
Computational Intelligence, Volume 28, Number 2, 2012

SCHEDULING IN HETEROGENEOUS COMPUTING AND GRID

ENVIRONMENTS USING A PARALLEL CHC EVOLUTIONARY

ALGORITHM

SERGIO NESMACHNOW,1 ENRIQUE ALBA,2 AND HÉCTOR CANCELA3

1Universidad de la República, Herrera y Reissig 565, Montevideo, Uruguay
2Universidad de Málaga, Campus de Teatinos, Málaga, Spain

3Universidad de la República, Herrera y Reissig 565, Montevideo, Uruguay

Scheduling is a capital problem when using distributed heterogeneous computing (HC) and grid environments
to solve complex problems. The scheduling problem in heterogeneous environments is NP-hard, so a significant
effort has been made to develop efficient methods for solving the problem. However, few works have faced realistic
grid-sized problem instances. This work presents a parallel CHC (pCHC) evolutionary algorithm codified over
MALLBA, a general-purpose library for combinatorial optimization, for solving the scheduling problem in HC
and grid environments. Efficient numerical results are reported in the experimental analysis performed on both a
standard benchmark and a set of large-sized problem instances specially designed in this work. The comparative
study shows that pCHC is able to achieve high problem solving efficacy, significantly improving over traditional
deterministic scheduling methods, while also showing a good scalability behavior when solving large problem
instances.

Received 30 September 2009; Revised 23 June 2010; Accepted 24 June 2010; Published online 23 April 2012

Key words: grid, heterogeneous computing, parallel evolutionary algorithms, scheduling.

1. INTRODUCTION

Distributed computing environments have grown at a fast pace. Starting from small
clusters of homogeneous computers in the 1980s decade, as for today they include platforms
formed by hundreds or thousands of heterogeneous computing (HC) resources widespread
around the globe. Nowadays, the expression grid computing denotes the set of distributed
computing techniques that work over a large loosely coupled virtual supercomputer, formed
by putting together many heterogeneous components of different characteristics and com-
puting power. This infrastructure has made it feasible to provide pervasive and cost-effective
access to distributed computing resources for solving hard problems (Foster and Kesselman
1998).

A crucial problem when using such HC environments consists in finding a scheduling
strategy for a set of tasks to be executed on the system, to optimally assign the comput-
ing resources by satisfying some efficiency criteria. Scheduling problems on homogeneous
multiprocessor systems have been widely studied in operations research, and numerous
methods have been proposed for finding accurate schedules in reasonable times. However,
in the 1990s decade the research community started to pay attention to scheduling problems
on HC environments due to the popularization of distributed computing and the growing
use of heterogeneous clusters. In the last ten years, a lot of effort has been made to study
the scheduling problem on HC environments, because this platform provides the efficiency
required for distributed and grid computing techniques.

Traditional scheduling problems are NP-hard (Garey and Johnson 1979). The research
community has been searching for new scheduling techniques that are able to improve over
the traditional exact ones, whose low efficiency often makes them useless in practice for

Address correspondence to S. Nesmachnow, Universidad de la República, Herrera y Reissig 565, Montevideo, Uruguay;
e-mail: sergion@fing.edu.uy

C© 2012 Wiley Periodicals, Inc.



132 COMPUTATIONAL INTELLIGENCE

solving large-dimension scheduling problems in reasonable times. In this context, ad hoc
heuristic and metaheuristics techniques showed up as promising methods for solving the
HC and grid scheduling problems. Although these methods do not guarantee success in
computing an optimal solution for the problem, they get appropriate quasi-optimal schedules
that satisfy the efficiency requirements for real-life scenarios, in reasonable times. Among
a broad set of modern metaheuristic techniques for optimization, evolutionary algorithms
(EAs) (Bäck, Fogel, and Michalewicz 1997) have emerged as flexible and robust methods
for solving the HC scheduling problem (HCSP), achieving the high level of problem solving
efficacy also shown in many other areas of application. To further improve the efficiency of
EAs, parallel implementations became a popular option to speed up the search, allowing to
reach high quality results in a reasonable execution time even for hard-to-solve optimization
problems.

EAs and other metaheuristics have been applied to the HCSP in the last ten years.
The proposals included Genetic Algorithms (GA) (Wang et al. 1997; Braun et al. 2001;
Zomaya and Teh 2001; Xhafa et al. 2008b), Memetic Algorithms (MA) (Xhafa 2007), and
cellular MA (cMA) (Xhafa, Alba, and Dorronsoro 2007a). Two relevant works have obtained
the best-known results when facing low-sized HCSP instances: an hybrid combining Ant
Colony Optimization (ACO) and Tabu Search (TS) (Ritchie and Levine 2004) that took
a long time—over 3.5 hours—to perform the search, and a hierarchic TS (Xhafa et al.
2008a) that used a predefined stopping criterion of 100 s. Despite the numerous proposals
on applying EAs and other metaheuristics to the HCSP, there have been few works studying
large-size and realistic instances in grid environments, mainly due to the inherent complexity
of dealing with the underlying high-dimension optimization problem. The survey of related
works showed that there do not exist standardized problem benchmarks (except a set of
low-dimension, de facto standard problems by Braun et al. (2001)). Thus, there is still room
to contribute in those lines of research, by studying highly efficient EA implementations,
able to deal with large-size HCSP instances by using the computational power of parallel
and distributed environments.

In a previous work (Nesmachnow 2009), the CHC evolutionary algorithm was identified
as a promising method for solving low-dimension HCSP instances. In this line of work, the
main contributions of this article are to introduce a new set of HCSP instances—designed
by following a well-known methodology—far more complex than the existing ones in the
present literature to model realistic HC environments such as large clusters and medium-size
grid infrastructures, and then to study the scalability of a new efficient parallel CHC (pCHC)
method for solving the new HCSP instances. The novelty of the proposed method is given by
three main issues: the CHC evolutionary algorithm has been scarcely used in the past—far
less than other traditional EAs, such as the classic genetic algorithm, specially when solving
real-world complex applications like the HCSP; the parallel/distributed model of EAs that
incorporates a different search pattern which allows increasing the diversity in the pCHC
population and improving the results; and the physical distributed implementation of pCHC,
which allows taking advantage of using parallel and distributed infrastructures to improve
the results and the efficiency of the scheduling method.

The manuscript is structured as follows. Next section presents the HCSP formulation.
Section 3 offers concepts about execution time estimation and introduces the new HCSP
instances. Section 4 introduces the paradigm of evolutionary computation, presents the
CHC algorithm, and describes the application of parallelism to EAs. Section 5 describes the
implementation details of the pCHC, and also presents MALLBA, the public C++ algorithmic
environment on which the algorithms was implemented. The discussion of the experimental
analysis and results are presented in Section 6, while the conclusions and possible lines for
future work are formulated in Section 7.



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 133

2. PROBLEM FORMULATION

Let an HC system composed by many computers, also called processors or machines,
and a set of tasks with variable computing demands, to be executed on the system. A task
is the atomic unit of workload, so it cannot be divided into smaller chunks, nor interrupted
after it is assigned to a machine. The execution times of any individual task vary from one
machine to another, so there will be competition among tasks for using those machines able
to execute them in a minimum time.

Using a computing facility does not come for free, so scheduling problems mainly
concern about time. The most usual metric to minimize is the makespan, defined as the time
spent from the moment when the first task begins execution to the moment when the last
task is completed. The following formulation presents the mathematical model for the HCSP
aimed at minimizing the makespan:

• given an HC system composed of a set of machines P = {m1, m2, . . . , mM} (dimension
M), and a collection of tasks T = {t1, t2, . . . , tN } (dimension N ) to be executed on the
HC system,

• let an execution time function ET : P × T → R+, where ET (ti ,mj ) is the time required
to execute the task ti in the machine m j ,

• the goal of the HCSP is to find an assignment of tasks to machines (a function f : TN →
PM ) that minimizes the makespan, defined in equation 1.

max
m j ∈P

∑

ti ∈T :f (ti )=mj

ET (ti , m j ). (1)

In the previous HCSP formulation all tasks can be independently executed, disregarding
the execution order. This kind of applications frequently appears in many lines of scientific
research, and they are relevant in Single-Program Multiple-Data (SPMD) applications used
for multimedia processing, data mining, parallel domain decomposition of numerical mod-
els for physical phenomena, etc. The independent tasks model also arises when different
users submit their (obviously independent) tasks to execute in a computing service, and in
parameter sweep applications, which are structured as a set of multiple experiments, each
one executed with a different set of parameter values.

The previous formulation defines the static HCSP. A static scheduler gathers all the avail-
able information about tasks and resources before the execution, and the task-to-resource
assignment is not allowed to change. Static scheduling has its own areas of specific applica-
tion, such as planning in distributed HC systems, and also analyzing the resource utilization
for a given hardware infrastructure. Static scheduling also provides a first step for solving
more complex scheduling problems arising in dynamic environments: the static results can
be used as a reference baseline to determine if a dynamic scheduler is taking the right deci-
sions about using the resources in the system. In addition, an efficient static planner can be
the building block to develop a powerful dynamic scheduler, able to deal with the increasing
complexity of nowadays grid infrastructures.

3. EXECUTION TIME ESTIMATION AND HCSP INSTANCES

Execution time estimation is a common technique applied to model the execution time
of tasks on computers since the early 1990s (Yang, Ahmad, and Ghafoor 1993). It relies
on estimation methods such as task profiling, benchmarking, and statistical analysis of



134 COMPUTATIONAL INTELLIGENCE

TABLE 1. Parameters of ETC Models.

Task heterogeneity Machine heterogeneity

Model low high low high

Ali et al. (2000a) Rtask = 10 Rtask = 100,000 Rmach = 10 Rmach = 1,000

Braun et al. (2001) Rtask = 100 Rtask = 3,000 Rmach = 10 Rmach = 1,000

both submitted workloads and resource utilization, to provide an accurate prediction of the
execution time for a given task on a specific machine. Researchers have stated that predicting
the task execution times is useful to guide the scheduling in HC environments (Li et al.
2004). This section introduces the expected time to compute performance estimation model.
It also discusses the HCSP instances already used in the related literature as well as the new
set of instances specifically designed in this work. Finally, it briefly describes traditional
scheduling heuristics using performance estimation, used as reference baseline to evaluate
our proposal.

3.1. Expected Time to Compute Estimation Model

The expected time to compute (ETC) estimation model (Ali et al. 2000a) provides an
estimation for the execution time of a collection of tasks in an HC system, taking into
account three key properties: machine heterogeneity, task heterogeneity, and consistence.
Machine heterogeneity evaluates the variation of execution times for a given task across
the HC resources, while task heterogeneity represents the variation of the tasks execution
times for a given machine. In addition, the ETC model also considers a second classification.
In a consistent ETC scenario, whenever a given machine m j executes any task ti faster
than other machine mk , then machine m j executes all tasks faster than machine mk . Such
a structured scenario captures the reality of many SPMD applications executing with local
input data. An inconsistent ETC scenario lacks of structure among the computing demands
of tasks and the computing power of machines, so a given machine m j may be faster than
mk when executing some tasks, and slower for others. This category represents generic
HC systems that receive many kinds of tasks. A semi-consistent ETC scenario models
inconsistent systems that include a consistent subsystem (there is not a predefined structure
on the whole sets of tasks and machines, but some of them behave like a consistent HC
system).

