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Abstract

By analyzing brane configurations in detail, and extracting general
lessons, we develop methods for analyzing S-duality of supersymmetric
boundary conditions in N = 4 super Yang–Mills theory. In the process,
we find that S-duality of boundary conditions is closely related to mirror
symmetry of three-dimensional gauge theories, and we analyze the IR
behavior of large classes of quiver gauge theories.
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1 Introduction

In a recent paper [1], we have described half-BPS boundary conditions in
N = 4 super Yang–Mills theory with gauge group G. The general classifi-
cation of boundary conditions is rather elaborate and depends on a triple
(ρ, H,B). The gauge group G is explicitly broken near the boundary to a
subgroup H. Part of the symmetry breaking involves a choice of homomor-
phism ρ : su(2) → g from the Lie algebra of SU(2) to that of G. Finally,
B is a boundary field theory with H symmetry. Because of the explicit
symmetry breaking, the gauge fields on the boundary are valued in h, the
Lie algebra of H, and can be naturally coupled to B.

In this brief summary, we have omitted the role of the four-dimensional
theta-angle, which adds an extra layer of structure as explained in [1,2]. In
the present paper, we take the theta-angle to vanish until Section 8.

Our goal in the present paper is to understand the action of electric–
magnetic duality on this class of boundary conditions. To gain experience,
we begin with concrete examples. In Section 2, we review boundary condi-
tions in U(n) gauge theory that can be constructed using D3-branes, D5-
branes, and NS5-branes of Type IIB superstring theory. Because our topic
turns out to be closely related to IR dynamics in three dimensions, we also
re-examine the behavior of purely three-dimensional theories constructed
from those ingredients. We describe an important and mirror symmetric
class of three-dimensional theories, and we use “monopole operators” to
learn something about their IR dynamics. Monopole operators were dis-
cussed qualitatively in relation to supersymmetric gauge dynamics in [3, 4]
and the formalism we use was developed in [5–7]. In Section 3, we ana-
lyze in detail S-duality for boundary conditions constructed from branes.
This involves many interesting details but also some general lessons. One
important lesson is that S-duality of four-dimensional boundary conditions
is closely related to mirror symmetry of three-dimensional gauge theories [8].
A second important lesson is that a certain class of superconformal field
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theories plays an important role. The most basic of these is a certain
self-mirror theory that we call T (SU(n)) that appears when one applies
S-duality to Dirichlet boundary conditions. (For n = 2, T (SU(n)) coincides
with one of the main examples in [8].)

In Section 4, we attempt to extract the important lessons from our inves-
tigation of branes and formulate some general statements that are valid for
any compact gauge group G. The key step is to generalize T (SU(n)) and
its close cousins, which we do using Janus domain walls [9–13]. We describe
the key properties of the theories T ρ

ρ∨(G) that we construct this way, and

show in general how they can be used to construct the S-dual of a given
boundary condition.

In Section 5, we return to three dimensions and analyze some important
properties of quivers with orthogonal and symplectic gauge groups. We use
the results in Section 6 to analyze S-duality of boundary conditions in U(n)
gauge theory constructed with orientifold and orbifold fiveplanes. These
give tractable and interesting illustrations of some of the general ideas of
this paper. In Section 7, by using brane with O3 planes, we extend many
of our results to the case that the gauge group is SO(n) or Sp(n). Among
other things, we describe quiver constructions of T (SO(n)) and T (Sp(n)).

Up to this point, our analysis concerns the basic electric–magnetic duality
operation S : τ → −1/τ , rather than the complete duality group SL(2, Z).
Indeed, for most half-BPS boundary conditions, only the action of S can be
defined. In Section 8, we incorporate the gauge theory θ-angle, and describe
the action of SL(2, Z) on those half-BPS boundary conditions that admit
such an action. As an application, we give a quiver-like description of the
low-energy effective field theory that describes the interaction of D3-branes
with a (p, q)-fivebrane. This description uses Chern–Simons couplings with
N = 4 supersymmetry. Finding such a description has been a longstanding
problem.

We will often refer to the three-dimensional theory B that is part of the
definition of a supersymmetric boundary condition as a boundary super-
conformal field theory or SCFT since the conformally invariant case tends
to be particularly interesting. Moreover, once one understands S-duality
of conformally invariant boundary conditions, one can understand the gen-
eral case by following the duality under relevant perturbation. Focusing on
the IR limit has another important advantage. The brane configurations
that we will use for our explicit examples are most tractable if one is free
to make standard rearrangements of the fivebranes. The justification for
these rearrangements is that they involve deformations that are irrelevant
in the IR.



S-DUALITY OF BOUNDARY CONDITIONS 727

2 Brane constructions for unitary groups

Rather than attempt an abstract explanation from the beginning, we will
start this paper by considering the case G = U(n), where everything can be
described concretely via manipulations of branes. In the present section,
we describe the necessary facts about brane constructions of boundary con-
ditions, and we describe some facts about dynamics of three-dimensional
supersymmetric gauge theories that will also be important. In Section 3,
we use these facts together with standard brane manipulations to gain a
fairly detailed understanding of the S-duality of boundary conditions for
G = U(n).

2.1 Brane construction of boundary conditions

Supersymmetric boundary conditions of any kind inevitably break the R-
symmetry group of N = 4 super Yang–Mills theory to a subgroup. For half-
BPS boundary conditions, we can be more specific. The full R-symmetry
group, which is SO(6)R (or its cover SU(4)R), is broken to a subgroup1

SO(3) × SO(3) (or its cover SO(4)). Under this subgroup, the six adjoint-
valued scalar fields of N = 4 super Yang–Mills theory split up into two

groups of three scalar fields, say �X and �Y , which are rotated respectively,
by the two factors of SO(3) × SO(3). We call these factors SO(3)X and
SO(3)Y .

Since the idea of a boundary condition determined by a triple (ρ, H, B) (as
summarized in the Introduction) is daunting at first sight, we will begin by
using a concrete and familiar brane construction to build half-BPS bound-
ary conditions and study their S-duality. The construction [14, 15] involves
branes in 10-dimensional Minkowski spacetime with coordinates x0, x1,
. . . , x9. We make use of three types of brane: D3-branes with worldvolume
spanned by x0, x1, x2, x3, D5-branes with worldvolume spanned by x0, x1,
x2 together with x4, x5, x6, and NS5-branes with worldvolume spanned by
x0, x1, x2 together with x7, x8, x9. Thus all branes share the directions
x0, x1, x2. The D3-branes are semi-infinite in the x3 direction, being sup-
ported on the region x3 ≥ 0, with a boundary at x3 = 0. We also write y for
x3. The fivebranes are located at specified values of y (such as y = 0) and
are used to provide boundary conditions (or couplings to matter systems)
for the D3-branes.

1For example, in the conformally invariant case, a half-BPS boundary condition breaks
the conformal group PSU(4|4) to OSp(4|4), whose R-symmetry subgroup is SO(4) ∼=
SO(3) × SO(3).
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In the gauge theory on the D3-branes, fluctuations in x4, x5, x6 correspond

to the scalar fields �X of N = 4 super Yang–Mills theory and fluctuations in

x7, x8, x9 correspond to the scalar fields �Y . Brane configurations of the type
just summarized are useful in studying three-dimensional mirror symmetry
and the methods used in that context will be very helpful in what follows.

Let us recall from [1, Section 2.5.1], the boundary conditions obtained
from such a brane configuration. In the example sketched in figure 1, there
are eight D3-branes, so the four-dimensional gauge group is U(8). Read-
ing the figure from right to left, the first three D3-branes terminate on a

D5-brane. At this point, �X develops a rank 3 pole, reducing the gauge sym-
metry from U(8) to U(5). This pole is governed by Nahm’s equations and
represents the way the D3-branes flare out into a fuzzy funnel that joins
the D5-brane [16, 17]. A single D3-brane ends on each of the next two D5-
branes, reducing the rank of the gauge group without a further pole. To the
left of the D5-branes, the D3-brane gauge group is reduced to U(3). The
symbol

⊕
then represents a further system of NS5-branes and D5-branes

that describes a three-dimensional matter system coupled to the U(3) gauge
fields.

There are many possible choices of this further system. Some illustra-
tive examples are shown in figure 2. In figure 2(a), the additional system
consists of a single NS5-brane, and the U(3) gauge fields simply obey Neu-
mann boundary conditions. In figure 2(b), a D5-brane has been added. As

Figure 1: A brane configuration that determines a half-BPS boundary con-
dition in N = 4 super Yang–Mills theory. Here and later, horizontal solid
lines designate D3-branes spanning directions 0123; vertical dotted lines
designate D5-branes spanning directions 012456. In this example, there are
eight D3-branes and the gauge group is U(8). The symbol

⊕
denotes a

further fivebrane system, of which some possible examples are sketched in
figure 2.
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Figure 2: Some brane configurations, any one of which can correspond to
the symbol

⊕
on the left of figure 1. Here and later, the symbol

⊗
rep-

resents an NS5-brane spanning directions 012789. In (a), three D3-branes
end on a single NS5-brane. This leads to Neumann boundary conditions in
U(3) gauge theory. In (b), the D3-branes intersect a D5-brane before ter-
minating on a single NS5-brane. This leads (in the limit that all fivebrane
separations in the y = x3 direction are taken to zero) to Neumann boundary
conditions with a fundamental hypermultiplet supported on the boundary.
The hypermultiplet comes from the brane intersection. In (c), (d), and (e),
there is more than one NS5-brane. This leads to Neumann boundary con-
ditions modified by coupling to a non-trivial boundary SCFT, as described
in the text.

a result, the U(3) gauge fields couple to a hypermultiplet in the fundamen-
tal representation (or more briefly a fundamental hypermultiplet) that is
supported in codimension 1.

Figure 2(c) requires a more detailed explanation. Two NS5-branes are
separated by a distance L in the x3 direction. The worldvolume theory for
the D3-brane in the slab between the two NS5-branes is a U(1) gauge theory
with Neumann boundary conditions on the two ends. If the four-dimensional
gauge coupling g4d is sufficiently small, the Kaluza–Klein scale on the slab,
which is 1/L, is much larger than the scale set by the three-dimensional
gauge coupling, which is g2

3d = g2
4d/L. The result is that at sufficiently low

energy the worldvolume theory reduces to a three-dimensional gauge theory.
The 3−3 strings stretched across the NS5-branes give a single bifundamental
hypermultiplet coupled to both this three-dimensional U(1) gauge theory
and to the bulk gauge theory on the half line. The U(3) gauge symmetry of
the semi-infinite D3-branes is a global symmetry from the point of view of the
three-dimensional gauge theory. The three-dimensional theory is actually a
theory of a U(1) vector multiplet coupled to three hypermultiplets of charge
1 and in the fundamental representation of a U(3) global symmetry. In
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Figure 3: A quiver such as this one gives a convenient way to summarize
the construction of a gauge theory with suitable gauge group and matter
representation. A circle containing an integer n represents a U(n) factor
in the gauge group. The gauge group is the product of such factors, one
for each circle. A line joining two circles labeled by n and m represents a
bifundamental hypermultiplet, that is a collection of hypermultiplets trans-
forming under U(n) × U(m) as (n,m)

⊕
(n,m). Finally, if a circle labeled

by n is linked to square labeled p, this means that there are p fundamental
hypermultiplets of U(n). For every square labeled by p, there is a U(p)
global symmetry acting on the corresponding hypermultiplets. The specific
quiver drawn here represents the boundary SCFT that arises from the brane
configuration of figure 2(e).

the infrared, the three-dimensional gauge coupling becomes large. If we
simply turn off the four-dimensional gauge coupling on the semi-infinite D3-
branes of figure 2(c), the IR flow gives a purely three-dimensional SCFT.
Turning back on the four-dimensional gauge coupling, we get a combined
system consisting of four-dimensional gauge fields on a half-space coupled
to a boundary SCFT. The boundary theory is coupled to the bulk gauge
fields by gauging its U(3) global symmetry.

Figure 2(d) is a small modification of (c): each extra D5-brane inserted
between the two NS5-branes, with no D3-branes ending on it, adds a fun-
damental hypermultiplet coupled to the three-dimensional gauge theory. So
here (with one extra D5-brane in this example) we get a boundary SCFT
that has U(4) global symmetry, of which a U(3) subgroup is coupled to
bulk gauge fields. Finally, in general, if the brane system

⊕
consists of

several displaced NS5-branes with a variable number of D3-brane segments
stretched between them, and extra D5-branes with no D3-branes ending on
them, as in figure 2(e), then at low energies, the worldvolume theory con-
sists of a certain linear quiver of three-dimensional U(ni) gauge theories with
fundamental matter possibly coupled to each of the nodes. The quiver for
this example is sketched in figure 3. If the brane multiplicities obey certain
inequalities, which will be explained, then the quiver system flows in the
IR to an SCFT with N = 4 supersymmetry, and the overall system can be
described by gauge fields on a half-space coupled to this SCFT.
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In all cases, we have slightly separated the various branes in the x3 direc-
tion to avoid ambiguities and to make possible a description by gauge the-
ory. However, the intent is always to consider a limit in which the brane
separations Li are taken to zero and the brane configuration determines
a boundary condition for the four-dimensional gauge fields. The boundary
conditions obtained this way are special cases of the general definition in [1],
involving a triple (ρ, H,B). Here ρ : su(2) → g is an embedding of the Lie
algebra of SU(2) in that of G, H is a subgroup of G that commutes with
SU(2), and B is a boundary superconformal field theory with H symmetry.
For the brane constructions that we have described, G is a unitary group
U(N) for some N ; ρ is arbitrary; B is constructed from a quiver gauge the-
ory; and H, which is a subgroup of G of the form U(M) for some M , is a
global symmetry group acting at one end of the quiver.

2.2 Ordering of branes

We are not interested in studying brane configurations for their own sake,
but as a tool for generating boundary conditions and studying the action of
S-duality. For this purpose, it turns out that it suffices to consider a certain
subset of brane configurations. As we will see, other configurations can be
reduced to this subset by moving branes along the lines of [15].

In the brane constructions that we have described, the brane separations
Li are irrelevant in the infrared, but the specific ordering of the fivebranes
along y = x3 is quite important. We have ordered the fivebranes in figures 1
and 2 in a way that makes the field theory interpretation of the boundary
condition understandable and the infrared limit simple. This depends on
two constraints that will be described here.

To state these constraints, one important concept is the net number of
D3-branes ending on a fivebrane. We define this number to be the number of
D3-branes ending on the fivebrane from the right, minus the number ending
from the left.

2.2.1 The first constraint

Our first constraint is that any D5-brane on which a net non-zero number of
threebranes ends is to the right of all NS5-branes. This constraint has been
incorporated in figures 1 and 2. The D5-branes that are shown explicitly
in figure 1 are to the right of the

⊕
symbol, in which any NS5-branes are

hidden. In expanding out the
⊕

symbol in figure 2, there may be additional
D5-branes, but the net number of D3-branes ending on any one of them is
zero.
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This constraint ensures that the brane configurations of figure 2 have
an interpretation in gauge theory. If the net number of D3-branes end-
ing on any D5-brane is zero, it is possible (in one phase of the theory) to
detach all D3-branes from D5-branes and let D3-branes end on NS5-branes
only. A moveable D3-brane connecting two NS5-branes is described by a
vector multiplet of a gauge theory. The branch of the moduli space of
vacua in which all moveable D3-branes end on NS5-branes is the Coulomb
branch of this gauge theory. Thus our condition implies that the config-
uration labeled

⊕
can be interpreted in gauge theory. (In fact, it is a

quiver gauge theory, as we have already noted.) The IR limit of this gauge
theory is the boundary SCFT B that is part of the definition of our bound-
ary condition. In this gauge theory, each vector multiplet comes from a
D3-brane segment that is of finite extent in the y direction, so it is reason-
able to hope that one can extract the zero modes of all vector multiplets and
reduce to a purely three-dimensional gauge theory before taking the infrared
limit. (For this actually to be true depends on the additional constraint of
Section 2.2.2.)

The gauge theory associated with the
⊕

symbol has a global symmetry
group H that couples to four-dimensional gauge fields. In general, H is
not the gauge group G of the bulk four-dimensional gauge theory, but a
subgroup. For instance, in figure 1, H = U(3), where 3 is the number of D3-
branes near the

⊕
symbol. This results from the fact that, as one comes

in from the right in figure 1, some of the D3-branes terminate on D5-branes
before interacting with the gauge theory hidden in the

⊕
symbol. D3-branes

ending on D5-branes can have moduli (if there is more than one D5-brane
involved, as in figure 1) since D3-brane segments that join two D5-branes can

break away and move in the �X direction. Modes resulting from motion of
such D3-brane segments are hypermultiplets (rather than vector multiplets).
The resulting hypermultiplet moduli space can be described, as we have

explained in detail in [1], by Nahm’s equations d �X/dy + [ �X, �X] = 0. These
equations cannot be readily described in terms of purely three-dimensional

gauge dynamics, since they describe precisely the y-dependence of �X.

To summarize then the first constraint, it says that as one approaches the
boundary from the right, one first encounters the part of the construction
(the Nahm pole ρ : su(2) → g and the reduction from G to a subgroup H)
that is not naturally expressed in terms of three-dimensional field theory.
Then one meets, compressed to the symbol

⊕
, the construction via three-

dimensional gauge theory of a three-dimensional boundary theory B. It
only makes sense to describe B once H is known (since B must have H
symmetry, not G symmetry), so it is convenient to encounter ρ and the
reduction to H “first.”
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There is no loss in imposing this first constraint, since given a second
constraint that we describe next, it can always be implemented without
changing the infrared physics by moving branes, as we will see in Section 2.3.

2.2.2 The second constraint

The second constraint that we want can be succinctly stated in terms of
a certain “linking number” invariant that was defined in [15]. The linking
number of a fivebrane is the D3-brane charge measured at infinity on that
fivebrane. Since a D3-brane ending on a fivebrane is a magnetic source for
the U(1) gauge field on the fivebrane, the D3-brane charge on a fivebrane
can be computed by integrating the U(1) field strength over a two-sphere
at infinity. The reason that the linking number is important is that, since
it can be measured at infinity along a brane, it is invariant under the sort
of brane manipulations that are needed to understand S-duality.

Concretely, the linking number of a fivebrane is the number of fivebranes
of the opposite kind to the left of the given fivebrane, plus the net number
of D3-branes ending on this fivebrane on the right.2 The constraint that
we want on the brane ordering is that for each kind of fivebrane — NS or
D — the linking numbers are non-decreasing from left to right. An example
is given in figure 4.

Let us first discuss what this constraint means for D5-branes. First con-
sider a D5-brane that is not to the right of all NS5-branes. The net number
of D3-branes ending on such a D5-brane is zero (by our first constraint), so
its linking number is just the number of NS5-branes to its left. The num-
ber of NS5-branes to one’s left can only increase (or remain constant) as
one moves to the right along the chain. So for such D5-branes, the linking
numbers are automatically non-decreasing.

Hence for D5-branes, the linking number constraint only says something
non-trivial for those D5-branes that are to the right of all NS5-branes — for
example, the ones drawn explicitly in figure 1 and the two on the right in
figure 4(a). Since all such D5-branes have the same number of NS5-branes
to their left, the constraint is that the net number of D3-branes ending on
a D5-brane is non-decreasing as one moves to the right. This constraint is
satisfied in both examples.

The meaning of the constraint was explained in Section 3.5 of [1]. To
get a boundary condition, we must take the limit that the brane separa-
tions Li are all taken to zero. The behavior in this limit of the moduli

2This definition differs by an inessential constant from the definition used in [15].
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Figure 4: (a) A configuration of three D5-branes and three NS5-branes in
U(7) gauge theory. Each fivebrane has a linking number, defined as the
number of fivebranes of the opposite kind that are to the left of the given
fivebrane, plus the net number of threebranes ending on the right of the
given fivebrane. In the figure, the linking number of a D5-brane (or an
NS5-brane) is given by the integer that is written just above (or below) the
brane in question. This configuration has been chosen so that the linking
numbers of fivebranes of a given type are non-decreasing if one reads the
figure from left to right. (b) In the boundary condition derived from (a), a
U(5) subgroup of the gauge group is coupled at the boundary to an SCFT
with U(5) symmetry. This SCFT can be obtained as the infrared limit of
the three-dimensional gauge theory associated with the quiver indicated here
(together with a free fundamental hypermultiplet from interaction with the
D5-brane of linking number 3).

Figure 5: Two NS5-branes with k D5-branes between them. To the left of
the NS5-branes, between them, and to their right, there are respectively n′,
n, and n′′ D3-branes. Here n′, n, n′′ equal 2, 3, and 1, respectively.

space of solutions of Nahm’s equations associated to a brane configuration
is most simple if the D5 linking numbers are non-decreasing. Moreover, the
interesting boundary conditions all arise from configurations of this type.
If the D5-branes are not arranged in order of increasing (or at least non-
decreasing) linking number, then the moduli space of solutions of Nahm’s
equations contain extra hypermultiplets that decouple as Li → 0. For our
goal of studying boundary conditions, it does not add anything to consider
brane configurations that generate such decoupled hypermultiplets.

S-duality suggests that similarly, the Coulomb branch will contain vector
multiplets that decouple for Li → 0 unless the NS5-branes are arranged
with non-decreasing linking number. To see what the condition means, let
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us examine in detail the condition that the linking number for a pair of
successive NS5-branes is non-decreasing. We write n′, n, n′′ for the number
of D3-branes to the left of the two NS5-branes, between them, and to their
right (figure 5). There may also be D5-branes between the two NS5-branes,
but if so (as the net number of D3-branes ending on such a D5-brane is
required to vanish) the number of D3-branes does not jump in crossing them.
Let k be the number of such D5-branes and let t be the number of D5-branes
to the left of both NS5-branes drawn in the picture. The linking numbers
ℓL and ℓR of the left and right NS5-brane in figure 5 are ℓL = t + n − n′,
ℓR = t + k + n′′ − n. The condition that ℓR ≥ ℓL therefore gives

n′ + n′′ + k ≥ 2n. (2.1)

This condition has a simple interpretation in gauge theory. The n D3-
branes between the two NS5-branes support a U(n) gauge theory. This U(n)
gauge theory is coupled to k fundamental hypermultiplets that arise from
D3–D5 intersections. In addition, the interactions of the D3-branes that
meet at the two NS5-branes in the picture give bifundamental hypermul-
tiplets of U(n′) × U(n) and U(n) × U(n′′). From the point of view of the
U(n) theory, these are n′ + n′′ fundamental hypermultiplets.

Altogether, the U(n) theory therefore interacts with a total of nf = n′ +
n′′ + k fundamental hypermultiplets, and the condition of equation (2.1) is
equivalent to

nf ≥ 2n. (2.2)

This condition on the matter fields in a three-dimensional U(n) gauge theory
with N = 4 supersymmetry is similar to conditions encountered in [8].

The most direct interpretation of (2.2) is that it is the condition under
which complete Higgsing is possible; that is, it is the condition under which
there exists a vacuum in which the hypermultiplets have expectation values,
the scalars in the vector multiplets do not, and the gauge symmetry is com-
pletely broken. Consider an N = 4 theory with gauge group U(n) and nf

fundamental hypermultiplets. Viewing the N = 4 theory as an N = 2 the-
ory, the hypermultiplets consist of an n × nf matrix A and an nf × n matrix
B. The scalars in the vector multiplet are an n × n matrix φ. The superpo-
tential is Tr φAB, so the condition for a critical point of the superpotential
with φ = 0 is

AB = 0. (2.3)

For nf = 2n, we can satisfy this condition and completely break the gauge
symmetry with

A =
(
M 0

)
, B =

(
0
N

)
, (2.4)
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where M, N, and 0 are all n × n blocks and M and N are generic.

For nf > 2n, we simply add more rows and columns of zeroes to A and
B. However, for nf < 2n, it is not possible to completely break the gauge
symmetry while also satisfying (2.3) and the D-term condition AA† = B†B.
That latter condition implies that A and B have the same rank r. Equa-
tion (2.3) implies that 2r ≤ nf so r < n if nf < 2n. The equation AA† = B†B
says that B and A† have the same kernel. The dimension of the kernel is
n − r, so if r < n, the kernel is non-empty and complete Higgsing has not
occurred.

When complete Higgsing is possible, the three-dimensional gauge theory
has a critical point at the intersection of the Coulomb and Higgs branches
at which all vector multiplets are strongly coupled. In our context, this
gives the SCFT B that is part of the boundary conditions. When complete
Higgsing is not possible, some vector multiplets remain free in the IR. For
example, if nf = 0, then the Coulomb branch is smooth and all vector mul-
tiplets are free in the IR limit. Since we are interested in boundary SCFT’s
rather than in brane configurations, we are not interested in considering
brane configurations whose Coulomb branch has degrees of freedom that
decouple in the IR.

Some brane configurations that do not obey our constraints are also
understandable, but it is not necessary to consider them. A more precise
description of the kind of infrared limit that we want in our study of bound-
ary conditions is given in Section 2.4, along with another interpretation of
the condition nf ≥ 2nc.

2.3 S-duality

S-duality of a brane configuration can be defined in a purely formal way. We
simply replace NS5-branes with D5-branes, and vice versa. We also exchange
�X with �Y , or equivalently, we make a spatial rotation transforming x4, x5, x6

into x7, x8, x9, and vice versa. The combined operation maps the class of
configurations that we have been considering back to itself.

The only problem is that after this transformation, the branes are incor-
rectly ordered; the first constraint of Section 2.2 is not obeyed. The second
constraint, which states that linking numbers are non-decreasing for five-
branes of both types, remains valid.

However, a reader familiar with three-dimensional mirror symmetry may
guess what to do. Brane configurations of the type considered here can
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be manipulated without changing their infrared limit by moving D5-branes
in the x3 direction. The D5-branes may cross NS5-branes, but every time
a D5-brane is moved across an NS5-brane, a D3-brane segment stretched
between them will be created or destroyed in such a way that the linking
numbers remain constant. By judiciously moving the D5-branes, we can get
back to a configuration that obeys the constraints.

Though it is also possible to move NS5-branes, this does not add any-
thing. To make NS5-branes cross each other, or D5-branes cross each other,
complicates the analysis of the infrared limit. The simplest type of brane
motion is to move D5-branes relative to NS5-branes without changing their
ordering. This is enough to restore the first constraint on ordering of branes,
so it is the only operation we need to consider.

We move any D5-brane whose linking number l is smaller than the total
number of NS5-branes to the interval between the lth and l + 1th NS5-
branes. Then the net number of D3-branes ending on it will be zero. Any
other D5-brane can be pushed to the right of all NS5-branes, and an appro-
priate number of D3-branes will end on it from the right to give the right
linking number. Once this has been done, our constraints are obeyed. The
number of D3-brane segments between each consecutive pair of NS5-branes
is uniquely determined by the linking numbers of the NS5-branes.

There is only one catch: we need to show that the number of D3-brane
segments in the mirror configuration always turns out to be positive. For
concreteness, let us denote the linking numbers of the P NS5-branes as

ℓi, i = 1, . . . , P and of the Q D5-branes as ℓ̃a, a = 1, . . . , Q. Let ni be the
number of D3-branes ending on the ith NS5-brane on the right. By defini-
tion,

ℓi = ni − ni−1 + #{a|ℓ̃a < i}. (2.5)

We can invert this relation as

ni =

i∑

j=1

ℓj −
∑

a|ℓ̃a<i

(i − ℓ̃a) (2.6)

In particular, the number of D3-branes just to the right of the rightmost
NS5-brane in the original configuration is

nP =

P∑

j=1

ℓj −
∑

a|ℓ̃a<P

(P − ℓ̃a). (2.7)

Moving farther to the right, the number of D3-branes will further increase
when crossing the remaining D5-branes. At each D5 brane of linking number
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ℓ̃, the number of D3-branes will increase by ℓ̃ − P . The final number of semi-
infinite D3-branes is

n =
P∑

j=1

ℓj −

Q∑

a=1

(P − ℓ̃a) =

P∑

j=1

ℓj +

Q∑

a=1

ℓ̃a − PQ. (2.8)

We can assume that in this original configuration, the numbers ni of D3-
brane segments are strictly positive; otherwise, the system would break into
decoupled subsystems which we would study separately. Hence we have a
simple inequality

i∑

j=1

ℓj >
∑

a|ℓ̃a<i

(i − ℓ̃a). (2.9)

The sum on the right-hand side starts from a = 1 and ends at some a = b.
We can actually take b to be unconstrained: if we lower b we are omitting
some positive terms from the sum; if we increase b, we include some extra
non-positive terms in the sum. Hence we can consider the more symmetric
inequality

i∑

j=1

ℓj +

b∑

a=1

ℓ̃a > bi. (2.10)

S-duality exchanges the two kinds of linking numbers ℓ and ℓ̃. This leaves
the collection of inequalities (2.10) unaffected. In particular, the dual num-
ber of D3-branes

ñb =

b∑

a=1

ℓ̃a −
∑

j|ℓj<b

(b − ℓj) (2.11)

is positive. Moreover, the number of semi-infinite D3-branes n also had a

symmetric expression (2.8) in ℓj and ℓ̃a. Thus, the class of brane configu-
rations that obey our constraints is closed under S-duality. Starting with
such a configuration and applying S-duality, there is a unique way to move
D5-branes to put it back in the desired form.

We are interested in applying this result both for boundary conditions
in four dimensions and for purely three-dimensional configurations, where
no semi-infinite D3-branes are present. In the above inequalities the two
cases differ only by whether n is positive or zero. In case n = 0, the linking

numbers obey 0 < ℓi < Q and 0 < ℓ̃a < P , ensuring that the original and S-
dual configurations have no D5-branes to the left or right of all NS5-branes.
For the purely three-dimensional configurations, we have proved that every
linear quiver with nf ≥ 2nc at each node has a mirror of the same kind.
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In Section 3.5, we will consider a few examples of domain walls, generated
as configurations of branes with semi-infinite D3-branes on both sides. In
that case the linking numbers are still non-decreasing from left to right,
but they are not necessarily positive. The inequalities above apply to such
configurations with very minor modifications.

