
S-CAVE: Effective SSD Caching to Improve Virtual

Machine Storage Performance

Tian Luo1 Siyuan Ma1 Rubao Lee1 Xiaodong Zhang1 Deng Liu2 Li Zhou3$

1The Ohio State University 2VMware Inc. 3Facebook Inc.

Columbus, OH Palo Alto, CA Menlo Park, CA

{luot, masi, liru, zhang}@cse.ohio-state.edu liud@vmware.com lzhou@facebook.com

Abstract—A unique challenge for SSD storage caching man-
agement in a virtual machine (VM) environment is to accomplish
the dual objectives: maximizing utilization of shared SSD cache
devices and ensuring performance isolation among VMs. In this
paper, we present our design and implementation of S-CAVE, a
hypervisor-based SSD caching facility, which effectively manages
a storage cache in a Multi-VM environment by collecting and
exploiting runtime information from both VMs and storage
devices. Due to a hypervisor’s unique position between VMs and
hardware resources, S-CAVE does not require any modification to
guest OSes, user applications, or the underlying storage system.
A critical issue to address in S-CAVE is how to allocate limited
and shared SSD cache space among multiple VMs to achieve the
dual goals. This is accomplished in two steps. First, we propose
an effective metric to determine the demand for SSD cache
space of each VM. Next, by incorporating this cache demand
information into a dynamic control mechanism, S-CAVE is able
to efficiently provide a fair share of cache space to each VM
while achieving the goal of best utilizing the shared SSD cache
device. In accordance with the constraints of all the functionalities
of a hypervisor, S-CAVE incurs minimum overhead in both
memory space and computing time. We have implemented S-
CAVE in vSphere ESX, a widely used commercial hypervisor
from VMWare. Our extensive experiments have shown its strong
effectiveness for various data-intensive applications.

Index Terms—Performance, storage, I/O, SSD, cache, virtual
machine

I. INTRODUCTION

In the era of big data, cloud computing and booming of
data centers, virtual machine (VM) systems have become a
basic supporting infrastructure. In a typical VM environment,
multiple virtual machines with different operating systems
and applications can simultaneously execute on the same host
[1]. There are two goals in the design and management of
a VM system: (1) providing system isolation so that each
VM is limited to its own virtual resources, and (2) delivering
high performance for each individual VM and high resource
utilization for the overall system.

Bridging the speed gap between main memory and storage
devices, e.g. hard disk drives (HDDs), in a VM environment
is critical to the productivity of the entire system and perfor-
mance of its client VMs. With the rapid advancement of flash-
based solid-state drives (SSDs), SSD-based storage caching
has been widely studied in conventional systems [2]–[4].
However, it would be impractical to directly borrow existing
solutions in VM systems, because a SSD caching design in

$ Li Zhou worked in this project while he was working for VMware Inc.

VM systems must be consistent with the two above mentioned
goals. To achieve the goal of high resource utilization, each
VM should be granted an appropriate amount of SSD cache
space that should be adaptive to runtime dynamics. To achieve
the goal of performance isolation, the effective SSD caching
space of each VM should not be interfered by other VMs
running on the same system.

According to the hierarchy of a VM system (shown in
Figure 1), there are three options for SSD caching manage-
ment, namely, Option 1: VM-based SSD caching; Option 2:
storage system-level SSD caching; and Option 3: hypervisor-
based SSD caching. Based on our thorough analysis of these
options (in Section II), we argue that hypervisor-based SSD
caching (Option 3) is the best choice. Therefore in this paper,
we present S-CAVE, a hypervisor-based SSD caching facility,
which effectively manages a shared SSD cache device for
multiple VMs. We have implemented and tested S-CAVE in a
commercial hypervisor from VMware.

Fig. 1: Design Options of SSD Caching in a VM environment

A. Outline of Our Solution: S-CAVE

We take the following steps to design S-CAVE so that it
well fits in a VM system.

First, for each running VM, we use a light-weight module
to monitor its I/O activities and manage its cache space
in a transparent way, which means we do not make any
modification to guest OSes or user applications.

Next, we propose a metric called “rECS” (simplified for
ratio of effective cache space) to identify the cache space
demand of each VM at runtime. It is a critical reference for
cache space allocation. In essence, rECS is the ratio of the

cache space that is being effectively used by a VM to the total
cache space that has been allocated to this VM. According to
our analysis and quantitative experiments, rECS can identify
VM’s cache space demand at a high accuracy.

Furthermore, a VM environment is highly dynamic, where
multiple VMs with different and changing cache demands are
running on the same host. To respond runtime dynamics and
guarantee effective and fair sharing of cache space, we design
a dynamic control mechanism to periodically cross-compare
the cache demand of each VM, and adjust space allocation
accordingly: VMs with an increased demand will be granted
more cache space, while VMs with an decreased demand will
be deprived of a portion of its already allocated cache space. In
order to prevent incorrect adjustments, historic decisions will
be taken into account as a feedback when a new decision is
being made.

B. Technical Challenges to Build S-CAVE

We have mainly addressed three technical challenges in the
design and implementation of S-CAVE.

• Effective cache space allocation. Our system design
must be able to effectively allocate cache space among
multiple VMs in order to achieve the two goals:
(1) guarantee performance isolation among VMs; (2)
achieve high performance for each individual VM and
maximize an overall resource utilization,

• Highly responsive to runtime dynamics. Unlike
conventional systems, a VM environment has multiple
VMs sharing the same set of hardware resources with
significantly high dynamics. Therefore, our design
must be adaptive to the fast changing demands of
VMs: space allocation decisions should be made dy-
namically and executed efficiently.

• Low system overhead. As a hypervisor-based caching
solution, S-CAVE resides on the host and share the
same set of hardware resources with VMs. Thus, it
is critical to minimize its cost (e.g. memory footprint
and computing time).