Ali et al. (2000b) proposed two methods to design ETC matrices for representing diverse
HCSP scenarios: the range based method and the coefficient of variation method. Both
methods are equivalent, as they follow the same general procedure. The coefficient of
variation method is flexible, because it allows using empirical probability distributions, but it
also has a complex formulation. Instead, the range based method provides a simpler procedure
for generating ETC scenarios. The range based method defines two ranges: (1,Rmach )
and (1,Rtask ) for machine and task heterogeneity, respectively. Heterogeneity values for
machines (τM ) and tasks (τT ) are randomly sampled using a uniform distribution, and the
expected time to compute task i in machine j is calculated by ET (i, j) = τT (i) × τM ( j). Ali
et al. suggested using the parameter values presented in the first row of Table 1—selected to
model relevant scenarios for the Management System for Heterogeneous Networks project
(Hensgen et al. 1999)—to generate HCSP scenarios. However, no specific HCSP test suites
were designed in that work.



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 135

3.2. HCSP Instances

The review of related work allowed to conclude that there do not exist standard bench-
marks for the HCSP. A test suite of twelve randomly generated instances by Braun et al.
(2001) has been used to evaluate heuristic and metaheuristic methods for the HCSP in many
publications. Those instances have been also adopted as a reference for designing a complete
set of large HCSP instances in this work, so they are commented in Section 3.2.1. Some other
authors, like Page and Naughton (2005) generated their own test suites of random instances
to evaluate heuristic algorithms, while arguing that “it is not clear what characteristics a
typical task would exhibit. Several other works used randomly generated HCSP instances,
but researchers did not often put much effort in describing the methodology employed for
creating the scenarios. It is also worth noting that none of the previous proposals have scaled
to the dimension of realistic grid environments, with the exception of Xhafa, Carretero, and
Abraham (2007b), who generated four inconsistent ETC matrices with 4,096 tasks and 256
machines with high task and machine heterogeneity, arguing that “these are usually the most
difficult instances to solve. However, Xhafa et al. did not publish the HCSP instances used.

Next subsections describe the HCSP instances already used in the related literature,
and presents some details about nowadays grid platforms, before introducing the new set of
problem instances specifically designed in this work to challenge state-of-the-art scheduling
techniques.

3.2.1. HCSP Instances from Braun et al. (2001). Braun et al. (2001) presented an
HCSP test suite with twelve instances generated using the range based method. All the
instances have 512 tasks and 16 machines, and they combine the three ETC model properties
(task and machine heterogeneity, and consistency). Instead of using the previously proposed
ETC parametrization by Ali et al. (2000a), the authors suggested the upper bounds for
machine and task heterogeneity intervals presented in the second row of Table 1. These
values were selected to model several characteristics of the prediction methods used in
Armstrong, Hensgen, and Kidd (1998), but the authors pointed out that their election was
quite arbitrary, and suggested that researchers may use their own values to generate instances
that model other specific situations of interest. However, the commented test suite has become
a de facto standard benchmark to evaluate algorithms for solving the HCSP.

The name of HCSP instances from Braun et al. (2001) has the patternd c MHTH.0, where
d indicates the distribution function used to generate the ETC values (u, for the uniform
distribution), and c indicates the consistency type (c for consistent, i for inconsistent, and
s for semiconsistent). MH and TH indicate the heterogeneity level for tasks and machines,
respectively (lo for low heterogeneity, and hi for high heterogeneity). The final number
after the dot (0) refers to the number of test cases (initially, several suites were generated,
but only the class 0 gained popularity).

3.2.2. Grid Infrastructures. The HCSP instances from Braun et al. (2001) were con-
ceived for modeling multiprocessor HC systems, and so they do not capture the reality of
nowadays grid infrastructures. The Berkeley Network of Workstations project surpassed the
one-hundred-processors milestone in the middle of the 1990s decade (Anderson et al. 1995).
As for today, modern grid initiatives use platforms with more than 1,000 processors, while
hierarchical worldwide computing grids and volunteer-based distributed computing plat-
forms manage more than 100,000 computing resources (see Table 2 for a brief description
of sampled grid infrastructures).

EELA-2 (eScience GRID facility for Europe and Latin America) and Grid500 are ex-
amples of medium-sized grids. EELA-2 is the largest grid initiative involving Latin America



136 COMPUTATIONAL INTELLIGENCE

TABLE 2. Details of Sampled Grid Computing Infrastructures.

Size/type Grid Location Processors Comment/URL

medium-sized EELA Europe-LA ∼750 regional grid, www.eu-eela.eu

grids Grid5000 France >3,000 national grid, www.grid5000.fr

large grids OSG USA >30,000 national grid, www.opensciencegrid.org

TeraGrid USA >40,000 national grid, www.teragrid.org

EGEE Europe >80,000 continental grid, www.eu-egee.org

WLCG Europe >100,000 CERN worldwide grid, www.cern.ch/lcg

(Brasilero et al. 2008). Grid500 has 1,597 nodes (8 families, 17 systems) with a total number
of 3,000 processors, but the experimental scenarios for scheduling algorithms usually con-
sider less than 250 processors, often grouped in few heterogeneous classes (Caniou and Gay
2008; Mohamed and Epema 2008). On the other hand, very large grid infrastructures, such as
TeraGrid and WLCG—the largest computing grid in the world in 2009, with almost 100,000
projected processors at CERN, Switzerland, and more than 100,000 additional processors
distributed worldwide—have a hierarchical structure. In this large-scale organizations, het-
erogeneity is only handled on high-level schedulers, while local schedulers perform the tasks
allocation intra-site, dealing with homogeneous machines.

The previous description of modern grid infrastructures shows that new problem in-
stances, larger than the ones proposed by Braun et al. (2001), are needed to make cutting-edge
research on the scalability of scheduling algorithms for solving real-life scenarios.

3.2.3. New HCSP Instances. Apart from the proposals previously commented in Sec-
tion 3.2.1, there has been little effort to define a standard test suite for HC scheduling.
Even today, when grid scheduling has been the focus of many works, researchers have been
using the test suite from Braun et al. (2001) or proprietary instances, often generated with-
out following a methodological basis. One of the main objectives of this work consists in
studying the scalability of new proposed methods to solve the HCSP (i.e., how the solution
quality achieved using a fixed execution time varies when the instances dimension grows).
To perform the analysis, this work introduces a test suite of large HCSP instances designed
following the methodology for execution time estimation proposed by Ali et al. (2000a). The
scenarios were created using a random generator program, implemented in the C language
using the standard C libraries stdlib.h and math.h, without requiring any additional
software. The generator implements the range based method from Ali et al. (2000a), regard-
ing the relevant scenario parameters: dimension (number of tasks and machines), task and
machine heterogeneity, consistency, and two parametrization models of ETC. The output file
format is identical to the one employed by Braun et al. (2001): a column vector of N×M
floating point numbers that represents the ETC matrix, ordered by task identifier.

The test suite generated in this work includes HCSP instances with diverse complexity.
The small-sized instances extend Braun et al.’s problems up to 1,024 tasks and 32 processors.
The medium-sized instances include up to 4,096 tasks and 128 machines, and are considered
as representative of large multiprocessor, medium-size clusters of computers, and small grid
systems. The group of large-sized instances include scenarios with up to 8,192 tasks and
256 processors, a dimension that represents large clusters and medium-size grid systems. For
each dimension, twenty-four HCSP instances were generated regarding all the heterogeneity
and consistency combinations, twelve of them using the parameter values from Ali et al.,



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 137

and twelve using the values from Braun et al. (trying to avoid biased results). The instances
are named following the previously commented convention: the names have the pattern
M.d c MHTH, where the first letter (M) describes the heterogeneity model used (A for Ali,
and B for Braun). The number 0 in the last position of the name was removed.

Because the new test suite was designed following a well-known methodology, the
problem instances maintain the relevant properties of the ETC model by Ali et al. (2000a).
By including a more comprehensive set of scenarios, it allows performing studies aimed at
obtaining a better characterization of new scheduling methods. In addition, the new set of
large-sized HCSP instances poses a real challenge to scheduling methods. The size of the
search space increases from 3.2 × 10616 possible schedules in the set of instances by Braun
et al. to 2 × 1019728 for the largest new HCSP instances, thus it is useful to analyze the
efficacy of scheduling methods when the problem instances grow.

The problem instances and the generator program are publicly available to download at
the HCSP website http://www.fing.edu.uy/inco/grupos/hpc/HCSP.

3.3. Scheduling Heuristics Using Performance Estimation

The class of list scheduling techniques (Schutten 1996; Kwok and Ahmad 1999) com-
prises a large set of deterministic static scheduling methods that work by assigning priorities
to tasks based on a particular ad hoc heuristic. After that, the list of tasks is sorted in de-
creasing priority and each task is assigned to a processor, regarding the task priority and
the processor availability. Algorithm 1 presents the general schema of a list scheduling
method.

Algorithm 1 Schema of a list scheduling algorithm.

1: while tasks left to assign do

2: determine the most suitable task according to the chosen criterion

3: for each task to assign, each machine

4: evaluate criterion (task, machine) do

5: end for

6: assign the selected task to the selected machine

7: end while

8: return task assignment

Since the pioneering work by Ibarra and Kim (1977), where the first algorithms fol-
lowing the generic schema presented in Algorithm 1 were introduced, many list scheduling
techniques have been proposed to provide easy methods for tasks-to-processors scheduling.
Three of them have been used in this work to provide a baseline for comparing the results
achieved when using the proposed parallel evolutionary scheduling method:

Minimum Completion Time (MCT) considers the set of tasks sorted in an arbitrary
order, then it assigns each task to the machine with the minimum ETC for that task.

Sufferage identifies the task that if it is not assigned to a certain host, will suffer the
most. The sufferage value is computed as the difference between the best MCT of the task
and its second-best MCT, and the method gives precedence to those tasks with high sufferage
value.



138 COMPUTATIONAL INTELLIGENCE

Min-Min greedily picks the task that can be completed the soonest. The method starts
with a set U of all unmapped tasks, calculates the MCT for each task in U for each machine,
and assigns the task with the minimum overall MCT to the best machine. The mapped task is
removed from U , and the process is repeated until all tasks are mapped. Min-Min improves
upon the MCT heuristic, because it considers all the unmapped tasks sorted by MCT, and
the availability status of the machines is updated by the least possible amount of time for
every assignment. This procedure leads to more balanced schedules and generally allows
finding smaller makespan values than other heuristics, because more tasks are expected to
be assigned to the machines that can complete them the earliest.

These heuristics have also been used to design probabilistic methods for the initialization
procedure in our pCHC method (see Section 5.2).