2.4 Quivers: good, bad, and ugly

In our study of S-duality of boundary conditions, we will need some under-
standing of the infrared dynamics of three-dimensional gauge theories
defined by linear quivers of unitary groups. The information we need can be
extracted by supplementing what is visible classically with the properties of
monopole operators [5–7].

We will make extensive use of the operators constructed in those papers,
but our point of view is slightly different. We do not want to assume prop-
erties of the infrared theory, so we define monopole operators at short dis-
tances, using the fact that three-dimensional gauge theory is ultraviolet-free,
and then we see what deductions we can make about the infrared behavior.

The definition of a monopole operator in three dimensions is analogous to
the definition of an ’t Hooft operator in four dimensions. The definition is
based on a codimension three magnetic monopole singularity of gauge fields,
leading to a local operator in three dimensions, or a line operator in four
dimensions.

Like disorder operators in statistical mechanics, monopole operators are
most easily defined by giving a recipe to calculate in the presence of a mono-
pole operator. If the gauge group is G = U(1), to compute in the presence
of a charge a monopole operator inserted at a point x = x0 in R

3, we per-
form the path integral over a space of fields with a suitable Dirac monopole
singularity:

F =
a

2
⋆ d

1

|�x − �x0|
. (2.12)

a must be an integer. In supersymmetric gauge theory, to define a BPS

monopole operator, we pick one of the scalar fields �Y of the vector multiplet,
say Y3, and require that it also should have a singularity compatible with
the Bogomolny equations dY3 = ⋆F . The choice of Y3 is determined by the
choice of a unit vector �n in three-space, and accordingly we will denote the
resulting monopole operator of charge a as O�n(a).

The special case of free U(1) gauge theory (with N = 4 supersymmetry
in three dimensions) is illuminating. The monopole operator O�n(a) can
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be written as exp(a(Y3 + iφ)/e2), or equivalently as exp(a(�n · �Y + iφ)/e2),
where φ is the dual photon. There is such an operator for any specified choice
of �n, with no reason to treat �n as a collective coordinate. The choice of a
particular �n breaks SO(3)Y to SO(2)Y . This enables us to define an N = 2
algebra3 whose global R-symmetry acts on monopole operators via SO(2)Y .
The operator O�n(a) is a chiral operator (the lowest component of a chiral
multiplet) from the point of view of this N = 2 algebra. This multiplet has

the unusual property that its R-charge is zero, since exp(a(�n · �Y + iφ)/e2)
is certainly invariant under rotations around �n. There are two important
comments to make about this:

(1) If we want to place the operator O�n(a) in a multiplet of the microscopic
global N = 4 supersymmetry, we have to let �n vary. When we do this, we
get an infinite-dimensional N = 4 multiplet, since the operator O�n(a) has
no simple dependence on �n.

(2) In conformal field theory, the dimension of a chiral operator is at least
the R-charge, so R-charges of chiral operators other than the identity are
positive. The fact that this theory has a chiral operator of R-charge zero
means that, although it has global N = 4 supersymmetry, it cannot be given
the structure of a superconformal field theory in which the R-symmetry
is the microscopic SO(3)X × SO(3)Y symmetry. (This can also be shown
more directly by observing that the field Y1 + iY2 is a chiral operator with
R-charge 1 and dimension 1/2.) After dualizing the photon, the model
describes four free scalars and four free spinors, so it can be given an N = 4
superconformal structure, but the R-symmetry is not the one that one sees
in the ultraviolet.4

3The supercharges of three-dimensional N = 4 supersymmetry transform as (2, 2)
under SO(3)X × SO(3)Y . The R-symmetry of an N = 2 subalgebra is actually a diagonal
subgroup of SO(2)X × SO(2)Y , where SO(2)X is an arbitrarily chosen SO(2) subgroup of
SO(3)X . SO(3)X leaves invariant the monopole operators of interest (since it acts trivially
on the fields whose singularity characterizes them), as a result of which the R-symmetry
acts on monopole operators via SO(2)Y .

4A necessary condition [18,19] for an N = 4 superconformal structure is that, near some
chosen vacuum, the Coulomb branch should look like a tri-Sasakian cone. This means that
the metric must be conical, with a scaling symmetry generated by a vector field V that
obeys DνV μ = δμ

ν , and moreover the generators of the SO(3) R-symmetry must be the
vector fields W k = IkV , where Ik, k = 1, 2, 3, are the three complex structures. For a free
vector multiplet, the Coulomb branch is a smooth manifold R

3 × S1, so it looks conical
near any point, but the microscopic SO(3)Y R-symmetry (which acts by rotating R

3) does
not have the required form, regardless of which vacuum we choose in taking the infrared
limit.
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2.4.1 U (1) examples with hypermultiplets

The next step, still with gauge group U(1), is to add hypermultiplets of
charges q1, . . . , qs. The qi are all non-negative integers. (A hypermultiplet
contains fields of equal and opposite charge, and by convention we take
the positive sign for the hypermultiplet charge.) The monopole operator of
charge a is defined in the same way, and is still a chiral operator, but as
shown in [6], it now carries a non-zero R-charge

qR =
1

2

s∑

i=1

|aqi|, (2.13)

due to an asymmetry in the fermionic spectrum.5

Since the monopole operators O�n(a) now have positive R-charges, it is
conceivable that such a theory might flow to an infrared critical point in
which the R-symmetry is the microscopic SO(3)X × SO(3)Y . We will refer
to any N = 4 critical point with this R-symmetry as a standard critical
point.

Since (by definition of a Higgs or Coulomb branch) SO(3)Y acts trivially
on a Higgs branch of vacua and SO(3)X acts trivially on a Coulomb branch,
a vacuum at the intersection of the two branches is automatically SO(3)X ×
SO(3)Y -invariant. So this is a candidate for the locale of a standard critical
point. A necessary condition for this [18,19] is that the Higgs and Coulomb
branches must both be tri-Sasakian cones near their intersection, with the
microscopic SO(3)X and SO(3)Y R-symmetries entering in the tri-Sasakian
structures. In N = 4 supersymmetric gauge theories (without bare masses,
FI terms, or Chern–Simons couplings) the Higgs branch always has the
appropriate tri-Sasakian structure. Mirror symmetry sometimes makes it
possible to show that the Coulomb branch also has the right structure,
near its intersection with the Higgs branch. For instance, this is true for
models derived from linear quivers with nf ≥ 2nc at every node, since we
have shown in Section 2.3 that such models have mirrors of the same type.
It is reasonable to expect that when both branches have the appropriate
structure near their intersection, a standard critical point does indeed arise
at this intersection.

If a U(1) theory coupled to hypermultiplets flows in the infrared to a
standard critical point, the structure of the superconformal algebra OSp(4|4)

5The computation in [6] is justified by using a large nf limit to suppress fluctuations.
Here, we use the fact that the gauge theory is free in the ultraviolet to justify the computa-
tion for all nf . The Dirac equation in an external field is conformally invariant, justifying
the conformal mapping to R × S2 that is used in [6].
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implies that in this limit the operators O�n(a) transform in a finite-
dimensional multiplet, even though this is not true in the ultraviolet. Indeed,
in the infrared theory, the operator O�n(a) has dimension qR, and is part of
an irreducible so(3)Y representation of dimension 2qR + 1. (In an appro-
priate formalism, O�n(a) varies with �n as a holomorphic section of the line
bundle O(qR) → CP

1. The relevant multiplet is an O(qR) multiplet, in the
language of [20,21].) Otherwise, O�n(a) would be related by repeated action
of raising or lowering operators in so(3)Y to an operator of dimension qR

but with R-charge greater than qR in absolute value. This would contradict
unitarity of the IR fixed point.

Let us consider a few special cases. If there is only a single hypermultiplet
of charge 1, the R-charge is qR = |a|/2. Setting a = ±1, the basic monopole
operators have R-charge ±1/2. In three dimensions, unitarity implies that
a chiral superfield of R-charge and dimension 1/2 is actually part of a free
hypermultiplet. In the present case, we actually have a twisted hypermulti-
plet, in the sense that it transforms non-trivially under SO(3)Y and trivially

under SO(3)X , like the scalar fields �Y of the vector multiplet and in contrast
to the bosonic fields of an ordinary electrically charged hypermultiplet. The
existence of this field shows [6] that the Coulomb branch of the U(1) theory
with a single charge 1 hypermultiplet is equivalent to R

4, parametrized by
a free twisted hypermultiplet.

A free hypermultiplet has a global symmetry group SU(2), commuting
with the superconformal group. Let us try to find this symmetry. It helps to
know that in a theory with N = 4 superconformal symmetry, a conserved
current J appears in a multiplet whose lowest component μ is an N = 2
chiral superfield with dimension and R-charge 1. (In free field theory, μ is
the moment map for the symmetry associated with the conserved current J .)

One symmetry of the Coulomb branch of this U(1) theory with one hyper-
multiplet is visible classically. This is the group U(1)φ of translations of
the dual photon, φ → φ + constant. To find additional symmetries, we need
monopole operators of R-charge 1. Such operators arise precisely for a = ±2,
and their presence extends the classical symmetry of the Coulomb branch
from U(1) to SU(2).

Under shifts of the dual photon, the monopole operator O�n(a) =
exp(a(Y3 + iφ)/e2) transforms by a phase that is clearly proportional to
a. The conserved currents associated with operators O�n(±2) therefore
do not commute with U(1)φ. Together they generate a three-dimensional
Lie algebra which must be SU(2). This is the expected symmetry of the
Coulomb branch.
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The fact that the hypermultiplet fields arise for a = ±1 and the symmetry
currents for a = ±2 has a simple interpretation: the hypermultiplet fields
transform in the two-dimensional representation of SU(2), whose weights
are one-half the non-zero weights of the adjoint representation.

For our next example, consider the case of two hypermultiplets of charges
q1 = q2 = 1. The R-charge of a monopole operator is qR = |a|. The smallest
possible value is 1, for a = ±1. Again, the existence of these chiral operators
of qR = 1 means that if the theory flows to a standard IR critical point, the
classical U(1) symmetry of the Coulomb branch is extended to SU(2). In
contrast to the case of nf = 1, where the Coulomb branch has an SU(2)
symmetry that follows from something more fundamental (existence of a
free twisted hypermultiplet), for nf = 2 the SU(2) symmetry of the Coulomb
branch seems to be an irreducible statement.

The U(1) theory with nf = 2 hypermultiplets of charge 1 has a Higgs
branch6 and is believed to flow to a standard critical point. Indeed, this
model was one of the original examples of three-dimensional mirror symme-
try [8]. (For an explanation of its mirror symmetry, see figure 10.) The Higgs
branch of the model has a classical SU(2) global symmetry, rotating the
two hypermultiplets. Mirror symmetry exchanging the Higgs and Coulomb
branches implies that the Coulomb branch must also have an SU(2) sym-
metry in the infrared, as we have just argued in another way.

The IR critical point of U(1) coupled to two hypermultiplets will turn
out to be an important example for understanding S-duality of boundary
conditions. We will call it T (SU(2)). As we have just seen, this model
has SU(2) × SU(2) global symmetry, with one factor acting on the Higgs
branch and on the Coulomb branch. (The group that acts faithfully is really
SO(3) × SO(3).)

Continuing in this vein, consider U(1) coupled to nf > 2 hypermultiplets
of charge 1. Monopole operators have R-charges |anf |/2. As these numbers
are greater than 1 (for |a| ≥ 1), the Coulomb branch has no symmetries
beyond its classical U(1) symmetry. Likewise, there are no free hypermulti-
plets.

What happens if we couple U(1) gauge theory to hypermultiplets of charge
greater than 1? The only case that leads to a monopole operator of |qR| ≤
1 is the case that we couple to one hypermultiplet of charge 2, leading
for a = ±1 to |qR| = 1. This theory is simply an orbifold of the nf = 1
theory. The orbifolding operation is a shift in the dual photon, changing the

6This is the nc = 1 case of what is described in equation (2.4).
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quantum of charge. In the orbifolded theory, the Coulomb branch is R
4/Z2

rather than R
4. The monopole operators of qR = 1/2 are projected out, but

those of qR = 1 persist.

Returning to the case of nf hypermultiplets of charge 1, let us summarize
some properties of these models:

(1) For nf ≥ 2, we get what we will call “good” theories. They have Higgs
branches, and flow to standard IR critical points at the intersection of the
Higgs and Coulomb branches. These are non-Gaussian critical points, as
is clear from the singularity of the moduli space of vacua, and no more
elementary description of them is evident. (They have equally good mirror
descriptions.) The borderline case nf = 2 is what we will call a “balanced”
theory, with nf = 2nc (here nc = 1). In the balanced theory, the classical
U(1) symmetry of the Coulomb branch is extended in the IR to SU(2).

(2) The theory with nf = 1, which has no Higgs branch, still flows in the
IR to a standard critical point. However, this critical point is Gaussian and
has a more economical description in terms of a free twisted hypermultiplet.
We regard the U(1) theory with nf = 1 as an “ugly” description of a theory
that actually is Gaussian.

(3) Finally, the theory with nf = 0 is “bad” in that, because it has chiral
operators of R-charge 0, it cannot flow in the IR to a standard critical point.

2.4.2 Monopole operators in non-abelian gauge theory

To describe monopole operators in a three-dimensional theory with any
gauge group G, we first pick a homomorphism ρ : u(1) → g. ρ plays the
role of the monopole charge a in the U(1) case. Then we modify the ansatz
(2.12) for the singularity characterizing the monopole operator to

F =
ρ(1)

2
⋆ d

1

|�x − �x0|
, (2.14)

where 1 is a generator of u(1), and ρ(1) is its image in g. After requiring that
X3 should have a singularity compatible with the Bogomolny equations, we
arrive at the definition of a monopole operator in the non-abelian case.

The R-charges of these operators were computed in [6]. Let hi and vi

be the charges of vector multiplets and hypermultiplets under the U(1)
subgroup of G that is defined by ρ. (The quantities hi correspond to aqi in
the notation we used for G = U(1).) The R-charge of the monopole operator
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defined by ρ is then

qR =
1

2

⎛
⎝∑

i

|hi| −
∑

j

|vj |

⎞
⎠ . (2.15)

The fact that vector multiplets and hypermultiplets make contributions to
qR of equal magnitude and opposite sign is clear if one considers the special
case that the hypermultiplets and vector multiplets transform in the same
representation of G. This gives a theory with enhanced supersymmetry
(N = 8 in three dimensions) and R-symmetry. The unbroken SO(2)Y of
the monopole operator is extended to SO(6)Y . The monopole operator
for given ρ now furnishes a one-dimensional representation of SO(6)Y , and
as this group has no non-trivial one-dimensional representation, qR must
vanish, along with its SO(6)Y completion.

To orient ourselves to the implications of (2.15), we will consider a basic
example: U(nc) gauge theory with nf fundamental hypermultiplets. We
define ρ : u(1) → u(nc) by giving a diagonal matrix of integers a1, a2, . . . , an.
(The ai are only defined up to permutation.) With a little group theory, we
find that

qR =
nf

2

nc∑

i=1

|ai| −
∑

1≤i<j≤nc

|ai − aj |. (2.16)

Alternatively, this can be written as

qR =
nf − 2nc + 2

2

nc∑

i=1

|ai| +
∑

1≤i<j≤nc

(
|ai| + |aj | − |ai − aj |

)
. (2.17)

This formula is useful, since |ai| + |aj | − |ai − aj | ≥ 0 for all i, j.

We can draw the following conclusions:

(1) First consider the “good” theories with Higgs branches, the ones with
nf ≥ 2nc. If nf > 2nc, then |qR| > 1 for all monopole operators. This follows
immediately from (2.17). There are no free hypermultiplets and no enhanced
symmetries of the Coulomb branch. The last good theory is the “balanced”
theory with nf = 2nc. In this theory, the monopole operators in which the
ai are (±1, 0, . . . , 0) have qR = 1. So, just as we saw earlier for nc = 1, the
classical U(1) symmetry of the Coulomb branch is extended to SU(2).

(2) Now consider the next case, nf = 2nc − 1, which we consider “ugly.”
Here we get qR = 1/2 if the ai are (±1, 0, . . . , 0), so again there is a free
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twisted hypermultiplet. In addition, qR = 1 arises from (±2, 0, . . . , 0) and
also from (1,−1, 0, . . . , 0). (The first of these we have already seen for
nc = 1.) Combining this together, the Coulomb branch has a four-
dimensional group of symmetries. By looking at how the operators trans-
form under U(1)φ, one can see that the group is SU(2) × U(1).

What does this mean? The existence of a free twisted hypermultiplet is
consistent with the fact that, since nf < 2nc, the model cannot be completely
Higgsed. Instead, adapting the logic of equation (2.4), one finds that it can
be Higgsed to U(1), so it has a branch of vacua of the form C × H, where
C parametrizes a U(1) vector multiplet and H parametrizes the expectation
values of the hypermultiplets. The factor C is associated with the free twisted
hypermultiplet. The U(nc) theory with 2nc − 1 flavors must be equivalent
in its standard IR fixed point to a theory of a free twisted hypermultiplet
times some other theory that can be completely Higgsed and whose Higgs
branch is H. To find this second theory, move on the Coulomb branch of
the U(nc) theory to the locus where U(nc) is broken to U(1) × U(nc − 1)
and the U(1)-invariant hypermultiplets are massless. It is then possible to
give expectation values to those hypermultiplets. The result is a component
of the moduli space of vacua that is of the form C × H, where C has hyper-
Kahler dimension 1, and H is the Higgs branch of a U(nc − 1) theory with
nf = 2nc − 1.

(3) Finally, the models with nf = 2nc − 2 have monopole operators of
qR = 0, and those of nf < 2nc − 2 have monopole operators of negative qR.
So these “bad” models do not have standard IR critical points.

2.4.3 Quiver theories

We now consider a gauge theory derived from a general linear quiver with
P − 1 nodes.7 At the ith node there is a U(ni) gauge theory, coupled to mi

fundamental hypermultiplets. There is also a bifundamental hypermultiplet
of U(ni) × U(nj) if and only if j = i ± 1.

We define a “good” quiver to be one for which nf ≥ 2nc at each node.
Explicitly, this means that the quantities

ei = mi + ni−1 + ni+1 − 2ni (2.18)

are non-negative. We call ei the “excess” at the ith node, and say that a
node is “balanced” if it has zero excess. Our first goal is to show that in

7A linear array of P − 1 nodes can be viewed as the Dynkin diagram of the Lie group
AP−1. In Section 5.4, we will obtain results for Dynkin diagrams of type D that are
analogous to what we will explain here for type A. We also will give partial results for
quivers of type E6, E7, and E8.
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a gauge theory derived from a “good” quiver, every monopole operator has
qR ≥ 1. We also want to determine for every good quiver precisely which
monopole operators have qR = 1. This will give us the symmetry of the
Coulomb branch.

Consider a monopole operator whose magnetic charges at the ith node
are integers ai,k, for 1 ≤ k ≤ ni. The R-charge qR of the monopole operator
receives a contribution

mi

2

ni∑

k=1

|ai,k| (2.19)

from the mi flavors at each node, a contribution

−
1

2

ni∑

k=1

ni∑

t=1

|ai,k − ai,t| (2.20)

from the vector multiplets at that node, and a contribution

1

2

ni∑

k=1

ni+1∑

t=1

|ai,k − ai+1,t| (2.21)

from the bifundamental matter between the nodes i and i + 1.

If we plug the definition of ei into the R-charge formula, and make substi-
tutions like ni =

∑ni

k=1 1 judiciously, we find that qR =
∑

i (Δi + Ai + Bi),
where

Δi =
ei

2

ni∑

k=1

|ai,k| (2.22)

is non-negative, and the other contributions are

Ai =
1

2

ni∑

k=1

ni∑

t=1

(|ai,k| + |ai,t| − |ai,k − ai,t|)

Bi = −
1

2

ni∑

k=1

ni+1∑

t=1

(|ai,k| + |ai+1,t| − |ai,k − ai+1,t|) . (2.23)

Each term in these sums is of the form |x| + |y| − |x − y|, and is zero if x
and y have opposite signs. If x and y are both of the same sign, |x| + |y| −
|x − y| = 2 min(|x|, |y|).

These formulas make clear that the total R-charge is the sum of a con-
tribution from those charges ai,k that are positive, plus a contribution from
those charges ai,k that are negative. The contribution from positive charges
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can be computed by setting the negative charges to zero, and vice versa.
Without essential loss of generality, we are then free to consider a configu-
ration with non-negative charges only. A further simplification is as follows.
If all ai,k = 0 for some node i, we can erase that node from the quiver and
add its rank ni to the number of flavors of the neighboring nodes without
changing qR. We can then treat each disconnected component of the reduced
quiver separately. This means that we can restrict the analysis to monopoles
with some non-zero charge at each node.

Let us also order the charges at each node in a non-decreasing fashion
ai,k+1 ≥ ai,k. Then we can write

Ai =
1

2

ni∑

k=1

ni∑

t=1

2 min(ai,k, ai,t) =

ni∑

k=1

ai,k(2ni − 2k + 1) (2.24)

and similarly

Bi = −
1

2

ni∑

k=1

ni+1∑

t=1

2 min(ai,k, ai+1,t) (2.25)

Now we want a lower bound

Bi ≥ −
ni∑

k=1

ai,k(ni − k) −

ni+1∑

t=1

ai+1,t(ni+1 − t + 1), (2.26)

which will give a lower bound on qR. We can get a lower bound on Bi

by replacing min(ai,k, ai+1,t) with either ai,k or ai+1,t. We pick ai,k if t >
ni+1 − ni + k, which for given k happens for at most ni − k values of t; and
we pick ai+1,t if t ≤ ni+1 − ni + k, which for given t happens for at most
ni+1 − t + 1 values of k. Adding up the possibilities now yields the lower
bound (2.26).

The formula (2.24) and lower bound (2.26) lead to a very useful result
when we sum over i. Everything cancels except for contributions from the
ends of the chain, and we get simply

P−1∑

i=1

(Ai + Bi) ≥
n1∑

k=1

a1,k(n1 − k + 1) +

nP−1∑

k=1

aP−1,k(nP−1 − k). (2.27)

So

qR ≥
P−1∑

i=1

ei

2

ni∑

k=1

ai,k +

n1∑

k=1

a1,k(n1 − k + 1) +

nP−1∑

k=1

aP−1,k(nP−1 − k).

(2.28)
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In particular, since ei ≥ 0 and we have performed this computation in a
sub-quiver in which a1,k �= 0 for some k, we get the desired result that qR ≥ 1.
The inequality qR ≥ 1 actually holds separately for the contributions to qR

from positive monopole charges ai,k as well as the contribution from negative
ones. So a monopole operator of qR = 1 has all ai,k non-negative or all ai,k

non-positive.

We further see that in order to get qR = 1, we must have all ai,k = 0
unless the ith node is balanced, that is, unless ei = 0. So to study monopole
operators of qR = 1, we can restrict ourselves to quivers in which every node
is balanced. Moreover, we can assume that the set of nodes with non-zero
charge is connected. Otherwise, each component would contribute at least
1 to qR.

So now we want to consider a connected linear quiver with every node
balanced. We want to determine exactly which monopole operators with
non-zero charge at each node have qR = 1. For this, a slight generalization
of the above inequalities is useful. Obviously, the inequality (2.26) has a
“mirror image,”

Bi ≥ −
ni∑

k=1

ai,k(ni − k + 1) −

ni+1∑

t=1

ai+1,t(ni+1 − t). (2.29)

Now after picking a node s, to get a lower bound on
∑

i Bi, we use the
mirror image inequality for i < s and the original one for i ≥ s. The result
is a slightly modified inequality for qR:

qR ≥
P−1∑

i=1

ei

2

ni∑

k=1

ai,k +

n1∑

k=1

a1,k(n1 − k) +

ns∑

k=1

as,k +

nP−1∑

k=1

aP−1,k(nP−1 − k).

(2.30)

Now we see to get qR = 1, it must be that at each value of s in the reduced
quiver, the monopole charges take the form as,k = (0, 0, . . . , 0, 1).

The complete set of monopole operators with qR = 1 is therefore easy
to describe. Let bi =

∑
k ai,k. A monopole operator of qR = 1 is completely

determined by the bi. The reduced quiver is supported in a range i0 ≤ i ≤ i1
for some i0, i1. The bi (and ai,k) vanish outside this range, and in the range
the bi are all 1, or all −1.

We want to argue that for a linear quiver with P − 1 consecutive balanced
nodes, the classical symmetries of the Coulomb branch combine with the
monopole operators to generate an SU(P ) symmetry group. The classical
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symmetries of the Coulomb branch, acting by translations of dual photons,
are an abelian group that we will call U(1)P−1

φ .

We identify the group U(1)P−1
φ with the maximal torus of SU(P ). Its

action on a monopole operator can be read off from the charges bi. The
simple roots of SU(P ) correspond to monopole operators with only a single
bi equal to 1, and the rest vanishing. The other monopole operators of
qR = 1 furnish the other roots of SU(P ).

So a string of P − 1 balanced nodes in any quiver with a standard IR
limit leads to an SU(P ) symmetry of the Coulomb branch. More generally,
the symmetry of the Coulomb branch for any good linear quiver is as fol-
lows. Every unbalanced node with ei > 0 contributes a U(1) factor. Every
sequence of P − 1 balanced nodes contributes a factor SU(P ).

These results can also be obtained from mirror symmetry. To have P − 1
successive balanced nodes in a linear quiver means that P consecutive NS5-
branes have the same linking number. In the mirror, the P dual D5-branes,
since they have the same linking number, are located in the same D3-brane
segment. They can be taken to be located at the same point in space and
therefore generate a U(P ) symmetry, of which the center may act trivially,
depending on the details of the quiver. We factor U(P ) as SU(P ) × U(1).
Every cluster of D5-branes at the same location gives a U(1) factor in the
symmetry group (one overall diagonal U(1) decouples), and in addition every
cluster of P > 1 D5-branes gives an SU(P ) factor.

Now we would like to analyze “ugly” and “bad” quivers. We call a quiver
ugly if the smallest value of qR is 1/2, so that there can be a standard infrared
limit, but it must have free twisted hypermultiplets. And we call a quiver
bad if there are monopole operators of qR ≤ 0, so that a standard infrared
limit is not possible. For example, any quiver with a node of ei ≤ −2 is bad,
since there exist monopole operators with charges only at that node and
qR ≤ 0. So an ugly quiver has ei ≥ −1 for all nodes. An ugly linear quiver
has at least one of the ei equal to −1. We call a node with ei = −1 minimally
unbalanced. We will mainly be concerned with linear quivers with a single
minimally unbalanced node, and ei ≥ 0 for all other nodes. These quivers
turn out to be always ugly.8

8Quivers with more than one minimally unbalanced node can be either ugly or bad.
For example, a linear quiver with two nodes of e = −1 connected by a chain of balanced
nodes is bad, since one can explicitly exhibit a monopole operator of qR = 0. A linear
quiver in which all nodes have ei ≥ −1 and every two nodes of e = −1 are separated by
a node of e > 0 is ugly. This can be shown by further use of the inequalities (2.26) and
(2.29).
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Let the minimally unbalanced node of such a quiver be at position s0.
Consider the inequality (2.30) for s = s0:

qR ≥
∑

i�=s0

ei

2

ni∑

k=1

ai,k +

n1∑

k=1

a1,k(n1 − k) +
1

2

ns0∑

k=1

as0,k +

nP−1∑

k=1

aP−1,k(nP−1 − k).

(2.31)

qR may be 1/2 only if as0,k is of the usual form (0, 0, . . . , 0, 1) and any node
with ei > 0 has charge zero. Suppose that there are P1 − 1 consecutive
balanced nodes to the left of s0 and P2 − 1 consecutive balanced nodes on the
right. To get qR = 1/2, the inequality (2.30) for each balanced node forces
the charges at that node to be of the usual form ai,k = (0, 0, . . . , 0, bi) with
bi = 0, 1. The nodes with non-zero monopole charge must form a connected
set for the same reason as before (or we will get qR ≥ 3/2). There are P1P2

such monopoles, associated with all possible reduced quivers supported in
a range i0 ≤ i ≤ i1 for some i0, i1 with i0 ≤ s0 ≤ i1. All these monopoles
actually have qR = 1/2.

There are several ways to construct monopoles with qR = 1. The ones
with zero charge at the minimally unbalanced node combine with the classi-
cal symmetries at the balanced nodes to give a SU(P1) × SU(P2) symmetry
group. The P1P2 monopoles of charge qR = 1/2 carry the weights of a bifun-
damental representation of this SU(P1) × SU(P2) symmetry group. As the
monopoles of charge qR = 1/2 are expected to flow to free twisted hypermul-
tiplets in the infrared, we expect a full Sp(2P1P2) symmetry group acting
only on them. Apart from this, there may be symmetries which act triv-
ially on the free twisted hypermultiplets. Indeed many more monopoles of
charge qR = 1 can be found which have non-zero charges at the unbalanced
node. The full analysis of the symmetry group is complicated and depends
on the ni.

3 S-duality for U(n) boundary conditions

We will now use the brane constructions reviewed and analyzed in the last
section to study S-duality of boundary conditions in U(n) gauge theory.
Before considering examples, we make a few general remarks.

The duality transformation S : τ → −1/τ exchanges D5-branes and NS5-
branes. To ensure that the class of brane configurations we consider is
S-invariant (rather than being mapped by S to a different but equivalent

class), we accompany S with a rotation that exchanges �X and �Y . The
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R-symmetries of Higgs and Coulomb branches are SO(3)X and SO(3)Y ,
respectively, so S exchanges Higgs and Coulomb branches.