C. Contributions

This paper makes the following contributions. (1) We have
identified and studied several unique management challenges
of SSD caching in a VM environment in contrast to a con-
ventional system. (2) We have proposed and verified a metric
called rECS to identify the SSD cache space demand of each
VM. (3) We have designed S-CAVE, a hypervisor-managed
SSD cache, to support a multi-VM environment. We have
implemented S-CAVE in VMWare vSphere ESX [5], a widely
used commercial hypervisor. Experiment results have shown
strong effectiveness of our design.

The rest of the paper is organized as follows. Section II
studies the design choices of SSD caching in a VM environ-
ment. Section III presents the architecture of S-CAVE. Section
IV introduces metric rECS. Section V describes the mechanism
to allocate cache space among multiple VMs. Section VI
presents our evaluation results. Section VII discusses related
work. Section VIII concludes this paper.

II. WHY IS HYPERVISOR-BASED CACHING MOST

EFFECTIVE?

Figure 1 shows the hierarchy of a typical VM system,
where we present three options to design and implement an
SSD cache device. The first two are adoptions of existing
approaches, and S-CAVE belongs to the last option.

A. Option 1: VM-based SSD Caching

Since a VM can request a virtual SSD (a fixed part of
a physical SSD) in the same way as it can request a virtual
HDD, it could directly use a virtual SSD as a caching device
(Option 1 in Figure 1). This option has two advantages: (1) A
VM with such a virtual SSD cache is expected to gain the best
performance per given SSD capacity, because it has the best
knowledge to make placement decisions and has a full control
of its virtual devices. (2) It guarantees system isolation among
VMs since I/O activities of one VM will not affect the cache
size or cached data of another VM.

However, this option has two significant disadvantages. (1)
Guest OSes and/or user applications must be modified to man-
age the cache device. It incurs burdens on users, and is hardly
possible for legacy systems. (2) The size of a virtual SSD
cache cannot be dynamically adjusted to respond the changing
demands of a VM, thus unable to maximize utilization of
storage resources. Although for some other resources, like the
main memory, they could be dynamically and transparently
allocated among VMs, while each running VM has the illusion
that its total resource amount is constant to pre-configured
parameters, it is impractical to accomplish the same effect for
storage devices. For example, in order to maintain the illusion
of constant capacity for a virtual SSD when we want to shrink
its capacity at runtime, data stored on that virtual SSD has to
be moved to another storage device. This has to be done in the
background without affecting normal VM activities. However,
data movement between two storage devices would incur a
prohibitively high cost. Therefore, this option is essentially a
static-partitioning approach.

B. Option 2: Storage System-level SSD Caching

In this option, SSD caching is managed as a part of the
storage system. Since a storage system can be either locally
attached or remotely connected, the SSD cache could also be
either local on the host side (Option 2.a in Figure 1), or remote
in a storage server (Option 2.b in Figure 1). In both cases,
the SSD cache is managed within the storage sub-system.
This option has two advantages. (1) It is an easy-to-use plug-
in solution. (2) Improvement within the storage system is of
general purpose and can be achieved without an involvement
of VMs or the hypervisor.

However, this option has several drawbacks due to its iso-
lated design approach. (1) The overall VM system performance
can be sub-optimal. Because the block interface between a
storage system and the virtualization software stack is primitive
without the ability to deliver rich semantic information [4], a
local optimization in the storage sub-system may not be trans-
lated into the overall VM system performance. (2) Since the
management between the VM system and the storage system
is disconnected, performance isolation cannot be guaranteed
because of I/O interferences among different VMs may occur.

C. Option 3: Hypervisor-based SSD Caching

In this option, SSD caching is directly managed by the
hypervisor, which is the management center layered between
VMs and hardware resources (Option 3 in Figure 1). This is
the option to be focused in this paper, which can address all
the limitations in Options 1 and 2, but retain their advantages.
We propose a hypervisor-based SSD caching solution for the
following benefits. (1) A hypervisor can manage SSD cache
for VMs in a transparent way. This addresses the concern of
modifying guest OSes or applications. (2) Since most VM
activities, particularly all I/O requests, will go through the
hypervisor, this gives it a unique advantage to collect critical
information for effective SSD cache management. (3) With
a full access privilege to hardware resources, a hypervisor
could directly enforce space allocation decisions to maximize
resource utilization in an efficient way.

However, these benefits cannot be achieved without a
proper management scheme. For example, a hypervisor can
also manage SSD cache space in a naive way, such as using
a general-purpose cache management algorithm. While this
approach is easy for an implementation, our study will show
that it cannot achieve the above mentioned benefits. In the
following section, we will present how S-CAVE manages a
shared SSD cache in VM systems to gain all the benefits.

III. ARCHITECTURE OF S-CAVE

Figure 2a gives a high-level illustration to the architecture
of S-CAVE. For each VM, S-CAVE launches a module, called
Cache Monitor, to manage its allocated cache space and keep
the cache transparent to the VM. In order to effectively allocate
the shared SSD cache space among multiple VMs, we use a
central control, called Cache Space Allocator, to collect and
analyze cache usage information from each cache monitor and
make cache allocation decisions accordingly.

Figure 2b gives a more detailed view about the design of
cache monitor and block management. The cache is managed
in the granularity of fixed-size blocks1. We define “global
pool” as a set of all blocks from the cache device, and “private
pool” as a set of blocks allocated to one VM. Each block is
associated with three metadata fields: reference counter, dirty
bit and VM ID. The reference counter records the number of
hits on a block, and is reset to zero when the block is reloaded
with new data. The dirty bit is set by writes. The VM ID marks
the ownership of a block. All blocks in a private pool have the
same VM ID, and a free block has a “null” VM ID.

In the following, we will first describe the design of the
cache monitor, and then the cache space allocator.