4. EVOLUTIONARY ALGORITHMS

EAs are stochastic methods that emulate the evolutionary process of natural species
to solve optimization, search, and learning problems (Goldberg 1989; Davis 1991). EAs
have been successfully applied for solving optimization problems underlying many real
applications of high complexity.

EAs are iterative techniques (each iteration is called a generation) that apply stochastic
operators on a pool of individuals (the population P) to improve their fitness, a measure
related to the objective function. Every individual in the population is the encoded version of
a tentative solution of the problem. The initial population is generated by a random method
or by using a specific heuristic method. An evaluation function associates a fitness value to
every individual, indicating its suitability to solve the problem. Iteratively, the application of
reproduction operators like the recombination of parts of two individuals or random changes
in their contents (mutations) is guided by a selection-of-the-best technique to better tentative
solutions. The stopping criterion usually involves a fixed number of generations or execution
time, a quality threshold on the best fitness value, or the detection of a stagnation situation.
Specific policies are used to select the groups of individuals to recombine (the selection
method) and to determine which new individuals are inserted in the population in each new
generation (the replacement criterion). Finally, the best solution ever found in the iterative
process is returned, taking into account the fitness function considered.

4.1. The CHC Evolutionary Algorithm

The CHC acronym stands for “Cross generational elitist selection, Heterogeneous re-
combination, and Cataclysmic mutation” (Eshelman 1991). CHC uses an elitist selection
strategy that tends to perpetuate the best individuals in the population, and a special mating
that only allows to reproduce those individuals which differ from each other by some number
of bits. The initial threshold for allowing mating is often set to one-fourth of the chromosome
length, and it is reduced by 1 each time that no offspring is inserted into the new population
during the mating procedure. The recombination operator in CHC is Half Uniform Crossover
(HUX), which randomly swaps exactly half of the bits that differ between the two parent
encodings. CHC does not apply mutation; diversity is provided by applying a re-initialization
procedure, using the best individual found so far as a template for creating a new population
after convergence is detected.

Algorithm 2 presents a pseudo-code for the CHC algorithm, based on Eshelman’s pro-
posal, showing those features that make it different from traditional EAs: the highly elitist



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 139

replacement strategy, the use of its own HUX operator, the absence of mutation—-which is
substituted by a re-initialization operator—and the use of a mating restriction policy, that
does not allow to recombine a pair of “too similar” individuals.

Algorithm 2 Schema of the CHC algorithm.

1: initialize(P(0))

2: generation ← 0

3: distance ← chromosomeLength/4

4: while not stopcriteria do

5: parents ← selection(P(generation))

6: offspring ← HUX(parents)

7: evaluate(offspring)

8: newpop ← replace(offspring, P(generation))

9: if newpop == P(generation)then

10: distance– –

11: end if

12: generation ++

13: P(generation) ← newpop

14: if distance == 0 then

15: re-initialization(P(generation))

16: distance ← chromosomeLength/4

17: end if

18: end while

19: return best solution ever found

4.2. Parallel Evolutionary Algorithms

Parallel implementations became popular in the last decade as an effort to improve
the efficiency of EAs. By splitting the population into several computing elements, parallel
evolutionary algorithms (PEAs) allow reaching high quality results in a reasonable execution
time even for hard-to-solve optimization problems (Alba 2005). The pCHC proposed in
this work is categorized within the distributed subpopulations model, according to the
classification from Alba and Tomassini (2002): the original population is divided in several
subpopulations (demes), separated geographically from each other. Each deme runs a serial
CHC, so individuals are able to interact only with other individuals in the deme. An additional
migration operator is defined: occasionally some selected individuals are exchanged among
demes, introducing a new source of diversity in the EA.

Algorithm 2 shows the generic schema for the migration procedure employed in a dis-
tributed subpopulation PEAs. Two conditions control the migration procedure: sendmigrants
determines when the exchange of individuals takes place, and receivemigrants establishes
whether a foreign set of individuals has to be received or not. Migrants denotes the set of indi-
viduals to exchange with some other deme, selected according to a given policy. The schema
explicitly distinguishes between selection for reproduction and selection for migration; they
both return a selected group of individuals to perform the needed operation, but following
potentially different policies. The sendmigration and recvmigration operators carry out the
exchange of individuals among demes according to a connectivity graph defined over them,
most usually a unidirectional ring.



140 COMPUTATIONAL INTELLIGENCE

Algorithm 3 Schema for migration in PEAs.

1: if sendmigrants then

2: migrants ← selection for migration(P(generation))

3: sendmigration(migrants)

4: end if

5: if recvmigrants then

6: immigrants ← recvmigration()

7: P(generation) ← insert(immigrants, P(generation))

8: end if

5. A PARALLEL CHC FOR THE HCSP

The pCHC proposed in this work was designed to achieve accurate HCSP solutions in
reduced time, while providing a good exploration pattern that allows solving large-sized
instances. The implementation details are presented in this section, along with the software
library in which the EAs were implemented.

5.1. The MALLBA Library

MALLBA (Alba et al. 2002) is a library of optimization algorithms that can deal with
parallelism in a user-friendly and, at the same time, efficient manner. The pCHC described
in this section is implemented as a generic template on the library as software skeletons,
to be instantiated with the features of the problem by the user. Each skeleton incorporates
all the knowledge related to the resolution method, its interactions with the problem, and
the parallel considerations. In MALLBA, skeletons are implemented by a set of required
and provided C++ classes that represent an abstraction of the entities participating in the
resolution method.

The provided classes implement internal aspects of the skeleton in a problem-
independent way. The most important provided classes are Solver (the algorithm) and
SetUpParams (setup parameters). The required classes specify information related to
the problem. Each skeleton includes the Problem and Solution required classes that
encapsulate the problem-dependent entities needed by the resolution method. Depending on
the skeleton, other classes may be required.

The MALLBA library is publicly available to download at the University of Málaga web-
site http://neo.lcc.uma.es/mallba/easy-mallba. Using MALLBA allows a
quick coding of the pCHC method to cope with the inherent difficulties of the HCSP.

5.2. Implementation Details

This section describes the problem encoding, the initialization, and the variation operators
used in pCHC.

5.2.1. Problem Encoding. Two main alternatives have been proposed in the related
works for encoding HCSP solutions: the task oriented and the machine oriented encoding.
The first encoding uses a vector of machine identifiers to represent the task-to-resource



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 141

FIGURE 1. HCSP encodings.

assignment (see Figure 1 (a)). The presence of m j in the position ti means that the task ti
is scheduled to execute on machine m j . This is a direct representation for schedules, which
allows a straightforward exploration by using simple move-and-swap operators. However, it
does not provide an easy way to evaluate the makespan variation after applying a move or swap
operator, so any single change on a task assignment forces to perform a (highly inefficient)
reevaluation of the whole schedule. The machine oriented encoding uses a 2D structure
to represent the group of tasks scheduled to execute on each machine (see Figure 1(b)).
It provides an easy and efficient way for performing move-and-swap exploration operators,
because it is able to store specific metric values for each machine (such as the local makespan).
Therefore, any single change on a task assignment does not imply reevaluating the schedule
metric.

In a previous CHC implementation (Nesmachnow 2009), the task-oriented encoding
was used to provide a simple method to solve the HCSP. In this work, the pCHC adopted
the machine-oriented encoding, because storing the local makespan values significantly
enhances the search efficiency.

5.2.2. Initialization. Numerous methods have been proposed to generate the initial
population when applying EAs to the HCSP (Braun et al. 2001; Xhafa et al. 2007a,b; Xhafa
and Duran 2008). Many of them employed specific heuristics to start the search from a set
of useful suboptimal schedules, increasing the EA effectiveness to minimize the makespan.

In this work, several methods were studied to generate accurate initial solutions to speed
up the search. When dealing with low-dimension HCSP instances, deterministic heuristics
such as Min-Min and Sufferage provide accurate and easy-to-compute solutions to seed
the population. Min-Min has been identified as an efficient method for finding accurate
schedules for small size HCSP instances (Braun et al. 2001), and also when the ETC matrix
has reasonable variations on heterogeneity (Luo, Lü, and Shi 2007), while Sufferage often
achieved better schedules than Min-Min for inconsistent scenarios. However, when the
problem dimension grows, the time required to compute the initial solution increases, thus
reducing the EA efficiency. To avoid the performance degradation, probabilistic versions of
Min-Min and Sufferage heuristics are used in this work for the population initialization: they
follow the general procedure of the deterministic heuristic, but only for assigning a random
number of MAXinit tasks, while the remaining tasks are assigned using a MCT strategy.



142 COMPUTATIONAL INTELLIGENCE

5.2.3. Recombination. The pCHC uses HUX to recombine the features of two solu-
tions. The HUX implementation is straightforward: for each task, the corresponding machine
in each offspring is chosen with uniform probability (0.5) between the two machines for that
task within the parents’ encoding. This operator is performed in linear order with respect to
the number of tasks in the encoding (O(N )).

5.2.4. Reinitialization. The reinitialization performs small perturbations in a given
schedule, aimed at providing diversity to the population, to avoid the search from getting
stuck in local optima. It performs simple moves and swaps of tasks between two machines,
selecting with high probability the machines with the highest and the lowest local makespan
(heavy and light, respectively). The reinitialization is applied using the best individual
found so far as a template for creating a new population after convergence is detected.

The reinitialization operator cyclically performs a maximum number of MAX_TRIALS
move-and-swap task operators, including: (1) move a randomly selected task (selecting
the longest task with a probability of 0.5, and the rest with uniform probability) from
heavy to light; (2) move the longest task from heavy to the suitable machine (the
machine which executes that task in minimum time); (3) move into light the best task
(the task with the lowest execution time for that machine); and (4) select a task from heavy
(selecting the longest task with a probability of 0.5), then search the best machine to move
it to.

Each time that a task is moved from a source machine to a destination machine, a swap
between destination and source is randomly applied with a probability of 0.5. Unlike previous
exploration operators for the HCSP presented in related works by Xhafa et al. (2007b); Xhafa
et al. (2008a)), none of the foregoing operators imply exploring the O(N 2) possible swaps,
not even exploring the O(N ) possible task movements. The four exploration operators used
in pCHC are performed in sub-linear complexity order with respect to both the number of
tasks and the number of machines in each HCSP instance. This feature allows pCHC to show
a good scalability behavior when solving large HCSP instances.

6. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of pCHC, aimed at studying the effi-
ciency of the proposed EA for solving the HCSP instances described in Section 3.2, and also
analyzing the scalability behavior when solving large-sized problem instances. The section
introduces the computational platform used for the experimental evaluation. After that, it
presents and discusses the pCHC parameter settings experiments and the results obtained
when solving the set of problem instances described in Section 3.2, including the numerical
results, a comparison with other techniques, a scalability analysis, and a study of the parallel
performance of pCHC.