The analyses of S-duality of brane configurations will almost always
depend on the freedom to move D5-branes in the y-direction. The pre-
cise positions of the D5-branes are irrelevant in, but only in, the infrared
limit. For this reason, brane methods are natural for studying S-duality of
infrared critical points.

Focusing on critical points is not a real limitation. Once one estab-
lishes S-duality between two conformally invariant boundary conditions, one
can expect to follow the duality after turning on relevant operators on the
boundary.

The IR limits that are naturally studied via branes are standard IR limits
in the sense of Section 2.4 — superconformal critical points at which the R-
symmetry is the one seen in the ultraviolet. The ultraviolet R-symmetry is
the R-symmetry that is visible in a brane configuration and whose behavior
under S-duality is known. However, some constructions depend on global
symmetries (as opposed to R-symmetries) that only exist in the IR limit.

Some final remarks mainly concern notation. We will generically write B
for a boundary condition, and B for a boundary SCFT. An important special
case is that B might be constructed from Neumann boundary conditions
coupled to some boundary SCFT B. Then we say that B is the boundary
condition associated to B. (It is not true that every boundary condition
is associated in this way to a boundary theory, since other ingredients —
Nahm poles and reduction of gauge symmetry — can also enter.) If G is a
compact group, we write G∨ for its dual group. If B is a boundary condition
in G gauge theory, then the S-dual of B is a boundary condition in G∨

gauge theory; we denote this S-dual as B∨. If B∨ is obtained by coupling
Neumann boundary conditions to a boundary SCFT, then we denote this
SCFT as B∨.

An important point is that B∨ is not the S-dual of B. Such a statement
would not even make sense, since S-duality is an operation on
four-dimensional field theories, while B and B∨ (when they exist) are three-
dimensional SCFTs. There is, however, an operation of mirror symmetry
for three-dimensional SCFTs [8] that is closely related to four-dimensional
S-duality. The mirror of a three-dimensional SCFT B is a theory that we

will call B̃, obtained by exchanging the Higgs and Coulomb branches of B.

It turns out that when B∨ exists, it is possible to construct its mirror B̃∨

directly from B. Explaining this will be one of our main goals. But first we
will work out a number of examples.
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3.1 U(1) examples

We begin with the case of a single D3-brane. This means that the bulk
gauge group is G = U(1), and that electric–magnetic duality in bulk can
be explicitly understood. It maps the field strength F to a multiple of ⋆F ,
where ⋆ is the Hodge star.

3.1.1 Dirichlet and Neumann

The simplest statement of all is that Dirichlet boundary conditions are dual
to Neumann boundary conditions. Dirichlet boundary conditions assert that
Fμν = 0 on the boundary, where μ, ν = 0, 1, 2 are tangent to the boundary, or
more succinctly F | = 0. Neumann boundary conditions assert that Fμ3 = 0
on the boundary, or more succinctly ⋆F | = 0. These two conditions are
exchanged via F ↔ ⋆F .

The corresponding brane picture is simple (figure 6). Dirichlet boundary
conditions arise for a D3-brane ending on a D5-brane, and Neumann bound-
ary conditions arise for a D3-brane ending on an NS5-brane. For a direct
path integral explanation of the duality of Dirichlet and Neumann for U(1),
see Section 4.4.

What we have just described involves practically the only example of a
half-BPS boundary condition B in U(1) gauge theory that is not associated
with coupling to a boundary SCFT B. For the abelian group G = U(1),
there is no room for a Nahm pole. A reduction of gauge symmetry would
necessarily reduce U(1) to a finite group. The Dirichlet boundary conditions
that we have just analyzed are the ones that reduce U(1) to the trivial
subgroup consisting only of the identity. Reduction to a finite subgroup is
equivalent locally to Dirichlet (and our concerns in this paper are purely
local). So in our further study of U(1) gauge theory, we can assume that

Figure 6: The most basic boundary conditions in U(1) gauge theory are
Dirichlet and Neumann. These arise for a single D3-brane ending on a D5-
brane, as in (a), or an NS5-brane, as in (b).
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the boundary condition B and its S-dual B∨ are associated to boundary
SCFT’s B and B∨.

3.1.2 Coupling to a boundary hypermultiplet

The next example is more interesting. We consider a U(1) gauge field with
Neumann boundary conditions coupled to a charged hypermultiplet on the
boundary. We take the hypermultiplet to have charge 1 as that is the only
value that we can conveniently get from branes. As in figure 7, we realize
this boundary condition by letting a D3-brane pass through a D5-brane at
y = L and end on an NS5-brane at y = 0. The boundary condition arises
in the limit L → 0, but the advantages of starting with L > 0 will become
clear, especially when we get to the non-abelian case.

In figure 7(a), the D5-brane and NS5-brane both have linking number 1.
So the dual will be precisely the same configuration. To see in more detail
how this comes about, we first make naive S-duality, turning the D5-brane

into an NS5-brane and vice versa, while exchanging �X and �Y . This gives
the configuration of figure 7(b). A D3-brane passes through the NS5-brane
and ends on the D5-brane. Then we move the D5-brane to the right of the
NS5-brane. When it crosses the NS5-brane, a new D3 segment connecting
the two fivebranes is created, according to [15]. So we get back to the
configuration of figure 7(a).

Thus, a boundary condition B consisting of Neumann boundary condi-
tions coupled to a charge 1 hypermultiplet is self-dual. One might naively
argue that this is so simply because B was constructed from one D5-brane
and one NS5-brane, which are exchanged by duality. But the crucial point
is really that the linking numbers were the same. This will be particularly
clear when we get to non-abelian examples.

To elucidate the physical meaning of the S-duality of B, it is useful to
move away from the conformal fixed point by giving expectation values to

the scalar fields �X or �Y along the D3-brane. In the original configuration of

figure 7(a), if we give an expectation value to �Y , this causes the D3-brane
to move along the NS5-brane so that it no longer intersects the D5-brane.
Hence, the electrically charged hypermultiplet acquires a mass. Therefore,

S-duality implies that if we give an expectation value to �X, we should see
a massive hypermultiplet of magnetic charge 1.

If we give an expectation value to �X, then the brane configuration of
figure 7(a) is deformed to the configuration sketched in (c). The D3-brane
splits at the D5-brane; the two fivebranes are connected by a finite D5-brane
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Figure 7: (a) A brane configuration, made from a D3-brane interacting with
one D5-brane and one NS5-brane, that leads to U(1) gauge theory coupled to
a boundary hypermultiplet of charge 1. This boundary condition is self-dual,
because the fivebranes both have linking number 1. (b) A naive application
of S-duality turns the configuration of (a) into the one sketched here. Upon
moving the D5-brane to the right of the NS5-brane, we get back to (a),
an outcome that is ensured because the two fivebranes have equal linking
numbers. (c) Starting with (a) and displacing the D3-brane at infinity in

the �X direction, the D3-brane “breaks” and we arrive at the configuration
indicated here.

segment. From a field theory point of view, what is happening is the follow-
ing. The charged hypermultiplet at y = 0 has a hyper-Kahler moment map
�μ. The boundary condition for a vector multiplet with Neumann boundary
conditions coupled to boundary hypermultiplets is

�X(0) + �μ = 0 (3.1)

according to equation (2.33) of [1]. Therefore, when we give �X an expec-
tation value, we force a Higgsing of the U(1) gauge symmetry, so as to get
�μ �= 0. This Higgsing occurs only on the boundary, because that is where the
charged fields are. A spontaneously broken U(1) gauge theory in two space
dimensions has vortices; in the field of a vortex, there is a unit of magnetic
flux integrated over a spatial section of the boundary. By flux conservation
in abelian gauge theory, the magnetic flux measured at spatial infinity is
the same, and therefore in 3 + 1 dimensions this configuration looks like a
magnetic monopole of charge 1, localized at the boundary.

Supersymmetry is broken if we give expectation values to both �X and
�Y , because turning on �Y gives a mass to the boundary hypermultiplet, and

turning on �X forces this hypermultiplet to have an expectation value. From
the point of view of branes, for a supersymmetric configuration, the D3-

brane must end on one of the fivebranes, and so must be located at �X = 0

or �Y = 0.

3.1.3 Two boundary hypermultiplets

Our next example will be a U(1) theory coupled to two boundary hypermul-
tiplets of charge 1. The brane configuration and the steps in understanding
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Figure 8: (a) A brane configuration that leads to a U(1) theory coupled to
two boundary hypermultiplets. (b) The naive S-dual. (c) A standard form
of the S-dual after some rearrangement.

its S-duality are sketched in figure 8. Each fivebrane has linking number
1. Starting with configuration (a), the naive S-dual is (b), and a brane
rearrangement that preserves the linking numbers brings us to (c), which is
more easily interpreted.

This gives us our first example in which the S-dual B∨ of a boundary
condition B involves a coupling of four-dimensional gauge theory to a non-
trivial three-dimensional boundary SCFT B∨. In figure 8(c), there is a U(1)
gauge theory in the D3-brane segment connecting the two NS5-branes. From
a three-dimensional point of view, the U(1) gauge theory is coupled to two
hypermultiplets of charge 1. One comes from the intersection of the D3-
brane with the D5-brane and one from the interaction with the semi-infinite
D3-brane on the right. The second hypermultiplet is also charged under
the bulk U(1) gauge theory. U(1) gauge theory with two hypermultiplets
was discussed in Section 2.4.1. It has a standard IR limit consisting of a
non-trivial SCFT, which we have called T (SU(2)). So the dual of U(1)
theory coupled to two boundary hypermultiplets is U(1) theory coupled to
B∨ = T (SU(2)). To make this statement precise, one must describe how
U(1) is coupled to T (SU(2)). The relevant coupling is simply derived from
the fact that before the infrared flow, one of the two hypermultiplets of
figure 8(c) has charge 1 under the bulk gauge group and one is neutral.
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Figure 9: The conformal field theory T (SU(2)) can be realized by the brane
configuration of (a). All fivebranes have linking number 1, which implies the
self-mirror property. Naive S-duality leads to (b), and brane rearrangement
leads back to the mirror theory (a).

The theory T (SU(2)), which will play an important role in this paper,
has9 Higgs and Coulomb branches that are both of hyper-Kahler dimension
1. And there is a mirror symmetry [8] that exchanges the two branches. As
summarized in figure 9, the mirror symmetry can be established by the same
sort of brane manipulations that we are using to analyze boundary condi-
tions. Some key aspects of this mirror symmetry picture are as follows. The
Higgs branch has an SU(2) flavor symmetry that is obvious classically; the
Coulomb branch, as described in Section 2.4.1, has a manifest U(1) global
symmetry (translations of the dual photon) that is extended to SU(2) in the
infrared. So the global symmetry is really SU(2) × SU(2), with one factor
acting on each branch. In the absence of hypermultiplet bare masses and
Fayet–Iliopoulos (FI) parameters, each branch is a copy of R

4/Z2, with an
A1 singularity at the origin; the two branches meet at their common singu-
larity, which is a superconformal critical point (figure 10). If FI parameters
are turned on, the Coulomb branch disappears and the singularity of the
Higgs branch is resolved. If bare masses are turned on, the Higgs branch
disappears and the singularity of the Coulomb branch is resolved. Mirror
symmetry exchanges the two sets of parameters.

Figure 10: In a superconformal field theory with N = 4 supersymmetry, the
Higgs and Coulomb branches are both conical, and meet at their common
origin. In general, there may also be mixed Higgs–Coulomb branches.

9The dimension of the Higgs branch is the difference between the numbers of hyper-
multiplets and vector multiplets; the dimension of the Coulomb branch is the rank of the
gauge group.
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Going back to figure 8(a), even when the vacuum is fixed at infinity by

requiring that �X and �Y vanish, the theory still has a moduli space of vacua
that depends on the hypermultiplet expectation values. From the point of
view of the brane picture, this is so because the D3-brane segment between

the two D5-branes is free to move in the �X direction. In the description by
U(1) gauge theory coupled to two boundary hypermultiplets, we can reason

as follows. In this description, supersymmetry requires that �X is indepen-

dent of y, and so �X(0) equals the value of �X at infinity. (In non-abelian

gauge theory, �X would obey Nahm’s equations, as described in [1], but for

G = U(1), these equations merely say that �X is constant.) In addition, we

have the boundary condition �X(0) + �μ = 0, where �μ is the moment map of
the fundamental hypermultiplets. After also dividing by G the space Z ∼= R

8

that parametrizes the two hypermultiplets, the moduli space of vacua is the
hyper-Kahler quotient Z///U(1). This quotient is the A1 singularity R

4/Z2

if �X(0) = 0; otherwise, it is a resolution of this singularity. If we take �Y

to be non-zero at infinity, the D3-brane is displaced in the �Y direction, the
hypermultiplets become massive, and this branch of vacua disappears.

Of course, these statements must have an analog in the S-dual theory of
figure 8(c). First we might look for a Higgs branch in the S-dual theory.
Just as in the last paragraph, such a Higgs branch would come by taking
the hyper-Kahler quotient by G = U(1) of the Higgs branch of the conformal
field theory T (SU(2)). However, the Higgs branch of that SCFT is R

4/Z2,
and its hyper-Kahler quotient by U(1) is trivial. On the other hand, the
Coulomb branch of the SCFT does not couple directly to the bulk gauge
theory and survives the coupling of the U(1) symmetry of the SCFT to
the bulk gauge fields. This is visible in figure 8(c); the D3-brane segment
that connects the two NS5-branes is free to move independently of the semi-
infinite D3-brane. The Coulomb branch disappears if we give an expectation

value to �X at infinity, because those are FI parameters that force the hyper-

multiplets to have expectation values. (An expectation value of �X causes a
brane reconnection similar to that in figure 8(c), and the brane modulus dis-

appears.) An expectation value for �Y at infinity gives a hypermultiplet bare
mass and modifies the geometry of the Coulomb branch. These statements
are S-dual to the statements in the last paragraph.

3.1.4 Generalization

A natural generalization of the previous example is to introduce n boundary
hypermultiplets of charge 1. We represent this via a single D3-brane pass-
ing through n D5-branes and ending on an NS5-brane (figure 11(a)). All
linking numbers equal 1. The S-dual brane configuration has n NS5-branes
and one D5-brane. Since the D5-brane has linking number 1, in the dual
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Figure 11: (a) A brane configuration representing a U(1) theory with n
boundary hypermultiplets of charge 1. All linking numbers are 1. (b) The
S-dual configuration, after a standard rearrangement. All linking numbers
are again 1. (c) The quiver corresponding to the SCFT that arises from
the infrared limit of the dual configuration. The hypermultiplet at one end
comes from the D3–D5 intersection, and the hypermultiplet at the other
end comes from the interaction of the rightmost D3-brane segment with the
semi-infinite D3-brane.

configuration (figure 11(b)), it is to the right of just one NS5-brane. The
first NS5-brane has linking number 1, and no D5-branes to the left; hence a
single D3-brane must end on it. All the other NS5-branes have a D5-brane
to the left; hence to make the linking numbers equal 1, no net D3-branes
end on them.

In the infrared limit, the dual configuration corresponds to U(1) gauge
theory coupled to a boundary SCFT B∨ that is the IR limit of a well-
known quiver, shown in figure 11(c). (This is sometimes called a quiver
of type An−1.) It has a Higgs branch of hyper-Kahler dimension 1 and a
Coulomb branch of hyper-Kahler dimension n − 1. The Higgs branch can
be computed classically, and is the An−1 singularity R

4/Zn, according to
a well-known result of Kronheimer. The Coulomb branch is most easily
determined by mirror symmetry. In fact, the theory B∨ is part of one of
the original examples of a mirror pair in three dimensions [8]. Its mirror is

another theory B̃∨ that arises from the infrared limit of U(1) coupled to n

hypermultiplets of charge 1. The Higgs branch of B̃∨ and therefore Coulomb
branch of B∨ have an SU(n) flavor symmetry, which is S-dual to the flavor
symmetry of the n hypermultiplets in the original boundary condition. (In
fact, it can be shown that as a complex manifold, this Higgs or Coulomb
branch is isomorphic to the minimal nilpotent orbit of SL(n, C).)
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Figure 12: (a) This four-dimensional picture, with Neumann boundary con-
ditions coupled to a three-dimensional theory B at one end and pure
Neumann boundary conditions at the other end, flows in the IR to the
three-dimensional theory B′. (b) The S-dual configuration has Dirichlet
boundary conditions on the right and on the left a coupling to a boundary
theory B∨ that provides the boundary condition that is S-dual to the one
determined by B. Dirichlet boundary conditions have the effect of turning
off the gauge couplings on the interval, and the infrared limit is simply the
three-dimensional theory B∨. Hence B′ is mirror to B∨.

The reader may notice a resemblance between the three-dimensional the-

ory B̃∨ and the original boundary condition that we started with. They
involve the same n hypermultiplets coupled to four-dimensional or three-
dimensional gauge fields. Explaining this resemblance will lead to one of
the main ideas of this paper.

To formalize what is going on, we start with a boundary condition in
four-dimensional U(1) gauge theory obtained by coupling to some boundary
theory B. In our example, B is the theory of n free hypermultiplets.

B has a U(1) global symmetry that is used in coupling it to four-
dimensional gauge fields. By means of the same U(1) global symmetry,
we could instead couple B to three-dimensional gauge fields. If the coupled
theory has a standard IR limit, this limit is a new three-dimensional theory
B′. We claim that in fact, B′ is the mirror of B∨, the SCFT that defines
the S-dual boundary condition B∨.

This can be deduced as follows. The three-dimensional theory B′ can
be obtained from the boundary condition B by taking the D3-brane that
generates the U(1) gauge symmetry to be of finite extent in the y = x3

direction. We take boundary conditions B at y = 0, and Neumann boundary
conditions at y = L (figure 12(a)). At low energies or for L → 0, the gauge
fields become effectively three-dimensional and we get the three-dimensional
theory B′.

On the other hand, we can apply S-duality to this configuration. The
boundary condition B is replaced by its S-dual B∨, and the Neumann bound-
ary conditions at y = L are replaced by Dirichlet (figure 12(b)).
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Because of the Dirichlet boundary conditions at one end, the gauge fields
on the segment are massive. So although the theory B∨ appears to have been
coupled to gauge fields, at low energies it is effectively ungauged. Hence the
configuration of figure 12(b) just leads to the three-dimensional theory B∨.

The S-duality operation that relates figures 12(a) and (b) is mirror sym-
metry from a three-dimensional point of view, since this operation exchanges
�X and �Y and therefore exchanges Higgs and Coulomb branches. So the con-
clusion is that the relation between B and B∨ is that B′ is the mirror of B∨.

In the case that B and B∨ are realized by branes, the brane manipulations
that relate them are equivalent, after adding an extra fivebrane at y = L (to
give Dirichlet or Neumann boundary conditions in figure 12), to the brane
manipulations used to show mirror symmetry between B′ and B∨.

Now let us assess what we actually learn from this construction. To
understand S-duality of a boundary condition B, what we really want is to
describe the boundary SCFT B∨ associated to the dual boundary condition
B∨. By coupling B to a three-dimensional U(1) gauge field B, we have an

explicit way to construct B̃∨, the mirror of B∨, starting directly with B.

From an abstract point of view, constructing the mirror B̃∨ is just as good

as constructing B∨. We simply declare that B∨ is the same as B̃∨ but with
Higgs and Coulomb branches exchanged.

To make this answer useful, we want to make concrete how to couple a
four-dimensional U(1) gauge theory, with gauge field A, to B∨. We must
couple A to the U(1) symmetry of the Higgs branch of B∨, but by definition

the Higgs branch of B∨ is the Coulomb branch of B̃∨. The U(1) isometry

of the Coulomb branch of B̃∨ comes from a shift in the scalar dual to
the three-dimensional gauge field B. The conserved current generating this
symmetry is simply J = ⋆dB, and the coupling AμJμ of another gauge field
A to this current is simply a Chern–Simons-like coupling A ∧ dB. In the
present case, since A is a four-dimensional gauge field, while B is defined
only on the boundary, the appropriate interaction is a coupling between B
and the restriction of A to the boundary:

1

2π

∫

y=0
A ∧ dB. (3.2)

This coupling has an extension that has N = 4 supersymmetry in the three-
dimensional sense.

To give this description of the dual boundary theory B∨, we did not have
to come to grips with mirror symmetry in any serious way. The reason
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for this was that in abelian gauge theory, the symmetries of the Coulomb
branch are visible classically and one can write the explicit classical coupling
(3.2). Non-abelian gauge theory is completely different; there is a procedure
similar to what we have just described for finding the mirror of B∨, but the
relevant symmetries of its Coulomb branch are hard to see without coming
to grips with mirror symmetry.

With some care about the definitions, the exchange of Dirichlet and Neu-
mann boundary conditions can also be understood as a special case of the
above procedure. We will say more about this in the non-abelian case, where
the exceptions are more numerous.

As a final comment, we want to explain why the above description of the
action of S-duality on boundary conditions is consistent with the fact that
S2 should be the identity. The operation that goes from B to B′ can be
described as follows. B by definition is a three-dimensional theory with a
U(1) symmetry, generated by a current that we may call J . To define B′, we
gauge the U(1) symmetry of B by coupling J to a U(1) gauge field B. This
gives a new theory B′ with a new conserved current J ′ = ⋆dB and therefore
also a U(1) symmetry. The operation that goes from (B, J) to (B′, J ′) has
been considered before [22]; its square is indeed the identity.

3.2 U(2) examples

For G = U(2), we can construct three kinds of examples from branes. U(2)
may be completely broken by the interaction with D5-branes, it may be
broken to a U(1) subgroup that then couples to a boundary theory, or it
may couple directly to a boundary theory. We will analyze all three cases.

3.2.1 Complete breaking by D5-branes

As reviewed in [1], a configuration of two D3-branes ending on the same
D5-brane (figure 13(a)) leads to a boundary condition for U(2) gauge the-

ory in which the scalar fields �X(y) have a singularity at y = 0 of the form
�X ∼ �t/y, where �t are the images of standard su(2) generators under the
obvious embedding ρ : su(2) → u(2). This breaks U(2) to its center U(1)
and the U(1) gauge fields obey Dirichlet boundary conditions. The S-dual
of this corresponds to Neumann boundary conditions (figure 13(b)), with
two D3-branes ending on a single NS5-brane. Both of these boundary con-
ditions respect the factorization of the U(2) theory as a local product of
SU(2) and U(1) theories. The boundary conditions for U(1) are the usual
Dirichlet/Neumann pair, while for SU(2), the boundary condition on one
side is determined by the Nahm pole, and on the other side is Neumann.
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Figure 13: (a) Two D3-branes ending on a single D5-brane, leading to a

boundary condition involving a pole in �X. (b) The dual configuration: two
D3-branes ending on a single NS5-brane, leading to Neumann boundary
conditions.

Figure 14: (a) Two D3-branes ending on two D5-branes. (b) The S-dual
configuration, which describes U(2) gauge theory coupled to a non-trivial
boundary SCFT. To establish the S-duality, one observes that in each pic-
ture, all linking numbers are 1. (c) The boundary SCFT is T (SU(2)), the
infrared limit of U(1) coupled to two charged hypermultiplets (which in
(b) arise from interaction of the D3-brane segment with the semi-infinite
D3-branes).

To get Dirichlet boundary conditions for the full U(2) group, we need
to consider a configuration in which two D3-branes end on two D5-branes
(figure 14(a)). As usual, we displace the D5-branes slightly in the y direc-
tion, and then the S-dual configuration is straightforward to describe (fig-
ure 14(b)). It does not consist of standard Neumann boundary conditions
for U(2) gauge theory, which we already encountered in the last paragraph.
Rather, we get Neumann boundary conditions modified by coupling to a
certain boundary SCFT. The relevant SCFT can be read off from the fig-
ure. It is the infrared limit of U(1) coupled to two charge 1 hypermultiplets,
and thus is actually the self-mirror theory T (SU(2)) that we have already
encountered more than once.
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Several remarks are in order:

(1) The flavor symmetry of U(1) with two hypermultiplets of charge 1 is
SU(2), not U(2) (a U(1) flavor rotation is equivalent to a gauge transforma-
tion). Accordingly, the flavor symmetry of the Higgs branch of T (SU(2)) is
SU(2) rather than U(2), as is also clear from the fact that this branch
is R

4/Z2. As the theory is self-mirror, SU(2) is also the symmetry of
the Coulomb branch, which is also R

4/Z2, so the full global symmetry is
SU(2) × SU(2). So the U(1) part of U(2) = SU(2) × U(1) does not cou-
ple to T (SU(2)) and in the above construction it simply obeys Neumann
boundary conditions. The coupling of the SU(2) gauge theory to T (SU(2))
removes one of the SU(2) symmetries of that theory. The other one matches
with the global symmetry of SU(2) gauge theory with Dirichlet boundary
conditions.

(2) We recall from [1] that the U(2) gauge theory with Dirichlet bound-

ary conditions, even after one fixes �X and �Y to vanish at infinity, has a
moduli space of vacua given by the space of solutions of Nahm’s equations.
Moreover, this space is the nilpotent cone of SL(2, C), or equivalently is
the A1 singularity R

4/Z2. In the present construction, that moduli space
matches the Coulomb branch of the boundary theory T (SU(2)). Before S-
duality, R

4/Z2 is the moduli space of solutions of Nahm’s equations, and
after S-duality, it is the Coulomb branch of the boundary theory.

3.2.2 Breaking to U (1)

To construct a boundary condition B that reduces the gauge group from U(2)
to U(1), we end one D3-brane on a D5-brane and let the second D3-brane
end on a brane system which defines Neumann boundary conditions, possibly
coupled to a boundary theory BU(1) with U(1) symmetry. In figure 15, we

denote this generic boundary system by the symbol
⊕

, and we write
⊕′ for

its S-dual. We assume that
⊕′ is U(1) coupled to some boundary theory

B∨
U(1) with U(1) symmetry.10 To get the S-dual of B, we apply S-duality

to the whole picture, arriving at figure 15(b). Now the boundary theory
is a composite, which we will call B∨

U(2); it is obtained (figure 15(c)) by

coupling a three-dimensional U(1) gauge theory both to B∨
U(1) and to two

hypermultiplets of charge 1, which also have a U(2) flavor symmetry. In
this discussion, we did not really need to know that

⊕
can be realized by

branes; it could be any boundary condition in U(1) gauge theory, with
⊕′

as the dual boundary condition.

10 As explained at the end of Section 3.1.1, this is so except in one case: if
⊕

corre-
sponds to pure Neumann boundary conditions with no boundary matter fields, then its
dual is Dirichlet. We will discuss this exceptional case in Section 3.2.3.
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Figure 15: (a) Two D3-branes, one of which ends on a D5-brane, while
the second then ends with Neumann boundary conditions coupled to some
matter system. This boundary condition is indicated by the symbol

⊕
. (b)

The dual configuration;
⊕′ is the S-dual of the boundary condition

⊕
in

U(1) gauge theory. (c) A schematic representation of the dual boundary
condition as a quiver. B∨

U(1) is the boundary theory associated with the

boundary condition
⊕′ in U(1) gauge theory.

As in our analysis of U(1) theories, a convenient way to study the theory
B∨

U(2) is to ungauge the U(2) symmetry, by terminating the two D3-branes

on the right on a pair of D5-branes, giving Dirichlet boundary conditions
(figure 16(a)). Since we have ungauged the symmetry, the infrared limit of
this configuration is simply the three-dimensional theory B∨

U(2). The S-dual

configuration is shown in figure 16(b) and after a brane rearrangement to
obey our rules, we arrive at figure 16(c). The infrared limit of this con-

figuration gives the mirror B̃∨
U(2) of B∨

U(2). It is again a composite theory,

sketched in figure 16(d). A simple interpretation of this theory is that we
have coupled a U(1) gauge field C to BU(1) (the original boundary theory
associated with the configuration

⊕
) and to a U(1) subgroup of the fla-

vor symmetry of T (SU(2)). The Coulomb branch of the composite theory
has a U(1) global symmetry (translations of the scalar field dual to C) and
an SU(2) global symmetry (acting on the Coulomb branch of T (SU(2))).
These combine to the U(2) symmetry of B∨

U(2).

The theory B̃∨
U(2) is explicitly constructed and the desired boundary con-

dition is constructed from its mirror B∨
U(2). We could simply define B∨

U(2)

as B̃∨
U(2) with the Higgs and Coulomb branches exchanged. However, to

explicitly construct a boundary condition in U(2) gauge theory, we need
to be able to see the U(2) currents that act on the Coulomb branch of
B∨

U(2). Unfortunately, in the construction of B∨
U(2), only the currents of a

Cartan subalgebra are realized as classical symmetries; the other currents
are monopole or vortex operators [6,7], as described in Section 2.4. Though
later in the paper, this will be a problem in making some of the constructions
explicit, in the present example, we can circumvent the problem with a trick.
In figure 16(d), we have gauged a U(1) symmetry of the Higgs branch of
T (SU(2)). Since T (SU(2)) is self-mirror, we could equivalently have gauged
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Figure 16: (a) The three-dimensional theory B∨
U(2) can be recovered by

ungauging the gauge symmetry with the help of Neumann boundary condi-
tions. (b) The naive S-dual configuration. (c) A well-ordered rearrangement;
the D5-brane has been moved to the right to satisfy the usual conditions. (d)
A quiver that schematically represents the configuration of (c); its infrared
limit is the mirror of B∨

U(2). The symbol
⊕

has been replaced by a cou-

pling to the corresponding boundary theory BU(1). (e) A variant of the
quiver that makes the global symmetries visible. The dotted line indicates
a Chern–Simons coupling between the two U(1) theories represented by the
circles. (This coupling is the supersymmetric completion of equation 3.2.)

a U(1) symmetry of its Coulomb branch. This we can do explicitly, since
the abelian symmetries of the Coulomb branch are visible classically, and
when we do that, we are left with the visible SU(2) symmetries of the Higgs
branch. The resulting description of B∨

U(2) is sketched in figure 16(e).