For every VM, we use a cache monitor to manage its
allocated cache space. This module consists of 3 components
(Figure 2b): one hash table, one space manager, and one
statistics collector. (1) The hash table is used to look up blocks
in the cache device. Every cached block corresponds to one
hash entry, which is in the form of {LBN,CBN}. LBN ,
or logical block number, is the original address of the block.
CBN , or cached block number, is the block’s corresponding
position in the cache device. (2) The space manager manages

1While the basic block size could be different, such as 512B or 1MB, we
use 4KB in this paper.

Fig. 2: Design of S-CAVE.

(a) An Illustration of the S-CAVE Architecture.

(b) Cache Monitor and Block Management.

blocks in the VM’s private pool. Because the size of each
private pool could be dynamically changed, in additional to
normal operations such as cache insertion and eviction, the
space manager has more responsibilities: when more cache
space is granted, it needs to expand the private pool to its new
size by reclaiming free blocks from the global pool. And if
cache space is reduced, it needs to timely return the required
amount of space back into the global pool by freeing a certain
number of cached blocks. (3) The statistics collector observes
the I/O activities and usage status of its private pool, and
updates metrics including rECS, AllocUnit, as well as other
bookkeeping information. These metrics and information items
play important roles in cache space allocation, and will be
elaborated in later sections.

The Cache Space Allocator plays a central control role, and
is responsible for making cache allocation decisions among
multiple VMs, based on information from the statistics col-
lector of each VM. (The process of decision making will be
described in more details in Section V.) In order to adapt to
runtime dynamics, decisions are made periodically at fixed
time intervals. Each interval is called a time window.

The key for S-CAVE to be effective is to allocate the
appropriate amount of cache space to each VM. This challenge
can be addressed in two steps.

1) Identifying the cache space demand of each VM
(Section IV).

2) Making cache space allocation decisions by consid-
ering the demands of all VMs (Section V).

IV. CACHE DEMAND OF ONE VM

In order for the cache space allocator to make right
decisions for each VM, it is required that each cache monitor
provide accurate information about the SSD cache space
demand of its monitored VM.

Previous works on shared space paritioning have studied
how to identify the space demand of each application. For
example, some research at CPU cache level has proposed to
monitor the number of hits/misses of each cache unit and use
the numbers as a basis to compute the space demand [6]. Some
other research at main memory level has proposed to use the
change of hit ratio in a time window as a metric to predict the
space demand [7], [8].

However, the above hit ratio-related techniques cannot be
applied to a shared storage cache. First, due to the filtering
effect of higher-level caches, e.g. CPU cache and memory
cache, a storage cache observes a much weaker locality. In
addition, combined with the factor of a lower cost for storage
medium, a storage cache normally has a much larger capacity,
which causes a further diminishing benefit in and sensitivity
to hit ratios [9]. Therefore, we must find a suitable metric to
identify each VM’s space demand for a shared storage cache
device.

A. rECS: Ratio of Effective Cache Space

For the above reasons, we propose a metric called rECS
(ratio of Effective Cache Space). It is a ratio of the size of
cache space that is being effectively used to the total size of
cache space that has been allocated.

To be specific, assume for a VM, the total allocated cache
space contains N blocks, and within a time window, m unique
cached blocks have been accessed (cache hits), then its rECS
value during this time window is m/N × 100%.

Compared with previous approaches, rECS is a metric that
combines the benefits of both ends: low overhead and high
accuracy. In the following, we will first describe how we can
obtain rECS values in an efficient way (Section IV-B). And
then , we will study why rECS could accurately describe a
VM’s demand for SSD cache space (Section IV-C).

B. Runtime Estimation of rECS

Estimating the value of rECS at runtime is related to the
choice of cache replacement algorithms, most of which are
LRU and its variants. These algorithms can be classified into
two categories: linked-list based and array based. An faithful
implementation of LRU or its improved versions such as LIRS
[10] requires a linked list. Other variants like CLOCK [11],
[12] are array based.

We have chosen CLOCK to be the cache replacement
algorithm in our system due to its low lock contention and
low space overhead, which are important factors in a VM
environment2. Specifically, every space manager maintains its
own clock to manage its private pool.

To compute rECS values at runtime, we set up two counters
for each VM: Nall

V Mi
and Ne

VMi
, where Nall

V Mi
is the total

2A comparison of these algorithms is out of the scope of this paper.

number of cache blocks allocated to VMi, and Ne
VMi

is
used to count the number of unique cache blocks being
effectively used by VMi. At the beginning of a time window,
both counters are set to 0, and a scanner will be started to
scan the metadata of every block in the global pool for its
reference counter. Since the global pool contains blocks for
different VMs, when encountering a block for VMi, only its
corresponding counter (Nall

V Mi
) should be incremented by one.

If the reference counter is greater than 0, then Ne
VMi

will be
incremented by one as well.

In order to obtain accurate rECS values, we need to
finish scanning all reference counters within a time window.
Therefore, we are faced with a tradeoff between accuracy
and efficiency. A small time window enables responsive cache
allocation adjustments, but making it impractical to complete
a full scan on time. A large time window allows the scan to
finish on time, but making cache allocation less responsive to
runtime dynamics.

In order to estimate rECS values efficiently while keeping
a high accuray, we adopt a sampling technique. Every time
window is split into multiple small sampling periods, and
interleaved by idle periods to minimize computation overhead.
Within each sampling period, scanning starts from a random
block, and stops when the sampling period times out. The final
rECS value for a time window is the average of values from
all sampling periods. To further minimize the loss of accuracy,
we count in previous rECS values with a smoothing parame-
ter α, so that rECS = rECSold×α+rECSsampled×(1−α).
With sampling, we could obtain rECS values efficiently and
accurately, thus enabling us to choose a small time window
fore more responsive space allocation adjustments3.

