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The scattering of a quasiparticle in a superconductor due to a magnetic impurity is 

calculated by a perturbation method. It is shown that the ratio of the dominant contribution 

of the successive order of terms in the perturbation series is given at T=O by the ratio 2J p 

log (2D/t:1) where p is the density of state at the Fermi surface divided by the number of 

atoms in the superconductor, J is the magnitude of the s-d exchange interaction, 2D is the 

band width, and t:1 is the energy gap. If this ratio is greater than one, the perturbation 

series does not converge. This is connected with the existence of a bound state attached to 

the impurity atom. Following Yosida's theory on the bound state due to the s-d interaction 

in a normal metal, we examine the possibility of a bound state in a superconductor. It is 

shown that, if the s-d interaction is antiferromagnetic and stronger than the pairing interaction, 

a bound state is formed around the impurity spin, and that, if it is weaker, an excited level 

appears in the energy gap irrespective of the sign of the interaction. The condition for the 

existence of the bound state is found to be the same as the 'condition for the divergence of 

the perturbation series mentioned above. The effect on the density of states of quasiparticles 

at finite concentration of magnetic impurities is briefly discussed. 

§ 1. Introduction 

Investigations of the s-d exchange interactions in dilute alloys have produced 

many new aspects and controversies in regards to new bound states attached 

to the magnetic impurities of these alloys, 1
),

2
),s) It is quite interesting to see 

how these phenomena appear in superconductors and are detected experi

mentally. 

A previous investigation of the Kondo effect in superconductors was given 

by Liu/) Griffin5
) and Maki.6

) Among them Maki used a technique of dispersion 

theory and showed the existence of a pair of irnpurity levels inside the gap for 

the antiferromagnetic exchange interaction. His approach is quite mathematical 

and hard to see what is inside the black box of dispersion theory. Here we 

start from perturbation theory and investigate the convergence of the perturba

tion series. From this we pursue the possibility of the bound state and compute 

the binding energy. 

In § 2 we calculate the scattering of a quasiparticle by the s-d exchange 

interactions due to magnetic impurities in a superconductor in the second Born 

approxim~tion and see how the famous logarithmic term of the Kondo effect is 

modified in superconductors near the superconducting transition temperature and 
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552 T. Soda, T. Matsuura and Y. Nagaoka 

near the absolute zero of temperature. In § 3, a general order term of the 

perturbation and their sum for the scattering matrix at the absolute zero are 

evaluated and the conv.ergence of the series is investigated. In §§ 4 and 5, from 

the divergence of the perturbation series, we pursue the possibility of bound 

states by following Yosida's theory on the bound state in a normal metal, and 

examine the eigenvalue equation for the binding energy for various cases. 

§ 2. Scattering of ·a quasiparticle due to the s-d 

exchange interaction in the second Born approximation 

We investigate how the scattering of a quasiparticle by the s-d exchange 

interaction due to the magnetic impurity in a superconductor behaves in the 

second Born approximation in comparison with the phenomenon of a resistance 

minimum of normal dilute alloys. 

For simplicity, we assume a single magnetic impurity atom placed in a 

superconductor. The s-d interaction Hamiltonian of the system is given by 

(2·1) 

where N is the number of atoms in the superconductor, J is the magnitude of 

an s-d exchange interaction, si and (ji are the i-components of the impurity spin 

operator and the Pauli matrix, respectively. ait and a1, 8 are the creation and 

annihilation operators of an electron with momentum k and spin s. In order to 

form a superconducting state, we make the Bogoliubov transformation, which 

is given by 

(2·2) 

(2·3) 

The electrons are now transformed into quasiparticles 1n the superconductor. 

Here uk and vk are given by 

uk
2 

= -}- (1 + -;;~-) , (2·4) 

vk 2 =-~-(1- ;: ) , (2·5) 

with Ek = k
2
/2m- 11 and Ek = ( Ek

2 + LI2Y12
• 11 is the chemical potential measured 

from the band bottom and the L1 is the energy gap. 