For G = U(1), we had an analogous description of the dual boundary
condition involving mirror symmetry. There was no problem because the
symmetries of the Coulomb branch were visible classically.

3.2.3 Full U (2) gauge symmetry at the boundary

The most basic boundary condition with full U(2) gauge symmetry at the
boundary is Neumann. We have already encountered this boundary
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Figure 17: (a) This configuration leads to U(2) gauge theory coupled to a
fundamental hypermultiplet at the boundary. (b) The S-dual configuration,
in which one D3-brane ends on a D5-brane, reducing the gauge symmetry
to U(1), and then the second ends on an NS5-brane, leading to Neumann
boundary conditions.

condition as the dual of the Nahm pole. We want to explore what hap-
pens if we add matter at the boundary.

As in our treatment of G = U(1), we begin by adding a fundamental
hypermultiplet at the boundary. The S-dual can be found in the standard
way (figure 17) and turns out to be the exceptional case mentioned in foot-
note 10 of a theory in which the gauge symmetry is reduced to U(1) at the
boundary and the boundary theory B∨

U(1) is trivial (so that the U(1) vector

multiplet simply obeys Neumann boundary conditions).

In figure 16(d), we gave a general recipe for analyzing the S-dual of any
U(2) boundary condition that involves reduction of gauge symmetry to U(1)
and coupling to a non-trivial boundary theory BU(1) with U(1) symmetry.
(The role of non-triviality is to avoid the exceptional behavior mentioned in
footnote 10.) Now that we know what the S-dual is for the case that BU(1) is
trivial, it is interesting to compare the answer to what we would get from the
general recipe. When BU(1) is trivial, figure 16(d) reduces to an ugly quiver
theory in the sense of Section 2.4, and as explained there, it is equivalent to
a theory of two free twisted hypermultiplets, which parametrize its Coulomb
branch. These free twisted hypermultiplets have U(2) (and in fact Sp(4))
symmetry, and can be identified with the fundamental hypermultiplets that
we started with in figure 17(a). So, though it involves grappling with an
ugly quiver, the general recipe works even in the exceptional case that does
not quite fit the original discussion.

Another exceptional case is U(2) coupled to two fundamental hypermul-
tiplets at the boundary (figure 18). The S-dual configuration, shown in (b),
corresponds to Neumann boundary conditions for U(2) coupled to a bound-
ary SCFT B∨ that is a product of two factors. One factor is T (SU(2)), and
the other consists of a fundamental hypermultiplet.

Before completing the analysis of those two exceptional cases, let us look
at a more generic case, such as a boundary coupling to k > 2 fundamental
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Figure 18: (a) U(2) gauge theory with two fundamental hypermultiplets at
the boundary. Linking numbers are indicated. (b) The dual configuration.
The boundary SCFT is the decoupled sum of T (SU(2)) coming from the left
of the picture, and a fundamental hypermultiplet of the bulk U(2), coming
from the D3-D5 intersection.

Figure 19: (a) U(2) gauge theory coupled to k fundamental hypermultiplets
at the boundary. (b) The dual configuration, which is related to a boundary
SCFT B∨. (c) The quiver corresponding to B∨.

hypermultiplets (figure 19). The dual boundary condition can be found
in the usual way and corresponds to a boundary SCFT B∨ that can be
represented by the quiver of figure 19(c).

The mirror to B∨ can also be found in the familiar way. Starting with B∨

coupled to bulk U(2) gauge fields (as in figure 19(b)), we ungauge the U(2)
gauge symmetry by introducing a second boundary with Dirichlet boundary
conditions (figure 20(a)), and take the S-dual (figure 20(b)). We arrive at

a remarkably simple quiver description of the mirror B̃∨ (figure 20(c)). It
has a very simple interpretation: it is described by a three-dimensional U(2)
gauge theory coupled to the original theory B of k free hypermultiplets, and
to T (SU(2)). (The node labeled 2 in the quiver represents a U(2) gauge field
which couples to a bifundamental hypermultiplet of U(2) × U(1) — part of
the definition of T (SU(2)) — and to k fundamental hypermultiplets.)
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Figure 20: To find the mirror to the dual boundary condition B∨, we
ungauge the symmetry, using Dirichlet boundary conditions (a), then take
the S-dual, which is depicted in (b) after a brane rearrangement, and can
be represented as a quiver (c). This quiver describes the mirror of B∨. It is
the mirror of the quiver in figure 19(c), as one can verify by computing the
linking numbers. As is shown schematically in (d), this quiver couples U(2)
gauge theory to the product of T (SU(2)) and k hypermultiplets.

So there is a simple general prescription to go from the starting theory B

to B̃∨, the mirror of the desired boundary theory B∨. We simply couple B to
T (SU(2)) via U(2) gauge fields, as in figure 20(c). We call the theory made
this way the composite gauge theory and denote it as B ×U(2) T (SU(2)):

B̃∨ = B ×U(2) T (SU(2)). (3.3)

Then the “answer” B∨, which determines the S-dual boundary condition,

is the mirror of B̃∨. The only trouble with this answer is that to understand
B∨ as a theory with U(2) global symmetry (so that we can couple it to U(2)
gauge fields), we need to be able to see the U(2) symmetries of the Coulomb
branch of B∨. As usual, only a Cartan subalgebra is visible classically. (In
any three-dimensional gauge theory in which the center of the gauge group
has rank r, a U(1)r symmetry of the Coulomb branch is visible classically,
acting by shifts of the dual photons. In the present example, r = 2 as the
relevant quiver has two nodes. For more on this, see Section 2.4.)

If we could find a realization of T (SU(2)) with manifest SU(2) × SU(2)
global symmetry, then using this in figure 20(c) would give an explicit way to
construct the dual boundary condition. This is not available at the moment.
However, if the original boundary theory B is constructed via branes, then
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the usual D-brane manipulations give a construction of the mirror to B∨

with the relevant symmetries visible, as in figure 19(c) for the case that the
starting theory consists of k fundamental hypermultiplets.

As long as k ≥ 3, the quiver that we have arrived at in figure 20(c) obeys
the constraint nf ≥ 2nc at each node and is a good quiver in the sense of
Section 2.4. This is the condition under which a quiver gauge theory gives
the most economical possible description of whatever infrared critical point
it describes. For k = 2, it is an ugly quiver with one minimally unbal-
anced node and therefore describes free twisted hypermultiplets, times an
additional SCFT. This is reflected in the fact that for k = 2, the S-dual
configuration of figure 18(b) involves coupling to a free fundamental hyper-
multiplet, times T (SU(2)). (The appearance of T (SU(2)) can be argued by
further analysis of the ugly quiver, but we will omit this.)

For k < 2, the quiver is a bad one, with operators of qR ≤ 0 according
to Section 2.4. Not coincidentally, this is also the case that the S-dual
boundary condition has reduced gauge symmetry, possibly with a Nahm
pole. When this is so, our derivation of the quiver is not valid; the starting
point of this derivation was to assume that the dual boundary condition
has full U(2) gauge symmetry. Indeed, the first step in the derivation was
to ungauge the U(2) symmetry by means of Dirichlet boundary conditions.
But for k < 2, the dual boundary condition has reduced gauge symmetry,
as we have seen.

In Sections 3.4 and 4.3.1, we will give another derivation of the recipe
using T (SU(2)) which works for any starting boundary condition. The
details will be more subtle. The main point is that as we flow to the
infrared, the U(2) isometries of B ×U(2) T (SU(2)) may be spontaneously

broken.11 As a result, the S-dual U(2) gauge symmetry will be Higgsed at
the boundary, and reduced to a subgroup in the infrared. Moreover, if the
U(2) isometry at the boundary is spontaneously broken, the hyper-Kahler
moment maps of the isometry group may acquire non-zero expectation val-

ues, which are dimensionful. The boundary conditions �X| + �μ = 0 will then

force the scalar fields �X to acquire non-zero boundary values which diverge
as one flows to the infrared, leading to a Nahm pole.

As a preview of this, we will discuss this symmetry breaking scenario
for our bad quivers with k < 2. These quivers have no Higgs branch (not
even a mixed Coulomb–Higgs branch). They each have a Coulomb branch,

11Such spontaneous breaking cannot occur in a theory that has a standard infrared
critical point, as such a point is always invariant under continuous global symmetries. The
coupling of a conserved current to a Goldstone boson would violate conformal invariance.
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of hyper-Kahler dimension 3. For the question of whether the U(2) global
symmetries of the Coulomb branch are spontaneously broken to make any
sense, these symmetries have to be present. This is the case only when one
takes the strong coupling limit on the U(1) node of the quiver, so as to
generate T (SU(2)). So we take that limit, and then analyze the U(2) gauge
dynamics at the remaining node. We claim that this U(2) gauge dynamics
leads to a spontaneous breaking of the U(2) global symmetry of the Coulomb
branch. If the claim is correct, it is best to analyze the gauge dynamics
at finite gauge coupling, since a spontaneously broken global symmetry is
simply lost in an IR limit. The Coulomb branch of the bad quivers with finite
U(2) gauge coupling can be analyzed by Nahm’s equations, as explained in
figure 21, and the expected breaking of global symmetries does occur.

Indeed, the bad quiver gauge theories with k = 0 and k = 1 can be repre-
sented by the brane configurations of figure 21(a) and (c). Their Coulomb
branches are most conveniently determined by solving Nahm’s equations in
the S-dual brane configurations of figure 21(b) and (d). In solving Nahm’s

equations, we require �X(y) to have a Nahm pole at y = 0, where two D3-
branes end on a single D5-brane. In the limit of strong coupling on the

U(1) node, �X(y) obeys Dirichlet boundary conditions at the other endpoint

y = L. The existence of the pole at y = 0 makes it impossible for �X to vanish
at y = L, so the U(2) global symmetry is spontaneously broken. For k = 0,

the Nahm pole breaks the symmetry to its center, but for k = 1, because �X
jumps in crossing the NS5-brane (see Section 3.9.3 of [1], at the end of which

the relevant solution is described), �X(L) can have rank 1, giving a solution
invariant under a non-central U(1) subgroup of U(2) (consisting of matrices
of the form diag(∗, 1)). This is indeed the unbroken symmetry of the S-dual

boundary condition for k = 1, as we recall from figure 17. For k ≥ 2, �X
would jump in crossing two successive NS5-branes, and can vanish at y = L,
leaving the global symmetry unbroken, despite the Nahm pole at y = 0.

3.3 U(n) examples

Examples with n D3-branes leading to U(n) gauge theory can be studied in
much the same way, but the details are richer.

3.3.1 The dual of Dirichlet boundary conditions

Our first example in U(n) gauge theory will be a simple Dirichlet boundary
condition. This is realized by ending each of n D3-branes on a distinct D5-
brane. The steps to the S-dual configuration are shown in figure 22. Each
D5-brane has linking number 1. The S-dual boundary condition couples the
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Figure 21: (a) The k = 0 case of the bad quiver discussed in the text can
be studied via this brane configuration. The full U(2) symmetry of the
Coulomb branch arises when L′ → 0 with fixed L. (b) The S-dual of (a).
The expected U(2) global symmetry arises when L′ → 0 and the two D5-
branes are coincident. For L′ → 0, the desired Coulomb branch of (a) is
the moduli space of solutions of Nahm’s equations on an interval, with a
rank two Nahm pole at y = 0 (where two D3-branes end on one D5-brane)
and Dirichlet boundary conditions at y = L (where two D3-branes end on

two D5-branes). The existence of a Nahm pole at y = 0 means that �X
cannot vanish at y = L, and breaks the global U(2) symmetry (which acts

on �X by conjugation) to its center. (c) The k = 1 bad quiver corresponds
to this brane configuration. (d) The Coulomb branch in (c), for L′ → 0,
can again be obtained by solving Nahm’s equations with a Nahm pole in

the left and Dirichlet boundary conditions on the right. But now �X can
jump in crossing the NS5-brane, leaving unbroken a U(1) subgroup of U(2)
consisting of elements of the form diag(∗, 1).

U(n) gauge fields to a special boundary theory T (SU(n)) which generalizes
our friend T (SU(2)). T (SU(n)) is given by the IR limit of the quiver gauge
theory in figure 22(c).

Like T (SU(2)), the theory T (SU(n)) is self-mirror. To show this, we
observe that T (SU(n)) can be derived from the purely three-dimensional
configuration shown in figure 23(a). The linking numbers of the D5-branes
are all n − 1, while the linking numbers of the NS5-branes are all 1. As
a consequence, the mirror is given by the same brane configuration written
backwards, as in figure 23(b). This establishes the mirror symmetry. Finally,
by separating all the NS5-branes from the D5-branes, it is possible to make
the self-duality of the configuration more manifest as in figure 23(c), at the
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Figure 22: (a) Dirichlet boundary conditions in U(n) gauge theory arise
from n D3-branes ending one at a time on n D5-branes, as sketched here
for n = 5. (b) The S-dual is obtained by simply converting D5-branes to
NS5-branes. There is no need for any rearrangement. (c) This leads to
Neumann boundary conditions coupled to the SCFT that is the IR limit of
this quiver.

Figure 23: (a) A brane configuration bounded in the y-direction that leads
to the theory T (SU(n)), sketched here for n = 5. D5-branes all have linking
number n − 1 and NS5-branes all have linking number 1. (b) The mirror is
the same quiver written backwards. (c) The self-mirror property becomes
manifest if we move all NS5-branes to the left and all D5-branes to the right.
To make the picture visible, the NS5-branes and D5-branes have been dis-
placed; a U(n) × U(n) global symmetry (whose center acts trivially) appears
when they become coincident. But this configuration has no interpretation
in gauge theory.
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Figure 24: The quiver that leads to T (SU(n)), with chiral multiplets
labeled.

price of obscuring the physical content of the theory, since this configuration
has no gauge theory interpretation.

Because of the self-mirror property of T (SU(n)), its Higgs and Coulomb
branches are isomorphic. By S-duality, the Coulomb branch of T (SU(n))
is the same as the moduli space of solutions of the Nahm equations on the
half line y ≥ 0 with Dirichlet boundary conditions at y = 0 and prescribed

behavior of �X at infinity. This moduli space is a hyper-Kahler manifold first
introduced by Kronheimer [23]. In any one of its complex structures, the
manifold is isomorphic to the nilpotent cone N of SL(n, C). N is defined
as the subspace of nilpotent elements of the SL(n, C) Lie algebra. It is
a complex symplectic manifold of dimension n(n − 1). For an explanation
of these matters, and many other topics that are relevant here (including
Nahm’s equations and Slodowy slices), see Section 3 of [1].

It is instructive to see directly that the Higgs branch of the quiver in
figure 22(c) coincides with N as a complex manifold. Picking a specific
complex structure, each hypermultiplet splits into a pair of chiral multiplets
in conjugate representations of the gauge group. Labeling these chiral multi-
plets as in figure 24, they consist of i × (i + 1) matrices Ai, i = 1, . . . , n − 1,
transforming as i ⊗ (i + 1) under U(i) × U(i + 1), and (i + 1) × i matrices
Bi transforming in the conjugate representation. Here U(i), i < n are the
gauge groups at the nodes of the quiver, and U(n) is the global symmetry
group acting at the end of the quiver. The center of U(n) acts trivially, so
the flavor symmetry of the quiver theory is really SU(n). The composite
field M = Bn−1An−1 is an n × n matrix of rank at most n − 1. The traceless
part of M is the complex moment map for the SU(n) flavor symmetry, and
will parametrize the Higgs branch.

Using the F -term constraints

Ai+1Bi+1 = BiAi, i = 1, . . . , n − 2,

A1B1 = 0, (3.4)
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we can compute

M2 = Bn−1An−1Bn−1An−1 = Bn−1Bn−2An−2An−1 (3.5)

and discover that M2 has rank at most n − 2. Iteratively,

Ma =

n−a∏

i=n−1

Bi

n−1∏

j=n−a

Aj , (3.6)

and has rank at most n − a. Finally, Mn = 0, so M is nilpotent. Any
nilpotent n × n matrix will satisfy the rank constraints rkMa ≤ n − a, and it
is not hard to show that for any nilpotent M , a set of matrices Ai, Bi, unique
up to gauge transformations, can be found satisfying the above conditions.
So the Higgs branch coincides with the nilpotent cone N .

We can also introduce n − 1 possible FI terms ti for the center of the
gauge group. This deforms the F -term constraints to

Ai+1Bi+1 = BiAi + ti+1, i = 1, . . . , n − 2

A1B1 = t1. (3.7)

The above analysis changes only slightly. Starting with

M2 = Bn−1An−1Bn−1An−1 = Bn−1Bn−2An−2An−1 + tn−1M, (3.8)

we derive iteratively

M(M − tn−1)(M − tn−1 − tn−2) · · ·

(
M −

n−1∑

i=n−a

ti

)
=

n−a∏

i=n−1

Bi

n−1∏

j=n−a

Aj .

(3.9)
Finally,

M(M − tn−1)(M − tn−1 − tn−2) · · ·

(
M −

n−1∑

i=1

ti

)
= 0 (3.10)

expresses the characteristic polynomial of M in terms of the FI parameters.
The Higgs branch as a complex manifold is the set of Lie algebra elements
with the eigenvalues indicated by the characteristic polynomial.

In the brane realization in figure 23(c), the FI parameters of the quiver

gauge theory correspond to the positions of the NS5-branes in the �X direc-

tions. The positions of the D5-branes in the �Y directions correspond to
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Figure 25: (a) A Young diagram with ith row of length di. (b) The dual
Young diagram, with rows and columns exchanged.

mass parameters for the fundamental hypermultiplets of the quiver. In the
original D5 brane boundary condition, the positions of the D3-branes at

infinity in the �X direction are the FI parameters, as explained in Section 3
of [1], where it is also shown that turning on those parameters deforms the
nilpotent cone to a more generic conjugacy class.

3.3.2 The Dual of a Nahm Pole

Dirichlet boundary conditions can be generalized by requiring a pole for the

scalar fields �X at the boundary. Supersymmetry requires that the residue of
the pole should be the images of a standard set of su(2) generators �t under
a homomorphism ρ : su(2) → u(n).

Let us recall that for every positive integer n, the Lie algebra su(2) has
up to isomorphism a unique irreducible representation of that dimension.

Therefore, the choice of ρ is determined by a decomposition n =
∑k

i=1 di,
where the di are positive integers that we can assume to be arranged in
non-decreasing order. The information contained in this decomposition is
conveniently displayed in a Young diagram whose ith row, counting from
top to bottom, has length di, as in figure 25(a).

The choice of ρ has another interpretation. The image under ρ of the
raising operator in the su(2) Lie algebra is a nilpotent element ρ+ of gl(n),
the complexification of u(n). It is the direct sum of nilpotent Jordan blocks
of dimension di. The existence of a Jordan canonical form for every matrix
means that any nilpotent element of gl(n) is conjugate to this form for some
di. Thus, the choice of ρ is equivalent to the choice of a nilpotent conjugacy
class in the complexified Lie algebra. (According to the Jacobson–Morozov
Theorem, this has an analog for every semi-simple Lie algebra, not just for
u(n).) One more remark will be helpful. There is a natural duality of Young
diagrams in which they are reflected along the main diagonal (figure 25(b)).
This gives a duality operation on homomorphisms ρ : su(2) → u(n). We
write ρD for the dual of ρ in this sense.

We pause to give a few examples (figure 26) because dual pairs will enter
our story momentarily, though not in a symmetrical way. The regular or
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Figure 26: (a) The Young diagram associated with the regular or irreducible
representation ρ : su(2) → u(n) (left), and its dual (right), which is associ-
ated with the trivial representation. (b) The Young diagram associated
with the subregular representation, which corresponds to the decomposition
n = (n − 1) + 1, and its dual, which corresponds to n = 2 + 1 + 1 + · · · + 1.

irreducible representation ρ, which corresponds to the case k = 1 and d = n,
is dual to the trivial representation ρ = 0, with k = n and all di = 1. If ρ
is the regular representation, then ρ+ is known as a regular nilpotent ele-
ment; if ρ = 0, then ρ+ = 0. Similarly, the subregular representation, corre-
sponding to the decomposition n = 1 + (n − 1), is dual to the decomposition
n = 1 + 1 + · · · + 1 + 2, related to the most obvious embedding of SU(2) in
SU(n). The nilpotent element corresponding to the subregular represen-
tation is called a subregular nilpotent element, and the nilpotent element
corresponding to the dual representation is called a minimal nilpotent. For
more background on these subjects and many other matters that will appear
below, see Section 3 of [1].

An embedding which decomposes the fundamental representation of U(n)

via n =
∑k

i=1 di can be realized by a boundary condition in which n D3-
branes end on k D5-branes (figure 27(a)). Numbering the D5-branes from
left to right, we take di D3-branes to end on the ith D5-brane. The linking
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Figure 27: (a) Numbering the k D5-branes in this picture from left to right,
di D3-branes end on the ith D5-brane. In this example, k = 3 and the di

are 1, 2, 3. (b) The S-dual configuration, and (c) a macroscopically three-
dimensional configuration that leads to the same boundary SCFT. (d) The
quiver gauge theory that flows in the IR to this boundary SCFT. The gauge
group is U(n1) × U(n2), where n1 = d1 = 1 and n2 = d1 + d2 = 3. (e) The
general quiver of this type, representing the theory Tρ(SU(n)).

numbers of the D5-branes are then equal to the di. Since we take the di to be
non-increasing, the D5-branes can be separated in the y-direction without
introducing extra degrees of freedom, as we have done in the figure.

In figure 27(d) and (e), we indicate the quiver gauge theory which will flow
in the infrared to the SCFT that determines the dual boundary condition.
It is a linear quiver of k − 1 unitary groups of rank ni =

∑i
j=1 dj . We will

denote this SCFT as Tρ(SU(n)). If ρ is trivial, then Tρ(SU(n)) is the same
as T (SU(n)).

The Higgs branch of this quiver has an SU(n) flavor symmetry, and can be
analyzed in the same fashion as the Higgs branch for the quiver of T (SU(n)).
The matrices Ai and Bi can be defined as before, but now have size ni × ni+1

and ni+1 × ni, respectively. We can define again M = Bk−1Ak−1, whose
traceless part is the moment map for the SU(n) action. The F -term con-
straints are

Ai+1Bi+1 = BiAi + ti+1, i = 1, . . . , k − 2, (3.11)

A1B1 = t1. (3.12)
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Figure 28: The Young diagram associated to ρ. The lengths of the rows
are the sizes di of the Jordan blocks of ρ+ (arranged from top to bottom),
and the heights of the columns are the sizes ja of the Jordan blocks of M

(arranged from left to right). The formula nk−i =
∑k−i

j=1 dj =
∑

a|ja≥i(ja − i)

asserts that the number of blocks above the bottom i rows can be computed
by summing over either rows or columns.

The same proof as before shows that M is nilpotent, but now the rank of M i

is at most nk−i. This constraint is not satisfied by an arbitrary nilpotent
matrix. If we consider a nilpotent matrix M with Jordan blocks of sizes
j1, j2, . . . , jt (which we arrange in non-increasing order), then the rank of
M i is

∑
a|ja≥i(ja − i). An M which saturates the rank constraints will have∑

a|ja≥i(ja − i) = nk−i. The orbit of nilpotent matrices with this Jordan

structure is a dense open subset of the Higgs moduli space H. H is actually
the closure of this orbit, since it also includes points at which the rank of
M i is lower for some i.

We started with one nilpotent element ρ+, and we have arrived at another
nilpotent element M . The relation between them appears obscure, but it
has a simple combinatoric interpretation, as in figure 28: ja is the height
of the ath column in the Young diagram of ρ, reading from left to right.

Indeed, the number of boxes above the bottom i rows is nk−i =
∑k−i

j=1 dj ,

and the formula nk−i =
∑

a|ja≥i(ja − i) gives a way to compute this number

by summing over columns. This means that, letting ρD denote the dual of
the su(2) embedding in the sense of figure 25(b), the Higgs branch of the
SCFT Tρ(SU(n)) is the closure of the orbit of the nilpotent element ρD +.

To understand the Coulomb branch of Tρ(SU(n)), we need to build the
mirror quiver, which describes the mirror theory that we will call T ρ(SU(n)).
The linking numbers of the NS5-branes in the brane realization of Tρ(SU(n))
in figure 27 coincide with the di, while the linking numbers of the n D5-
branes are all k − 1. The mirror quiver has n − 1 nodes, and the ith fun-
damental flavor sits at the node number di from left to right. The ranks
of the gauge groups are computed from the linking numbers k − 1 of the
NS5-branes. For example, the rank of the leftmost gauge group is k − 1
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Figure 29: (a) The quiver representing Tρ(SU(n)) for n = 6 and a particular
ρ. (b) The mirror quiver. It contains a chain of five balanced nodes, leading
to an SU(6) global symmetry of the Coulomb branch, which matches the fla-
vor symmetry of the Higgs branch in (a). The mirror symmetry between the
two quivers in (a) and (b) arises by comparing the two brane configurations
of (c) and (d), in which linking numbers are indicated.

and the rank of the rightmost gauge group is 1. For an illustration of this
procedure, see figure 29.

Unfortunately, we do not know how to describe the Higgs moduli space of
this mirror quiver directly by solving the F -term constraints. According to
S-duality, this Higgs moduli space should be the same as the moduli space
of solutions of the Nahm equations with the original boundary condition

determined by ρ and with �X → 0 at infinity. As explained in Section 3
of [1], this moduli space is isomorphic as a complex manifold to the Slodowy
slice Sρ transverse to the nilpotent orbit associated with ρ intersected with
the nilpotent cone N . An indirect argument given by Nakajima [24] using
the ADHM transform of instantons confirms the identity between the Higgs
moduli space of T ρ(SU(n)) with this intersection Sρ ∩ N .

3.3.3 A simple application of S-duality for Nahm poles

Consider a three-dimensional SCFT built from a general good linear quiver
gauge theory, realized on a set of D3-brane segments stretched between
NS5-branes and interacting with D5-branes. The linking numbers are non-
decreasing from left to right, and there are no semi-infinite D3-branes (fig-
ure 30). A very natural rearrangement of the fivebranes is to push all the
D5-branes to the left of all the NS5-branes. The D5-branes can be brought
together to define a boundary condition at y = 0 given by a certain SU(2)
embedding ρ. The sizes of the irreducible blocks of ρ coincide with the link-
ing numbers of the D5-branes. Similarly, the NS5-branes can be brought
together to give a boundary condition at y = L, which is S-dual to the
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Figure 30: (a) A typical good linear quiver related to a three-dimensional
gauge theory. All D3-brane segments end on NS5-branes and all linking
numbers are non-decreasing from left to right. (b) Moving all D5-branes to
the left, so that all NS5-branes are on the right, we get an IR equivalent
configuration that treats D5-branes and NS5-branes symmetrically, but has
no direct interpretation in gauge theory. The D5 configuration on the left
determines an su(2) embedding ρ, and the NS5 configuration on the right
determines the S-dual of another su(2) embedding ρ′. The example given
here is self-mirror, since in (b), exchange of the two types of fivebrane is
equivalent to a reflection y ↔ −y.

boundary condition given by another SU(2) embedding ρ′. The sizes of
the irreducible blocks of ρ′ can be read off from the linking numbers of the
NS5-branes.

Although this last configuration has no direct relation to a three-
dimensional gauge theory, it is certainly a four-dimensional U(n) gauge the-
ory on the segment 0 < y < L with boundary conditions associated with ρ
and ρ′. Here n is the number of D3-brane segments in the space between
the D5’s and NS5’s. The Higgs moduli space of vacua of this theory is
described by Nahm’s equations on the segment with appropriate condi-

tions at the two ends. At y = 0, �X must have a pole with residue deter-

mined by ρ. The appropriate condition at y = L is that �X must equal the
moment map �μ of Tρ′ . It is now straightforward to describe this moduli
space as a complex manifold. Because of the boundary condition at y = 0,
X (L) = X1(L) + iX2(L) lies in the Slodowy slice Sρ transverse to the nilpo-
tent orbit Oρ associated to ρ. On the other hand, the complex moment
map of the Higgs branch of Tρ′ takes values in the closure of the dual orbit
Oρ′

D
related to ρ′

D. The boundary condition at y = L therefore gives the

intersection Sρ ∩ Oρ′

D
. This intersection is the Higgs branch. Reciprocally,

the Coulomb branch is the intersection Sρ′ ∩ OρD
.

We denote an SCFT constructed this way using two homomorphisms
ρ, ρ′ : su(2) → u(n) as T ρ

ρ′(SU(n)). Clearly T (SU(n)), Tρ(SU(n), and

T ρ(SU(n)) are all examples of this class, with ρ and/or ρ′ taken to be

trivial. The mirror of T ρ
ρ′ is T ρ′

ρ .



782 DAVIDE GAIOTTO AND EDWARD WITTEN

One limitation of what we have said is that starting from a suitable quiver
gauge theory, we identified a pair ρ, ρ′, but we gave no indication of what
pairs can be produced this way. Alternatively, for any given pair, we can gen-
erate a three-dimensional theory as the infrared limit of the four-dimensional
U(n) gauge theory on a segment with boundary conditions given by that
pair, as in figure 30(b). But this theory may spontaneously break super-
symmetry.

For example (assuming n > 1), if ρ is regular and ρ′ is non-zero (which
implies that ρ′

D is not regular), the Slodowy slice transverse to ρ does not
intersect the orbit of ρ′

D, so supersymmetry is broken. If ρ and ρ′ are
both regular (so that ρ′

D = 0), this statement is equivalent to the myste-
rious “s-rule” from [15]. A borderline example is ρ = ρ′

D: the Slodowy slice
transverse to ρ intersects the orbit of ρ′

D = ρ in a single point. The theory
has a single massive supersymmetric vacuum. In this case, T ρ

ρ′ is a trivial
SCFT.