C. Insights into rECS

In this section, we present the insights into rECS, and
analyze the benefits of using rECS instead of a hit-ratio-based
metric for cache space allocation, especially when the two
metrics give different suggestions.

First, we define the following notations:

• ∆E: change of rECS in the past time window.

• ∆H: change of hit ratio in the past time window.

For a running VM, its ∆E and ∆H may change in different
directions, resulting in four different combinations. In Figure 3,
we illustrate these combinations with four quadrants. In two of
these quadrants, ∆E and ∆H give the same cache allocation
suggestions. In the other two quadrants, they give different
suggestions.

Quadrant I and III: In this case, ∆E and ∆H change
in the same direction, so they would give the same cache
allocation suggestions.

Quadrant II: In this case, the hit ratio of a VM is reported
to have increased while its rECS is reported to have dropped in
the latest time window. Combining the two measurements, we
would characterize the changing access pattern in the following

3In our system, we have set the length of each time window to be 1 second,
consisting of 5 sampling periods, each of which is 0.1 second, interleaved by
idle periods. Parameter α is set to be 80%.

Fig. 3: Four Combinations of ∆E and ∆H

way: the increased data accesses hit on a decreased size
of data set. Thus, the decision made by rECS, which is to
decrease the cache size of this VM, could effectively respond
this access pattern.

Quadrant IV: In this case, the hit ratio of a VM is
reported to have dropped while its rECS is reported to have
increased. The combined measurement results characterize
another unique access pattern: the decreased data accesses
hit on an increased size of data set. This reflects an access
locality change shifting from accesses on a concentrated region
to a larger region with less frequent accesses on average. For
example, the VM is loading a new data set that starts to exhibit
locality in a new execution phase. Thus, the decision made by
rECS, which is to to increase the cache size of this VM, could
effectively cope with this access pattern.

As hit ratio changes become less sensitive in weak-
locality accessing layers, such as an SSD cache for storage
I/O requests, the rECS metric shows its unique strength by
effectively identifying the cache space demand of each VM.
Our experiment results (Section VI) well support the decisions
made by rECS on various access patterns including the patterns
characterized by Quadrants II and IV.

V. CACHE SPACE ALLOCATION AMONG VMS

While rECS can identify the cache demand of a single VM,
an effective cache space allocation solution needs to consider
and balance the demands of all VMs and hardware resources.
In this section, we will first propose our cache space allocation
scheme (Algorithm 1), and then present details including space
management, write policy and finally discuss related overhead.

A. Cache Space Allocation

Algorithm 1 describes the process of how an allocation
decision is made. In the beginning (Line 2 - 5), it checks
the number of running VMs. If only one VM is running,
this VM will be granted all the cache space. Then (Line
7 - 10), it checks if there is still enough free space (5%
threshold, more details in Section V-B). It is not necessary
to enforce allocation control until free space becomes limited.
Then (Line 12 - 16), the rECS value (E) of each VM is
calculated and based on which, we get a Score for each VM.

Next (Line 18 - 21), we should find the VM with the highest
score (VMmax) to increase its cache space, and record the
decision as “increase”. The amount to increase is determined
by parameter AllocUnit(VMmax). In the following (Line 23
- 32), we find the VM with the lowest score (VMmin). If this
VM has already suffered from a large number4 of decisions
that continuously reduce its cache space, we need to test the
decision by giving back some space, and record the decision
as “increase”. Otherwise, we can reduce its cache space and
record the decision as “decrease”, and increment the counter
DCounter by one. The last code segment (Line 34 - 39)
makes sure that we do not over-allocate.

Algorithm 1 Cache Space Allocation

1: //Assuming totally N running VMs
2: if N == 1 then
3: Cache(VM0) = ∞
4: exit
5: end if
6:

7: if Total free space > 5% then
8: For each VM: Cache(VMi) = ∞
9: exit

10: end if
11:

12: for each VMi (1 ≤ i ≤ N) do
13: E(VMi) = Eold(VMi)∗a+Esampled(VMi)∗(1−a)
14: Score(VMi) = E(VMi)− Eold(VMi)
15: Eold(VMi) = E(VMi)
16: end for
17:

18: Score(VMmax) = MAX{Score(VMi)|1 ≤ i ≤ N}
19: Cache(VMmax)+ = AllocUnit(VMmax)
20: Decision(VMmax) = “increase′′

21: DCounter(VMmax) = 0
22:

23: Score(VMmin) = MIN{Score(VMi)|1 ≤ i ≤ N}
24: if DCounter(VMmin) > m then
25: Cache(VMmin)+ = AllocUnit(VMmin) ∗ 2
26: Decision(VMmin) = “increase′′

27: DCounter(VMmin) = 0
28: else
29: Cache(VMmin)− = AllocUnit(VMmin)
30: Decision(VMmin) = “decrease′′

31: DCounter(VMmin)+ = 1
32: end if
33:

34: Deficit =
∑N

1
Cache(VMi)−TotalCacheSize× 95%

35: if Deficit > 0 then
36: for each VMi (1 ≤ i ≤ N) do
37: Cache(VMi)− = Deficit/N
38: end for
39: end if

Allocation Unit: Each time the algorithm adjusts the cache
space for a VM, the amount of change is determined by
parameter AllocUnit(VMi), which is the average number of
blocks VMi could access from hard drives within a time
window, and obtained by counting the average number of

4In our system, we use a threshold m, which is set to 5.

accesses in recent time windows. In other words, AllocUnit
is essentially the recent throughput of missed I/Os for a VM.
The purpose of this parameter is to ensure that new data to
be accessed by VMmax in the next time window can be
accommodated with enough new space, and in the meantime,
VMmin is deprived of a proper amount of cache space.