After some manipulation, we get the total Hamiltonian in the quasipaticle 

representation as follows : 
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s-d Exchange Interaction in a Superconductor 553 

(2·6) 

where 6/v' is the Pauli matrix as before, and pr' is defined by 

11 _vv' = " Ivv(j.vr/ 
fh'/, £.....; '/, ' 

(2·7) 
i7=0,1 

ro =Ill = 0, ]01 = - po = 1. (2·8) 

In this Hamiltonian, the terms of the scattering between quasiparticles are neg

lected, because they do not give rise to the anomalous behavior in comparison 

with the s-d exchange term.*> 

We now calculate the scattering matrix of a quasiparticle due to the s-d 

interaction for the spin-nonflip process between the states (k, 0) and (k', 0) 

with Ek=Ek', in the second Born approximation. The diagrams are shown in 

Fig. 1. 

and 

t' 
ka ka k'o ka 

Sz s;, 

qo + 
ql Sz qr - + 

Sz Sz Sz Sz 

0 ko ko ko ko 

r r ~·' ~., $_ $_ 
St .s;. 

+ q[ + qo + + qo 

s+ 5~ 
$_ 

· ko ko ko 5-

Fig. 1. Quasiparticle scattering diagram by the s-d interaction 

for non spin flip process in the second order Born approxi

mation. 

The contractions. of quasiparticle operators are given by, 

(a~v Ciqv) =Jq 

where 

fq = 1/ (exp (Eq/T) + 1) 

(the Boltzmann constant, k, is taken to be 1). 

If we use the following relationship: 

(2·9) 

(2·10) 

(2·11) 

*> The indices of the matrix, t and~, are replaced here by 0 and 1 respectively. In order to 

obtain Eq. (2·6) we used the BCS Hamiltonian and the s-d interaction Hamiltonian (2·1), and 

transformed them by the Bogoliubov transformation. 
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554 T. Soda, T. Nfatsuura and Y. Nagaoka 

(2·12) 

and 

(2 ·13) 

we obtain the following scattering matrix for the whole processes in Fig. 1 : 

( _ _{_ r ~q { (uk~q + ·vkvqY + _ (uk'Vq- vkuqY } S (S + 1) aJ;;,o ako 
N Ek-Eq Ek+Eq 

_ ( __ {_) 

2 

~q { (u~;;~q-=:t_:~k'Vq)
2 

_ -~U,!i;_Vq~l!_J;;!!:_q2~} (1- 2f q) Sz a);;,
0 

ako. (2 ·14) 
N Ek-Eq Ek+Eq 

From the symmetry properties we obtain the following general scattering matrix 

by including also the other types of scattering: 

(- _!___ r s (S + 1) ~q { (ukUq + VkvqY + (ukVq- VkUqy } (aJ;;,oako + aj,;,lakl) 

N ~-~ ~+~ 

_ ( __ .[__) 
2 
~q {JUkUq + VkVql~ _ (UJ;;_"!__q- V!_;;Zlqy } (1 - 21 q) 

N Ek-Eq Ek+Eq 

X "'~ " s (J "'" + .L..i .L..i i i ak'v' ak". (2·15) 
v:J" i 

The second term gives the logarithmic divergence in the case of normal metals. 

We put the coefficient of this term as follows : 

(2 ·16) 

and evaluate it for the three cases, at T=0°K and near 0°K and Tc, assummg 

the density of states of conduction electrons to be Np = const., and the band 

width to be 2D. 