3.3.4 Reductions of the gauge symmetry to U (1)

Just as for U(2), it is instructive to consider configurations in which the
gauge group at the boundary is reduced from U(n) to U(1). There are
several distinct ways to do that; the partial Dirichlet boundary conditions
that implement the reduction from U(n) to U(1) may be accompanied by a
Nahm pole. Brane configurations do not allow us a generic choice of a U(1)
subgroup of U(n). The gauge symmetry at the boundary will have to be
carried by a single D3-brane and so will correspond to the first factor U(1)
of a subgroup U(1) × U(n − 1) ⊂ U(n).

An example in which the U(1) subgroup has pure Neumann boundary
conditions is shown in figure 31(a). In this example, the reduction in gauge
symmetry is accomplished by ending the other n − 1 D3-branes on a single
D5-brane, whose linking number is n. As the NS5-brane in the figure has
linking number 1, in the dual configuration it will appear as a D5-brane
just to the right of a single NS5-brane of linking number n, with no D3-
brane ending on it (figure 31(b)). The dual boundary condition then will
have full U(n) symmetry at the boundary, coupled to a single fundamental
hypermultiplet.

It is interesting to compare this to the result of the usual ungauging
strategy, by ending the D3-branes in the dual configuration on a Dirichlet
boundary condition at y = L and taking the S-dual and IR limit. The
resulting brane configuration is shown in figures 31(c) and (d) before and
after rearrangement.
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Figure 31: (a) Reduction of U(n) gauge theory to U(1) by a subregular
Nahm pole (shown for n = 5). The U(1) obeys Neumann boundary con-
ditions. (b) The S-dual boundary condition, found by the usual brane
procedure. It arises by coupling to a SCFT B∨, which in this case con-
sists of a free hypermultiplet. (c) As usual, one can try to find B∨ by the

ungauging procedure. Alternatively, the mirror B̃∨ of B∨ can be found
by coupling the original boundary condition to the dual of Dirichlet, rep-
resented here by the brane configuration related to T (SU(n)). (d) A more
convenient rearrangement of (c), which is equivalent to the quiver in (e).
All nodes but the leftmost one are balanced, leading to an SU(n) symme-
try of the Coulomb branch. The leftmost node is minimally unbalanced, so
the Coulomb branch describes twisted hypermultiplets in the fundamental
representation of SU(n), in agreement with (b).

The final result is that the mirror B̃∨ of the SCFT that defines the
S-dual boundary conditions is given by the linear quiver gauge theory of
figure 31(e). In the language of Section 2.4, this is an ugly quiver with
a single minimally unbalanced node (at the extreme left) and a chain of
n − 1 balanced nodes. The balanced nodes generate a U(n) symmetry of
the Coulomb branch, and because of the minimally unbalanced node, there
are free twisted hypermultiplets in the fundamental representation of U(n).
Counting dimensions, we see that the Coulomb branch should have hyper-
Kahler dimension n and the Higgs branch is absent. So in fact, this quiver
theory is precisely equivalent in the IR to a free theory of n twisted hyper-
multiplets. Thus, the S-dual of the original boundary condition is equivalent
to the coupling to a free SCFT B∨ consisting of n free hypermultiplets in the
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Figure 32: (a) The analog of figure 31(a) with Neumann for the unbroken
U(1) altered by coupling to a boundary SCFT BU(1), represented by a brane
system

⊕
. The gauge group is here G = U(5). Assuming that the S-dual

boundary condition is obtained by coupling to an SCFT B∨, the mirror B̃∨

to B∨ can be found via the usual steps of (b), (c), and (d). (e) depicts a
more exotic realization, analogous to figure 16(e) for U(2), that makes the
SU(5) flavor symmetry manifest.

fundamental representation. This is in perfect accord with what we found
from a direct brane construction in figure 31(b).

It is straightforward to generalize this to the case that the U(1) gauge
field at the boundary is not simply free but is coupled to some SCFT BU(1)

coupled to the U(1) gauge group at the boundary. The final result from

the ungauging procedure for B̃∨ (the mirror of the SCFT B∨ that defines
the S-dual boundary condition) is depicted in figure 32(d): it is given by
the same chain of n U(1) groups coupled to BU(1) at one end. As the reader
may suspect, this result is a simple generalization of the proposal involving
T (SU(2)) in the n = 2 case.
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The chain of n − 1 U(1) gauge groups on the right of figure 32(d) is
something we have seen before, in figure 11(c). It is the mirror of a U(1)
gauge theory coupled to n hypermultiplets of charge 1.

This has another interpretation. In the examples considered here, we
reduce the gauge symmetry from U(n) to U(1) by letting n − 1 D3-branes
end on a single D5-brane, or equivalently by means of a subregular Nahm
pole ρ : su(2) → u(n). For this choice of ρ, the theory Tρ(SU(n)) is the IR
limit of U(1) coupled to n hypermultiplets of charge 1. Its mirror T ρ(SU(n))
is the IR limit of the quiver theory of figure 11(c).

We can therefore reformulate the prescription of figure 32(d) in a more

intrinsic fashion: the mirror B̃∨ to the SCFT B∨ that defines the dual
boundary condition is built by coupling a three-dimensional U(1) gauge
theory to the product of the input SCFT BU(1) and the theory T ρ(SU(n)),

and then flowing to the IR. In brief, B̃∨ = BU(1) ×U(1) T ρ(SU(n)).

Thus, at least for this class of examples, if we start with a boundary
condition that contains a Nahm pole ρ, then T ρ(SU(n)) plays the same role
that T (SU(2)) played, in the absence of the Nahm pole, in Section 3.2. In
Section 4.3, we will give a more systematic explanation of this. We did not
see this role of T ρ(SU(n)) in Section 3.2, because if the gauge group is U(2),
the only way to get a Nahm pole is to end both D3-branes together on a
single D5-brane, leaving no analog of the input SCFT BU(1).

The importance of using T ρ(SU(n)) rather than T (SU(n)) in construct-

ing B̃∨ is that, although we can see the T (SU(n)) brane configuration on
the right of figure 31(c), this configuration does not have a gauge theory
interpretation; instead, figure 31(d) does have such an interpretation, but
involves T ρ(SU(n)).

As in figure 16(e), we can alternatively use the CS-like coupling to the
U(1) symmetry of the Coulomb branch of the mirror Tρ(SU(n)) to make
the U(n) flavor symmetry manifest. We depict this in figure 32(e).

3.3.5 Reductions of the gauge symmetry to U (2)

For further practice, we will consider the case that the gauge symmetry
at the boundary is reduced to U(2) by ending n − 2 D3-branes on a single
D5-brane.

As the first example, we will let the two remaining D3-branes end on two
NS5-branes, as in figure 33(a). The corresponding theory BU(2) coupled to
the U(2) gauge symmetry at the boundary is T (SU(2)). Keeping track of the
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Figure 33: (a) Reduction of U(n) gauge theory (in this figure, n = 5) to
U(2) by a Nahm pole; the remaining two D3-branes end on two NS5-branes.
(b) The dual has a single NS5-brane of linking number n, with two D5-
branes to its right. (c) If one terminates the D3-branes of (b) at y = L
using Dirichlet boundary conditions, and applies S-duality, one arrives here.
(d) The result of a standard brane rearrangement applied to (c). (e) The
quiver representing the configuration of (d). This is an ugly quiver, in the
language of Section 2.4.3, as the second node from the left has e = −1. (f)
The relevant T ρ(SU(n)) is associated with this quiver.

linking numbers, we construct the S-dual configuration of figure 33(b). The
dual boundary condition consists of a pair of fundamental hypermultiplets
coupled to the U(n) gauge theory. Let us see how the standard ungauging
prescription reproduces such a result in an “uneconomical” fashion.

In the dual description of (b), if we end the D3-branes at y = L with
Dirichlet boundary conditions and take the S-dual, we obtain the configu-
ration in figure 33(c), with the initial boundary condition on the left and
T (SU(n)) (realized via branes) on the right. Rearranging the branes to get
something with a gauge theory interpretation, and keeping track of the link-
ing numbers, we arrive at figure 33(d), from which we get in figure 33(e) a

quiver whose IR limit should be the mirror B̃∨ of the theory B∨ that defines
the dual boundary condition.

That quiver is interpreted directly as the coupling of the input SCFT
BU(2) = T (SU(2)) to a quiver that represents T ρ(SU(n)) for a certain ρ.
Differently put, the relevant theory is a three-dimensional U(2) gauge the-
ory coupled to the product of T (SU(2)) and T ρ(SU(n)), both of which (for
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Figure 34: (a) n − 2 D3-branes end on a single D5-brane, and the remaining
ones then end on a single NS5-brane. (b) The dual brane configuration, as
determined from the linking numbers. (c) The dual quiver, constructed in
the same way as figure 33(e). It describes a U(2) gauge theory (acting at
the left-most node of the quiver) coupled to T ρ(SU(n)), for the choices of
n and ρ that were made in (a). This is a bad quiver, in the language of
Section 2.4.3, as the leftmost node has e = −2.

the relevant ρ) have SU(2) global symmetry. This is what we call the com-
posite gauge theory and denote BU(2) ×U(2) T ρ(SU(n)). The relevant ρ is
associated with the decomposition n = (n − 2) + 1 + 1, corresponding to the
Nahm pole that we started with in 33(a).

This result is quite like what we found in Section 3.3.4: the theory
T ρ(SU(n)) plays the same role in the presence of a Nahm pole that T (SU(n))
plays without one. As usual, we expect this prescription to work well for
every choice of the input theory BU(2), as long as the dual boundary condi-
tion has full U(n) gauge symmetry.

Finally, another interesting example is given by taking BU(2) to be trivial.
In terms of branes, we do this by ending the two leftmost D3-branes on a
single NS5-brane, as in figure 34(a), so as to get a pure Neumann boundary
condition for the surviving gauge group U(2). In the dual brane config-
uration in figure 34(b), which is found as usual by matching the linking
numbers, the gauge group is reduced to U(n − 1), which obeys Neumann
conditions at the boundary. The reduction of the dual gauge group invali-

dates our simple derivation of the mirror B̃∨ of the SCFT B∨ living at the
S-dual boundary condition. If we nevertheless follow this recipe, by cou-
pling the initial boundary condition to T (SU(n)) and moving branes to get
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something with a gauge theory configuration, we arrive at the quiver of fig-
ure 34(c). (This can be obtained from the quiver of figure 33(e) by deleting
the leftmost node, which in that example generates BU(2) = T (SU(2)). In
the present case, we take BU(2) to be trivial so we replace the leftmost node
of figure 33(e) by nothing.) This is a bad quiver, in the sense of Section 2.4,
as the leftmost node has e = −2. By reasoning similar to that of figure 21,
one can show that the symmetries of the Coulomb branch of this bad quiver
gauge theory are spontaneously broken. As we will explain more fully later,
this is related by S-duality to the fact that the dual boundary condition has
reduced gauge symmetry.

3.3.6 Full gauge symmetry with matter at the boundary

Now we consider boundary conditions with full U(n) symmetry coupled to
a boundary theory B. A simple example is to use D5-branes to generate k
fundamental hypermultiplets at the boundary. We will get a result similar
to what we found in Section 3.2 for n = 2: if the number k of fundamental
hypermultiplets at the boundary is large enough, the dual boundary condi-

tion is described by coupling to a dual SCFT B∨ whose mirror B̃∨ admits
a construction in terms of T (SU(n)). This standard construction will give

an economical description of B̃∨ if k > n and a less economical one if k = n.
Conversely, if k < n, the S-dual boundary condition is not obtained by cou-
pling to an SCFT; rather, the gauge group at the boundary is reduced to
U(k), possibly in the presence of a Nahm pole.

The brane manipulations and quivers for k > n are shown in figures 35
and 36. In figure 35, we construct a quiver for the SCFT B∨ that appears
in the dual boundary condition, and in figure 36, we construct the mirror

quiver associated to the mirror SCFT B̃∨. This mirror quiver has a simple
interpretation as T (SU(4)) coupled to the original boundary condition (k =
6 fundamental hypermultiplets) by a three-dimensional U(4) gauge theory.

In general, for any k and n, the original boundary condition has a sin-
gle NS5-brane of linking number n and k D5-branes of linking number 1.
The dual configuration has a single D5-brane of linking number n and k
NS5-branes of linking number 1. If k > n, the dual configuration has the
D5-brane to the left of the nth NS5-brane. This ensures that the dual con-
sists of an SCFT B∨ coupled to Neumann boundary conditions. This is
the condition under which the usual ungauging procedure is a good way to
determine the dual boundary condition. To extract B∨, we follow the famil-
iar steps. First we end the D3-branes with Dirichlet boundary conditions.

Applying S-duality, we get a representation of the mirror B̃∨ of B∨ in terms
of T (SU(n)) coupled to the original SCFT B (which in the present example
consists of k fundamental hypermultiplets), as in figure 37. This strategy,
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Figure 35: (a) U(n) gauge theory coupled to k fundamental hypermultiplets
at the boundary, as shown here for n = 4 and k = 6. Linking numbers have
been labeled. (b) The dual brane configuration, as determined from the
linking numbers. (c) The quiver that represents the dual brane configura-
tion. All nodes are balanced; the chain of five consecutive balanced nodes
leads to an SU(6) global symmetry of the Coulomb branch, matching the
global symmetry of the six coincident fivebranes in (a).

which accounts for the result of figure 36, should work whenever the dual
boundary condition has the full U(n) gauge symmetry at the boundary.

If k > n, the quiver description of B̃∨ by T (SU(n)) coupled to the original
boundary conditions satisfies our constraints from Section 2.2, and gives a

straightforward description of B̃∨.

If k = n, the dual brane configuration has a D5-brane of linking number
n sitting to the right of n NS branes. The resulting SCFT B∨ consists of
two factors: a single fundamental hypermultiplet (from the D3–D5 intersec-
tion) and T (SU(n)). In this case, the quiver of figure 37 that arises from
the ungauging procedure is ugly, accounting for the existence of the free
hypermultiplets.

If k = n − 1, the D5-brane in the dual configuration is to the right of n − 1
NS5-branes but has linking number n; hence one D3-brane will end on it
and the dual boundary condition involves a reduction of the gauge group
down to U(n − 1) together with a coupling to T (SU(n − 1)). For smaller
values of k, a Nahm pole appears in the dual boundary condition, as n − k
D3-branes end on the single D5-brane. In these cases, the ungauging recipe
leads to a bad quiver.
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Figure 36: (a) The “flavors” coming from interaction with semi-infinite D3-
branes on the right of figure 35(b) have been replaced by flavors coming from
intersection with D5-branes. This will facilitate a purely three-dimensional
construction of the relevant SCFT. Linking numbers are labeled. (b) The
mirror arrangement, found from the linking numbers. (c) The quiver corre-
sponding to (b). The original boundary condition (six fundamental hyper-
multiplets of U(4)) has been coupled to T (SU(4)) by gauging their common
U(4) symmetry, which acts at the leftmost node. The other three nodes are
balanced, giving the Coulomb branch an SU(4) global symmetry.

Figure 37: A schematic representation of the dual boundary condition for
U(n) coupled to k fundamental hypermultiplets. A U(n) gauge theory is
coupled both to T (SU(n)) and to the hypermultiplets. The IR limit gives a

three-dimensional SCFT B̃∨ that is the mirror of the SCFT B∨ that defines
the dual boundary condition.
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Figure 38: (a) Let
⊕

symbolize an arbitrary given boundary condition,
with dual

⊕′, and assume that
⊕′ is defined by coupling to an SCFT

B∨. Then B∨ can be found by ungauging, that is by terminating the four-
dimensional gauge theory at y = L using Dirichlet boundary conditions.
This is achieved, for G = U(n), by letting n D3-branes end on n D5-branes,
as shown here for n = 3. (b) The mirror of B∨ is represented by the S-dual
configuration. Here

⊕′, which we do not know, is replaced by the given
boundary condition denoted

⊕
, and the Dirichlet boundary conditions are

replaced by a coupling to T (SU(n)).

We have accumulated by now enough examples to guess how to build
the dual of essentially any boundary conditions as long as the dual gauge
symmetry is unbroken, in terms of coupling of T ρ(SU(n)) to B. We will
now give a general derivation of this fact.

3.4 A general recipe

Let B be any half-BPS boundary condition in U(n) gauge theory, possi-
bly but not necessarily constructed by coupling Neumann boundary con-
ditions to a boundary SCFT B. Let us further assume that the S-dual
boundary condition B∨ has full gauge symmetry, and so is obtained by cou-
pling Neumann boundary conditions to a boundary theory B∨. We have
gained enough experience by now to formulate a general recipe for construc-
tion of B∨.

Let us first explain what we regard as a satisfactory answer. B∨ is sup-
posed to be a three-dimensional conformal field theory, and we are satisfied
if we can give a purely three-dimensional description of it. Roughly speak-
ing, if we can do so, this means that we have reduced the understanding
of S-duality of boundary conditions in four-dimensional gauge theory to a
problem only involving the boundary.

We begin in a simple and by now familiar fashion (figure 38). B∨, if it
exists, is obtained from the S-dual boundary condition B∨ by terminating
the gauge theory at y = L with a Dirichlet boundary condition and then
flowing to the IR. The S-dual of this is a gauge theory on a slab R

3 × I
(I is the interval 0 ≤ y ≤ L) with the original boundary condition B at one
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boundary, and a coupling to T (SU(n)), the dual of the Dirichlet boundary
condition, at the other.

This gives a description of B̃∨, the mirror of B∨, in terms of four-
dimensional gauge theory on R

3 × I, with specified boundary conditions
at the two ends. To get a satisfactory answer, we should reduce this to
gauge theory on R

3. If the original boundary condition B has no Nahm
pole, there is no problem in doing this. Suppose that B is defined by reduc-
ing the gauge group G = U(n) to some subgroup H and then coupling to an
SCFT BH with H symmetry. Then the low-energy limit can be obtained
by simply restricting all four-dimensional fields to their zero modes in the
fourth direction — the modes that are independent of y. These modes make
up the vector multiplet of H gauge symmetry in three dimensions. So at low
energies, the four-dimensional configuration of figure (38(b)) merely reduces
to a three-dimensional gauge theory with gauge group H coupled to the
product BH × T (SU(n)). (In the figure, H = G = U(3).) We denote the
theory obtained by gauging the diagonal H symmetry of BH × T (SU(n))
as BH ×H T (SU(n)) and we call it the composite gauge theory. This gives

the required three-dimensional description of B̃∨.

If the starting boundary condition B has a Nahm pole ρ (figure 39), we

begin as before and represent B̃∨ in exactly the same way in terms of four-
dimensional gauge theory on R

3 × I (figure 39(b)). This gives a gauge theory
in four dimensions, with three non-compact dimensions, whose IR limit is

the desired three-dimensional theory B̃∨. Before declaring success, we are
supposed to reduce this to a three-dimensional description. The Nahm pole

on the left of figure (39(b)) forces the field �X to be y-dependent. So we
cannot extract a three-dimensional description by simply taking all four-
dimensional fields to be independent of y.

Instead, before trying to extract a low-energy limit, we take the D5-
branes that create the Nahm pole in the original boundary condition B, as
well as those that reduce the gauge symmetry,12 and move them to the right
(figure 39(c)), positioning them in the usual way among the NS5-branes, so
that no net D3-branes end on any of these D5-branes.

At this stage, we have gauge fields of a subgroup H of G, coupled on
the left to some boundary theory BH (represented in figure 39(c) as

⊕
)

and on the right to a system of D5-branes and NS5-branes that are shown

12We recall that a D5-brane on which several D3-branes end creates a Nahm pole,
while one on which a single D3-brane ends reduces the gauge symmetry. Both kinds of
D5-brane are depicted in figure 1, while for simplicity only a D5-brane creating a Nahm
pole is depicted in figure 39.
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Figure 39: (a) A boundary condition with a Nahm pole or reduction of the
gauge group. (b) A direct application of the ungauging procedure leads to
this result, with branes ordered incorrectly. (c) A D5-brane has been moved
to the right to restore correct ordering. Now the IR limit is straightforward;
for example, if

⊕
is constructed from properly ordered fivebranes, then this

configuration corresponds to a good quiver. (d) The result can be described
as a generalized quiver, with H = U(2) coupled both to BH and to another
theory, which in the example given can be represented by the quiver in (e)
and is in fact our friend T ρ(SU(n)), where here n = 4 and ρ corresponds to
the decomposition 4 = 2 + 1 + 1. H acts at the leftmost node in (e).

explicitly in the figure. Collapsing all the separations among these branes,
we arrive at a boundary SCFT that for the moment we call Bρ. A three-

dimensional description of the desired SCFT B̃∨ is now at hand; it is what
we will call BH ×H Bρ, the low-energy limit of three-dimensional H gauge
theory coupled to BH × Bρ.

But in fact, Bρ is our friend T ρ(SU(n)). The D3-branes that pro-
duce Nahm poles depend only on ρ and are present in the description of
T ρ(SU(n)) that treats the two kinds of fivebrane symmetrically (see the
example in figure 30(b)). The process of moving them to the right to get
a well-ordered arrangement is the key step in getting a gauge theory inter-
pretation of T ρ(SU(n)) (such as comes from figure 30(a)). If H is trivial,
so that the symbol

⊕
and the D3-branes ending on it are absent in fig-

ure 39(b) (the leftmost D3-branes would then all end on D5-branes), then
figure 39(b) would simply be the definition of T ρ(SU(n)) for a particular ρ.
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In general, Bρ depends only on ρ and so coincides with T ρ(SU(n)). If H
is non-trivial, this means that some of the global symmetries of T ρ(SU(n))
have been gauged and also coupled to another theory BH . This produces
what we call the composite gauge theory and denote BH ×H T ρ(SU(n)). So

B̃∨ = BH ×H T ρ(SU(n)). (3.13)

This is the single most important conclusion of the present paper.

In this construction, the SU(n) isometries of the Coulomb branch of

T ρ(SU(n)) survive in the IR as symmetries of the full theory B̃∨. This

allows B̃∨ to be coupled to the dual bulk gauge theory and produce the
boundary condition B∨ dual to B. The dual gauge group has to be coupled

to the Coulomb branch of B̃∨, rather than the Higgs branch, as would be

more standard, because B̃∨ is the mirror of the theory B∨ that more directly
defines the dual boundary condition. As usual, to make the result useful in

practice, it is very helpful to have a representation of B̃∨ that makes its
Coulomb branch symmetries manifest. This is what we sometimes get from
mirror symmetry.

Our construction produces a U(n)-invariant SCFT B∨ that defines the
dual boundary condition whenever it exists, as the mirror of a standard IR
limit of the composite H gauge theory. However, it may be that the dual
boundary condition B∨ involves a reduction of the gauge symmetry, possibly
with a Nahm pole; if so, B∨ does not exist so the ungauging procedure
cannot construct it. One would like a criterion for determining, given B,
whether the dual boundary condition B∨ has reduced gauge symmetry.

In fact, this will occur precisely when the “ungauging” configuration of
figure 38(a) admits three-dimensional chiral operators of zero or negative
R-charge qR. (Here as in Section 2.4 we mean chiral operators for an N =
2 subalgebra of N = 4.) Dually, the composite H gauge theory will also
have such bad chiral operators and will not have a standard IR limit. The
problematical chiral operator in figure 38(a) will be constructed from Wilson
line operators stretched between the two boundaries. So dually, the chiral
operators of the composite gauge theory are constructed from stretched ’t
Hooft operators; they are the monopole operators reviewed in Section 2.4.

If the boundary condition B∨ comes from coupling U(n) gauge fields to
an SCFT B∨, then chiral operators of B∨ have strictly positive qR, and
coupling to four-dimensional gauge fields on R

3 × I with Dirichlet boundary
conditions on the right does not change this fact. The situation is different if
B∨ involves a reduction of the gauge symmetry or a Nahm pole. In this case,
we will construct chiral operators of qR ≤ 0 using supersymmetric Wilson
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operators that end on the boundaries of R
3 × I. As in Section 2.4, we select

a unit vector �n and form a linear combination of scalar fields X3 = �n · �X.
And we let Ay be the component of the gauge field A in the I direction.
Then the combination A = Ay + iX3 is a chiral superfield for a suitable
N = 2 subalgebra of N = 4. Let S = p × I, with p a point in R

3. Now we
consider the path-ordered exponential

W (p) = P exp

∫

S
A. (3.14)

Any gauge-invariant matrix elements of W (p) are chiral superfields with
qR = 0. Whether there are gauge-invariant matrix elements depends on
the boundary conditions. Since S stretches from y = 0 to y = L, the per-
tinent boundary conditions are at y = L and y = 0. At y = L, we have
Dirichlet boundary conditions and gauge transformations are trivial. If in
addition the boundary condition B∨ has reduced gauge symmetry without
a Nahm pole, then W (p) has gauge-invariant matrix elements in some rep-
resentation of G.

If the dual boundary condition B∨ involves a Nahm pole associated with
a homomorphism ρ′ : su(2) → G, then a similar construction actually gives
operators of qR < 0. In this case, we have to be careful with the defini-
tion of SO(3)X and of the Wilson operator W (p). The boundary condition

forces �X to be non-zero near the boundary, and is not invariant under naive

rotation of �X. But it is invariant under a rotation of �X combined with a
gauge transformation determined by ρ′. So the SO(3)X symmetry of the

boundary condition is the combination of an ordinary rotation of �X and a
gauge transformation. As a result, the matrix elements of W (p) — once we
define them — transform non-trivially under SO(3)X , and some of them are
negatively charged under SO(2)X . This will lead to qR < 0.

The Nahm pole leads to a subtlety in defining the operator W (p). By

definition, the Nahm pole means that �X ∼ �t/y, near y = 0, where �t is the
image under ρ′ of a standard set of su(2) generators. So A ∼ it3/y, with
t3 = �n · �t. The pole in A causes a problem in defining W (p). We regular-
ize the resulting divergences by letting Sǫ be the restriction of S to y ≥ ǫ
and defining Wǫ(p) = P exp

∫
Sǫ

A. Taking ǫ → 0, we define the regularized

Wilson operator13

Ŵ = lim
ǫ→0

ǫ−it3Wǫ(p). (3.15)

13Our gauge fields A and scalar fields �X are antihermitian, so t3 is antihermitian and
it3 has real eigenvalues.
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Gauge-invariant matrix elements of Ŵ are chiral operators of dimension and
R-charge qR = it3.

Hence we predict that the S-dual of a boundary condition B will break
the dual gauge theory at the boundary if and only if monopole operators of
non-positive charges can be found in the composite H gauge theory.

Even if the dual boundary condition breaks the dual gauge theory at the
boundary, the D-brane realization of the system suggests that the composite
H gauge theory still holds the information about the dual boundary con-
dition B∨. One may start with the “ungauging” configuration, and move

away in the �Y direction the D5-branes which define the Nahm pole. The
D3-segments attached to those D5-branes will need to move away as well,
and so will those D5-branes at the Dirichlet boundary condition that are
attached to them. What is left is a four-dimensional gauge theory on R

3 × I
with a reduced gauge group H∨, with Dirichlet boundary conditions at one
end, and coupled to some boundary theory B∨

H∨ at the other end. The
system will flow smoothly in the IR to B∨

H∨ .

To carry out an S-dual of this process in the composite H gauge theory,
and thereby construct the mirror of B∨

H∨ , we will need to identify the FI
parameters in the composite gauge theory which correspond to the motion
of the D5-branes, and make them large. It is difficult to give a general
prescription on how to do that without knowing anything about B. The
monopole operators with negative R-charges dual to the regularized Wilson
line operators (3.15) will transform non-trivially under the Coulomb branch
isometries that correspond to the appropriate FI parameters. One might
be able to collect further information on B∨ by exploring modifications of
the Dirichlet boundary condition: adding a Nahm pole, coupling some judi-
ciously chosen SCFT, etc. We will not pursue this matter further.

3.5 Domain walls

In general, domain walls between gauge theories with one gauge group G1 on
one side and another gauge group G2 on the other side are equivalent, after
a folding trick, to boundary conditions in G1 × G2 gauge theory. (For more
on this, see Section 2.6 of [1].) Hence all methods for studying boundary
conditions can be adapted to domain walls.

If G+ = U(n+) and G− = U(n−) are unitary gauge groups realized by
D3-branes for y > 0 and y < 0, and the domain walls are constructed via
fivebranes, we can study S-duality of a domain wall by the usual manipu-
lations. It is also possible to apply an ungauging procedure similar to what
we have just used in discussing boundary conditions.
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Figure 40: (a) A simple supersymmetric domain wall in U(n) gauge the-
ory (drawn for n = 3); intersection with a D5-brane creates a fundamental
hypermultiplet supported at y = 0. (b) The S-dual domain wall is con-
structed from the intersection with a single NS5-brane. (c) Intersection
with k D5-branes creates a defect supporting k fundamental hypermulti-
plets (sketched here for k = 3). (d) The S-dual of (c). (e) For k > 1, the
S-dual involves coupling to a non-trivial SCFT, which can be represented
by a quiver. The quiver has been drawn for the general case of n D3-branes
intersecting k D5-branes.

Consider a gauge theory with a domain wall D at y = 0. The domain wall
is constructed in general by a two-sided version of the construction used for
boundary conditions. G+ and G− are broken to subgroups H± by two Nahm

poles ( �X ∼ �t±/y for y → 0±). The product H+ × H− is then further broken
at y = 0 to a subgroup H, which is then coupled to a three-dimensional
defect theory D.