B. Cache Space Management

Having studied how to allocate cache space among multiple
VMs, we are now in a position to discuss how to manage
cache space and how to enforce an allocation decision for
each VM. As shown in Figure 2, the cache device is managed
in the granularity of blocks. If the cache space of a VM is
decreased, its space manager will start to forcefully evict the
coldest blocks. Evicted blocks will be marked “free” by setting
their VM ID to null. If the cache space of a VM is increased,
then upon receiving new data to cache, its space manager will
start to check the global pool for free blocks, whose VM IDs
are “null”. Once a free block is found, it will claim it by setting
the VM ID metadata field to its VM ID and save new data
into this block.

It is critical for VMs with an increased SSD cache space to
find free blocks timely. Therefore, we reserve a small portion
of blocks as free space. This can be achieved with a global
cleaner that scans the global pool, and reclaims blocks whose
reference counter is 0, regardless of its owner VM. Therefore,
free blocks are scattered in the global pool.

The global cleaner works according to two watermarks: a
high watermark, Whigh, and a low watermark, Wlow. Once the
amount of free blocks drops below Wlow, the global cleaner
is launched to reclaim data blocks, and stop working when
the amount of free blocks reaches Whigh. In our experiments,
Whigh is set at 5%, and Wlow is set at 1%.

C. Write Policy

There are generally 3 policies to treat writes in a cache
device: write-back, write-through or write-invalidate. While
write-back and write-invalidate may gain some performance
benefits, because they reduce the number of writes to slower
HDDs, it is most important to ensure data consistency, partic-
ularly in case of a device failure or power failure. Therefore,
we use write-through as the writeh policy in S-CAVE. To
be specific, if a block accessed by a write request exists
in the cache, the cached version and the original block on
an HDD will both be updated simultaneously. If a block
accessed by a write request does not exist in the cache, the
cache device will be bypassed by this request. Solutions from
mainstream storage vendors, such as NetApp, have also chosn
the write-through [13] policy. A comparative study of these
write policies would be out of the scope of this paper.

D. Overhead of S-CAVE

The overhead of S-CAVE mainly comes from two parts:
memory footprint and some processing time.

1) Memory Footprint: One source of memory footprint is
the hash tables, one for each VM, as illustrated in Figure 2b.
The total size of all hash tables is proportional to the SSD
cache capacity, because only a cached block could have one

corresponding hash entry. The key of each hash entry, LBN ,
is the original storage offset. We store it with 32 bits. In the
granularity of 4KB, it can address a storage device of 128 TB,
which is reasonably big. For CBN , we use the same length.

Another source of memory overhead is from the metadata
for each block. As shown in Figure 2b, every block has three
metadata fields: reference counter (4 bits)5, dirty bit (1 bit),
and VM ID (4 bits). Therefore, the total memory footprint for
each 4KB cache block is 73 bits, with 64 bits for an hash entry,
and 9 bits for block metadata. Thus the total space overhead
is 0.23%. Other data structures, such as those in the statistics
collector (Figure 2b), incur a negligible and constant space
overhead for each VM.

2) Computation Overhead: One source of computation
overhead is from the process to estimate rECS values at
runtime. This has been minimized with sampling.

Another source of computation overhead is resulted from
hash table lookups. For each I/O request, a hash table lookup
will be invoked to determine if the requested block is already
cached. This operation incurs some latency.

This latency can be decomposed into two parts: (1) locking:
each bucket in a hash table has a lock to protect its linked-
list of hash entries. (2) searching: within a bucket, we need
to execute linear search of hash entries. If an entry with the
desired key (LBN) is found, then it is returned and search
ends. Otherwise, we need to check until the end of the list to
conclude that a block is not cached.

In our design, locking overhead is minimized by parti-
tioning each hash table into multiple sub-hash tables, and by
increasing the number of buckets in each sub-hash table, so
there would be less conflicts to the same bucket. For searching-
related cost, we organize the linked list of each bucket with
LRU, and move the most recently used block to the head of
its list, in order to minimize the search cost for a cache hit. To
further reduce the cost for a cache miss, we are considering
extra data structures, such as a bloom filter, like in [14] or
[15].

VI. PERFORMANCE EVALUATION

In this section, we will first demonstrate the effectiveness
of metric rECS to identify the cache space demand of a single
VM, and then present results of S-CAVE when managing a
multi-VM environment.

A. Experimental setup

We have implemented S-CAVE in vSphere ESX [5],
a widely used commercial hypervisor from VMware. In
our experiments, this enhanced hypervisor was deployed
in a HP Proliant 360 G5 server, which has a quad core
Intel R©Xeon R©X5570 processor, 12 GB of main memory, two
Seagate 1TB hard with a speed of 15.7K rpm, In additions,
we have used one Intel R©910 SSD as the caching device. Key
performance parameters of this SSD are shown in Table I.

5We do not need an accurate counter for cache hits. 4 bits are sufficient to
differentiate hot blocks from cold blocks.

Fig. 4: Effectiveness of Metric rECS. X-axis: Logical Time, at the unit of time window. For this experiment, each time window
contains 128 requests. Y-axis: Allocated Cache Size.

(a) hm 1 (b) proj 4 (c) WebSearch2

TABLE I: Key performance numbers of Intel SSD 910

Sequential Read/Write Random Read/Write

2000/1000 MBps 180K/75K IOPS

B. Workloads

We have selected 7 workloads from three sources: two
real-world trace repositories and one benchmark: (1) SNIA
IOTTA Repository [16], from which we have selected 4
MSR Cambridge Traces: hm 1, proj 3, proj 4, mds 1. (2)
UMass Trace Repository [17], from which we have selected
WebSearch 2, trace from a search engine. (3) TPC-H [18],
which is a benchmark for warehouse-style workloads which
have intensive I/O activities. We have configured this bench-
mark at the scale factor of 10, and collected traces from
two longest running queries, tpch q9, tpch q21. Due to our
choice of “write through” as the write policy (Section V-C),
each write request is always sent to both the SSD cache
and the underlying HDD. thus its latency is determined by
the slower device. In this sense, the performance of a write-
intensive workload is irrelevant to SSD caching. Therefore, the
chosen workloads are read intensive. We have conducted all
the following experiments with trace replay.