6.1. Execution Platform

The experimental analysis was performed using a cluster with four Dell PowerEdge
servers with QuadCore Xeon E5430 processors at 2.66 GHz, 8GB RAM, using the
CentOS Linux 5.2 operating system, connected with a Gigabit Ethernet LAN (cluster website:
http://www.fing.edu.uy/cluster).



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 143

6.2. Parameter Settings

The main objective of this work consists in studying the ability of EAs to efficiently solve
the HCSP, thus demonstrating their usefulness to act as a practical scheduler for real-life HC
and grid systems. Therefore, the pCHC method uses a bounded time effort stopping criterion.
This decision is useful for efficiently solving static HCSP instances, and is also effective for
solving dynamic scenarios following the rescheduling strategy by replanning the incoming
(and also unexecuted) tasks after certain intervals of time. When dealing with small and
medium-sized HCSP instances, the stopping criterion was fixed at 90 s. of wall-clock time
(following related works by Xhafa et al.), while when solving the large HCSP instances the
stopping criterion was set at 120 s. of execution time.

The global population size was fixed at 120 individuals, and the pCHC worked with 8
subpopulations (15 individuals per deme), following the parameter settings experiments from
a previous work (Nesmachnow 2009). A configuration analysis was performed to determine
the optimum parameter values for each operator, using a subset of six low-dimension HCSP
instances with diverse characteristics. In the experiments, the crossover probability (pC )
and the percentage of the population involved in the reinitialization (pR) were selected
considering the candidate values pC : 0.5, 0.7, 0.9, and pR: 0.4, 0.6, 0.8.

The best makespan results were obtained when using the parameter values pC =0.7 and
pR=0.8, showing the importance of the reinitialization operators to achieve highly accurate
solutions in short execution times (the best results were obtained when using an unusually
high percentage of reinitialization). Additional experiments were performed to tune the
reinitialization operator: the probability of selecting the machines with highest and lowest
local makespan was set at 0.7, and the value of MAX_TRIALS was set at five.

6.3. Results and Discussion

This section presents the experimental results obtained with pCHC for solving the HCSP.
The results for the set of instances from Braun et al. are reported separately, as there have
been antecedents of solving the benchmark using other methods. After that, the pCHC results
when solving the large-dimension problem instances—specially designed in this work—are
presented and discussed. Finally, the section includes a study of the parallel performance and
scalability of pCHC when solving large-sized HCSP instances.

6.3.1. Results for the Instances from Braun et al. (2001). Table 3 reports the results
obtained in 30 independent executions of pCHC for the set of instances by Braun et al., and
presents a comparison with previous techniques. In those cases where pCHC outperformed
previous best results achieved with other techniques, Table 3 also presents the time required
to achieve the previous best-known makespan value (tB , in seconds), and the quantile of
the empirical distribution of pCHC that outperformed the previous best method (i.e., the
percentage of executions that obtained better makespan values than the previous best result
reported, q).

The analysis of Table 3 shows that pCHC outperformed the results obtained with previous
EAs. pCHC also outperformed the ACO+TS by Ritchie and Levine (2004) in ten out of twelve
HCSP instances, and the TS by Xhafa et al. (2008a) in seven out of twelve HCSP instances. In
addition, pCHC was able to achieve better makespan values than the previously best-known
solutions in six problem instances (the correspondent makespan values are marked with bold
in Table 3). Short execution times are required to outperform the previous results in those
cases. The solutions (schedules) with the lowest makespan values obtained for each problem



144 COMPUTATIONAL INTELLIGENCE

T
A

B
L

E
3

.
C

o
m

p
ar

at
iv

e
R

es
u

lt
s:

M
et

ah
eu

ri
st

ic
s

fo
r

th
e

H
C

S
P.

p
C

H
C

G
A

M
A

+
T

S
cM

A
A

C
O

+
T

S
T

S

In
st

an
ce

(B
ra

u
n

et
al

.)
(X

h
af

a)
(X

h
af

a
et

al
.)

(R
it

ch
ie

,
L

ev
in

e)
(X

h
af

a
et

al
.)

b
es

t
av

g
.

σ
t B

q

u
_
c
_
h
i
h
i
.
0

8
0
5
0
8
4
4
.5

7
5
3
0
0
2
0
.2

7
7
0
0
9
2
9
.8

7
4
9
7
2
0
0
.9

7
4
4
8
6
4
0
.5

7
4
6
1
8
1
9
.1

7
4
8
1
1
9
4
.5

0
.2

6
%

–
–

u
_
c
_
h
i
l
o
.
0

1
5
6
2
4
9
.2

1
5
3
9
1
7
.2

1
5
5
3
3
4
.8

1
5
4
2
3
4
.6

1
5
3
2
6
3
.3

1
5
3
7
9
1
.9

1
5
3
9
2
4

0
.0

6
%

–
–

u
_
c
_
l
o
h
i
.
0

2
5
8
7
5
6
.8

2
4
5
2
8
8
.9

2
5
1
3
6
0
.2

2
4
4
0
9
7
.3

2
4
1
6
7
2
.7

2
4
1
5
2
4
.0

2
4
3
4
4
6
.3

0
.2

9
%

7
1

0
.3

3

u
_
c
_
l
o
l
o
.
0

5
2
7
2
.3

5
1
7
3
.7

5
2
1
8
.2

5
1
7
8
.4

5
1
5
5
.0

5
1
7
7
.5

5
1
8
1
.6

0
.0

7
%

–
–

u
_
i
_
h
i
h
i
.
0

3
1
0
4
7
6
2
.5

3
0
5
8
4
7
4
.9

3
1
8
6
6
6
4
.7

2
9
4
7
7
5
4
.1

2
9
5
7
8
5
4
.1

2
9
5
2
4
9
3
.2

2
9
5
6
9
0
5
.7

0
.2

1
%

–
–

u
_
i
_
h
i
l
o
.
0

7
5
8
1
6
.1

7
5
1
0
8
.5

7
5
8
5
6
.6

7
3
7
7
6
.2

7
3
6
9
2
.9

7
3
6
3
9
.8

7
3
8
4
7
.1

0
.1

3
%

7
4

0
.2

0

u
_
i
_
l
o
h
i
.
0

1
0
7
5
0
0
.7

1
0
5
8
0
8
.6

1
1
0
6
2
0
.8

1
0
2
4
4
5
.8

1
0
3
8
6
5
.7

1
0
2
1
3
6
.1

1
0
2
6
7
7
.3

0
.3

0
%

3
1

0
.7

3

u
_
i
_
l
o
l
o
.
0

2
6
1
4
.4

2
5
9
6
.6

2
6
2
4
.2

2
5
5
3
.5

2
5
5
2
.1

2
5
4
9
.8

2
5
5
7
.2

0
.1

1
%

6
2

0
.3

6

u
_
s
_
h
i
h
i
.
0

4
5
6
6
2
0
6

4
3
2
1
0
1
5
.4

4
4
2
4
5
4
0
.9

4
1
6
2
5
4
7
.9

4
1
6
8
7
9
5
.9

4
1
9
8
7
7
9
.5

4
2
3
9
1
4
6
.3

0
.3

6
%

–
–

u
_
s
_
h
i
l
o
.
0

9
8
5
1
9
.4

9
7
1
7
7
.3

9
8
2
8
3
.7

9
6
7
6
2

9
6
1
8
0
.9

9
6
6
2
3
.3

9
6
7
5
0
.3

0
.1

3
%

–
–

u
_
s
_
l
o
h
i
.
0

1
3
0
6
1
6
.5

1
2
7
6
3
3

1
3
0
0
1
4
.5

1
2
3
9
2
2

1
2
3
4
0
7
.4

1
2
3
2
5
1
.5

1
2
3
9
8
9
.4

0
.2

4
%

5
5

0
.1

6

u
_
s
_
l
o
l
o
.
0

3
5
8
3
.4

3
4
8
4
.1

3
5
2
2
.1

3
4
5
5
.2

3
4
5
0
.5

3
4
5
0
.1

3
4
7
2
.2

0
.1

3
%

8
0

0
.1

3



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 145

TABLE 4. pCHC Results for New HCSP Instances with Dimension 1024×32.

pCHC

Instance MCT Min-Min Sufferage best avg. σ impr.

A.u_c_hihi 32832740.0 22508064.0 30004648.0 20327924.0 20510300.9 0.14% 9.69%

A.u_c_hilo 3245777.0 2255966.3 2816620.5 2048582.7 2058352.2 0.16% 9.19%

A.u_c_lohi 3058.7 2155.0 2716.0 1956.7 2000.0 0.19% 9.20%

A.u_c_lolo 323.9 225.9 288.5 207.5 217.8 0.10% 8.13%

A.u_i_hihi 7567147.0 6367767.5 5601367.0 5169960.5 5244046.9 0.24% 7.70%

A.u_i_hilo 713132.4 641438.4 533545.2 490280.3 492699.4 0.11% 8.11%

A.u_i_lohi 754.1 664.7 551.7 518.2 523.6 0.15% 8.32%

A.u_i_lolo 73.4 63.7 55.4 50.6 51.7 0.19% 8.63%

A.u_s_hihi 19008366.0 14125880.0 16939632.0 12243560.0 12439843.1 0.10% 13.33%

A.u_s_hilo 1825499.9 1319050.5 1603158.5 1187506.4 1214303.0 0.20% 9.97%

A.u_s_lohi 1822.0 1380.5 1681.4 1186.8 1199.2 0.30% 14.03%

A.u_s_lolo 194.2 138.7 167.2 122.4 126.5 0.12% 11.77%

B.u_c_hihi 9478168.0 6708228.0 8514663.0 6169823.0 6200118.0 0.11% 8.03%

B.u_c_hilo 97584.4 66684.5 84876.8 61114.7 61390.1 0.10% 8.35%

B.u_c_lohi 333497.6 232011.8 296032.9 215149.2 218124.8 0.24% 7.27%

B.u_c_lolo 3402.3 2386.3 3105.7 2164.3 2208.4 0.11% 9.30%

B.u_i_hihi 2511410.8 2164576.5 1847652.5 1630288.6 1670112.7 0.11% 11.76%

B.u_i_hilo 22624.3 17083.1 16366.2 15121.5 15464.1 0.19% 7.61%

B.u_i_lohi 74041.1 56601.2 55083.2 49569.9 50128.2 0.13% 10.01%

B.u_i_lolo 743.8 585.0 537.1 496.1 507.4 0.10% 7.64%

B.u_s_hihi 5458156.0 3967265.5 4714483.5 3393010.2 3430218.1 0.10% 14.47%

B.u_s_hilo 55659.5 40691.6 50884.3 35988.4 36515.6 0.27% 11.56%

B.u_s_lohi 176744.7 135624.6 155599.9 115179.2 118070.3 0.19% 13.08%

B.u_s_lolo 1888.6 1333.2 1646.6 1191.7 1230.3 0.15% 10.61%

instance are reported in the Appendix and further details are provided at the HCSP website
(http://www.fing.edu.uy/inco/cecal/hpc/HCSP).