As long as we consider only domain walls constructed from fivebranes,
there is no problem determining the S-duals. A few examples are given in
figure 40. In (a) we consider a single D5-brane crossing n D3-branes. There
is then a fundamental hypermultiplet supported on the defect or domain wall
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Figure 41: (a) U(n+) gauge theory for y > 0, reduced to U(n−) for y < 0, by
letting D3-branes end one by one on n+ − n− D5-branes. Sketched here is
the case n+ = 4, n− = 2. (b) The S-dual, which as in (c), can be represented
by a balanced quiver gauge theory. The boxes represent global symmetries
that can be coupled to four-dimensional gauge fields in the right or left
half-spaces.

at y = 0 and coupled to the bulk U(n) gauge fields. In the language of the
last paragraph, G+ = G− = U(n), there are no Nahm poles, H is a diagonal
subgroup of G+ × G−, and D describes a free fundamental hypermultiplet.
The S-dual in (b) clearly corresponds to interaction with a single NS5-
brane. In this case, there are distinct U(n) gauge theories on the two half-
lines. There is no reduction of gauge symmetry at the interface and the full
U(n) × U(n) couples to a bifundamental hypermultiplet. We can generalize
this example to have different numbers n± of D3-branes on the two sides.
In (a), there would then be a Nahm pole of rank |n+ − n−| on the side with
more D3-branes, and in (b), there would be a bifundamental hypermultiplet
coupled to U(n+) × U(n−).

Returning to the case n+ = n−, in (c), we generalize (a) to a defect made
from k D5-branes and so supporting k fundamental hypermultiplets. The
S-dual involves a chain of k NS5-branes leading to the balanced quiver gauge
theory in (d) and (e). As usual, the chain of balanced nodes in the quiver
leads to a global symmetry of the Coulomb branch, matching the global
symmetry of the hypermultiplets of (c).

For a slightly different example, in figure 41(a), the gauge group U(n+)
is reduced to U(n−) in crossing a domain wall by interaction with n+ −
n− D5-branes; one D3-brane ends on each D5-brane. The S-dual is an
analogous picture with NS5-branes (figure 41(b)), which can be represented
by a balanced quiver gauge theory with U(n+) × U(n−) symmetry, as in
(c). The examples we have given are particularly simple because no brane
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Figure 42: (a) The symbol
⊕

represents a general domain wall between
U(n−) and U(n+) gauge theory, shown here for n− = 2, n+ = 4. (b) The
symbol

⊕′ represents the dual domain wall. If it arises by coupling to an
SCFT D with U(n−) × U(n+) symmetry, then this SCFT can be extracted
by using Dirichlet boundary conditions on both sides to ungauge the gauge
symmetry. As usual, Dirichlet boundary conditions are constructed using a
chain of D5-branes. (c) Taking the S-dual, we get a quiver representation
of the mirror D∨ to D, in terms of the original domain wall coupled by
U(n+) × U(n−) gauge fields to T (SU(n+)) × T (SU(n−)), which are here
represented by quivers.

rearrangement is required, but in general, starting with any domain wall
with fivebranes arranged to satisfy our rules, the S-dual can be rearranged
in the usual way to also satisfy them, giving another domain wall with a
simple gauge theory description.

It is also possible to develop a general recipe using T (SU(n)). Let D
be a domain wall and D∨ its S-dual. Suppose that D∨ arises by coupling
to four-dimensional gauge fields a three-dimensional theory D∨ with G+ ×
G− symmetry. We can recover the theory D∨ by terminating the four-
dimensional gauge theory with Dirichlet boundary conditions at y = ±L.
The S-dual of this gives the mirror of the theory D∨ as the infrared limit
of a composite configuration described in figure 42. In this configuration,
boundary conditions at the two ends are provided by coupling to T (SU(n+))
and T (SU(n−)), and the original domain wall D appears in the center. The
low-energy limit, assuming that there are no Nahm poles in the definition
of D, is a three-dimensional gauge theory with gauge group H coupled to
a product T (SU(n+)) × T (SU(n−)) × D. If there are Nahm poles, then
just as in Section 3.4, the low-energy theory is a three-dimensional gauge
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Figure 43: The result of applying the general recipe to the domain wall in
U(n) gauge theory that consists of a coupling to k fundamental hypermul-
tiplets (as sketched in figure 40(c)). This quiver is mirror to the one in
figure 40(e).

theory with H coupled to T ρ+(SU(n+)) × T ρ−(SU(n−)) × D. If this three-
dimensional gauge theory has a standard IR limit, that limit will be the
mirror of the desired theory D∨.

A simple example is to use this procedure to study the configuration of
figure 40(a) or (c) with a defect supporting k fundamental hypermultiplets.
The composite gauge theory is a U(n) gauge theory coupled to two copies of
T (SU(n)) and to k fundamental hypermultiplets. This theory is described
by the quiver of figure 43. For k > 1, this is a good quiver, whose mirror is
the quiver that we found in figure 40(e) by direct brane manipulations.

For k = 1, the quiver of figure 43 is an ugly quiver with a single mini-
mally unbalanced node in the center, and chains of n − 1 balanced nodes on
each side. As explained in Section 2.4.3, this will generate in the infrared an
SU(n) × SU(n) × U(1) symmetry acting on a free bifundamental hypermul-
tiplet. For this particular example, the dimension of the Coulomb branch is
n2, the same as the number of free hypermultiplets, so the infrared limit of
the quiver theory describes the free hypermultiplets only, with no additional
degrees of freedom. This is the expected answer of figure 40(b).

For k = 0, which describes an empty or trivial domain wall, we get a bad
quiver. This is in accord with the fact that the S-dual, which is also the
trivial domain wall, does not have the full U(n) × U(n) gauge symmetry on
the two sides, but only the diagonal U(n). We will return to this example in
Section 4.3, but for now we simply note that the hyper-Kahler dimension of
the Coulomb branch is n2, which is what one needs if the Coulomb branch
is to break U(n) × U(n) to the diagonal U(n).

Similarly, we can apply this recipe to seek a dual of figure 40(b), where the
domain wall, constructed from a single NS5-brane, has the full U(n) × U(n)
symmetry coupled to a single bifundamental hypermultiplet. The associated
composite gauge theory is a U(n) × U(n) gauge theory coupled to two copies
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Figure 44: (a) The ungauging recipe, applied to the problem of generat-
ing an S-dual of the domain wall of figure 40(b), produces a composite
U(n) × U(n) gauge theory coupled to two copies of T (SU(n)) and a bifun-
damental hypermultiplet. This is a bad quiver with two adjacent minimally
unbalanced nodes, so the infrared analysis is not straightforward. (b) A
domain wall constructed from a D5-brane and an NS5-brane (as opposed to
the single NS5-brane of figure 40(b)). S-duality merely exchanges the two.
(c) The associated quiver gauge theory, which differs from that in (a) by
adding a fundamental hypermultiplet at one node. This is an ugly quiver
with a single minimally unbalanced node, reflecting the fact that the mirror
domain wall (which is that of (b) with the two fivebranes exchanged) has
full U(n) × U(n) gauge symmetry with free fundamental and bifundamental
hypermultiplets. (d) The ungauging procedure applied to the domain wall
of figure 41(a) leads to this quiver, after a rearrangement of branes.
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of T (SU(n)) and a bifundamental hypermultiplet, described by the quiver of
figure 44(a). This is a bad quiver with two adjacent minimally unbalanced
nodes, in keeping with the fact that the dual domain wall of figure 40(a) has
reduced gauge symmetry.

There is an amusing modification of this problem for the domain wall in
figure 44(b), which is constructed from a D5-brane to the left of an NS5-
brane. The S-dual configuration is a mirror image, with a single D5-brane to
the right of an NS5-brane. The composite gauge theory is described by the
quiver in figure 44(c), which has a single minimally unbalanced node with
n balanced nodes to the left, n − 1 to the right. Again the dimension of the
Coulomb branch, n(n + 1), agrees with the number of free hypermultiplets
realized as monopole operators. These are the expected bifundamental and
fundamental free hypermultiplets at the dual boundary.

Finally we want to apply our construction to figure 41(a). The resulting
composite gauge theory is described by the quiver depicted in figure 44(d),
which is good as long as n+ − n− > 1. The quiver is mirror to the expected
result in figure 41(b). If n+ − n− = 1, the quiver is ugly (and equivalent
to that of figure 44(c)); its Coulomb branch flows in the infrared to the
expected n × (n + 1) bifundamental free twisted hypermultiplets.

To give an example of analyzing in detail the IR behavior of a bad quiver,
we will consider the quiver in figure 43 at k = 0. This quiver gauge theory
is supposed to be S-dual to a trivial domain wall. The trivial domain wall
breaks the product of the U(n) gauge groups on the left and right to a
diagonal U(n). So the Coulomb branch of the bad quiver in question should
break U(n) × U(n) to the diagonal subgroup. The easiest way to find the
Coulomb branch C of the quiver is to use the S-dual description, which is
simply a trivial domain wall cut off at both ends. In other words, the S-dual
description is by four-dimensional N = 4 gauge theory on a slab R

3 × I with
Dirichlet boundary conditions on both boundaries. The Coulomb branch C
is simply the moduli space of solutions of Nahm’s equations on the interval I.

Here Nahm’s equations are the equations D �X/Dy + �X × �X = 0, for fields
�X and A = Ay; C is the moduli space of solutions of these equations, modulo
gauge transformations that equal 1 at both ends of I. This is an important
hyper-Kahler manifold described in [25] and reviewed in [1], Section 3.9.1. In
the analysis of this manifold, the quantity W (p) defined in equation (3.14)
plays an important role. It is holomorphic on C in one of the complex
structures; in physical terms, its expectation value 〈W (p)〉 is a GL(n, C)-
valued function on the moduli space C of vacua that because of the chiral
nature of the operator W (p) is holomorphic in one complex structure. From
a holomorphic point of view, this expectation value breaks the product of
the left and right action of GL(n, C) to a diagonal subgroup. In gauge
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theory terms, the symmetry is U(n) × U(n) broken to a diagonal U(n) (or
a subgroup thereof, depending on the choice of a point in C). C is smooth,
so the quiver gauge theory certainly has no interesting critical point.

4 S-duality and Janus

An important ingredient in the last section was a self-mirror conformal field
theory T (SU(n)), which we found most directly in studying the S-dual
of Dirichlet boundary conditions. We used this, and its generalization
T ρ(SU(n)), to describe the S-dual of a very wide class of boundary
conditions.

In this section, we will extend our results to any compact gauge group
G. We will give an intrinsic definition of a three-dimensional conformal field
theory T (G) analogous to T (SU(n)) and use it, and a generalization T ρ(G),
to formulate a recipe analogous to that of Section 3. As in Section 3, we
will also consider a further generalization T ρ

ρ∨(G).

4.1 T (G)

One of the important properties of T (G) will be that it has global symmetry
G × G∨, where G∨ is the dual group to G. (The groups acting faithfully
are the adjoint forms of G and G∨, so the distinction between them is only
important when they have different Lie algebras. That is why we did not
encounter this distinction in Section 2.) The mirror of T (G) is T (G∨).
T (G) will appear as the dual of Dirichlet boundary conditions in G gauge
theory.

G acts on the Higgs branch of T (G), and G∨ acts on its Coulomb branch.
The Higgs and Coulomb branches of T (G), in any of their complex struc-
tures, are the nilpotent cones N and N ∨ of G and G∨, respectively. As
reviewed more fully in Section 3 of [1], N is the space of all nilpotent ele-
ments of the Lie algebra gC of the complexification GC of G. It is a union of
finitely many nilpotent GC orbits. Each such orbit is the orbit of a nilpotent
element ρ+ ∈ gC, which is the image of the raising operator of su(2) under
some homomorphism ρ : su(2) → gC. N is actually the closure of a single
nilpotent orbit O associated to a regular su(2) subalgebra. The other orbits
are of positive codimension.

The moduli space MT (G) of vacua of T (G) does not just consist of Higgs
and Coulomb branches, as there are also mixed Higgs–Coulomb branches.



804 DAVIDE GAIOTTO AND EDWARD WITTEN

The full structure of the moduli space is a union of components

MT (G) =
⋃

α∈S

Cα × Hα, (4.1)

where S is the set of components and we call Cα and Hα the Coulomb and
Higgs factors of the αth component. G and SO(3)X act non-trivially on
Hα and trivially on Cα, and reciprocally G∨ and SO(3)Y act non-trivially
on Cα and trivially on Hα. The Higgs branch is a component with Cα equal
to a point and Hα equal to N , and the Coulomb branch has Hα equal to a
point and Cα = N ∨. We write simply H and C for the Higgs and Coulomb
branches.

The reason that mixed branches exist is that, by adjusting parameters on
C, one can go to a locus at which a Higgs branch opens up. Let Cα be an
irreducible component of the locus in C at which this happens, and let Hα be
the corresponding Higgs branch. Then the moduli space of vacua contains
a component Cα × Hα. Cα is a G∨-invariant hyper-Kahler subspace of C.
These properties imply that (as a complex manifold in one of its complex
structures) Cα is a union of nilpotent orbits of G∨

C
. Since we have assumed Cα

to be irreducible, it is actually the closure of a single such orbit, associated
with some homomorphism14 ρα : su(2) → g∨

C
. Applying the same argument

starting on H, we learn that each Hα is similarly the closure of a nilpotent
orbit of GC.

Since each Hα or Cα is the closure of a nilpotent orbit Oρα or Oρ∨
α
, the

general form of the moduli space is

MT (G) =
⋃

α∈S

Oρα × Oρ∨
α
. (4.2)

The union in (4.2) is definitely not a disjoint union, as the various compo-
nents meet on subspaces. All this can be made more explicit for G = SU(n),
using the representation of T (SU(n)) as a quiver. In that case, every
ρ : su(2) → su(n) appears in the sum exactly once, and is paired with its
dual ρD.

4.1.1 Janus and the S-dual of Dirichlet

The strategy that we will follow to construct T (G) in general is as follows.
We start with a half-BPS domain wall with G gauge theory for y < 0 and
G∨ gauge theory for y > 0. There are many such domain walls, but there is
a minimal one that we call the Janus domain wall.

14The ρα of distinct α are not necessarily inequivalent.
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Figure 45: (a) A half-BPS configuration in G gauge theory in which the
coupling g(y) depends on y; it is small for y < 0 and large for y > 0.
(b) Applying S-duality for y > 0, we get an equivalent configuration
described by weakly coupled G gauge theory on the left and G∨ gauge
theory on the right, coupled to a superconformal field theory T (G) with
G × G∨ global symmetry. This SCFT is schematically denoted by the
vertical wiggly line.

The general half-BPS Janus configuration [9–13] is a configuration in
which the gauge coupling g is a general function g(y). No additional degrees
of freedom are added; one just considers N = 4 super Yang–Mills with
y-dependent coupling. This configuration admits a smooth limit to a domain
wall — a configuration in which g(y) is constant for y < 0 and for y > 0,
with a jump at y = 0. This limiting configuration is half-BPS and super-
conformally invariant, and we call it the Janus domain wall.

We consider a Janus domain wall with a coupling g(y) that is very small
for y < 0 and very large for y > 0 (figure 45(a)). Making S-duality in the
region y > 0, we reduce to a configuration with weak coupling on both sides.
However, the gauge group is G to the left and G∨ to the right. In the limit
that the coupling is extremely small on both sides, we are left with some
sort of superconformal field theory weakly coupled to G gauge fields in one
half space and to G∨ gauge fields in the other. We call this superconformal
field theory T (G).

We can investigate T (G) by ungauging the gauge fields on either or both
sides. For instance, let us introduce Dirichlet boundary conditions for G∨ at
y = L (see figure 46). After making S-duality in the region y > 0, we have
a Janus configuration (with y-dependent coupling g(y)) that terminates at
y = L with the S-dual of Dirichlet boundary conditions. If we regularize the
Janus domain wall by choosing a smooth function g(y) and we flow to the IR,
the non-trivial profile of g will just flow away, and we will be left with the
dual of Dirichlet boundary conditions, and a constant, small g everywhere.
This shows that T (G) is the boundary SCFT which defines the S-dual of a
Dirichlet boundary condition for G∨.
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Figure 46: (a) The G∨ symmetry of figure 45(b) can be ungauged — and
converted to a global symmetry — by terminating the figure on the right
with Dirichlet boundary conditions, which are schematically indicated by
the black dot. (b) Applying S-duality on the right of the figure, we get
G gauge theory coupled to the S-dual of Dirichlet boundary conditions —
schematically indicated here with the shaded dot — and with a non-trivial
coupling function g(y). (c) The profile of g(y) after a deformation. The
coupling is weak except very near the boundary at y = L. The IR limit
is obtained by shrinking away the strongly coupled region, leaving weakly
coupled G gauge theory on a half-space with boundary conditions that are
the S-dual in G gauge theory of Dirichlet boundary conditions in G∨ gauge
theory. So the S-dual of Dirichlet is coupling to the SCFT T (G).

Now consider G gauge theory on a half-space coupled to T (G) on the
boundary. The gauging kills the Higgs branch of T (G), but leaves the
Coulomb branch, which we would like to identify. The easiest way to do this
is to apply S-duality, which converts the gauge group into G∨ and turns the
boundary coupling to T (G) into Dirichlet boundary conditions. So we are
simply left with G∨ gauge theory on a half-space with Dirichlet boundary
conditions. The moduli space of vacua of this theory (with fields vanishing
at infinity) can be found by solving Nahm’s equations and is equal to the
nilpotent cone N ∨ of G∨, as explained in Section 3 of [1]. This therefore is
also the Coulomb branch of T (G).

If we introduce Dirichlet boundary conditions for both gauge groups, at
y = L and y = −L, respectively, this will have the effect of ungauging both
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Table 1: The Higgs and Coulomb branches H and C of the conformal field
theory T (G) and its generalizations. Here Sρ denotes the Slodowy slice

transverse to the raising operator ρ+ of ρ, Oρ is the orbit of ρ+, and Oρ is
the closure of this orbit. Finally, Cρ∨ is the set of all α such that ρ∨

α = ρ∨,
and Cρ is the set of α such that ρα = ρ.

H C
T (G) N N ∨

Tρ∨(G) ∪α∈Cρ∨
Oρα Sρ∨ ∩ N ∨

T ρ(G) Sρ ∩ N ∪α∈CρOρ∨
α

T ρ
ρ∨(G) Sρ ∩

(
∪α∈Cρ∨

Oρα

)
Sρ∨ ∩

(
∪α∈CρOρ∨

α

)

gauge groups. Moreover, we will be left with G global symmetry acting at
y = −L and G∨ at y = L. In the infrared, we will recover T (G).

If we exchange the two ends (and �X and �Y , as well), we see the same
configuration with G and G∨ exchanged. So T (G) and T (G∨) are a pair of
mirror SCFTs. In particular, the mirror symmetry implies that since N ∨ is
the Coulomb branch of T (G), its Higgs branch is N , the nilpotent cone of G.

4.2 Including the Nahm pole

The ungauging procedure can be generalized to include Nahm poles at the
two ends y = −L and y = L, associated, respectively, with homomorphisms
ρ : su(2) → g and ρ∨ : su(2) → g∨. If this configuration has a standard IR
limit, we denote the resulting SCFT as T ρ

ρ∨(G). Its mirror, arrived at by

exchanging the two ends of the picture, is T ρ∨

ρ (G∨).

We would like to determine the Higgs and Coulomb branches of these the-
ories (the results are summarized in Table 1). In doing this, it is convenient
to start with the case that ρ or ρ∨ is trivial. In any event, this will be the
most important case in the present paper.

Consider first Tρ∨(G). (The corresponding analysis of T ρ(G) is made
by simply exchanging G and G∨ and using mirror symmetry.) By defini-
tion, it is obtained from a configuration with Dirichlet boundary conditions
of G at the left of an interval, Janus in the center of the interval, and
Dirichlet boundary conditions modified by ρ∨ at the right of the interval
(figure 47(a)). If we move Janus to the right (figure 47(b)), we get a con-
figuration with gauge group G, the S-dual of ρ∨ on the right, and Dirichlet
boundary conditions on the left. As usual, Dirichlet boundary conditions
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Figure 47: (a) G and G∨ gauge theories joined by a Janus domain wall
(wiggly line). On the left, we take Dirichlet boundary conditions for G
(symbolized by the black dot), and on the right, Dirichlet boundary con-
ditions for G∨ modified by ρ∨ (gray dot labeled ρ∨). (b) Moving Janus to
the right gives a G gauge theory with Dirichlet boundary conditions on the
left and Tρ∨(G), the S-dual of ρ∨ (that is, the S-dual of Dirichlet modified
by ρ∨) on the right. (c) Moving Janus to the left gives a G∨ gauge theory,
coupled on the left to T (G∨) (the S-dual of Dirichlet for G) and to ρ∨ on
the right.

just ungauge G, leaving it as a global symmetry. The SCFT represented by
figure 47(b) is therefore the S-dual of ρ∨, and this then is Tρ∨(G).

On the other hand, to describe the moduli space of vacua of Tρ∨(G), it is
more convenient to move Janus to the left (figure 45(c)). Then we get a G∨

gauge theory, coupled on the left to T (G∨), and with boundary conditions
set by ρ∨ on the right. The Coulomb branch of vacua must be found by

solving the G∨ Nahm equations D �X + �X × �X = 0 with suitable conditions
at the endpoints y = ±L:

(1) At y = L, �X must have a Nahm pole of type ρ∨, that is �X ∼ ρ∨(�t)/
(y − L).

(2) And at y = −L, we require that �X(−L) + �μ = 0, where �μ is the
moment map for the action of G∨ on the Higgs branch of T (G∨), which
is the nilpotent cone N ∨ of G∨.

It is convenient to describe the result as a complex symplectic manifold in
one of its complex structures. As is explained in Section 3.3 of [1], condition
(1) gives the Slodowy slice transverse to the G∨

C
orbit of the nilpotent element

ρ∨(t+) ∈ g∨
C

(here t+ is the “raising” operator in su(2)). Condition (2) gives
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the intersection of this Slodowy slice with the nilpotent cone N ∨ (since �μ
takes values in this cone). We write Sρ∨ for the Slodowy slice transverse
to ρ∨(t+). So the Coulomb branch of Tρ∨(G) is the intersection Sρ∨ ∩ N ∨,
accounting for one of the entries in Table 1. Mirror symmetry then also
gives the Higgs branch of T ρ(G).

What we have determined so far is the component of the moduli space
of vacua of Tρ∨(G) on which SO(3)X acts trivially. To describe fully the
moduli space MTρ∨

(G) of vacua of Tρ∨(G), it helps to be more systematic.

One ingredient is the moduli space of vacua of T (G) (or its mirror T (G∨)),
whose general form was described in (4.2).

Once a particular vacuum is picked for T (G) at the end of the interval,

to get a full description, we need to consider the behavior of �X∨ and �Y ∨.
�Y ∨ will vanish, since the ρ∨ boundary conditions set it to zero at y = L.

However, �X∨ can obey Nahm’s equations. In solving Nahm’s equations, the
boundary condition (1) above is unchanged, but (2) is modified:

(2′) At y = −L, we require that �X∨(−L) + �μ = 0, where �μ is the moment
map for the action of G∨ on MT (G).

The full moduli space is therefore the intersection of MT (G) with the
Slodowy slice Sρ∨ . (We intersect Sρ∨ with each Coulomb branch factor of
MT (G) or Higgs branch factor of MT (G∨).) The moduli space of vacua of
Tρ∨(G) is therefore

MTρ∨ (G) =
⋃

α∈S

Oρα ×
(
Sρ∨ ∩ Oρ∨

α

)
. (4.3)

For some α, the intersection Sρ∨ ∩ Oρ∨
α

may be empty, as the Slodowy
slice transverse to ρ∨ will not intersect an orbit that is too small. For other
α, this intersection has positive dimension, giving a branch of the moduli
space that has a non-trivial Coulomb factor. To get a component of the
Higgs branch of MTρ∨

(G), the intersection Sρ∨ ∩ Oρ∨
α

should have dimension

zero, which happens precisely if ρ∨
α = ρ∨, in which case the intersection is

a single point. Let Cρ∨ be the set of all α such that ρ∨
α = ρ∨. The Higgs

branch of Tρ∨(G) is then
⋃

α∈Cρ∨
Oρα . This accounts for another entry in

the table, and of course mirror symmetry gives also the Coulomb branch
of T ρ(G).

Finally, we would like to explain the last row in the Table 1, which
describes the Higgs and Coulomb branches of T ρ

ρ∨(G). We start (figure 48)
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Figure 48: (a) The definition of the theory T ρ
ρ∨(G). On the left is G gauge

theory with boundary conditions set by ρ. On the right is G∨ with boundary
conditions set by ρ∨. Between is the Janus domain wall. The infrared limit
of this configuration gives T ρ

ρ∨(G). (b) Upon moving the Janus domain wall

to the right, we get a G gauge theory with ρ on the left and Tρ∨(G) on the
right. The IR limit is the same.

with the definition of this theory in terms of gauge theory on a slab with
boundary conditions set by ρ at one end and by ρ∨ at the other end, with
a Janus domain wall in the middle. Moving the Janus domain wall to the
right, we get a configuration in G gauge theory with boundary conditions
set by ρ on the left and by a coupling to Tρ∨(G) on the right. To find a
vacuum of T ρ

ρ∨(G), we start with a vacuum of Tρ∨(G) and solve the G Nahm

equations on an interval with the obvious modification of the above condi-

tions: �X has a pole of type ρ at the left, and equals the moment map of
Tρ∨(G) on the right. As a complex manifold, the result is the intersection
of the Slodowy slice Sρ transverse to ρ with the moduli space MTρ∨

(G).

Using the description (4.3) of that moduli space, we arrive at a pleasantly
symmetric description of the moduli space for T ρ

ρ∨(G):

MT ρ

ρ∨
(G) =

⋃

α∈S

(
Sρ ∩ Oρα

)
×

(
Sρ∨ ∩ Oρ∨

α

)
. (4.4)

Picking α so that one factor or the other is a point, we arrive at the last row
of the table.

For G = SU(n), the theories T ρ
ρ∨(G) are the general good linear quiver

theories, made from a chain of unitary gauge groups, as we have explained
in Section 3.3.3. We have therefore described the moduli space of vacua of
the general such theory, which would have been very hard to get directly.
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Figure 49: (a) The four-dimensional configuration which ungauges B∨. B∨

is the S-dual of a general boundary B given by a triple (ρ, H, BH), where H is
a subgroup of the commutant of a Nahm pole ρ, and BH is an SCFT with H
symmetry. As usual the black dot represents Dirichlet boundary conditions.
(b) The S dual of (a), involving a gauge theory with boundary condition B
on the left and coupling to T (G) on the right. (c) A split version of B: the
Nahm pole and reduction to H (indicated by the vertical dotted line) have
been displaced to y = ǫ > 0, leaving the SCFT BH at the endpoint y = 0.
(d) The Nahm pole is moved to the right. In the slab between y = L − ǫ
and y = L, G-valued gauge fields are coupled to a Nahm pole at y = L − ǫ
and to T (G) at y = L. This generates T ρ(G). Between y = 0 and y = L − ǫ
are H-valued gauge fields, coupled at y = 0 to BH , which was part of the
original boundary condition, and at y = L − ǫ to the global symmetry H of
T ρ(G). Thus the mirror B∨ is given by a composite gauge theory with H
coupled to BH × T ρ(G).

4.3 A general duality prescription

Extending our arguments of Section 3 to an arbitrary gauge group G, we will
now give a general recipe for understanding the S-dual of a boundary con-
dition B associated with a triple (ρ, H, BH), provided only that this S-dual
has full G∨ gauge symmetry, and therefore can be described by coupling to
an SCFT B∨ with G∨ symmetry. The steps are depicted in figure 49. B∨

can be extracted via the usual ungauging technique, introducing a Dirich-
let boundary condition at y = L and flowing to the IR. The S-dual of that
configuration is given as a G gauge theory on a slab R

3 × I, coupled to the
original boundary condition B = (ρ, H, BH) at the left end, and to T (G) at
the other end. When ρ is trivial and H = G, this gives at low energies a

construction of the mirror B̃∨ to B∨ in terms of a three-dimensional gauge
theory with gauge group G coupled to the product B × T (G).
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In the general case (figure 49(c)), a boundary condition (ρ, H, BH) can
be “split” in space: as we approach the boundary from y > 0 we may first
encounter the Nahm pole ρ, followed by the reduction of the gauge symmetry
to a subgroup H (which must commute with ρ), and only then the coupling
of H to a boundary theory BH . This three stage nature of the boundary
condition is illustrated in figure 1 (where a description of the first two stages
by branes is assumed). The precise positions in y at which the Nahm pole
and the reduction of the gauge group are located are not important when
we flow to the infrared.

The usefulness of this splitting is that the domain wall that carries the
Nahm pole and reduction of gauge symmetry can then be moved to the right
as in figure 49(d), towards the T (G) boundary. Let us divide the configu-
ration of figure 49(d) into two slabs. From the domain wall at y = L − ǫ
to the boundary at y = L, we have G gauge fields interacting with a Nahm
pole at y = L − ǫ and with T (G) at y = L. This (in the limit ǫ → 0) is the
definition of T ρ(G). Between y = 0 and y = L − ǫ, we have H gauge fields.
These gauge fields interact at y = 0 with the SCFT BH that was part of
the original boundary condition. At y = L − ǫ, they couple to the fields in
the other slab.

The slab in figure 49(d) between the domain wall at y = L − ǫ and the
boundary at y = L is the definition of T ρ(G): gauge fields of G with the
Nahm pole at the left boundary and coupling to T (G) on the right. Gauge
fields of H propagate to the left of y = L − ǫ. Of course, the slabs to the
left and right of the domain wall meet at their common boundary y = L − ǫ.
This means that the H-valued gauge fields on the left slab are coupled to a
global H-symmetry of the matter system defined by the right slab. Indeed,
since H commutes with ρ, it is a global symmetry of T ρ(G), acting on the
Higgs branch.

Hence we can formulate a prescription for B̃∨, whenever it exists. It is
the IR limit of a composite H gauge theory depicted in figure 49(d). This
theory, which we call BH ×H T ρ(G), is a theory with gauge group H coupled
to the product BH × T ρ(G). In flowing to the infrared, one can take zero
modes of all vector multiplets in the y-direction, so that the composite gauge
theory is purely three dimensional.