C. Effectiveness of Metric rECS

In this section, we demonstrate that the metric rECS
can effectively identify the cache demand of a VM, so that
based on rECS, we could achieve nearly optimal cache space
allocation.

For this purpose, we use one VM to run a single workload
each time. The VM is started with a small cache size, which
will then be dynamically adjusted at runtime. This setup is
different from a multi-VM scenario in that cache allocation
decisions are not made by cross-comparing the demands of
different VMs. The decision solely depends on the VM’s own
behavior: cache space is increased if its rECS value increases,
and reduced if its rECS value decreases. During the process,
we still use historic decisions as a feedback to prevent possible
incorrect decisions. Another distinction of this setup is that a
time window is determined by the number of requests (128

requests in this experiment), instead of wall clock time. So
that we could better compare the results of different metrics.

In this experiment, we have chosen 3 workloads, hm 1,
proj 4 and WebSearch2, one from each of the above mentioned
sources. These workloads have repetitive access patterns, so we
can choose a representative segment of each trace to replay. On
the one hand, a simpler trace enables us to better understand
the effects of rECS. On the other hand, we need the total SSD
capacity to be more than the data set size of each workload,
in order to avoid the issues of capacity miss.

Results are shown in Figure 4. For the purpose of com-
parison, we present 4 results for each workload: CLOCK,
Optimal, HitRatio and rECS. CLOCK means the cache is
managed in a straightforward way: directly by the CLOCK
algorithm, which does not try to identify a VM’s runtime
demand. So the allocated cache space would be proportional to
the total number of unique blocks that have been accessed. The
Optimal curve is generated by offline analysis. It shows the
minimum necessary cache size at each moment. We estimate
the optimal size at time t by counting the number of blocks
contained in the intersection: (unique blocks accessed before
time t)

⋂
(unique blocks to be accessed after time t). The

HitRatio curve is obtained with a similar dynamic cache
adjustment mechanism as described above. The only difference
is that adjustment is driven by the change of hit ratio, instead
of rECS. The rECS curve is the result achieved by using rECS
as a metric to drive the allocation of cache space.

We can see from these figures that CLOCK incurs the high-
est amount of under-utilized cache space. HitRatio achieves
better space efficiency by reducing the amount of under-
utilized cache space. Especially in Figure 4b, its curve is close
to the optimal one. However, as shown in Figures 4a and 4c,
HitRatio still causes a large amount of cache under-utilization.
In contrast, with rECS, we could achieve nearly optimal space
efficiency: the allocated cache space is close to the Optimal
curve, and results are consistent for all workloads.

Therefore we can conclude that rECS is a metric that can
accurately identify a VM’s cache demand at runtime.

D. Experiments With Multiple VMs

In this section, we present our evaluation results of running
multiple VMs on one shared SSD cache device. We will
demonstrate the benefits of S-CAVE over managing the cache
in a straightforward way.

1) Locality of Workloads: Before running workloads con-
currently, we must first understand locality of each workload.

As in Table II, column “HDD” shows the execution time
of running a workload in a VM that resides directly on an
HDD, without a caching device. Column “Cache” shows the
performance obtained with a fixed-size SSD cache, which
is managed by the CLOCK algorithm. For cache-resulted
performance, we only present those obtained with a sufficiently
small cache space. For example, workload “tpch q9” finishes
in 5, 857 seconds with 4GB of cache space. The performance
of this workload will not improve if given more than 4GB of
cache space, but will be worse if the cache space is smaller.

TABLE II: Standalone excution time (seconds)

HDD Cache Speedup

WebSearch2 19521 3022 (8GB) 6.46x

tpch q9 25234 5857 (4GB) 4.31x

tpch q21 20578 6503 (8GB) 3.16x

proj 4 10359 8185 (32GB) 1.27x

mds 1 5837 5686 (32GB) 1.03x

According to this table, WebSearch2 significantly benefits
from the cache device, so it has strong locality. Workloads
tpch q9, tpch q21 feature median locality. Workloads proj 4
and mds 1 are of weak locality.

2) Experiment Setup for Co-running VMs: In every ex-
periment, we choose two different workloads to separately
execute on two VMs. In order to avoid interferences in the
storage hierarchy, each VM resides on a dedicated HDD. But
they share one SSD cache. Each workload will be executed
repeatedly until timeout. The total experiment time is chosen
so that the longest workload can finish at least one iteration.
The last iteration of each workload is partially finished, but we
know exactly how much has been finished in the last iteration
because of trace replay. We compare the results of S-CAVE
with the results when there is no S-CAVE management, in
which the cache is directly managed by the CLOCK algorithm.

3) Co-running Workloads with Strong Localities: First, we
will study the performance of running two strong-locality
workloads. According to the performance numbers in Table
II, we choose “WebSearch2” and “tpch q9”. The shared SSD
cache space is configured to be 8GB in total, so that no
workload can get enough cache space to achieve the same
performance in Table II.

Results are shown in Figure 5. With CLOCK, tpch q9 has
finished 1.26 iterations, and WebSearch2 has finished 10.73
iterations. In S-CAVE, tpch q9 has finished 3.68 iterations
and WebSearch2 has finished 6.49 iterations. The first iteration
of each workload is slow because of cold start. And the last
iteration of each trace is partially finished due to timeout.

With a limited SSD cache space, it is expected to observe
slow-down in the first iteration. However, by comparing with
the “Cache” performance in Table II, CLOCK has unfairly

Fig. 5: Performance of Co-run (tpch q9 and WebSearch2)

treated tpch q9, whose first iteration had a slow-down of 2.25
(from 5, 857 seconds to 13, 182 seconds), while WebSearch2
only has a slow-down of 1.49 (from 3, 022 seconds to 4, 506
seconds).