1) At T=O: 

Ik=- 2p {log-~D-+ Ei;;+ LJ2 log E~;;-1 Ekl } . 
L1 Ekl E~;;j L1 

(2·17) 

2) At T< Tc with E~;;-Ll < T: 

~ f 2D ( 2rcL1 \ 
1
;

2 
-J r } 

l~;;=-2pllog-T-2(1+ ---y-) e I) (2·18) 

(2 ·19) 

where log r =C=0.577. The quantity Ik is exact only for the T=O case and 

is evaluated as a limiting value when E~;; goes to L1 for the other cases. We 

can see that we have log T dependence as in normal metals for T~ Tc. At 
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s-d Exchange Interaction in a SujJerconductor 555 

T = 0 the biggest contribution to Ik comes from the term - 2p log (2D I L1). If we 

compare this dominant term with the first order scattering matrix element in 

J, the ratio becomes 

Sa 

Fig. 2. Diagram of the quasi

particle scattering for 

the general order of the 

perturbation. 

r 
pV 

Sj J 

qv 

S; J 
pv 

= 

pv 

(3a) 

+ 

( 2D 2J - 2J p log --- ~- = - --e----

Ll Vpair 

(2-20) 

Here Vpair is the magnitude of the pmrmg interac

tion. There is a possibility that this ratio becomes 

the order of one. The famous Kondo term in normal 

metals now corresponds to log (2D ILl) in our case of 

T=O. 

§ 3. Behavior of perturbation series for 

the scattering matrix 

We investigate the behavior of the perturba

tion series at T = 0, keeping only the dominant con

tribution as we did in § 2. 

pv Sj J + 

(3b) (4a) 

p~pl/ 
S; J 

qv 
Sj J 

(4b} 

Fig. 3. Quasiparticle scattering containing only 

J 2 interaction splitted from the first part 

of the diagram in Fig. 2. 

Fig. 4. Quasiparticle pair creation contammg 

only J 2 interaction splitted from the first 

part of the diagram in Fig. 2. 

Now we consider a diagram of a general order in a perturbation as shown 

in Fig. 2. We analyze this diagram by separating the first part which contains 

interactions in J 2
• It is shown in Figs. 3 and 4. The contributions from Fig. 3 

to the scattering matrix are computed as follows : 

for the process (3a) 

(- 'J;)' ~f.j (ztq.z<•~;'=l~f'f~u~~v1'v,2 S;S, (<l/5,)"'' a;,.,, ap, (3 -1) 

for the process (3b) 

( - __ N.f_ __ ) 2 L:~_(upvJ~ -Evqul!_{)E~_q}Vp'E-:'!!!iuP') SiSJ (!1/ IJ.i)"'v a;'v' apv, 
q t, J k - q' - -{ q 

(3 ·2) 

where {Eq'} is the sum of the energy of the quasi particles in the intermediate 
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556 T. Soda, T. Matsuura and Y. N agaoka 

state except for Eq. *) Similarly we have the contributions from Fig. 4 : 

for the process (4a) 

(

- ~-)
2 

~~- (u]Juq+VpVq) (up'Vq-VtJ'Uq) s s err II +)vv' + rv+ 
..::::...,.L.J i j UitJ-j ap'v' <-Lpv' 

N q i,J Ek- {Eq'} -Eq 
(3·3) 

for the process (4b) 

_ (-L) 2 

~~. (upuq+VpVq) (up•Vq-Vp'uq)_ S S (t-r +)vv' + + (3·4) 
L.J..::::..... j i Ui/lj ap'v' apv, 

N q t,J Ek- {Eq,} -Eq 

The summation over q in Eqs. (3 · 3) and (3 · 4) is carried out in a way similar 

to the calculation of Eqs. (4·9) and (4·10). Near the edge of the excitation 

spectrum we have 

_l_L: Uq2 =_!_I: Vq2 

N q Ek- {Eq-} -Eq N q Ek- {Eq,} -Eq 

= -2p[ log 
2 ~ + 0(1) J , (3·5) 

_l_ I:; UqVq = p0 (1). 
N q Ek- {Eq,} -Eq 

(3·6) 

(See Eq. ( 4 ·16) .) If we take the most divergent term, log (2D / .J), we have 

the following results for the contributions from Fig. 3 : 

