. He received his PhD degree from
Pennsylvania State University and his bachelor
degree from USTC. His research mainly lies in
the areas of software security and system secu-
rity. He is a recipient of ACM CCS Outstanding
Paper Award, Penn State Alumni Dissertation
Award, RSA Security Scholar Award and USTC
Guo-moruo Scholarship.

Peng Liu is a Professor of Information Sciences
and Technology, College of Information Sciences
and Technology. He is also Director of Center for
Cyber-Security, Information Privacy, and Trust
at Pennsylvania State University. He has more
than 300 papers. His teaching and research in-
terests include system security and survivability,
distributed systems, and peer-to-peer systems in
the contexts of E-Commerce, digital health care,
digital government, command and control, digital
infrastructure systems.

Jing Ma was born in April, 1982. She is an engi-
neer of Science and Technology on Information
Assurance Laboratory. Her research interests
include information security, trusted computing,
and computer application.