On the contrary, S-CAVE has achieved performance isola-
tion by allocating cache space according to the relative cache
demand of each VM. By comparing with Table II again, first
iteration of tpch q9 suffered a slow-down of 1.41 (from 5, 857
seconds to 8, 267 seconds), while WebSearch2 experienced a
slow-down of 1.72 (from 3, 022 seconds to 5, 212 seconds).

Fig. 6: Runtime Cache Allocation.

(a) CLOCK

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000 7000 8000

Al
lo

ca
te

d
Ca

ch
e

Sp
ac

e
(M

B)

Time (Seconds)

WebSearch2
tpch_q9

(b) S-CAVE

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000 7000 8000

Al
lo

ca
te

d
Ca

ch
e

Sp
ac

e
(M

B)

Time (Seconds)

WebSearch2
tpch_q9

This can be better explained with Figure 6, which illustrates
the runtime cache allocation for the first 8, 000 seconds of the

experiment, after which cache allocation becomes stable. With
CLOCK, the VM running WebSearch2 quickly takes up the
majority of cache space, and tpch q9 could not get its fair
share during the whole process. In contrast, within S-CAVE
while the VM running WebSearch2 is still granted relatively
more cache space, the VM running tpch q9 also gets a fair
amount of cache space to make efficient progress.

4) Co-running Workloads with Mixed Locality: In this
experiment, we study the performance of running two work-
loads with totally different localities. According to Table II,
we choose “tpch q21” (strong locality) and “proj 4” (weak
locality), and the SSD cache space is configured to be 32GB.

Fig. 7: Performance of Co-run (proj 4 and tpch q21)

Results in Figure 7 show that in a cache device without
proper management, a weak locality workload will pollute
cache and significantly deteriorate the performance of a strong-
locality workload. This observation is consistent with existing
studies, such as [19]. By comparing with Table II, CLOCK has
caused 2.19 times slow-down for the first iteration of tpch q21
(from 6, 503 seconds to 14, 255 seconds), while proj 4 is not
much affected due to its low locality.

In comparison, S-CAVE has successfully achieved perfor-
mance isolation and delivers much better performance. The
first iteration of tpch q21 is 7, 349 seconds, 1.94X faster than
the result obtained with CLOCK.

The benefits of S-CAVE can also be seen from throughput.
In CLOCK, proj 4 has finished 2.57 iterations and tpch q21
has finished 2.15 iterations. In S-CAVE, proj 4 has finished
2.52 iterations, and tpch q21 has finished 5.36 iterations, a
significant improvement.

TABLE III: IO statistics in Co-run (proj 4 and tpch q21)

CLOCK S-CAVE

I/Os for tpch q21 6,854,523 17,088,484

I/Os for proj 4 7,020,532 6,852,710

(total) 13,875,055 23,941,194

IOPS 482 831

The improved throughput by S-CAVE can be better ex-
plained by Table III, which shows the IOPS (average number
of I/Os per second) for each workload. As we can see from
this table while proj 4 is not cache-sensitive, but tpch q21 has

significantly benefited from the effective cache management of
S-CAVE.

5) Co-running Workloads with Weak Locality: Finally, we
will study the performance of running two weak-locality work-
loads. According to Table II, we choose mds 1 and proj 4. The
SSD cache has been configured with a total space of 32GB.

Fig. 8: Performance of Co-run (mds 1 and proj 4)

As can be seen from the results shown in Figure 8,
weak-locality workloads cannot benefit from a cache device.
Therefore, it is important to minimize overhead in this case.
S-CAVE may constantly try to adjust cache space allocation
(thus causing some overhead), but due to the characteristics
of these workloads, any allocation decision will not improve
performance. CLOCK may result in less overhead for such
overheads because it does not make any efforts to identify
each VM’s demands.

However, we can see from Figure 8 that S-CAVE incurs a
negligible overhead as well: the throughput of S-CAVE is only
slightly lower than that of CLOCK. In CLOCK, proj4 has fin-
ished 3.74 iterations and mds 1 has finished 5.25 iterations. In
S-CAVE, proj 4 has finished 3.62 iterations (3.2% lower than
that in CLOCK), and mds 1 has finished 5.18 iterations (only
1.3% lower than that in CLOCK). This slight performance loss
is due to runtime cache space adjustments that could not yield
any effect, because of the workloads’ inherent characteristics.

TABLE IV: IO statistics in Co-run (mds 1 and proj 4)

CLOCK S-CAVE

IOs for proj 4 8838598 8625157

IOs for mds 1 12282914 12076883

(total) 21121512 20702040

IOPS 734 719

The low overhead of S-CAVE can also be explained with
Table IV. The slight loss in IOPS when the SSD cache
is managed by S-CAVE, is consistent with the performance
results shown in Figure 8, thus reaffirming our conclusion that
the overhead caused by the efforts of S-CAVE to monitor and
adapt to VM activites is negligible.

E. Summary of Experiment Results

With experiment results, we can summarize the effec-
tiveness of S-CAVE as follows. (1) Metric rECS is able to

accurately capture the cache demand of a VM at runtime. (2) S-
CAVE can effectively allocate SSD cache space to accomplish
the following three goals: (a) performance isolation among
VMs with strong or different cache demands; (b) high SSD
cache utilization by minimizing inter-VM interferences; and
(c) minimum overhead when managing VMs with no locality.

VII. OTHER RELATED WORK

Related work can be classified into the following three
categories.

SSD caching in non-VM environments: Recent devel-
opment of SSD caching has been advanced from traditional
replacement algorithm study [10], to incorporating SSD device
specific characteristics and semantic information from software
(OSes and applications) [2]–[4]. Their goal is to identify
“valuable” blocks that should be placed on the cache. However,
these solutions are designed in the context of conventional
systems, where the SSD cache may not be shared by multiple
entities, thus cannot be applied to a virtual system environ-
ment, in which the SSD cache is shared by multiple VMs.