6.3.2. Results for the New Large-Sized HCSP Instances. Tables 4 to 7 show the pCHC
best results for large HCSP instances. For each dimension, the results for the twelve in-
stances following the heterogeneity model from Ali et al., and the twelve ones following the
heterogeneity model from Braun et al. are presented.

There have been no previous works solving this new set of HCSP instances, so the
pCHC results are compared with those achieved by the most popular static heuristics (MCT,
Min-Min, and Sufferage). The tables report the makespan values obtained with the three
deterministic heuristic, the best, average and standard deviation results achieved using pCHC
in 30 independent executions, and the improvement factor (impr., in percentage) over the
best deterministic heuristic result. The Kolmogorov–Smirnov and the Shapiro–Wilk test
were applied to analyze the distribution of the pCHC results, and the observed significance
levels for both tests allow to conclude that the empirical distribution of pCHC results follows
a normal distribution with a confidence level of 95% for all the problem instances studied.

The pCHC achieved significant makespan improvements—ranging from 4.92% to
22.12%—over the best result provided by the list scheduling heuristics. It took advantage of



146 COMPUTATIONAL INTELLIGENCE

TABLE 5. pCHC Results for New HCSP Instances with Dimension 2048×64.

pCHC

Instance MCT Min-Min Sufferage best avg. σ impr.

A.u_c_hihi 28519530.0 19552222.0 25579850.0 18110479.1 18218285.6 0.65% 7.37%

A.u_c_hilo 2745652.5 1873134.3 2478699.3 1748509.2 1760141.2 0.47% 6.65%

A.u_c_lohi 2858.8 1924.7 2539.2 1798.4 1804.9 0.19% 6.56%

A.u_c_lolo 279.9 191.7 249.8 177.6 178.1 0.16% 7.35%

A.u_i_hihi 3900502.5 3248935.5 3218272.5 2506258.5 2546459.7 0.25% 22.12%

A.u_i_hilo 409815.0 365828.6 315267.5 272741.3 273876.3 0.32% 13.49%

A.u_i_lohi 385.2 320.9 312.5 266.3 267.5 0.28% 14.80%

A.u_i_lolo 41.8 32.3 29.5 26.4 26.5 0.29% 10.48%

A.u_s_hihi 16498318.0 11245679.0 13890956.0 9756499.7 9821934.5 0.58% 13.24%

A.u_s_hilo 1432291.0 1042948.5 1307394.3 924094.9 937998.8 1.44% 11.40%

A.u_s_lohi 1512.6 1056.0 1354.1 947.1 952.3 0.34% 10.31%

A.u_s_lolo 163.1 114.6 142.3 99.6 100.4 0.47% 13.15%

B.u_c_hihi 8236068.5 5564664.0 7560320.5 5290128.2 5300316.1 0.14% 4.93%

B.u_c_hilo 87265.9 59352.8 79079.2 55316.2 55343.1 0.06% 6.80%

B.u_c_lohi 281350.6 190842.4 253468.1 177063.4 177612.4 0.28% 7.22%

B.u_c_lolo 2882.3 1927.7 2613.8 1814.7 1818.3 0.19% 5.86%

B.u_i_hihi 1204421.0 929295.8 879421.3 770110.6 774993.0 0.47% 12.43%

B.u_i_hilo 11715.7 10318.4 9047.6 7906.5 7932.9 0.53% 12.61%

B.u_i_lohi 40528.6 34071.0 32073.6 26941.2 27207.3 0.61% 16.00%

B.u_i_lolo 413.9 355.7 299.4 262.4 264.7 0.26% 12.36%

B.u_s_hihi 4715914.0 3293157.0 4121618.8 2910507.6 2923857.1 0.34% 11.62%

B.u_s_hilo 47549.7 33445.4 41777.5 29442.2 29518.6 0.22% 11.97%

B.u_s_lohi 159401.9 111237.4 142534.7 98607.0 98758.3 0.19% 11.35%

B.u_s_lolo 1615.2 1163.8 1474.0 1014.3 1019.7 0.30% 12.85%

the multiple search pattern and the increased diversity provided by the subpopulation model
to achieve high quality results. The standard deviation of the makespan values were very
small (below 1.5%), demonstrating a high robustness behavior when solving the HCSP. It can
be expected that pCHC will find accurate schedules in any single execution for ETC-based
HCSP scenarios.

Regarding inconsistent and semiconsistent instances, pCHC obtained a roughly 10%
makespan improvement factor over the best traditional heuristic, even for the larger in-
stances. The classic methods provide accurate schedules for inconsistent HCSP instances
with low dimension, so the pCHC improvements were slightly below 10% for those scenarios.
However, pCHC notably improves over the traditional methods for larger inconsistent HCSP
instances, achieving makespan reductions above 10% for all problem instances, and a max-
imum of 22.12% for A.u_i_hihi with dimension 2048×64. The opposite situation hap-
pened for consistent instances, where pCHC improvements diminished from nearly 10% to
5% as the instances dimension grows.

Table 8 summarizes the (percentage) averaged improvements when using pCHC with
respect to the best traditional heuristic for each type of problem instances and dimensions
studied, and Figure 2 shows the graphical comparison of average improvement values. The



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 147

TABLE 6. pCHC Results for New HCSP Instances with Dimension 4096×128.

pCHC

Instance MCT Min-Min Sufferage best avg. σ impr.

A.u_c_hihi 24968242.0 16711134.0 23173816.0 15722681.0 15760840.0 0.16% 9.69%

A.u_c_hilo 2466416.3 1649763.5 2240514.0 1562810.9 1565580.1 0.17% 9.19%

A.u_c_lohi 2512.0 1635.3 2248.6 1540.9 1545.1 0.13% 9.20%

A.u_c_lolo 247.3 166.9 223.9 155.7 156.2 0.19% 8.13%

A.u_i_hihi 1939731.8 1666126.5 1575787.6 1309493.5 1331529.0 0.37% 7.70%

A.u_i_hilo 203714.6 177692.2 154506.9 137158.4 139250.8 0.17% 8.11%

A.u_i_lohi 203.5 188.0 165.6 136.1 137.7 0.21% 8.32%

A.u_i_lolo 20.8 19.4 15.2 13.7 13.7 0.27% 8.63%

A.u_s_hihi 13101840.0 8949853.0 11756833.0 8089853.5 8121957.0 0.29% 13.33%

A.u_s_hilo 1369277.1 930564.0 1215532.5 828912.4 834878.5 0.42% 9.97%

A.u_s_lohi 1310.7 927.9 1181.7 807.6 811.9 0.32% 14.03%

A.u_s_lolo 133.9 94.7 122.3 84.2 84.5 0.27% 11.77%

B.u_c_hihi 7715335.5 5059571.5 6912596.5 4767774.5 4789005.9 0.20% 8.03%

B.u_c_hilo 73858.5 49301.2 66003.5 46350.1 46470.8 0.14% 8.35%

B.u_c_lohi 253202.0 169495.3 230424.2 158780.8 159312.0 0.17% 7.27%

B.u_c_lolo 2464.7 1662.3 2263.6 1556.8 1562.2 0.16% 9.30%

B.u_i_hihi 630009.9 524174.1 472071.9 402182.1 405768.5 0.46% 11.76%

B.u_i_hilo 6333.5 5381.1 4964.7 4224.8 4252.2 0.23% 7.61%

B.u_i_lohi 21320.7 18772.1 15873.5 13847.8 13905.8 0.36% 10.01%

B.u_i_lolo 210.7 183.9 152.4 137.4 138.9 0.26% 7.64%

B.u_s_hihi 4065974.5 2843118.3 3551046.8 2508467.3 2524194.9 0.30% 14.47%

B.u_s_hilo 41297.3 27793.4 36605.5 25244.1 25346.6 0.43% 11.56%

B.u_s_lohi 131824.3 91523.0 116056.8 81118.5 81559.4 0.45% 13.08%

B.u_s_lolo 1358.2 921.8 1183.5 825.7 830.9 0.45% 10.61%

results show that consistent instances are the most difficult to solve with pCHC, while it
achieved accurate values for inconsistent and semiconsistent problem instances. The im-
provement values tend to slightly decrease as long as the problem instances grow, but they
always remain above 5% for consistent instances, above 8% for inconsistent, and above 10%
for semiconsistent instances.

The list scheduling heuristics compute their solutions in a (deterministic) time, which
ranged from 10 s. (for dimension 2048×64) to 70 s. (for dimension 8192×256). From the
previous results, we can claim that pCHC is a promising technique for scheduling in realistic
distributed HC and grid infrastructures such as volunteer-computing platforms, distributed
databases, etc., where large tasks—with execution times in the order of minutes, hours and
even days—are submitted to execution. In these scenarios, it is worth to invest the time
required for computing the schedule (i.e., two minutes) to achieve significant improvements
(over 10%) in the makespan values over traditional heuristics.

6.3.3. Fitness evolution and execution time. This subsection analyzes the fitness evo-
lution of the pCHC algorithm for two representative HCSP instances. The analysis allows
drawing some conclusions about the trade-off between the solution quality obtained using
pCHC and the required execution time.



148 COMPUTATIONAL INTELLIGENCE

TABLE 7. pCHC Results for New HCSP Instances with Dimension 8192×256.

pCHC

Instance MCT Min-Min Sufferage best avg. σ impr.

A.u_c_hihi 22273440.0 14798376.0 20198762.0 14070023.0 14105642.9 0.15% 7.37%

A.u_c_hilo 2279612.5 1500181.5 2055377.3 1426068.0 1429947.9 0.09% 6.65%

A.u_c_lohi 2214.7 1456.5 2032.7 1384.8 1386.8 0.12% 6.56%

A.u_c_lolo 229.4 148.9 207.3 140.9 141.2 0.17% 7.35%

A.u_i_hihi 1075384.9 878829.5 788940.8 702540.6 715247.8 0.22% 22.12%

A.u_i_hilo 102423.2 85076.7 77317.0 70199.3 70648.3 0.61% 13.49%

A.u_i_lohi 102.2 96.1 82.6 71.0 73.5 0.32% 14.80%

A.u_i_lolo 11.6 8.8 8.0 7.1 7.3 0.17% 10.48%

A.u_s_hihi 11963559.0 8151522.0 10828664.0 7428847.5 7450818.7 0.32% 13.24%

A.u_s_hilo 1141591.6 787507.6 1047018.1 711087.9 714308.1 0.17% 11.40%

A.u_s_lohi 1165.5 796.9 1066.1 722.2 723.6 0.17% 10.31%

A.u_s_lolo 120.3 81.2 107.9 73.8 74.1 0.08% 13.15%

B.u_c_hihi 6880980.5 4460896.5 6251939.0 4254320.5 4261656.4 0.11% 4.93%

B.u_c_hilo 67167.0 43670.3 60967.2 41535.6 41614.2 0.10% 6.80%

B.u_c_lohi 225926.1 148102.7 203203.7 140752.1 140957.9 0.08% 7.22%

B.u_c_lolo 2214.8 1468.6 2000.6 1393.4 1396.6 0.12% 5.86%

B.u_i_hihi 313647.3 286800.2 248651.3 211439.3 216258.1 0.24% 12.43%

B.u_i_hilo 3029.4 2960.2 2496.7 2099.7 2147.5 0.22% 12.61%

B.u_i_lohi 10259.6 9496.4 7887.3 7017.2 7134.3 0.19% 16.00%

B.u_i_lolo 114.2 90.0 78.8 71.0 72.5 0.29% 12.36%

B.u_s_hihi 3461801.3 2411292.0 3137134.0 2155649.3 2167769.3 0.24% 11.62%

B.u_s_hilo 34836.5 23979.2 31826.8 21799.3 21873.5 0.22% 11.97%

B.u_s_lohi 117009.3 79291.5 106247.6 72303.5 72431.4 0.18% 11.35%

B.u_s_lolo 1167.2 807.2 1063.7 726.2 728.0 0.22% 12.85%

TABLE 8. Improvement of pCHC over Traditional Heuristics.