( J) 2D ---- (2Jp)log--(u u -+v v ,) N .J PP pp 

=- ( --~) ( -2Jp log 
2 ~) (upup' +vpVp') ~SkrJkv'va;'v'apv, 

and from Fig. 4 

(- ~) (2Jp log 
2 ~-) (upvp,-vpup') 

X I: [SjSi (rJj/li +y'v + sisj (rJifl.J +y'v] a;'v' a;v 
i,j 

(3·7) 

(3·8) 

*) The sum of the quasiparticle energies, {Eq'}, cannot be defined uniquely. As will be shown 

in the text, however, this does not affect the most divergent contributions. In the following discus

sion in the text, the non-commutativity of spin operators is neglected except for those in the suc

cessive pair of vertices. In the diagram of Fig. 2, for example, we treat S 6 and S 7 correctly, but 

S 5 and S7 as if they were commutative. This approximation is also allowed if we are interested 

only in the most divergent contributions, as in the case of a normal metal.7) 
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s-d Exchange Interaction in a Superconductor 557 

Here we used properties such as 

J \i=\i+\t 
J 

+ 
J 

Fig. 5. Quasiparticle scattering diagram of the 

n-th order in J. 

Fig. 6. Quasiparticle pair creation diagram of 

the n-th order in J. 

In general orders, the diagram is decomposed as in Figs. 5 and 6. 

only the commutator of (uS) in the successive vertices, the most 

contribution for the n-th order matrix in J becornes the following: 

for Fig. 5 

and for Fig. 6 

If we take 

divergent 

(3·9) 

(3 ·10) 

Summing up the matrices over n from n = 1 to infinity, we obtain the pertur

bation series for the scattering matrix for a quasiparticle scattering as 

T+-2J p ~(f(cil5li)- (up Up'+ vlJVJJ') liS,/5 ,/'" a;'v' fXpv· (3 ·11) 

It is to be noted here that the denominator of Eq. (3 ·11) is identical with the 

expression appearing in the cross section obtained by Abrikosov, if L1 is replaced 

by T. The scattering matrix diverges if 

2( -Jp)logJR_~ --2J- ?:1, 
J V pair 

(3·12) 

in a similar way as we discussed in § 2. We shall see in § 4 how this condition 

1s connected with the existence of a bound state. 

§ 4. Bound states in the lowest order approximation 

In this and next sections we examine the possibility of a bound state as

suming S = t for simplicity. Following Yosida,2
> we first take the wave function 

as 

(4·1) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

8
/3

/5
5
1
/1

9
3
3
3
4
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



558 T. Soda, T. Matsuura and Y. Nagaoka 

where ([) 0 is the wave function of the ground state of a pure superconductor, 

and a and {3 are respectively the wave functions of the up- and down- spin 

states of the impurity. Inserting the wave function 1n 

(4·2) 

we get the following equations which determine T"' and the energy eigenvalue: 

for 

r s _ 1 cr x r (3 ) k---:]2 kl- 1>: 0 , 

and 

for 

From these equations, we have the following secular equations : 

[1+3JU(E)] [1+3JV(E)] -9J 2W(EY=O 

for the singlet state and 

[1-JU(E)] [1-JV(E)] -J 2W(EY=O 

for the triplet state, where 

and 

U(E) =- ~---~-l!!l_, 
2N"' E"'-E 

1 v 2 

V(E) = -~ _ _}£_ __ _ 

2N "'E"'-E 

(4·3) 

(4·4) 

(4·5) 

(4· 6) 

(4·7) 

(4·8) 

(4·9) 

(4 ·10) 

( 4 ·11) 

If the band is assumed to be symmetrical around the Fermi level, it is easily 

shown that 

U(E) =V(E). (4·12) 

By using this relationship, Eqs. (4·7) and (4·8) reduce respectively to 
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s-d Exchange Interaction in a Superconductor 559 

1 + 3JU ± (E) = 0 (singlet), 

1-JU ±(E) = 0 (triplet), 

where the function U ±(E) is defined as 

(4 ·13) 

(4·14) 

U±(E) =U(.E) ± W(E). (4 ·15) 

To calculate the function U ± (E), we assume the density of states of conduction 

electron~ to be Np =canst. for - D < E"" < D, and to vanish otherwise, as before. 