In using BH ×H T ρ(G) to define a boundary condition in G∨ gauge
theory, the four-dimensional G∨ gauge fields couple to symmetries of the
Coulomb branch of T ρ(G). As usual, this construction is most useful if one
can find a description in which the G∨ symmetry of the Coulomb branch is
visible.
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Figure 50: (a) G∨ gauge theory on a half-space, with boundary condition B∨.
The gauge coupling is small except within a distance ǫ from the boundary,
to the left of the wiggly line. (b) S-duality to the left of y = ǫ makes the
gauge coupling small everywhere, but now the gauge group is G for y < ǫ
and there is a coupling to T (G) at y = ǫ.

4.3.1 Symmetry breaking

If we are given a boundary condition B, we can construct the composite
gauge theory as above. If this theory has a standard infrared limit, with
the usual R-symmetry and global G∨ symmetry unbroken, then the dual
boundary condition has full gauge symmetry and is obtained by coupling to
the SCFT that emerges from the composite gauge theory.

What can we say when the composite gauge theory does not have a stan-
dard IR limit? To get some insight, we will describe a more conservative
variant of the above procedure that is always valid.

Our basic procedure so far has been to ungauge the dual G∨ gauge sym-
metry by imposing Dirichlet boundary conditions on the S-dual theory at
y = L. This gives a quasi three-dimensional theory, since the fourth dimen-
sion is compact, to which we then apply S-duality, after which we flow to
the infrared. Only after completing the infrared flow and constructing a

boundary SCFT B̃∨ do we “regauge” the theory, coupling to bulk G∨ gauge
fields so as to describe the dual of the original G theory on a half-space.

When the quasi three-dimensional theory does not have a standard IR
limit, the reduction at an intermediate step to a quasi three-dimensional
description is not helpful. Instead, it is better to formulate a completely four-
dimensional procedure that is always valid (figure 50). For this, we introduce
the theory T (G) in a slightly different way. Starting with the dual G∨

configuration, we increase the gauge coupling in the region y < ǫ, something
that does not affect the infrared behavior. When the G∨ gauge coupling is
strong for y < ǫ and weak for y > ǫ, we make S-duality in the region y < ǫ.
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This gives a description in which the coupling is weak everywhere. For y < ǫ,
we have weakly coupled G gauge theory, say with coupling gG, coupled to
the original boundary condition B. For y > ǫ, we have weakly coupled G∨

gauge theory. On the interface between the two theories at y = ǫ lives the
theory T (G).

This description is always valid, and the question is what we can learn
from it. There are two scales in the problem: ǫ sets the scale of the Kaluza–
Klein modes of the G vector multiplets, while ǫ/g2

G sets the scale of the
three-dimensional gauge coupling. To reduce to a boundary condition, we
want to take ǫ → 0. To flow to the infrared, we also want to take ǫ/g2

G to
zero. When the composite gauge theory does not have a good IR limit,
the second operation is not straightforward. However, there is no trouble
in reducing to a three-dimensional boundary theory by taking ǫ → 0 with
1/g2

3 = ǫ/g2
G fixed. The result is that the four-dimensional G∨ gauge theory

is coupled to a composite three-dimensional field theory at the boundary,
given by the usual prescription of figure 49(d), but with finite gauge coupling
for the three-dimensional gauge theory.

At this stage, we have G∨ gauge theory in the half-space y ≥ 0 coupled to
a boundary theory that has full supersymmetry and R-symmetry but is not
superconformal. We still want to take the IR limit 1/g2

3 → 0. By hypothesis,
the boundary theory alone does not behave well in this limit. The final step
of taking the infrared limit 1/g2

3 → 0 has to be taken for the combined theory
on the half-space. This can produce a boundary condition for the G∨ gauge
fields that involves reduced gauge symmetry, possibly with a Nahm pole.
(The case that it produces a boundary condition with full gauge symmetry
at the boundary is precisely the case that the IR flow of the composite gauge
theory could have been carried out in purely three-dimensional terms.)

If the IR flow of the composite gauge theory spontaneously breaks its G∨

global symmetries, then the boundary condition will have reduced gauge
symmetry. Moreover, if the moment map operators �μ for the G∨ isometries
of the composite gauge theory receive expectation values in the IR, the

boundary condition �X = �μ forces the scalar fields �X to acquire expectation

values at the boundary. Supersymmetry will then require that �X(y) should
obey the Nahm equations. By dimensional analysis, the expectation value

of �X(0) is proportional to the cutoff ǫ−1, so in this situation a Nahm pole
will emerge when we remove the cutoff.

4.3.2 Examples

We will try to provide some simple examples of these phenomena, which
involve the strong coupling dynamics of the three-dimensional gauge theory.
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Figure 51: (a) The S-dual of a trivial domain wall in G gauge theory is
a trivial domain wall in G∨ gauge theory. Trying to show this using the
ungauging procedure produces this configuration with two T (G) domain
walls. The gauge group is everywhere G∨ except in the central slab, where
it is G. (b) The three-dimensional composite gauge theory has gauge group
G coupled to two copies of T (G). (c) A convenient way to compute its
Coulomb branch is to describe it via G∨ gauge theory on R

3 × I with Dirich-
let boundary conditions at both ends. The Coulomb branch is the moduli
space of solutions of Nahm’s equations.

A Trivial domain wall

The simplest example is a trivial domain wall for the gauge group G,
which can be interpreted by the reflection trick as a boundary condition for
a G × G theory, broken to the diagonal G at the boundary. This example
is the k = 0 case of figure 40(c). Clearly the S-dual of a trivial G domain
wall is a trivial G∨ domain wall. We want to see how this result arises from
the ungauging procedure. Naive application of this procedure leads to a bad
quiver which is the k = 0 case of figure 43.

We want to apply the general procedure of figure 50, but in the two-sided
case of a domain wall, this procedure must be applied on both sides. The
analog of figure 50 is therefore a two-sided configuration in G∨ gauge theory
with two Janus domain walls separating an interval in which the gauge
group is G (figure 51). Clearly as we flow to the infrared, the two Janus
domain walls will essentially meet and cancel each other, but we would like to
understand how this happens when the Janus domain walls are represented
by coupling to T (G).

For this, we need to understand the Coulomb branch of G gauge theory
on R

3 × I with coupling to T (G) at both ends. (Alternatively, we can con-
sider a G gauge theory with finite coupling, coupled to two copies of T (G).)
The simplest way to do this is to use S-duality and the fact that T (G) is the
S-dual of a Dirichlet boundary condition in G∨ gauge theory. So we want
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Figure 52: The square of an S-duality transformation of a boundary con-
dition B. At each step the original boundary condition is coupled to the
Higgs branch of an appropriate theory T (G) or T (G∨). Probing the IR
dynamics of the G∨ gauge theory in the central slab leads back to the orig-
inal boundary condition. Alternatively, one can represent the two T ’s by
Janus domain walls and let the coupling constant profile flow away in the
infrared.

the Coulomb branch of G∨ gauge theory on the slab with Dirichlet bound-
ary conditions at both ends. This is given by the moduli space of solutions

of Nahm’s equations D �X/Dy + �X × �X = 0 on I. Dirichlet boundary con-

ditions simply mean that �X is arbitrary at both ends and that one divides
only by gauge transformations that are trivial at both ends.

The hyper-Kahler manifold that arises from Nahm’s equations in this
situation was first studied by Kronheimer [25] and is described in [1], Sec-
tion 3.9.1. (This manifold also entered at the end of Section 3.5 in relation
to the same problem for SU(n).) As a complex manifold in any of its com-
plex structures, it is the cotangent bundle of G∨

C
. The G∨ × G∨ symmetry

acts by left and right multiplication on G∨
C
. A maximal unbroken subgroup

is a diagonal G∨ subgroup of G∨ × G∨.

In other words, on the Coulomb branch, G∨ × G∨ is broken down to G∨,
as one would expect for the trivial G∨ domain wall, which is the S-dual of
the trivial G domain wall with which we started.

The square of S-duality

We can use this construction to argue that our S-duality prescription
defined using T (G) properly squares to the identity. Consider any G bound-
ary condition B, and apply our S-duality prescription twice, as in figure 52.

The result is essentially B coupled through a G gauge theory to the
Higgs branch of T (G), whose Coulomb branch is in turn coupled through
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a G∨ gauge theory to the Higgs branch of T (G∨). Finally, the bulk four-
dimensional G gauge theory is coupled to the Coulomb branch of T (G∨).

It is convenient to analyze the G∨ dynamics first. G∨ couples to two
copies of T (G∨). This is the S-dual of the system that we have just analyzed.
We have learned that in the infrared the G × G isometries of the Coulomb
branch of this composite theory are broken to a diagonal G. As a result,
we get a direct coupling of B to the four-dimensional G gauge theory, as
desired.

In effect, what we have just analyzed is very similar to the situation in
figure 51, except that it is cut off on the left by the boundary condition B.

There is a subtlety here, unrelated to the main ideas of this paper, which
we mention only in the hope of avoiding some confusion. Our definition of S
requires making a duality transformation in G gauge theory in a half-space
and identifying the result, in that half-space, with G∨ gauge theory. If G
is a group such as SU(n) that has complex representations, then G and
G∨ gauge theory admit a non-trivial classical automorphism C of complex
conjugation; in our definition of S, we did not pick an isomorphism with
G∨ gauge theory, so we did not distinguish S from the product SC. In
defining the two S operations from G to G∨ and from G∨ to G, choices
can be made such that S2 = 1. However, taking account of the fact that
in the relevant cases, G and G∨ have the same Lie algebra, it is somewhat
unnatural to define the two S operations independently, and a more natural
set of choices actually leads to S2 = C. C corresponds to the central element
−1 ∈ SL(2, Z).

Examples with symmetry breaking and Nahm pole

The simplest example of a boundary condition B whose dual has a Nahm
pole is a boundary condition given by a coupling to Tρ∨(G). Almost by the
definition of Tρ∨(G), the S-dual is the boundary condition B∨ in G∨ gauge
theory given by the ρ∨ pole.

We want to understand how the general S-duality recipe can reproduce
this fact. That prescription produces a composite gauge theory in which
the three-dimensional gauge group G is coupled to the product Tρ∨(G) ×
T (G). This theory does not have a good IR limit (as one can see from
the quiver description if G = SU(n)), so one should study it at finite gauge
coupling. More conveniently, one can study G gauge theory on the slab
R

3 × I with boundary conditions at the left and right set by coupling to
T (G) and Tρ∨(G), respectively.
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S-duality converts this to G∨ gauge theory on the slab with a ρ∨ Nahm
pole at one end and Dirichlet boundary conditions at the other end. The
Coulomb branch is the moduli space of G∨ Nahm equations on an interval,
with ρ∨ boundary conditions at the right end, and Dirichlet at the left end.
This moduli space was described in [26] and reviewed in [1], Section 3.9.2.
It has of course a G∨ isometry. The moment map for this isometry is the

initial value �X(0) of the scalar fields at the Dirichlet endpoint of I. The
presence of the Nahm pole at the other endpoint forces this moment map
to be non-zero. Indeed, any complex null combination such as μ1 + iμ2 will
be conjugate to the raising operator ρ∨(t+).

As a result, the coupling of the four-dimensional G∨ gauge fields to the
Coulomb branch of the composite gauge theory forces the bulk scalar fields
�X to have non-zero expectation values at the boundary, in order to obey the

boundary condition �X + �μ = 0. By dimensional analysis, �μ and therefore

the boundary value of �X is proportional to 1/L, the width of the slab. For

L → 0, �X acquires a Nahm pole at the boundary, of type ρ∨.

4.4 T (U(1))

Here we will describe T (G) in the abelian case G = U(1).

For simple G, T (G) is a non-trivial SCFT whose Higgs and Coulomb
branches are copies of the nilpotent cones N and N ∨. This suggests that
T (U(1)) might be trivial, since the nilpotent cone for the complexification
GL(1) of U(1) consists of only one point (a non-zero element of the Lie
algebra gl(1) is not nilpotent).

In a sense, T (U(1)) is trivial as an SCFT but non-trivial as a recipe for
coupling external vector multiplets. This means the following. Given the
SCFT T (G), we can couple it to G-valued and G∨-valued external gauge
fields. The ability to do this is important in the way we use T (G) in con-
structing the S-dual of a given boundary condition.

For G = U(1), T (G) is trivial as an SCFT, and consists only of a prescrip-
tion for coupling external vector fields. This turns out to be the following.
Let V and W be two N = 4 vector multiplets that contain U(1) gauge fields
B and C. Then the appropriate recipe is to couple them by the supersym-
metric completion of the Chern–Simons coupling:

1

2π

∫
C ∧ dB. (4.5)
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An extension of this interaction with N = 4 supersymmetry does exist
[4, 27]. Equation (4.5) is equivalent to saying that C is coupled to the
current

J =
⋆FB

2π
, (4.6)

where FB is the curvature of B.

Assuming that this is T (U(1)), let us describe the appropriate recipe to
find the dual of a general boundary condition B in U(1) gauge theory. For
brevity we suppose that B is given by coupling to an SCFT B with U(1)
symmetry. First, recall the case of simple G. In that case, T (G) has G × G∨

symmetry. We are supposed to introduce a g-valued vector multiplet V
and couple it to the diagonal G symmetry of the product B × T (G). This

then gives a theory B̃∨ = B ×G T (G) which is the mirror of the SCFT that
defines the dual boundary condition.

As B̃∨ has G∨ symmetry (since T (G) does), we can couple it to a
g∨-valued background vector multiplet W . If we do this, then at this stage,
we have coupled gauge fields V and W of G × G∨ to the product B × T (G).
V is dynamical and W is a background field.

For G = U(1), we do exactly the same thing, but the meaning is a little
different because T (U(1)) is “trivial.” Coupling V and W to B × T (G)
means that we couple V to B in the usual sense, and we couple V and W
to each other by means of the supersymmetric completion of (4.5).

In general, for any G, coupling W is just a way of formalizing what is the

G∨ symmetry of B̃∨. For G a simple group, this step is hardly necessary15

because the only possible G∨ symmetry is the one that comes from the G∨

symmetry of the SCFT T (G). For G = U(1), since T (U(1)) is trivial as an
SCFT, explicitly spelling out the coupling of the two vector multiplets is the

simplest way to describe the U(1) symmetry of B̃∨.

The duality procedure we have just described for U(1) boundary condi-
tions is the same as the one that we arrived at by a different method in
Section 3.1.4. Indeed, the coupling (4.5) appeared previously in equa-
tion (3.2). (The three-dimensional gauge field C can be understood as the
boundary value of the gauge field A of (3.2), which is defined on a half-
space.)

We can similarly compare the general T (G) procedure to the recipe of

Section 3.4 for the case G = U(n). The general recipe says to construct B̃∨

15If G and G∨ have outer automorphisms, it is best to regard the choice of G and G∨

action as part of the definition of T (G).
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by coupling U(n) gauge fields to B × T (U(n)), while in Section 3.4, the pre-
scription was to couple U(n) gauge fields to B × T (SU(n)). Either way, we

then want to find a U(n)∨ = U(n) symmetry of the Coulomb branch of B̃∨.
This symmetry was constructed in Section 3.4 using the SU(n)∨ Coulomb
branch symmetry of T (SU(n)) and a Chern–Simons coupling (between U(1)
gauge fields that gauge the centers of U(n) and U(n)∨) to exhibit the action
of the center of U(n)∨. The local factorization U(n) ∼= SU(n) × U(1) means
that T (U(n)) is a product T (SU(n)) × T (U(1)). The two procedures are
equivalent by virtue of the above description of T (U(1)).

4.4.1 Computation

So far we have shown that everything is consistent if T (U(1)) is simply a
recipe for a Chern–Simons coupling of two external U(1) vector multiplets.
On the other hand, in Section 4.1.1, we gave a general recipe for defining
T (G) by making a duality transformation in a half-space. Here we aim to
show that the two approaches coincide for G = U(1).

First we review electric–magnetic duality for U(1) in the absence of a
boundary. Supersymmetry plays no essential role (since in the abelian case
the additional fields required by supersymmetry are not coupled to the gauge
field), so we focus on pure U(1) gauge theory. We follow [28] and Section
2.4 of [29] (see [30,31] for the analog in two dimensions), but for brevity we
take the θ-angle to vanish. The action of the free U(1) gauge field B, whose
curvature we call FB, on a four-manifold M is

I =
1

e2

∫

M
FB ∧ ⋆FB. (4.7)

To establish electric–magnetic duality, we introduce a two-form field k

and require the extended gauge symmetry

B → B + b,

k → k + db, (4.8)

where b is any connection on a principal line bundle T over spacetime, and
db is its curvature. k should really be regarded as a gerbe connection (the
analog of the two-form field in string theory) with curvature h = dk; the
periods of h are integer multiples of 2π. The extended gauge symmetry
reduces to ordinary Maxwell gauge symmetry for B if b = dǫ for some zero-
form ǫ. To get the extended gauge symmetry, it suffices to introduce F =
FB − k and replace FB by F in the action I. The resulting theory, however,
is trivial. To get something non-trivial, we introduce another abelian gauge
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field C, and add to the action a coupling 1
2π

∫
M C ∧ dk = 1

2π

∫
M FC ∧ F ,

with FC = dC the curvature of C. At this stage, then, we have an extended
action

Î =
1

2π

∫

M
FC ∧ F +

1

e2

∫

M
F ∧ ⋆F . (4.9)

Electric–magnetic duality is established by comparing two ways to study
this theory. One approach is to first integrate over C, which leads to a delta
function in the path integral by means of which one can set k = 0 modulo
an extended gauge transformation of the form (4.8). (See the discussion
of equation (2.20) in [28]. The argument depends on the precise coefficient
1/2π in the first term of the extended action.) This shows that the extended
theory is actually equivalent to the original theory with action (4.7). On the
other hand, one can use the extended gauge symmetry to set B = 0, after
which the integral over k is Gaussian. Performing this integral, we arrive at
an action for C

IC =
e2

16π2

∫

M
FC ∧ ⋆FC (4.10)

that has the same form as the original action (4.7) except that τ = 4πi/e2

has been replaced by −1/τ . This is electric–magnetic duality.

Now let us consider the case that M has a boundary ∂M . Let us analyze
the dual of Dirichlet boundary conditions. This means that we require that
B and hence also its curvature FB vanish when restricted to ∂M . This being
so, in the definition of the extended gauge symmetry (4.8), we likewise have
to require that b vanishes when restricted to ∂M . Now we have to ask what
sort of boundary conditions on C and G will enable the above argument to
work. The answer is that it works if we place Neumann boundary conditions
on C and Dirichlet on G. (For example, we cannot place Neumann boundary
conditions on both or Dirichlet on both as this does not give a well-posed
boundary problem. If we place Dirichlet boundary conditions on C and
Neumann on G, then the delta function from the C integral does not suffice
to set G to zero modulo an extended gauge transformation.) For another
explanation of the boundary condition on C, see equation (4.11) below.

So the dual gauge theory, in which the gauge field is C, obeys Neu-
mann boundary conditions. We have shown that the S-dual of Dirichlet
is Neumann.

Now we want to modify this by introducing a gauge field A on ∂M , with
curvature FA, and shifting the boundary condition on B from B|∂M = 0
to B|∂M = A. We continue to require that b and k vanish on ∂M . The

extended theory with action Î still makes sense, and by doing first the
integral over C, one can still show that this theory is equivalent to the
original Maxwell theory (4.7) with the shifted boundary condition. What
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happens if we proceed in the opposite order? We cannot gauge fix B to
0, since this does not obey the boundary conditions, but we can pick an
arbitrary gauge field B0 on M that obeys the boundary conditions, and
impose the gauge condition B| = B0. Next we try to perform the integral
over k. The condition for the action to have a critical point as a function of
k that also obeys the boundary condition k|∂M = 0 is that

2

e2
⋆ FC |∂M =

1

2π
FA. (4.11)

Once this boundary condition is imposed on C, one can perform the Gauss-
ian integral over k, leading back to the same bulk action (4.10) as before.
The conclusion is that the shifted boundary condition on B is dual to the
deformation (4.11) away from Neumann boundary conditions for C. The
correction to the boundary condition is equivalent to the addition to the
action of a boundary term. The total action for C, including the boundary
term, is

IC =
e2

16π2

∫

M
FC ∧ ⋆FC +

1

2π

∫

∂M
C ∧ dA. (4.12)

In other words, a shifted boundary condition B|∂M = A with specified A
is dual to the boundary interaction just indicated. Another way to explain
the result we have obtained is that the condition B|∂M = A implies that
FB|∂M = FA. Under duality, FB maps to 4π

e2 ⋆ FC , so the boundary condition

becomes 4π
e2 ⋆ FC |∂M = FA, as in (4.11).

Now it is straightforward to perform duality in a half-space and explain
the claim we have made about T (U(1)). We start with a U(1) gauge field

Â on a four-manifold M . We select a three-dimensional submanifold N of
M that divides M into two pieces M1 and M2. We write A and B for the

restrictions of Â to M1 and M2, respectively. Of course, they agree on the
boundary:

B|N = A|N . (4.13)

Now we carry out the above duality procedure on M2. In the process, B is
replaced by another U(1) gauge field C on M2, and the boundary condition
(4.13) is replaced by a boundary interaction

1

2π

∫

N
C ∧ dA. (4.14)

We have justified the claim that after carrying out duality in half of space-
time, the gauge fields A and C on the two sides are coupled in this fash-
ion. This justifies our proposal for T (U(1)), and hopefully also makes more
tangible the idea of defining T (G) by duality in a half-space.
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4.5 Massive deformations of T (G)

Here we will briefly discuss the massive deformations of T (G) and related
theories. These are of interest physically, and also relevant to some aspects
of recent mathematical work [32–34] on classical geometry related to three-
dimensional mirror symmetry.

We begin by restating some standard facts. Let us start with a general
superconformal N = 4 theory W in three dimensions. The moduli space of
vacua has the general form

M = ∪α∈SCα × Hα, (4.15)

where S is the set of components, and each component is the product of
Coulomb and Higgs factors Cα and Hα. Each factor is a conical hyper-
Kahler manifold, with a scaling symmetry that leaves fixed only the apexes
of the cones, and R-symmetry groups SO(3)X and SO(3)Y that rotate,
respectively, the complex structures of the Hα and of the Cα. The union
in (4.15) is not a disjoint union; the components meet on conical hyper-
Kahler subvarieties, and in particular there is one point that they all share
in common — the fixed point of the scaling symmetry. The Coulomb branch
C is the union of Cα for which Hα is a point, and the Higgs branch H is the
union of Hα for which Cα is a point.

It is not true that there is always a Higgs branch or a Coulomb branch,
since there may be no component for which Cα or Hα is a point. In general,
we define the maximal Higgs branch H′ as the union of Hα for which Cα is
minimal, and the maximal Coulomb branch C′ as the union of Cα for which
Hα is minimal. All Hα are subvarieties of H′ (on which Coulomb directions
Cα appear) and all Cα are subvarieties of C′ (on which Higgs directions Hα

appear).

Continuous symmetries act on either C′ or H′, but not both. Let H̃ and H

be the groups that act on C′ and H′, respectively. Let T̃ and T be maximal

tori in H̃ and H, and write t̃ and t for their Lie algebras. The actions of

T̃ and T preserve the conical hyper-Kahler structures of the C′ and H′, and
so always leave fixed the apexes of these cones. Massive deformations exist

precisely if T̃ and T have no other fixed points.

The massive deformations are constructed using Fayet–Iliopoulos (FI)

parameters and mass parameters. These take values, respectively, in t̃ ⊗ R
3

and t ⊗ R
3, where one can think of R

3 as the space of imaginary quaternions.
The effect of turning on FI parameters is to reduce the dimension of the Cα,
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possibly to zero, and to resolve/deform singularities of the Hα, possibly

making them smooth. Indeed, each component of an FI parameter �ζ ∈
t̃ ⊗ R

3 corresponds to a vector field on C′ and hence on each Cα. We refer
to the common zeroes of these three vector fields as the zeroes or fixed
points of �ζ. The effect of perturbing the action by �ζ is to reduce the moduli

space M to the zeroes of �ζ. In the theory W perturbed by �ζ, the Cα are

replaced by the fixed point sets C
�ζ
α, and the singularities of Hα are partially

or completely deformed/resolved.

An important special case is that if T̃ acting on C′ has no fixed point

except for the apex, and we choose �ζ generically, then the only zero of �ζ is the
apex. In this situation, H′ becomes smooth and becomes the moduli space
of vacua. (Its singularities would be points of intersection with Coulomb

branches, but such branches are absent, since the only zero of �ζ is the
apex.)

We say that �ζ is regular if it leaves fixed only the apex of C′. Otherwise

we say that �ζ is non-regular. If the set of regular �ζ is non-empty, then

the set of non-regular �ζ has real codimension at least three. (To be non-

regular, �ζ must take values in p ⊗ R
3 where p is a proper subspace of t̃; the

codimension of p ⊗ R
3 in t̃ ⊗ R

3 is at least three.) This has the important

consequence that the set of regular �ζ is connected and simply connected.

Similarly, we call �m regular if it leaves fixed only the apex of H′, and
otherwise non-regular. Again, the set of regular �m is connected and simply
connected (though possibly empty).

Conversely to what has been stated above, a perturbation by masses
�m ∈ t ⊗ R

3 reduces Hα to the fixed point set H �m
α (defined again as the

zero set of the vector fields corresponding to �m), and deforms/resolves the
singularities of Cα. If the only fixed point of T acting on H′ is at the apex,
then after turning on a generic �m, C′ becomes smooth and is the moduli

space of vacua. We write Ĥ′ and Ĉ′ for generic smoothings of H′ and C′

resulting from �m or �ζ, respectively.

Now let us focus on the situation that both T and T̃ have only the apexes

of the cones as fixed points. In this situation, if both �ζ and �m are regular,
the theory becomes massive. We can describe the massive vacua in two

different limits, |�ζ| >> | �m| and | �m| >> |�ζ|.

If |�ζ| >> | �m|, then we first consider the effects of �ζ. The moduli space

of vacua reduces to the smooth space Ĥ′. Now turn on a regular �m. By
hypothesis, �m has only a single fixed point on the conical space H′ — the
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apex of the cone. After the smoothing to Ĥ′, there are finitely many fixed
points. (The apex of the cone is generically a singular point, and must be
counted with an integer multiplicity, which becomes the number of fixed
points once H′ is made smooth.) These are the massive vacua of the theory.

So if |�ζ| >> | �m|, the set M of massive vacua has a natural correspondence16

with the fixed points of T acting on Ĥ′.

If | �m| >> |�ζ|, we carry out these steps in the opposite order, and establish

a correspondence of M with the set of fixed points of T̃ acting on Ĉ′. Since
we can smoothly interpolate from one limit to the other with the theory

remaining massive (as long as �ζ and �m both remain regular) there must be

a natural correspondence between T̃ fixed points on Ĉ′ and T fixed points

on Ĥ′. Such a correspondence has been found mathematically [32–34].

Now let W and W̃ be the Weyl groups of H and H̃, respectively. There

is always a natural action of the product W × W̃ on M. The action of W
is clear17 if we interpret M as the space of T fixed points on Ĥ′, and the

action of C is clear if we interpret M as the space of T̃ fixed points on Ĉ′.

To show that the actions of W and W̃ commute, we look at the prob-

lem more symmetrically. We write Areg for the space of regular �ζ and Breg

for the space of regular �m. Conjugation of �ζ or �m by W̃ or W gives an
equivalent theory. Hence the parameter space of massive deformations is

P = Areg/W̃ × Breg/W. Since Areg and Breg are connected and simply con-

nected, the fundamental group of P is π1(P ) = W × W̃. The set M of
massive vacua maps to P , and as M is a finite set, this map is a locally triv-
ial fibration. The global monodromy action on the fiber gives the desired

action of W × W̃ on M.

4.5.1 Application to T(G)

The theory T (G) gives an excellent illustration of the ideas just summarized.

The groups H and H̃ are G and the dual group G∨. The Higgs and Coulomb
branches are the nilpotent cones N and N ∨. The Weyl groups W and W∨

of G and G∨ naturally coincide.

16It does not matter which smoothing Ĥ′ we use here. To compare fixed points for

two different regular choices of �ζ, we simply pick an interpolating path of regular �ζ’s, and
follow the fixed points along this path. The choice of path does not matter, since the

space of regular �ζ’s is simply connected.
17If h ∈ H normalizes T , then v → hvh−1, v ∈ t, is a Weyl transformation wh. Given

w ∈ W, we pick h such that wh = w. Then the action of wh on Ĥ′ permutes the fixed
points of T , in a fashion that is independent of the choice of h; moreover, this gives an
action of W on the set of fixed points.



826 DAVIDE GAIOTTO AND EDWARD WITTEN

The maximal tori T and T∨ of G and G∨ act on N and N ∨ with fixed
points only at the origin. (In order for x ∈ g to be T -invariant, it must be an
element of t; but the intersection t ∩ N consists only of the point 0, since an

element of t that is nilpotent must vanish.) The condition for �ζ to be regular

is that the subalgebra of g∨ that commutes with all three components of �ζ
is precisely t∨; similarly �m is regular if it commutes precisely with t.

A regular FI perturbation eliminates the Coulomb branch N ∨ and deforms
the nilpotent cone N to the orbit of a semi-simple element, or a smooth res-
olution thereof. For a particular choice of FI perturbation,18 N is deformed
to T ∗(G/T ), the cotangent bundle of the compact flag manifold G/T . The
fixed points of the T action on G/T correspond precisely to elements of the
Weyl group W. Indeed, let π : G → G/T be the projection. For g ∈ G, the
condition for π(g) to be a fixed point in the action of T on G/T is that
for any t ∈ T , we should have tg = gt′ for some t′ ∈ T . In other words,
g−1tg = t′, so g normalizes T and generates a Weyl transformation. The
action of W × W on M = W is simply the left and right action of W on
itself, as one can see by slightly extending this analysis.