Dimension

Model Type 512×16 1024×32 2048×64 4096×128 8192×256

Ali et al. consistent 11.34% 9.05% 6.98% 5.93% 5.04%

inconsistent 9.85% 8.19% 15.22% 13.86% 11.46%

semiconsistent 14.31% 12.28% 12.03% 11.14% 9.28%

Braun et al. consistent 8.51% 8.24% 6.21% 6.11% 4.90%

inconsistent 7.53% 9.26% 13.35% 13.08% 12.93%

semiconsistent 11.32% 12.43% 11.95% 10.68% 9.64%

Figures 3 (a) and 3(b) show the evolution of the best makespan values observed for the
pCHC algorithm during representative executions overu_i_hihi.0 (dimension 2048×64)
and u_s_lohi.0 (dimension 4096×128) (the makespan value of the Min-Min and Suffer-
age solutions are included as a reference baseline). The slopes of the curves in Figure 3 show
that despite starting from worse solutions than the one computed by Min-Min and Sufferage,



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 149

FIGURE 2. Improvement over traditional heuristics (percentage).

FIGURE 3. Makespan evolution sample for pCHC.

pCHC is able to find well-suited schedules in a short time. Similar results were obtained for
the other problem instances studied. For the small HCSP instances, pCHC improves over the
traditional heuristic results in a few seconds, while almost 60 s. are required to obtain 5% of
improvement in the largest instances.

The previous results demonstrate that the parallel algorithm proposed in this work is
able to improve the deterministic heuristics results in a short execution time, a crucial result
when scheduling in large HC and grid computing systems.

6.3.4. Scalability Analysis. Figure 5 presents the results obtained in a scalability anal-
ysis devoted to study the behavior of pCHC when solving HCSP instances of increasing size.
Mean values of the average normalized makespan (i.e., the quotient between the makespan
achieved by pCHC using eight subpopulations and the makespan obtained with a panmic-
tic population) were evaluated for consistent, inconsistent and semiconsistent instances for
each problem dimension studied. The graphic shows that the normalized makespan val-
ues diminishes when solving large-dimension problem instances, specially for inconsistent
and semiconsistent instances. Reductions of up to 10% in the mean makespan values were
achieved when solving the largest problem instances (8192×256, semiconsistent instances),
while the baseline results were around 3%–5% for the smaller problem instances (512×16).
These results show that the parallel model allows pCHC to show a good scalability behavior,



150 COMPUTATIONAL INTELLIGENCE

FIGURE 4. Scalability analysis for pCHC.

FIGURE 5. Parallel performance and scalability of pCHC.

achieving improved makespan reductions with respect to a panmictic model as the search
space dimension grows.

6.3.5. Parallel Performance. All the previously reported results were obtained using
eight subpopulations in pCHC, according to the parameter setting experiments performed on



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 151

small-sized HCSP instances. However, the parallel model should achieve improved results by
splitting the population in more demes when facing the large HCSP instances. This subsection
presents a study that evaluates the parallel performance of pCHC for solving HCSP instances
with increasing dimension, eventually using additional computing resources available.

Instead of working with a fixed number of demes, the global population of 120 individuals
was split into 2 to 16 subpopulations, and pCHC was executed until reaching the time stopping
criterion. Mean values of the average normalized makespan improvements were evaluated for
consistent, inconsistent and semiconsistent instances for each problem dimension studied.
Figure 5 presents the results of the parallel performance and scalability analysis.

By splitting the population, pCHC has a more focused exploration pattern than the pan-
mictic search. However, the normalized makespan values show that splitting the population
in more than 8 demes causes the pCHC results to deteriorate, mainly due to the lose of
diversity in every deme. A sample cut of the 3D graphics for a representative dimension
(2048×64, including error marks) is presented in Figure 5(d), showing the reduction of the
normalized makespan values up to 8 subpopulations, and the slight worse results achieved
when using additional subpopulations. Similar results were achieved when solving other
HSCP instances. This behavior suggests that there is still work to be done to enhance the
pCHC method to achieve a fully scalable scheduler, able to improve over its own results as
additional computing resources are available.

7. CONCLUSIONS AND FUTURE WORK

This work has presented a pCHC algorithm for solving the HCSP, a capital problem when
executing tasks in distributed HC and grid platforms. In addition, a new set of large-sized
HCSP instances was introduced, to model realistic distributed HC and grid scenarios. The
test suite comprise several problem instances designed following a methodology based on
the well-known ETC model for execution time estimation.

The pCHC was conceived to find accurate HSCP solutions in an efficient way, by using
a predefined stopping criterion that allows a quickly planning, and eventually rescheduling
of incoming tasks. It was implemented using the MALLBA library and executed in a high
performance cluster for solving both a well-known test suite of HCSP instances with reduced
size and the new high-dimension instances—specially relevant to analyze the scalability
behavior of the proposed method.

The experimental evaluation provided a first step toward a grid-level scalability analysis
of pCHC on medium-sized grid scenarios up to 256 processors and scheduling up to 8,192
tasks. PCHC obtained accurate schedules in reduced execution times. It was able to improve
over the best previously known makespan results for six instances out of twelve in the problem
set by Braun et al., a remarkable efficiency when considering the exhaustive work done by
previous researches to solve this small-sized HCSP test suite. When solving the high dimen-
sion problem instances, pCHC was also able to achieve significant makespan improvements
with respect to the results obtained using traditional (deterministic) list scheduling heuristics.
The pCHC obtained makespan improvement factors above 5% over the best deterministic
scheduling heuristic for all problem instances. When solving inconsistent and semiconsistent
scenarios, the improvements were nearly 10% for all cases, and over 15% for inconsistent
instances with dimension 2048×64.

PCHC also demonstrated a high robustness behavior when solving the HCSP, because
the standard deviation of the makespan values were very small (below 0.5%) for all problem
instances studied. Thus, it can be expected that pCHC will find accurate schedules in any
single execution for HCSP scenarios that follow the ETC model by Ali et al. (2000a). The



152 COMPUTATIONAL INTELLIGENCE

scalability analysis showed that pCHC has a more focused exploration pattern when using
smaller populations. However, the loss of diversity caused the makespan results to deteriorate
when splitting the population in more than 8 demes, suggesting that further improvements
are needed to achieve a fully scalable scheduler.

The experimental analysis showed that pCHC is a promising method for static scheduling
in HCSP scenarios involving thousands of tasks and up to several hundred of machines.
However, two main lines remain to be tackled as future work: enhancing the efficacy of
the proposed method, and studying the applicability of pCHC to solve dynamic versions of
HCSP. The issue related to algorithm efficacy includes studying improved search mechanisms
to increase the makespan reductions for consistent scenarios, and also to avoid the lose of
diversity that restrained the pCHC scalability to work with no more than eight demes. On
the other hand, future work should also focus on studying the applicability of pCHC for
solving dynamic versions of HCSP by using a rescheduling strategy that iteratively applies
an efficient algorithm for scheduling tasks on dynamic scenarios. In fact, these lines of work
are already in progress.

7. ACKNOWLEDGMENTS

The work of S. Nesmachnow and H. Cancela has been partially supported by Programa
de Desarrollo de las Ciencias Básicas (PEDECIBA) and Comisión Sectorial de Investi-
gación Cientı́fica (CSIC), Universidad de la República, Uruguay. The work of E. Alba has
been partially funded by the Spanish government and European FEDER through contract
TIN2008-06491-C04-01 (M* project), and by the Andalusian government through contract
P07-TIC-03044 (DIRICOM project).

REFERENCES

ALBA, E. 2005. Parallel metaheuristics: A new class of algorithms. Wiley: Hoboken, NJ.

ALBA, E., and M. TOMASSINI. October 2002. Parallelism and evolutionary algorithms. IEEE Transactions on

Evolutionary Computation, 6(5): 443–462.

ALBA, E., F. ALMEIDA, M. BLESA, C. COTTA, M. DIAZ, I. DORTA, J. GABARRÓ, J. GONZÁLEZ, C. LEÓN, L. MORENO,

J. PETIT, J. RODA, A. ROJAS, and F. XHAFA. 2002. MALLBA: A library of skeletons for combinatorial

optimisation. In Proceedings of the Euro-Par, Paderborn, Germany, pp. 927–932.

ALI, S., H. SIEGEL, M. MAHESWARAN, S. ALI, and D. HENSGEN. 2000a. Task execution time modeling for

heterogeneous computing systems. In Proceedings of the 9th Heterogeneous Computing Workshop, IEEE

Computer Society, Washington, DC, pp. 185–200.

ALI, S., H. SIEGEL, M. MAHESWARAN, S. ALI, and D. HENSGEN. 2000b. Representing task and machine het-

erogeneities for heterogeneous computing systems. Tamkang Journal of Science and Engineering, 3(3):

195–207.

ANDERSON, T., D. CULLER, D. PATTERSON, and the now team. 1995. A case for now (networks of workstations).

IEEE Micro, 15(1): 54–64.

ARMSTRONG, R., D. HENSGEN, and T. KIDD. 1998. The relative performance of various mapping algorithms

is independent of sizable variances in run-time predictions. In Proceedings of the Seventh Heterogeneous

Computing Workshop, IEEE Computer Society, Washington, DC, pp. 79–83.

BÄCK, T., D. FOGEL, and Z. MICHALEWICZ, editors. 1997. Handbook of evolutionary computation. Oxford

University Press: Bristol, UK.

BRASILERO, F., A. DUARTE, D. CARVALHO, R. BARBERA, and D. SCARDACCI. 2008. An approach for the co-

existence of service and opportunistic grids: The EELA-2 case. In Proceedings of the 2nd Latin-American

Grid Workshop, Campo Grande, Brazil.



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 153

BRAUN T., H. SIEGEL, N. BECK, L. BÖLÖNI, M. MAHESWARAN, A. REUTHER, J. ROBERTSON, M. THEYS, B.

YAO, D. HENSGEN, and R. FREUND. 2001. A comparison of eleven static heuristics for mapping a class

of independent tasks onto heterogeneous distributed computing systems. Journal of Parallel Distributive

Computing, 61(6): 810–837.