Then we have 

r 
_e_ [log-2I!_~ - _ __!f~4---log I -- (.:P /2D) :+ E~ + [ E 2- J2] 1121 J 
2 J [E2 _ J2] 112 _ J 

for E<-J, 

U ±(E) = l ~ [log 
2 ~- +-[i.E i;1j

1
;

2
- (-1- +arcsin ~ ~ ) J 

10.0 

5.0 

.£ 
p Ll;.(£'}-Iog2Q 

£1 

-5.0 

for IEI<J. (4·16) 

The function u± (E) IS shown in 

Fig. 7. 

Now we look for the solu

tions of Eqs. (4·13) and (4·14) 

for E < J. Because U ±(E)> 0 for 

lEI<. D, the existence of the solu

tion for a singlet state requires J < 0, 

and the existence for a triplet state 

requires J> 0. 

We first examine the case 

IJiplog-?f >1 or IJI>Vpair . 

In this case, it is seen from Fig. 7 

that the solution satisfies E < 0 and 

IEI>J. For lEI >J, Eq. (4·16) 

becomes 

Fig. 7. The function U±(E) is plotted as a func

tion of E: 

u± (E) ~-i-~{log ~~~ ±-~-log21i!J. 
(4 ·17) 

Inserting Eq. ( 4 ·17) into Eqs. ( 4 ·13) and ( 4 ·14), we get the solutions 

for J<O (singlet)~ (4·18) 

and 
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560 T. Soda, T. Matsuura and Y. Nagaoka 

E= -Dexp(-
2

--) ± ~4- for J>O (triplet). 
Jp Jp 

(4 ·19) 

They reduce to the same solutions as obtained by Yosida in the limit IJI ~ Vpair 

as expected. It should be noticed here that the both solutions have two-fold 

degeneracy in this limit besides the spin degeneracy for the triplet state. It 

corresponds to the degeneracy of the electron-trapped and hole-trapped bound 

states in a normal metal. The degeneracy is removed in a superco?ductor, 

because there is a non-vanishing matrix element between the electron-trapped 

and the hole-trapped states. There exist, however, some arguments on this 

degeneracy in a normal metal, and it is not clear whether the exact ground 

state is really degenerate. 2
),

3
) If it is a fictitious one which appeared due to the 

approximation, one of the two levels obtained above, maybe the upper one, will 

also be fictitious and disappear if the higher order corrections are considered. 

For IJI<Vpnir the situation is quite different. In this case, Eqs. (4·13) 

and ( 4 ·14) with minus subscript have no solution, while those with plus sub

script have solutions such that 0 < J- E < J. For 0 < J- E < J, we have from 

Eq. (4·16), 

u+ (E) ~-~;~[X~E r/2. (4 ·20) 

Inserting Eq. (4·20) into Eqs. (4·13) and (4·14), we obtain the solutions 

E=L1[ 1-- ~-n 2 (JpY] 

E=L1[1- ~-n 2 (Jpy] 

for J<O (singlet), 

for J>O (triplet), 

(4 ·21) 

(4·22) 

which means that there exist discrete excited levels in the energy gap. 

When the magnitude of J increases, the solutions become negative for J 

larger than some critical values Jc, which are determined by putting E = 0 in 

Eqs. (4·13) and (4·14). From 

for J<O (singlet) (4 ·23) 

and 

for J>O (triplet), (4·24) 

we get 

for J<O (singlet), (4·25) 

for J>O (triplet). (4·26) 
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s-d Exchange Interaction in a Superconductor 561 

Though these values coincide with Eq. (3 ·12) in the order of magnitude, numeri

cal factors are different between them. This point will be discussed in the next 

section. 