Non-caching approaches to exploiting SSDs: Some other
work has studied how to best utilize SSD by approaches other
than caching. For example, Hystor [20] and its related product
Fusion Drive [21] are hybrid solutions where the SSD device
is not a transparent cache for slower HDDs: each block in the
SSD does not have a duplicate in one of the HDDs. Intelligent
algorithms and OS information are utilized to identify and
migrate data blocks between different devices. However, the
SSD device in these approaches is not shared by multiple
entities either.

Shared resource management in a VM environment: In
addition to SSD cache, a VM environment has other shared
resources, such as CPU, memory, disk, network, and etc. The
most related work focuses on the management of main memory
[7], [8], [22]. A series of approaches have been proposed to
“guess” how a guest OS is using its memory and have adopted
metrics like hit ratio to guide resource allocation [7], [8],
[22]. In comparison, our approach attempts to fully exploit
the advantages of a hypervisor to monitor VMs’ I/O activities
and directly control storage devices.

SSD caching in a VM environment has also been men-
tioned in [13]. However, their approach is a traditional cache
device that is managed by a general-purpose cache replacement
algorithm. In contrast, S-CAVE is specifically designed to
manage an SSD cache device that is shared by multiple
concurrent VMs.

VIII. CONCLUSION

In this paper, we have analyzed three design options for
SSD cache management in a VM environment, and have made
a strong case for a hypervisor-based design of S-CAVE. In
S-CAVE, we use metric rECS to identify the cache demand
of each VM, and for effective cache management among
multiple VMs, we have integrated rECS into a dynamic control
mechanism. By cross-comparing each VM’s cache demand and
previous allocation decisions, S-CAVE dynamically and effec-
tively adjusts cache space allocation. We have implemented
S-CAVE in vSphere ESX [5], a widely used commercial

hypervisor from VMware. Experiment results have proven
the effectiveness of metric rECS in monitoring each VM.
In a multi-VM environment, S-CAVE could achieve high
performance for each individual VM and for the overall system
as well, through effective cache space allocation and direct
control of hardware resources.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive
comments. The work was supported in part by the National
Science Foundation under grants CCF-0913050 and CNS-
1162165.

REFERENCES

[1] A. Gulati, G. Shanmuganathan, X. Zhang, and P. Varman, “Demand
Based Hierarchical QoS Using Storage Resource Pools,” in USENIX

ATC, 2012.

[2] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A.
Lang, “SSD Bufferpool Extensions for Database Systems,” PVLDB,
vol. 3, no. 2, pp. 1435–1446, 2010.

[3] T. Luo, R. Lee, M. P. Mesnier, F. Chen, and X. Zhang, “hStorage-DB:
Heterogeneity-aware Data Management to Exploit the Full Capability
of Hybrid Storage Systems,” PVLDB, vol. 5, no. 10, pp. 1076–1087,
2012.

[4] M. P. Mesnier, F. Chen, J. B. Akers, and T. Luo, “Differentiated Storage
Services,” in SOSP, 2011, pp. 57–70.

[5] http://www.vmware.com/products/vsphere/esxi-and-esx/index.html.

[6] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” in MICRO, 2006, pp. 423–432.

[7] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Geiger:
monitoring the buffer cache in a virtual machine environment,” in
ASPLOS, 2006, pp. 14–24.

[8] P. Lu and K. Shen, “Virtual Machine Memory Access Tracing with
Hypervisor Exclusive Cache,” in USENIX Annual Technical Conference,
2007, pp. 29–43.

[9] A. J. Smith, “Disk Cache-Miss Ratio Analysis and Design Considera-
tions,” ACM Trans. Comput. Syst., vol. 3, no. 3, pp. 161–203, 1985.

[10] S. Jiang and X. Zhang, “LIRS: an efficient low inter-reference recency
set replacement policy to improve buffer cache performance,” in SIG-

METRICS, 2002, pp. 31–42.

[11] S. Jiang, F. Chen, and X. Zhang, “Clock-pro: An effective improvement
of the clock replacement,” in USENIX Annual Technical Conference,

General Track, 2005, pp. 323–336.

[12] A. S. Tanenbaum, Modern operating systems (2. ed.).

[13] S. Byan, J. Lentini, A. Madan, and L. Pabon, “Mercury: Host-side flash
caching for the data center,” in MSST, 2012, pp. 1–12.

[14] H. Song, S. Dharmapurikar, J. S. Turner, and J. W. Lockwood, “Fast
hash table lookup using extended bloom filter: an aid to network
processing,” in SIGCOMM, 2005, pp. 181–192.

[15] Q. Li and J. Garcia-Luna-Aceves, “Opportunistic Routing Using Prefix
Ordering and Self-Reported Social Groups,” in ICNC, 2013, pp. 28–34.

[16] “SNIA IOTTA Repository,” http://iotta.snia.org/.

[17] “UMass Trace Repository,” http://traces.cs.umass.edu/index.php/
Storage/Storage.

[18] “TPC Benchmark H,” http://www.tpc.org/tpch/.

[19] R. Lee, X. Ding, F. Chen, Q. Lu, and X. Zhang, “MCC-DB: Minimizing
Cache Conflicts in Multi-core Processors for Databases,” PVLDB,
vol. 2, no. 1, pp. 373–384, 2009.

[20] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the Best Use
of Solid State Drives in High Performance Storage Systems,” in ICS,
2011, pp. 22–32.

[21] “Fusion Drive,” http://en.wikipedia.org/wiki/Fusion Drive.

[22] C. A. Waldspurger, “Memory Resource Management in VMware ESX
Server,” in OSDI, 2002.