CANIOU Y., and J. GAY. 2008. Simbatch: An API for simulating and predicting the performance of parallel

resources managed by batch systems. In Euro-Par Workshops, volume 5415 of Lecture Notes in Computer

Science, Springer, pp. 223–234.

DAVIS, L. 1991. Handbook of genetic algorithms. van Nostrand Reinhold: New York.

ESHELMAN, L. 1991. The CHC adaptive search algorithm: how to have safe search when engaging in nontradi-

tional genetic recombination. In Foundations of Genetics Algorithms. Morgan Kaufmann Publishers: San

Francisco, CA, pp. 265–283.

FOSTER, I., and C. KESSELMAN. 1998. The grid: Blueprint for a future computing infrastructure. Morgan

Kaufmann Publishers: San Francisco, CA.

GAREY, M., and D. JOHNSON. 1979. Computers and intractability. Freeman: New York.

GOLDBERG, D. 1989. Genetic algorithms in search, optimization, and machine learning. Addison Wesley: New

York.

HENSGEN, D., T. KIDD, D. St. JOHN, M. SCHNAIDT, H. SIEGEL, T. BRAUN, M. MAHESWARAN, S. ALI, J. KIM,

C. IRVINE, T. LEVIN, R. FREUND, M. KUSSOW, M. GODFREY, A. DUMAN, P. CARFF, S. KIDD, V. PRASANNA,

P. BHAT, and A. ALHUSAINI. 1999. An overview of MSHN: The management system for heterogeneous

networks. In Proceedings of the 8th IEEE Workshop on Heterogeneous Computing Systems, San Juan, PR,

pp. 184–198.

IBARRA, O., and C. KIM. 1977. Heuristic algorithms for scheduling independent tasks on nonidentical processors.

Journal of the ACM, 24(2): 280–289.

KWOK, Y., and I. AHMAD. 1999. Static scheduling algorithms for allocating directed task graphs to multiproces-

sors. ACM Computing Surveys, 31(4): 406–471.

LI, H., D. GROEP, J. TEMPLON, and L. WOLTERS. 2004. Predicting job start times on clusters. In Proc. of the 2004

IEEE International Symposium on Cluster Computing and the Grid, Computer Society, IEEE, Washington,

DC, pp. 301–308.

LUO, P., K. LÜ, and Z. SHI. 2007. A revisit of fast greedy heuristics for mapping a class of independent tasks

onto heterogeneous computing systems. Journal of Parallel Distributive Computing, 67(6): 695–714.

MOHAMED, H., and D. EPEMA. 2008. KOALA: A co-allocating grid scheduler. Concurrency and Computation:

Practice and Experience, 20(16): 1851–1876.

NESMACHNOW, S. 2009. Algoritmos evolutivos paralelos para despacho de tareas en entornos heterogéneos. In

Proceedings of the VI Congreso Español sobre Metaheurı́sticas, Algoritmos Evolutivos y Bioinspirados,

Málaga, Spain, pp. 571–578. (Text in Spanish)

PAGE, A., and T. NAUGHTON. 2005. Framework for task scheduling in heterogeneous distributed computing using

genetic algorithms. Artificial Intelligence Review, 24(3–4): 415–429.

RITCHIE, G., and J. LEVINE. 2004. A hybrid ant algorithm for scheduling independent jobs in heterogeneous

computing environments. In Proceedings of the 23rd Workshop of the UK Planning and Scheduling Special

Interest Group.

SCHUTTEN, J. 1996. List scheduling revisited. Operations Research Letters, 18(4): 167–170.

WANG, L., H. SIEGEL, V. ROYCHOWDHURY, and A. MACIEJEWSKI. 1997. Task matching and scheduling in

heterogeneous computing environments using a genetic-algorithm-based approach. Journal of Parallel and

Distributed Computing, 47(1): 8–22.

XHAFA, F. 2007. A Hybrid Evolutionary Heuristic for Job Scheduling in Computational Grids, chapter 10.

Springer Verlag Series: Studies in Computational Intelligence, Vol. 75, pp. 269–311.

XHAFA, F., and B. DURAN. 2008. Parallel Memetic Algorithms for independent job scheduling in computational

grids. In Recent Advances in Evolutionary Computation for Combinatorial Optimization, Vol. 153. Studies

in Computational Intelligence, Springer, pp. 219–239.



154 COMPUTATIONAL INTELLIGENCE

XHAFA, F., E. ALBA, and B. DORRONSORO. 2007a. Efficient batch job scheduling in grids using cellular memetic

algorithms. In Proceedings of the 21st International Parallel and Distributed Processing Simposium. IEEE

Computer Society, Long Beach, CA, pp. 1–8.

XHAFA, F., J. CARRETERO, and A. ABRAHAM. 2007b. Genetic algorithm based schedulers for grid computing

systems. International Journal of Innovative Computing Information and Control, 3(5): 1–19.

XHAFA, F., J. CARRETERO, E. ALBA, and B. DORRONSORO. 2008a. Design and evaluation of tabu search method for

job scheduling in distributed environments. In Proceedings of the 21st International Parallel and Distributed

Processing Symposium, IEEE, Shanghai, China, pp. 1–8.

XHAFA, F., B. DURAN, A. ABRAHAM, and K. DAHAL. 2008b. Tuning struggle strategy in genetic algorithms for

scheduling in computational grids. In Proceedings of the 7th Computer Information Systems and Industrial

Management Applications, IEEE Computer Society, Washington, DC, pp. 275–280.

YANG, J., I. AHMAD, and A. GHAFOOR. 1993. Estimation of execution times on heterogeneous supercomputer

architectures. In Proceedings of the 1993 International Conference on Parallel Processing, IEEE Computer

Society, Washington, DC, pp. 219–226.

ZOMAYA, A., and Y. TEH. 2001. Observations on using genetic algorithms for dynamic load-balancing. IEEE

Transactions on Parallel Distributive System, 12(9): 899–911.

APPENDIX: BEST SOLUTIONS FOR THE TEST SUITE FROM BRAUN ET AL.

This appendix reports the best solutions obtained by pCHC for six problems on the
test suite by Braun et al. (2001). For the sake of simplicity, the solutions are presented in a
task-oriented representation (array of machine identifiers, the presence of m j in the position
ti means that the task ti is scheduled to execute on machine m j , see Section 5.2.1).

3 4 9 0 12 0 5 4 7 8 0 0 0 0 2 3 7 0 7 0 0 7 14 1 2 11 0 2 0 0 1 14 1 0 3 0 9 14 1 5 0 0 2 0 0 0 4 7 1 1 2 0 2 1 0 0 0 2 7 0 5 0 0

0 0 10 2 3 0 15 1 0 1 0 0 3 1 0 0 13 0 0 3 0 0 0 9 1 0 0 3 0 0 0 0 0 0 2 0 13 0 0 1 8 0 0 1 11 1 1 2 2 2 0 0 1 0 10 4 1 13 10 0 0 4

0 3 6 2 0 2 4 0 0 0 7 4 0 0 4 0 8 6 0 0 4 3 7 0 1 2 0 0 15 0 0 10 2 1 0 0 0 0 1 15 10 1 0 9 4 0 8 0 0 7 0 7 6 0 0 8 2 0 1 1 0 0 3 1

0 0 0 0 0 8 3 2 5 1 1 0 0 2 8 0 1 3 0 0 9 0 0 5 0 9 0 0 10 8 2 3 0 0 4 0 0 0 0 2 0]

Instance: u c lohi.0, makespan: 241524.0 Solution: [0 0 1 0 12 11 2 0 0 5 2 9 1 1 15 2 0 0 0 0 3 9 0 1 4 0 1 0 3

14 0 0 9 6 4 0 0 0 0 6 0 0 0 9 14 12 1 0 2 1 0 0 7 1 1 0 1 4 3 0 2 1 8 13 1 1 1 0 0 1 14 2 7 5 0 6 0 0 1 0 0 4 0 0 6 0 1 0 2 0 0 0

0 0 2 3 14 1 2 15 0 5 1 11 0 1 1 1 14 6 1 1 1 2 0 0 0 4 1 0 4 0 0 0 0 6 7 1 5 3 4 0 0 0 1 0 6 0 8 13 1 0 0 2 7 2 0 5 0 4 0 2 2 1 8

0 0 0 1 1 4 5 8 12 0 0 0 5 3 0 0 0 5 6 2 1 0 0 0 9 1 2 0 2 3 6 6 0 3 1 0 0 2 0 4 0 5 0 1 3 0 12 2 3 0 3 0 1 0 0 2 0 2 0 0 0 7 0 0 2

0 11 0 6 0 3 0 0 5 2 0 0 0 0 1 0 10 13 1 8 8 0 4 0 0 0 0 6 0 3 2 2 3 0 5 3 0 3 13 9 13 9 0 10 0 0 4 0 0 5 1 0 1 2 0 11 0 0 3 0 0 15

Instance: u i hilo.0, makespan: 73639.8 Solution: [4 2 0 13 10 8 14 7 13 13 0 4 1 11 6 8 15 5 13 0 6 1 11 14 3 4

12 11 7 15 1 5 12 12 10 10 4 12 8 8 12 11 3 11 5 10 5 8 6 4 3 8 14 11 6 0 11 2 9 15 7 8 9 11 11 8 2 3 9 12 4 4 15 0 3 9 14 8 13 2

15 15 11 2 8 10 12 10 3 11 0 8 2 7 9 4 2 4 14 15 13 8 9 4 6 15 11 14 1 13 1 12 1 0 6 0 9 7 13 7 12 8 1 12 8 10 7 12 4 2 0 12 3 0

8 7 12 4 6 4 10 2 3 1 7 3 0 14 11 1 12 11 2 15 3 2 10 8 1 0 0 14 10 1 1 2 0 3 5 13 6 1 11 0 1 10 1 0 6 12 6 0 12 2 6 11 0 2 9 6 4

7 0 3 1 0 3 1 11 9 15 8 4 13 14 6 0 0 6 12 6 12 11 9 3 10 12 9 15 6 7 10 10 13 14 9 0 5 3 15 0 11 12 3 0 11 0 11 6 3 6 5 9 10 2 7

10 4 13 9 15 6 12 0 5 13 12 13 10 14 8 9 0 5 0 1 0 10 10 13 13 7 13 12 6 7 12 1 2 15 10 12 6 5 13 10 10 5 15 13 15 3 12 1 14 11

1 0 13 14 11 3 12 3 6 9 4 6 15 11 1 6 13 3 11 12 6 14 9 5 8 3 10 8 5 0 10 8 1 1 1 9 11 13 6 4 4 8 7 11 14 12 0 5 9 13 15 15 4 8 0

9 1 4 11 7 13 1 4 9 7 5 14 13 4 15 4 9 3 3 11 2 0 2 13 10 11 8 1 2 14 12 5 2 12 5 15 1 12 13 8 0 14 14 9 1 3 15 14 11 15 13 2 13