§ 5. Bound states with higher order effects 

It was shown by Y osida2
) that higher order effects are essentially important 

to examine the possibility of the bound state in a normal metal. In particular, 

the bound state obtained in the lowest approximation for J> 0 becomes unstable, 

if higher order effects are taken into account successively. In order to study 

the effects in a superconductor, we take the wave function as 

(5·1) 

where ?JI1 is given by Eq. ( 4 ·1). Then, following the same procedure as that 

of Y osida, we get the following equations : 

where 

+ 3 ( _{_) 2 ~ __ (!t~~'l!_l,~'--=-'l!lf:'_'_'l!_{,~)___( u!,~~!£~_Zt_k v '!:'_~ )_ r ;,, == 0' 
2N · k',k'' E" + E"' + E",- E 

(Ek-E+ LiE k) r~- (-!-) ~ (u~c u,,./ + v,, V!f') r~./ 
2N "' 

LlE~c= - 3 (2~ r "~"1;:~v;~,+ii;~~=~ 

(5·2) 

(5 ·3) 

(5·4) 

is the shift of the quasiparticle energy. It is easily shown that this term is not 

anomalous as a function of E. Omitting LlEk,*) we get the secular equations 

and 

1-JU±(E) -5J3K±(E) =0 (triplet) 

instead of Eqs. ( 4 ·13) and ( 4·14), where 

(5·5) 

(5·6) 

*) This means that we redefine E as the bound state energy: If we put E= E 1 + .JE, where 

.JE is the ground state energy calculated by the usual perturbation, .JE almost cancels .JE,~. Denoting 

E' by E again, we get Eqs. (5·5) and (5·6). 
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562 T. Soda, T. Matsuura and Y. N agaoka 

X (1 ± .J ) (1 ± ____ t! __ ) U- (E- [ E2 + J 2] 1/
2- [ E12 + J 2] 1/

2) dE dE'. 
[ E2 + J2] 112 ( E'2 + J2] 112 + 

. (5·7) 

For lEI ')>.J, Eqs. (5·5) and (5·6) coincide with the equations obtained by Yosida 

(Eqs. (31) and (34) of the first paper in reference 2). Therefore the higher 

order effects on the solutions ( 4 ·18) and ( 4 ·19) are exactly the same as those 

in a normal metal ; i.e. the secular equation has no solution for a triplet state, 

while the numerical factor of the exponent of the solution (4 ·18) for a singlet 

state changes from 2/3 to 1· 22/2. 

For O<.J-E~.J, we have 

K+ (E)~- n
2 (--i-) 

3 

• logJ~- · (.J 2_~E) . (5·8) 

The solutions ( 4 · 21) and ( 4 · 22) for I Jl ~ Vpair are modified respectively to 

for J<O (singlet), (5·9) 

and 

(5 ·10) 

The correction terms are small compared with the lowest order terms by the 

factor 

2D IJI !Jiplog --- -- =---~~1 . 
.J Ypair 

Thus it is seen that the discrete impurity levels in the energy gap obtained in 

the lowest approximation are essentially unchanged by the higher order effects 

both for the singlet and for the triplet states. The situation will not change 

even if we take into account the fourth and higher order terms of J. 

The condition for the existence of the bound state, or the solution E < 0, 

is modified by the higher order effects in the following way. As 

(5 ·11) 

the equations to determine Jc become 

(singlet) (5·12) 

and 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

8
/3

/5
5
1
/1

9
3
3
3
4
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



s-d Exchange Interaction in a Superconductor 563 

(5 ·13) 

It should be noticed here that Eqs. (5 ·12) and (5 ·13) are of the same form 

as Eqs. (31) and (34) of the first paper in reference 2 for the energy eigen

value. Then it is easily seen that Eq. (5 ·13) has no solution, and that the 

numerical factor of Eq. (4·23) changes from 2/3 to 1·22/2. In § 3, we found 

that the critical value of J for the convergence of perturbation .is just given 

by Je = 2- 1 Vpair· The situation l.s parallel between the numerical factor of the 

exponent of the bound state energy in a normal metal, and that of the critical 

value Je in a superconductor. It is expected in both cases that the factor tends 

to 1/2 from 2/3 in the lowest approximation as we proceed to higher orders. 

§ 6. Discussion 

The conclusions obtained in the preceding sections are summarized as fol

lows. When the exchange interaction is antiferromagnetic and stronger than 

the pairing interaction in a superconductor, the perturbation series for the scat

tering matrix of quasiparticles diverges. In this case the Cooper pairs in the 

vicinity of the impurity are destroyed by the strong exchange interaction, and 

a bound state is formed around the itnpurity. If the exchange interaction is 

weaker, a discrete impurity level is found in the energy gap both for the fer

romagnetic and antiferromagnetic exchange interaction. 

Although there still remain some mnbiguities about the bound state solution 

even for a normal metal, the solution of the discrete level in the energy gap 

may be said to be well established in so far as the concentration of impurities 

is sufficiently low, because it is little affected by higher order corrections. 

Therefore, it is of some interest to examine whether it is experimentally de

tectable at finit~ concentrations. For this purpose, let us consider how the 

levels are modified as the concentration increases. 

The wave function of a singlet state, for example, is given by 

(6·1) 

where 

(6·2) 

and r is the normalization constant. Its spatial behavior can be seen by taking 

the Fourier transform of the coefficient rks, i.e. 

T(R) = ~k rk exp(ik·R). (6·3) 

Inserting Eqs. (6 · 2) and ( 4 · 21) in Eq. (6 · 3), we get for sufficiently large R 
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where 

T. Soda, T. Matsuura and Y. Nagaoka 

-R/7J 
e ' 

(6·4) 

(6·5) 

is the approximate dimension of the impurity level and ~ = hvF/ L1 is the coherence 

length of the superconductor. Although Eq. (6 · 7) is correct only for large R, 

it gives the correct order of magnitude for small R also. If the mean distance 

between impurities is larger than 1), impurities may be considered as independent. 

Therefore, denoting the concentration of impurities by c, we get the condition 

for impurity levels not to overlap with one another: 

or 

c<C; r CIJ!p)S, (6·6) 

where a~N- 1 1 3 is the atomic distance of the crystal. 

A different condition is found by the following consideration. It can be 

seen from Eq. (6·2) that quasiparticle states with Ek-E";?i1-E do not con

tribute to the formation of the impurity level. Therefore, the number of effective 

states is approximately given by 

In order that each impurity may have its own impurity level, it is necessary 

that the number of impurities eN is smaller than the above number of effective 

states, i.e. 

cN<NpLI· (IJip) 

or 

c < (-;- ) I Jl P. (6·7) 

We can find the same condition by a different consideration. As the con

centration of impurities increases, the overlapping of the wave functions at dif

ferent impurity sites becomes important, and at sufficiently large concentrations 

we have a kind of an impurity band instead of discrete impurity levels. If 

there are two impurities at Ri and Rh the transfer matrix element between the 

two states is calculated from Eq. (6 · 4) as 
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s-d Exchange Interaction in a Superconductor 565 

JniRJ~ ~ T (R- Ri) JIJ (R -- R1) T (R- R1) d 3R 

~ J sin(kp!Ri-R11) (-IR -R II ) --- --- exp i 1 r; . 
kpr; kFIRi -R1 ! 

The width of the impurity band is estin'lated as the broadening of one impurity 

level due to its finite lifetime. The transition probability from one impurity 

level, say at the origin, to another, say at R, is given by 

__ l_ __ !JoRI 2 ~---! ___ _!__
2

- c~!l1:id·~-) 
2 

exp (- 2R/r;) 
hW hW (kpr;Y kFR ' 

where W is the width of the impurity level. 1/V itself is calculated from this 

as 

CXl 

W~-Eij __ ~ !JoRI 2 4nR 2 dR~__E_ J
2 

w 0 w kpr; 

Therefore, we obtain 

( 
ca ) lf2 

w~IJI --~
1

-- (6·8) 

The condition that the width W is smaller than the energy separation between 

impurity levels and the continuum, J(jJJpY, is again given by Eq. (6·7). 