4 8 8 14 9 5 5 3 7 14 10 3 4 2 10 12 8 9 3 1 1 10 8 4 13 15 6 15 10 1 6 7 10 2 5 10 5 7 2 12 7 7 15 11 4 5 4 1 9 14 5 12 7 0 15 2

5 2 2 13 8 12 7 1 14 9 7 15 12 13 15 10 4 9 10 9 13 3 1 4 13 15 2 14 10 8 15 15 8 13 11 1 0 8 1 0 2 7 13 8 7 4 12 9 15 5 3 1]

Instance: u i lohi.0, makespan: 102136.0 Solution: [10 11 7 11 14 0 13 10 8 9 10 13 0 5 5 4 5 10 13 5 3 1 8 11

0 4 10 5 4 11 0 0 5 4 2 7 8 4 11 4 6 3 11 6 15 4 3 2 2 12 12 12 8 11 2 10 2 4 1 6 8 12 3 12 4 4 11 13 14 15 3 10 8 10 11 5 6 1 2

4 8 12 10 1 2 3 12 7 7 10 3 8 8 13 5 3 15 1 14 5 6 11 14 0 10 7 1 10 7 11 5 12 8 11 8 8 10 1 5 6 0 3 2 0 5 0 5 15 3 2 13 11 14 4

1 11 6 11 13 2 0 0 13 4 14 9 1 1 13 6 1 2 15 10 11 14 0 15 11 0 4 7 14 12 13 1 6 14 10 14 14 6 15 11 9 8 1 15 8 10 15 14 12 12

13 9 10 7 6 10 15 3 15 6 5 14 14 6 8 8 3 0 2 10 8 2 12 12 7 5 7 7 15 11 14 12 12 10 13 13 1 15 8 5 10 0 12 15 1 15 3 12 9 2 0 6

15 3 2 4 1 5 10 4 12 2 11 6 0 4 8 11 15 13 4 7 0 2 9 4 9 4 8 5 4 14 3 9 0 1 14 3 2 14 4 3 8 3 14 9 14 15 2 8 10 15 6 14 7 9 15 3

10 11 0 2 11 8 1 14 7 14 4 14 15 6 10 4 8 14 1 11 12 7 13 3 2 11 7 10 6 9 13 1 6 1 11 0 6 3 14 14 11 5 13 3 10 6 2 15 8 15 7 15

14 11 0 9 0 14 11 13 8 13 9 4 12 15 13 7 8 8 8 15 1 6 13 8 14 11 2 9 14 1 15 4 7 4 9 0 6 3 10 9 4 5 10 14 5 11 7 3 1 12 11 15 4

10 2 15 9 15 10 12 6 8 7 11 0 10 12 14 7 2 15 0 13 2 15 6 6 7 10 9 13 13 11 8 6 2 3 9 5 4 12 13 4 7 8 8 3 11 13 9 14 7 5 10 15 1

9 11 6 9 14 1 13 4 1 5 13 4 11 12 1 15 0 0 6 14 2 9 1 15 11 14 4 1 12 11 9 12 7 4 14 3 0 2 13 1 12 14 14 10 8 6 14 7 5 10 4 8 12

10 4 6 0 2 4 14 3 0]



SCHEDULING IN HC AND GRIDS USING A PARALLEL CHC 155

Instance: u i lolo.0, makespan: 2549.8 Solution: [4 12 7 14 7 6 9 1 13 14 9 14 3 8 3 12 4 6 10 15 2 5 7 8 2 4 4 0

1 3 6 0 6 10 9 12 15 6 4 1 5 1 13 3 13 5 13 11 6 0 6 11 1 4 8 9 12 5 6 4 6 5 4 8 7 2 10 9 5 11 10 14 11 7 0 14 9 5 2 9 14 6 12 4

13 13 1 9 11 15 12 5 5 15 2 2 15 1 15 5 15 4 10 0 3 2 8 15 1 10 0 11 11 9 12 13 2 7 0 14 15 8 10 15 4 3 0 7 14 1 8 6 7 3 13 0 1

6 4 2 15 3 9 13 1 7 10 5 5 5 3 3 4 1 14 7 11 6 12 2 2 9 12 10 12 11 6 8 8 10 9 4 0 2 9 6 2 7 10 0 0 2 12 2 2 15 12 3 6 4 3 7 15

12 11 0 15 4 9 4 10 7 13 15 0 11 11 8 8 1 14 4 1 10 6 4 13 11 15 13 4 0 12 1 13 6 8 7 1 15 0 9 9 8 4 0 11 3 15 10 8 10 14 10 10

15 15 1 7 8 5 6 13 4 3 3 14 15 4 13 11 11 3 7 1 8 10 3 2 6 15 7 15 9 0 14 1 2 8 3 0 10 5 13 6 15 13 14 9 3 7 12 3 5 0 10 7 8 7

14 12 11 1 7 8 2 0 12 11 14 14 4 4 12 7 9 8 3 15 3 10 1 10 12 11 12 6 8 2 10 10 2 12 7 7 5 12 9 14 11 13 5 8 1 1 5 11 15 4 3 11

15 6 14 13 4 6 10 7 4 7 14 9 0 12 6 3 12 3 15 2 2 15 5 8 9 14 12 1 10 9 11 13 1 6 5 6 2 3 8 7 5 4 13 8 8 15 7 14 12 2 4 6 5 11 9

1 15 15 7 13 6 10 7 10 2 4 7 4 13 9 13 2 13 1 9 2 11 13 5 10 13 3 1 3 13 0 13 14 0 11 12 5 6 13 7 1 7 10 15 13 3 2 9 0 11 4 9 0

14 0 1 3 14 1 7 2 1 0 4 0 9 12 5 14 10 5 3 1 12 5 0 14 7 4 2 0 2 6 9 9 9 1 10 11 2 3 4 11 0 8 11 1 3 3 11 12 10 6 14 13 7]

Instance: u s lohi.0, makespan: 123251.5 Solution: [4 7 0 0 11 7 9 2 0 2 1 14 3 9 9 0 9 13 4 3 2 4 9 3 12 1 5 2 0

0 11 11 0 2 7 15 0 7 0 8 13 2 10 0 3 2 0 4 1 8 13 1 1 9 4 3 1 3 9 4 3 0 4 5 5 9 13 7 14 0 2 1 0 3 13 13 1 2 11 0 5 5 11 2 11 3 0 4

13 0 7 13 7 12 3 2 5 1 5 9 15 12 9 4 7 3 3 13 13 0 15 0 3 3 5 0 2 15 9 5 0 5 2 0 0 15 11 15 5 0 11 1 9 11 0 9 0 15 13 0 15 1 13 0

2 11 4 11 5 13 2 15 2 1 1 5 5 13 0 0 1 4 9 9 15 2 15 11 5 5 9 13 13 9 9 3 0 7 15 15 13 2 2 13 7 8 11 11 0 7 0 0 1 0 13 0 2 2 13 0

4 1 1 13 0 0 14 1 0 15 0 0 8 0 0 0 0 5 6 5 4 1 2 9 8 7 2 0 5 5 9 10 0 15 7 15 9 4 15 0 4 11 3 3 4 6 9 9 2 10 1 15 3 7 2 0 0 4 13 0

1 4 3 7 9 2 8 9 11 4 5 13 0 1 11 2 8 13 13 7 1 11 2 3 5 1 0 11 0 14 15 1 6 15 7 7 8 0 5 0 0 0 3 0 11 1 1 10 11 3 0 9 0 0 9 15 11

1 9 0 9 11 7 4 0 11 6 7 4 3 9 5 2 0 11 13 0 5 1 13 15 0 0 0 0 13 0 11 0 0 11 15 0 13 11 11 4 0 0 7 5 9 15 14 0 15 10 6 13 7 6 6 1

1 7 7 13 0 13 13 1 5 5 0 0 11 9 14 13 4 0 13 3 13 5 13 4 1 7 8 9 5 6 1 15 9 7 9 15 5 11 9 13 0 15 3 13 0 5 0 13 5 13 0 7 2 9 7 11

5 7 14 5 15 0 3 3 0 1 11 14 11 15 13 15 12 9 4 2 13 0 0 0 15 13 0 2 1 4 0 9 13 9 7 3 7 13 9 0 11 14 9 13 3 0 2 3 7 9 13 2 15 2 1

13 13 9 0 1 9 7 5 15 1 6 4 0 15 1 4 1 5 15 15 0 0 0 9 11 0 2 0]

Instance: u s lolo.0, makespan: 3450.1 Solution: [6 5 6 8 10 15 1 15 6 0 1 13 11 9 2 4 5 4 9 9 9 5 7 5 6 3 1 0 13

2 15 4 11 14 15 3 9 7 10 15 7 9 7 3 11 7 9 12 2 3 0 4 15 15 12 12 1 3 7 10 7 2 4 11 4 11 15 3 9 0 12 4 0 4 3 13 2 3 6 4 1 7 13 2

5 0 15 1 5 13 9 7 1 15 14 1 6 3 13 1 13 4 9 9 7 0 0 12 14 4 11 15 10 5 3 9 13 15 5 9 1 11 7 3 4 7 1 13 11 7 12 1 15 0 11 2 8 15

13 11 13 1 5 15 3 9 7 6 0 0 3 9 1 15 6 0 0 15 3 5 15 13 11 7 9 0 0 1 5 9 0 0 1 13 2 8 15 5 3 1 3 5 2 2 5 15 13 15 1 3 0 9 2 13 4

4 11 15 6 11 4 3 9 15 5 2 9 6 11 1 13 11 3 2 3 7 11 15 9 1 15 14 1 4 5 2 13 11 6 9 5 7 2 7 1 5 9 7 3 11 13 9 8 7 6 9 0 3 15 3 9 4

4 15 7 14 2 11 1 0 12 9 11 13 13 11 2 4 2 12 2 8 1 3 11 7 14 0 6 10 1 9 15 0 11 15 5 2 7 7 11 1 3 10 1 0 5 12 7 2 3 15 1 2 5 7 0

8 8 7 7 13 2 2 6 0 5 13 3 4 12 0 11 1 0 11 9 9 13 3 13 0 13 2 15 5 11 0 8 9 14 2 10 11 5 5 10 5 9 6 7 2 11 15 2 1 12 0 13 2 8 2 7

13 11 3 7 1 0 5 3 10 1 11 2 7 0 0 2 9 7 6 15 14 6 0 11 5 7 11 13 5 13 11 12 5 13 13 6 13 3 7 5 9 13 5 8 15 6 1 9 11 0 15 8 3 5 7

1 6 8 15 6 4 4 13 9 1 8 4 7 14 1 1 1 0 0 11 9 8 2 0 1 0 0 4 9 0 0 0 3 13 2 13 6 15 13 8 4 7 1 11 11 14 14 1 2 10 0 9 14 0 7 7 13

11 5 4 10 15 2 5 7 15 0 11 3 10 13 0 1 0 7 7 0 2 11 11 8 0 7 0 4 5 3 0 10 13 3 11 5 15]