It is well known that the energy gap of superconductor is reduced by 

paramagnetic impurities.8
> The reduction of the gap is given approximately by 

cjJJ 2p. If this exceeds L1 (jJjp)\ impurity levels are completely masked by the 

continuum. The condition for it is 

(6·9) 

The density of states for quasiparticle excitations is shown schematically in 

Fig. 8 for various concentrations of im.purities. For (a/~)> c > (a/~Y (jJJp)3
, 

we get an impurity band in the energy gap or a tail of the continuum whose 

length is given by Eq. (6·8). 

( 
0 )

3 
3 (a) C< ( (Jp) (b) (fl(Jp)\c<(f)(Jp) (c) (f)Jp<c<f (d) f<c 

Fig. 8. The density of states for quasiparticle excitations is shown schematically for 

various concentrations of impurities. 

For ordinary superconductors, aj~· is of order l0-4
• The condition (6·7) 

1s extremely severe, and the problem of discrete impurity levels seems to be 
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566 T. Soda, T. Matsuura and Y. Nagaoka 

rather academic. However, the tail of the density of states mentioned above 

may be detectable experimetally. 

For a non-magnetic impurity in a normal metal, Yosida showed that, if a 

treatment similar to the case of a magnetic impurity is applied to this case, a 

bound state solution is obtained in the lowest approximation, but that it becomes 

unstable by higher order effects. This is consistent with the fact that a bound 

state is not formed by a non-magnetic impurity if the impurity potential is weak 

enough. We have to examine how it is for the case of a non-magnetic impurity 

in a superconductor when the same treatment as in §§ 4 and 5 is applied to 

this case. 

The calculation 1s straightforward. Suppose the interaction Hamiltonian is 

given by 

(6·10) 

where the impurity potential Vis assumed to be independent of the wave vectors. 

Then, if the wave function is taken as 

with v = 0, 1 and D = 1, 0, the secular equation is obtained as 

{2VU +(E) - (2V)3K_' (E)} {2VU _(E) - (2V)3K+' (E)} = 1, 

where U±(E) is given by Eq. (4·16) and K~(E) by 

DD 

K '(E)- ( p )2 (( _1 ~-:-:----
± - -2 iJ ([.12+ E2]lf2_E) ([J2+ E'2]1/2_E) 

(6 ·11) 

(6·12) 

X (1 ± L1 ) (1 ± L1 ) U + (E- [.12 + E2] 1/2- [.12 + E12] 1/2) dE dE'. 
[J2 + E2] lf2) [J2 + E'2J lf2 -

For the case lVI > Vpair, Eq. (6·12) should be examined for IE I> Ll. In this 

limit, Eq. (6 ·12) tends to the corresponding equation for a normal metal. There

fore the conclusion is evidently the same as obtained by Y osida for a normal 

metal. For the case I VI< Vpair, Eq. (6 ·12) should be examined for 0 < Ll- E < Ll. 

If the second term of Eq. (6 ·11) is neglected, the terms (2V) 3
K~ (E) disappear 

from Eq. (6·12). Since U+ (E) U_ (E) tends to infinity as E tends to 4 from 

the side E < Ll, the equation thus obtained has a solution such that 0 < Ll- E < Ll, 

which means a discrete impurity level in the energy gap. If the terms (2VYK~ 

(E) are included, however, the left-hand side of Eq. (6 ·12) is negative as U+ (E) 

and K~ (E) tend to infinity for E~ L1 (E < .1), and it has no solution at all. 

Thus we can conclude that a discrete impurity level is not formed in the energy 

gap by a non-magnetic impurity. This is consistent with the well-known fact 

that a superconducting state is little affected by non-magnetic impurities. 
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