We will give two additional ways to understand these statements. First,
for G = SU(n), we use the brane realization of T (G) that is sketched in
figure 23(c) with n D3-branes stretched between n NS5-branes on the left
and n D5-branes on the right. To realize T (SU(n)), the n NS5-branes
should be coincident and likewise the n D5-branes should be coincident. The
massive deformation is achieved by making generic displacements of the NS5-

branes in �X and generic displacements of the D5-branes in �Y . (This is what
is actually drawn in the figure, simply because it is easier to draw.) After
this deformation, a supersymmetric vacuum corresponds to a situation, as
drawn in the figure, in which each D3-brane ends at one end on an NS5-
brane and at the other end on a D5-brane. The resulting vacuum is massive
since a D3-brane with opposite endpoints of this kind supports no massless
degrees of freedom. Because of the s-rule, no more than one D3-brane can
end on any fivebrane, so as there are n branes of each kind, each fivebrane
has precisely one D3-brane ending on it. Connecting the n NS5-branes with
n D5-branes gives a map from one set of n objects to another. There are n!
such maps, making up the set M of massive vacua.

The Weyl group of SU(n) is the group of permutations of n objects. The
action of W × W is visible in the brane picture: one factor acts by permuting
the n NS5-branes, and one by permuting the n D5-branes. Clearly, we

18One chooses �ζ = (0, 0, b), where b ∈ t is regular in the usual sense, so that in one

complex structure �ζ generates a resolution, not a deformation, of N . The resolution in
question is known as the Springer resolution.
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can think of M as a copy of W, on which W × W acts by left and right
multiplication.

An alternative approach is valid for any G. We can realize T (G) via
gauge theory on R

3 × I (where I is the interval 0 ≤ y ≤ L), with G gauge
theory with Dirichlet boundary conditions on the left, G∨ gauge theory with
Dirichlet boundary conditions on the right, and a Janus domain wall in
between. (This is what we get by “ungauging” the configuration of figure 45
with Dirichlet boundary conditions at each end; it is also the special case
of figure 47(a) with ρ∨ trivial.) In that language, a massive deformation
is made by shifting the Dirichlet boundary conditions at the two ends. On

the left, instead of taking �Y (0) = 0, we take �Y (0) = �ζ, and on the right,

instead of taking �Y ∨(L) = 0, we take �Y ∨(L) = �m. (See Section 2.2.3 of [1]
for this type of deformation.) Once we make a massive deformation, the
Janus coupling profile g(y) in figure 45 is not important. We can deform to
the case that g is constant, and small in the G description. It is then useful
to use the G description everywhere. The duality transformation from G∨ to

G on the right part of the slab maps �Y ∨ to �X, and the boundary conditions
become

�Y (0) = �ζ,

�X(L) = �m. (4.16)

(Also, we impose Neumann boundary conditions on �X at y = 0, and on �Y
at y = L. The gauge field A obeys Dirichlet boundary conditions at y = 0
and Neumann at y = L.) Finally, we divide by gauge transformations that
equal the identity at y = 0.

With these boundary conditions, the theory is massive. For example,
having opposite boundary conditions on A at the two ends ensures that it

has no massive modes, while the boundary conditions on �X and �Y ensure

the same for them. To find a supersymmetric vacuum, �X and �Y must be

covariantly constant, and all components of �X and �Y must commute with
each other. In addition, the curvature F = dA + A ∧ A must vanish. Hence,
by a gauge transformation that is trivial at y = 0, we can set A = 0. In this

gauge, �X and �Y are simply constant. The boundary condition now tells us

that �Y (y) = �ζ for all y. As for �X, it is also constant, but we can no longer
claim that it equals �m, since we have made a gauge transformation that may

be non-trivial at y = L. However, �X must be a constant that commutes with
�Y = �ζ, so (as we assume �ζ to be regular) �X must be t-valued. Moreover, �X
must be gauge equivalent to �m. These conditions imply that in this gauge,
�X is the conjugate of �m by some Weyl transformation w. Moreover, any w
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is possible. So again we see that the set M of massive vacua is a copy of
W. Using the definition of the W × W action in terms of monodromy over
the parameter space P , one can verify that this action is the left and right
action of W on itself.

5 Quivers with orthogonal and symplectic gauge groups

In the remainder of this paper, we will extend some of the explicit construc-
tions to orthogonal and symplectic gauge groups. As a preliminary, in this
section we extend to the orthogonal and symplectic case the analysis of good
and bad gauge theories and quivers in Section 2.4. This will also enable us
to describe quivers that are candidates for T (SO(n)) and T (Sp(n)). We
apply our results to S-duality of boundary conditions in Sections 6 and 7.

5.1 Orthogonal and symplectic gauge theory

The starting point is the general formula (2.15) for the R-charge of a mono-
pole operator. The monopole operator is defined by specifying a U(1)
embedding in the gauge group G. If hi and vi are the U(1) charges of hyper-
multiplets and vector multiplets, then the monopole operator has R-charge

qR =
1

2

⎛
⎝∑

i

|hi| −
∑

j

|vj |

⎞
⎠ . (5.1)

To implement this for SO(k), we associate the U(1) embedding to a
sequence of integer “eigenvalues” a1, . . . , ak; the non-zero eigenvalues come
in pairs of equal magnitude and opposite sign, since a generator of so(k) is
conjugate to a sum of traceless 2 × 2 blocks

(
0 α

−α 0

)
. (5.2)

Let us couple SO(k) gauge theory to fundamental hypermultiplets with
flavor symmetry Sp(2nf). The evaluation of (2.15) gives

qR =
nf

2

∑

i

|ai| −
1

2

⎛
⎝ ∑

1≤i<j≤k

|ai − aj | −
∑

1≤i≤k

|ai|

⎞
⎠ . (5.3)
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With the ai coming in equal and opposite pairs, this is equivalent to

qR =
nf + 2 − k

2

∑

i

|ai| +
1

2

∑

i<j

(
|ai| + |aj | − |ai − aj |

)
. (5.4)

This formula has an obvious similarity to (2.17), with k playing the role of
2nc. The condition for a good theory is

nf ≥ k − 1. (5.5)

We call an SO(k) theory balanced if nf = k − 1. In the balanced case there
is a single monopole operator with qR = 1, the sequence of charges being
(1,−1, 0, 0, . . . , 0); this leads to an SO(2) symmetry of the Coulomb branch.
An important point is that because the ai come in pairs, qR is always an
integer and there are never free hypermultiplets. We define the excess e of
an SO(k) gauge theory coupled to fundamentals by

e = nf − k + 1. (5.6)

We can make a similar analysis for gauge group Sp(2t) with fundamental
hypermultiplets of flavor symmetry19 SO(2nf ). The analog of (5.3) is

qR =
nf

2

∑

i

|ai| −
1

2

⎛
⎝ ∑

1≤i<j≤2t

|ai − aj | +
∑

1≤i≤2t

|ai|

⎞
⎠ , (5.7)

leading to

qR =
nf − 2t

2

∑

i

|ai| +
1

2

∑

i<j

(|ai| + |aj | − |ai − aj |) . (5.8)

The condition for a good theory is now

nf ≥ 2t + 1, (5.9)

and we call a theory balanced if nf = 2t + 1. Again, a balanced theory has
a single monopole operator with qR = 1, with the same sequence of charges
as before, leading to an SO(2) symmetry of the Coulomb branch. For the

19The full flavor symmetry is actually O(2nf), not just SO(2nf), but we primarily
consider the connected component except in Section 5.2.2. Classically, we could take
flavor symmetry of the form O(2m + 1). An anomaly would then force us to incorporate
a half-integral Chern–Simons interaction for the gauge fields, modifying the properties of
the monopole operators.
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same reason as for orthogonal gauge groups, there is no value of nf at which
a free hypermultiplet appears. We define the excess e of an Sp(2t) gauge
theory with fundamentals as

e = nf − 2t − 1. (5.10)

5.2 Orthosymplectic quivers

We now want to study linear quivers with unitary, orthogonal, and symplec-
tic gauge groups. (For some examples, see figure 53.) To each link in such
a quiver, we attach bifundamental hypermultiplets as usual; in the case of
adjacent SO and Sp nodes, we place a reality condition on the hypermulti-
plets, halving the number of components.

We have already defined a notion of excess ei for each kind of node. We
also define ǫi = 1 for unitary nodes, and ǫi = 1/2 for orthogonal and sym-
plectic nodes. Also, because of the reality condition on the bifundamentals,
we define ǫi,i+1 to be 1/2 for a link connecting SO and Sp nodes, and 1 for
any other link.

The general formula for the R-charge of a monopole operator is

qR =
∑

i

(Δi + ǫiAi + ǫi,i+1Bi) , (5.11)

where, as in Section 2.4,

Δi =
ei

2

ni∑

k=1

|ai,k|,

Ai =
1

2

ni∑

k=1

ni∑

t=1

(|ai,k| + |ai,t| − |ai,k − ai,t|) ,

Bi = −
1

2

ni∑

k=1

ni+1∑

t=1

(|ai,k| + |ai+1,t| − |ai,k − ai+1,t|) . (5.12)

Because of the ǫ factors, it is not so that a linear quiver with all nodes
obeying ei ≥ 0 is automatically good. A simple counterexample is the quiver
in figure 53(a), which has two adjacent balanced symplectic nodes. The two
ei vanish, the two Ai equal 2, and the single Bi equals −2. Because of the
ǫi factors, qR = 0 if the charges at the two nodes are equal, and the quiver
is bad.
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Figure 53: (a) A quiver with two adjacent balanced symplectic nodes is bad,
as explained in the text. (b) An orthosymplectic quiver, with alternating
orthogonal and symplectic nodes, each of which has ei ≥ 0, is good. (c)
A chain of unitary nodes terminating at one end with an orthogonal or
symplectic node is good, provided each node has ei ≥ 0.

Nevertheless, certain classes of quivers do have the property that if ei ≥ 0
for each node, then qR ≥ 1. In the rest of this paper, two classes of such
good quivers will play an important role. These classes, which are suggested
by brane constructions with orientifolds, are as follows.

One is what we will call an “orthosymplectic” quiver, that is a linear
quiver of alternating orthogonal and symplectic nodes (figure 53(b)). The
second is the case of a linear quiver of unitary groups terminating at one
end (or at each end) with an orthogonal or symplectic group (figure 53(c)).

First we consider orthosymplectic quivers. In this case, the ǫi and ǫi,i+1

all equal 1/2. This factor of 1/2 multiplies the sum
∑

i(Ai + Bi) considered
in Section 2.4. So the key inequalities of that section, such as (2.28), have
immediate analogs:

qR ≥
P−1∑

i=1

ei

2

ni∑

m=1

|ai,m| +
1

2

n1∑

m=1

|a1,m|(n1 − m + 1)

+
1

2

nP−1∑

m=1

|aP−1,m|(nP−1 − m). (5.13)
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(There are P − 1 nodes in the quiver. The group at the ith node is
assumed to be SO(ni) or Sp(ni); ai,s are the charges at the ith node.)
There is also an analog of (2.30) in which one of the nodes, say the sth one,
is singled out:

qR ≥
P−1∑

i=1

ei

2

ni∑

m=1

|ai,m| +
1

2

n1∑

m=1

|a1,m|(n1 − m) +
1

2

ns∑

m=1

|as,m|

+
1

2

nP−1∑

m=1

|aP−1,m|(nP−1 − m). (5.14)

The close relation of these formulas to the corresponding formulas for uni-
tary quivers reflects the fact that an orthosymplectic quiver can be obtained
as a Z2 orbifold of a quiver of unitary groups. One divides by a Z2 that
reduces each U(n) gauge group to SO(n) or Sp(n). The orthogonal and
symplectic groups must alternate along the chain in order that the Z2 action
can be defined for the bifundamental hypermultiplets.

It immediately follows from these formulas that for a quiver of this kind
with all ei ≥ 0, non-trivial monopole operators have qR > 0. Allowing for
the fact that the non-zero ai,s are paired, the bound is qR ≥ 1, so there are
no free hypermultiplets.

Furthermore, we can describe all of the operators of qR = 1 and there-
fore the symmetries of the Coulomb branch. From (5.14), it follows that
the charges vanish at any node with ei > 0. So it suffices to consider a
chain of p balanced nodes. From (5.14), to get qR ≤ 1, at each node, the
monopole charges either vanish or are (1, −1, 0, . . . , 0). Just as in Section
2.4, if the subquiver of nodes with non-zero charges is disconnected, then
qR ≥ 2. So to get qR = 1, we must have a connected subquiver on which
the monopole charges are (1, −1, 0, . . . , 0), with all charges vanishing out-
side this subquiver. Conversely, all these operators have qR = 1. So there
are a total of p(p + 1)/2 monopole operators of qR = 1. (An exception to
this counting is mentioned shortly.) This is the dimension of the Lie group
SO(p + 1), and we claim that is indeed the symmetry associated with the
monopole operators.

If there is a single balanced node, the symmetry group is clearly SO(2), as
there is a single monopole operator. For any two consecutive balanced nodes,
there are three monopole operators. A detailed computation of three point
functions on the sphere would be needed to show directly that these three
operators define an SO(3) algebra, as opposed to SO(2) × SO(2) × SO(2).
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In any event, this follows from the orthosymplectic mirror symmetry
construction of [35].

Once one knows that the symmetry for two consecutive balanced nodes is
SO(3), one can reason by induction and build up an SO(p + 1) symmetry
for a chain of p consecutive balanced nodes. Suppose that this is so for
some value of p. Adding a (p + 1)th balanced node adds p + 1 monopole
operators, which must transform in a (p + 1)-dimensional representation of
the group SO(p + 1) that is already present. This representation must be
non-trivial, because of the hypothesis that two adjacent balanced nodes
(one of which is the new one) generates SO(3) symmetry. Hence it must be
the irreducible (p + 1)-dimensional representation, which combines with the
SO(p + 1) from the first p − 1 nodes to generate SO(p + 2).

In one important case, the above counting needs modification. Suppose
that the gauge symmetry of one of our balanced nodes is SO(2). Such a
node can only appear at the end of a quiver, as there is no way to divide its
Sp(2) flavor symmetry. The group SO(2) ∼= U(1) is abelian, so in a theory
with SO(2) gauge symmetry, there is a classical symmetry of the Coulomb
branch, the shift of the dual photon. Moreover, as SO(2) has no Weyl group,
the elements

(
0 1

−1 0

)
,

(
0 −1
1 0

)
(5.15)

of so(2) are not conjugate and correspond to distinct homomorphisms
u(1) → so(2). Hence there are two different monopole operators of qR = 1,
roughly with positive or negative monopole charge, at a balanced SO(2)
node. The group associated with the classical symmetry and the two mono-
pole operators is SO(3). Indeed, SO(2) with Sp(2) flavor symmetry is
equivalent to U(1) with nf = 2, and so was one of the basic examples in
Section 2.4.1.

Now we claim that given a chain of p balanced orthogonal and symplectic
nodes, of which the first has SO(2) gauge symmetry, the monopole operators
and the classical symmetry of the Coulomb branch generate an SO(p + 2)
symmetry. We have already established the case of p = 1. Proceeding by
induction in p, adding a (p + 1)th balanced node adds now p + 2 monopole
operators, transforming non-trivially under SO(p + 2), and so extending the
symmetry to SO(p + 3).

Similarly, an orthosymplectic chain of p balanced nodes, with SO(2) at
each end, gives SO(p + 3) symmetry.
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Figure 54: (a) A balanced chain ending with flavor symmetry SO(2n). (b)
A similar balanced chain ending with flavor symmetry Sp(2n). (c) A bad
quiver whose Higgs branch is the nilpotent cone of SO(2n + 1).

5.2.1 Some significant examples

We will illustrate this idea with some significant examples. In Figure 54(a),
we show a balanced orthosymplectic quiver with fundamental matter mul-
tiplets only at the last node. The sequence of groups is SO(2) − Sp(2) −
SO(4) − Sp(4) − · · · − Sp(2n − 2). The flavor symmetry at the last node
is SO(2n), and this is the classical symmetry of the Higgs branch. The
symmetry of the Coulomb branch resulting from a chain of 2n − 2 balanced
orthogonal and symplectic groups beginning with SO(2) is also SO(2n). A
short computation shows that the complex dimension of either the Higgs or
the Coulomb branch is 2n(n − 1), which is the dimension of the nilpotent
cone N of the self-dual group SO(2n). These facts suggest that the IR limit
of this quiver describes T (SO(2n)). Indeed, it can be shown along the lines
of [35] and our arguments in Section 3 that this quiver is self-mirror and
describes the S-dual of Dirichlet boundary conditions for SO(2n). We defer
these matters to Section 7. Moreover, one can show directly by adapting20

the arguments of [36] that the Higgs branch of this quiver is the nilpotent
cone of SO(2n).

20The Higgs branch of SO(2k) gauge theory coupled to fundamental hypermultiplets
with flavor symmetry Sp(4k − 2) is the same as the Higgs branch of O(2k − 1) gauge
symmetry with fundamental hypermultiplets of the same flavor symmetry. One can make
this substitution for all of the orthogonal nodes in fig. 54(a) or (b). After doing so, the
equivalence of the Higgs branches of these quivers to the nilpotent cones of SO(2n) and
Sp(2n) is a special case of the results of [36] (see also a brief summary in [37]).
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In figure 54(b), we show a similar balanced quiver but continued one step
farther. Now, the symmetry of the Higgs branch is Sp(2n) rather than
SO(2n). The symmetry of the Coulomb branch — derived from 2n − 1
balanced nodes, the first group being SO(2) — is SO(2n + 1). This is
the dual group of Sp(2n). The Higgs and Coulomb branches have the right
dimensions to match the nilpotent cones N and N ∨ of T (Sp(2n)). Indeed, as
we explain in Section 7, this theory describes the dual of Dirichlet boundary
conditions for Sp(2n). Again, the Higgs branch can be analyzed by adapting
arguments in [36] and does coincide with the nilpotent cone of Sp(2n).

As SO(2n + 1) is the dual group of Sp(2n), the theory T (SO(2n + 1))
is the mirror of T (Sp(2n)). It would be nice to have a direct construction
of T (SO(2n + 1)), as opposed to its mirror. However, it seems that there
is no good quiver that flows in the IR to T (SO(2n + 1)). The quiver of
figure 54(c), based on the sequence O(1) − Sp(2) − O(3) − Sp(4) − . . . , is
shown in [36] to have a Higgs branch that coincides21 with the nilpotent
cone of SO(2n + 1). Moreover, its Coulomb branch has the same dimension
as the nilpotent cone of Sp(2n). However, this is not a good quiver, as the
symplectic nodes are imbalanced. So it does not have a standard IR limit.
We argue in Section 7 that this quiver theory flows to T (SO(2n + 1)) in the
infrared, but that the R-symmetry that is realized in the infrared is not the
one that one sees in the underlying gauge theory.

5.2.2 Infrared flow of T(SO(3))

For SO(3), we can argue this directly. First we ignore the O(1) gauge
symmetry of the quiver and consider an Sp(2) (or SU(2)) theory with flavor
symmetry SO(4). Classically, the Higgs branch H consists of two copies22

of the A1 singularity R
4/Z2. The Coulomb branch of the model is C =

(R3 × S1)/Z2 [40]. Here Z2 acts as a reflection of both R
3 and the circle

S1. C has two singularities (coming from the fixed points of the reflection
of S1), each of which is an A1 singularity. At each singularity of C, C meets
precisely one of the two components of H. (This structure was found in [38]
in a related four-dimensional model. It is true in three dimensions for similar
reasons, as we explain below.)

21 For this result to hold classically, it is essential that the orthogonal gauge groups in
the quiver are ordinary orthogonal groups O(k), as indicated, rather than special orthog-
onal groups SO(k). See Section 5.2.2.

22 See the analysis of equation (3.4) in [38], where this Higgs branch arises in the study
of a related four-dimensional model. From the point of view of [39], the Higgs branch is the
one-instanton moduli space on R

4 with structure group the flavor group SO(4), and has
two components because the instanton can be in either factor of SO(4) ∼= SU(2) × SU(2).
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Let M be the moduli space of vacua of the theory. Near either singularity
of C, M looks like two intersecting A1 singularities — one being C and the
other being the relevant component of H. Either of these intersections gives
the familiar picture of T (SU(2)), or equivalently T (SO(3)). However, the R-
symmetry that is part of the superconformal structure of T (SO(3)) is not the
microscopic R-symmetry of the underlying Sp(2) gauge theory. The micro-
scopic R-symmetry is of course an exact symmetry of C = (R3 × S1)/Z2,
and comes from the rotation of R

3. Near either of the A1 singularities of
C, the SO(3) symmetry of C is enhanced to SO(4)/Z2 = SO(3)1 × SO(3)2.
Of these two factors, one of them, say SO(3)1, is the superconformal R-
symmetry, and the other, say SO(3)2, is the expected SO(3) global sym-
metry that acts on the Coulomb branch of T (SO(3)). The microscopic
R-symmetry is a diagonal subgroup of SO(3)1 × SO(3)2. (The structure is
the same as we described in footnote 4 for the free vector multiplet, and
similar to what we will find in Section 7.1.1 for a certain splitting process
involving branes.)

The Sp(2) gauge theory with SO(4) flavor symmetry can flow to T (SO(3))
in two different ways, since we have to pick one of the singularities of the
Coulomb branch C. The bad quiver of figure 54(c) actually does not have
this ambiguity, since the gauge group is not quite Sp(2) but O(1) × Sp(2) =
Z2 × Sp(2). Here the Z2 factor exchanges the two components of H and the
two singularities of C. Thus, after gauging this extra Z2, there is only one
singularity at which the bad quiver flows to T (SO(3)).

To explain the claim about the action of O(1), we note the following. BPS
monopoles of the Sp(2) gauge symmetry appear in this theory as instantons.
In an instanton field, each hypermultiplet flavor has a zero mode. The
effective action of the instanton field is roughly exp(iφ)q1q2q3q4, where φ is
the dual photon, and qi is a fermion of the ith real hypermultiplet. This
effective action has SO(4) flavor symmetry, but it does not have O(4) flavor
symmetry. However, the disconnected component of O(4) is a symmetry if
combined with a π shift in φ. Let Θ be the product of a π shift of φ and an
element diag(−1, 1, 1, 1) of O(4).

To determine the action of Θ, we note that φ parametrizes the S1 in
C = (R3 × S1)/Z2. Hence a π shift of φ exchanges the two singularities of
C. Also, classically, an O(4) transformation of determinant −1 exchanges
the two components of H. (See again the discussion of equation (3.4) in
[38]. Alternatively, in the instanton interpretation mentioned in footnote
22, the two components correspond to the two factors of SO(4) ∼= SU(2) ×
SU(2), which are exchanged by a reflection in O(4).) Thus, Θ exchanges
the two singularities of C and the two components of H that meet these two
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Figure 55: (a) A symmetric quiver of unitary groups. (A circle labeled by
an integer k represents a U(k) gauge group; other groups will be indicated
explicitly.) (b) Its Z2 orbifold gives a quiver of unitary groups ending in an
orthogonal or symplectic group. The symplectic case is depicted.

singularities. After dividing by Θ, this bad quiver gauge theory has only
one singular point with a flow to T (SO(3)).

To complete the story for this bad quiver, we simply note that the non-
trivial element of the O(1) gauge symmetry of this quiver acts as −1 on just
one of the four real hypermultiplets, so it indeed corresponds to Θ.

We will not make a similarly detailed analysis of the bad quivers of higher
rank. We just note that for any k, the Sp(2k) theory with O(4k) flavor
symmetry has many properties in common with the example just described:
the Higgs branch has two components, exchanged by a flavor transformation
of determinant −1, and meeting the Coulomb branch on different loci.

5.3 Unitary quivers with orthosymplectic groups at the end

Now we consider the situation of figure 53(c): a linear quiver of P − 1 uni-
tary gauge groups followed by a single orthogonal or symplectic node. Like
orthosymplectic quivers, these can arise as Z2 orbifolds of a quiver of unitary
groups. In this case, the Z2 symmetry must exchange the two ends of the
quiver (figure 55).

The orbifold interpretation leads us to expect that there is a very simple
inequality for the total R-charge. Just as in Section 2.4, the R-charge qR of
a monopole operator of charges ai,k is a sum of separate contributions q+

R

and q−
R from those a’s that are positive or negative, respectively:

qR = q+
R + q−

R . (5.16)
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Each can be bounded as before. Indeed, the analog of equation (2.30) is
the assertion that

q+
R ≥

P∑

i=1

ei

2

∑

k|ai,k≥0

ai,k +
∑

k|a1,k≥0

a1,k(n1 − k) +

ns∑

k|as,k≥0

as,k −
1

2

∑

k|aP,k≥0

aP,k

(5.17)

for any choice of s with 1 ≤ s ≤ P . q−
R obeys a similar inequality with

contributions from negative ai,k.

Setting s = P , we see immediately that if all ei are non-negative, then a
monopole operator with non-zero charge at the orthogonal or symplectic
node has q±

R ≥ 1/2 and hence qR ≥ 1. This inequality also holds if the
charges vanish at the last node, in view of our previous results for unitary
quivers.

Now let us analyze the monopole operators of qR = 1 and hence the sym-
metry of the Coulomb branch. As usual, to get qR = 1, monopole charges
must vanish at any node with e > 0. So it suffices to consider a quiver of P
nodes with ei = 0 at each node.

Monopole operators whose charge vanishes at the P th node will generate
an SU(P ) symmetry, the usual result for a chain of P − 1 balanced unitary
nodes. Now let us consider monopole operators that have non-zero charge at
the P th node. The inequality (5.17) with s = P implies that to get qR = 1,
the charge at the P th node must be (1,−1, 0, . . . , 0). Moreover q±

R ≥ 1/2,

so to get qR = 1, we need q+
R = q−

R = 1/2. Considering the inequality with

arbitrary s, we find that to get q±
R = 1/2, the positive monopole charges

at the sth node must be (1, 0, 0, . . . , 0), up to permutation, and likewise the
negative charges must be of the same form, up to permutation. Furthermore,
by a familiar argument, the subquiver supporting the positive charges must
be connected, and likewise the subquiver supporting the negative charges
must be connected. Conversely, when all these conditions are imposed, we
do get a monopole operator of qR = 1.

Postponing for the moment some exceptions associated with U(1) and
SO(2), the conditions just described give P × P = P 2 monopole opera-
tors of qR = 1 with charge at the P th node. How these operators trans-
form under SU(P ) is completely determined by how they transform under
the maximal torus of SU(P ), which is generated by the classical symme-
tries of the Coulomb branch. The non-zero weights that arise are differ-
ences between weights of the fundamental representation and weights of its
conjugate (associated with positive and negative a’s, respectively), so the
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monopole operators transform as the sum of the adjoint representation of
SU(P ) and a one-dimensional trivial representation.

This is enough to ensure that the symmetry of the Coulomb branch is
(locally) SU(P ) × SU(P ) × U(1).

Two exceptions should be pointed out. If a balanced U(1) node is present,
there is no room for a monopole operator to have charges (1, −1, 0, . . . , 0) at
that node. A balanced U(1) node must be at the left end of the quiver, so
the only qR = 1 monopole operator that is removed by this limitation is the
one that has both positive and negative charges at every node. The absence
of this operator reduces the symmetry group to SU(P ) × SU(P ).

The other exception arises if the orthogonal or symplectic group at the
P th node is SO(2). The only balanced linear quiver with this property
involves the sequence of groups U(1) − SO(2) for P = 2. The fact that
SO(2) is abelian results in an enhancement of the symmetry of the Coulomb
branch from SU(2) × SU(2) (as suggested by the generic analysis) to Sp(4).
The Coulomb branch of this model has hyper-Kahler dimension 2, and we
suspect that it is isomorphic to C

4/Z2.

The hidden symmetries of the Coulomb branch that are associated with
monopole operators can be seen using mirror symmetry if the special node
is symplectic. They are classical symmetries of the mirror quivers, which we
describe next. Mirror symmetry for these quivers was analyzed in [35], and
will be considered in Section 6.6.

5.4 Bifurcated quivers

So far all our results, both in Section 2.4.3 and here, have involved linear
quivers. But some of the results have close analogs for quivers of other types.
These analogs will be important in the rest of the paper, when we include
orbifolds and orientifolds.

We start with the basic question of understanding a general quiver of
unitary gauge groups with only balanced nodes. Requiring that every node
of a unitary quiver is balanced is actually quite restrictive, and there is a
nice classification of such quivers. Consider an arbitrary graph Γ in which
any two nodes are connected by at most one line.23 Let N be the set of
nodes, and let E be the set of edges, that is, the set of pairs of points in

23The argument will show that this condition can be omitted, since without it the
Cartan matrix cannot be positive definite.
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N that are connected by a line. A quiver and its associated gauge theory
are defined as follows. To every node labeled by pi ∈ N we attach a positive
integer ni, the rank of the group U(ni) that we attach to that node. For each
edge connecting points pi and pj , we attach a bifundamental hypermultiplet
of U(ni) × U(nj). Finally, we assign mi fundamental hypermultiplets to the
ith node. Of course, the mi must be non-negative.

The condition for every node to be balanced is that

2ni −
∑

j|(i,j)∈E

nj = mi (5.18)

for all i. It is convenient to express this condition in terms of the Cartan
matrix C of the graph Γ. C is a matrix that acts on a vector space V that
has a basis element vi for each node pi ∈ N . We give V a metric (, ) in
which the vi are orthonormal. In that basis, the Cartan matrix is Cij =
2δij − eij , where eij is 1 if nodes pi and pj are connected by a link, and zero
otherwise. The Cartan matrix is a discrete version of the one-dimensional
Laplace operator Δ = −d2/dx2, and like Δ, it is real and symmetric.

In terms of the Cartan matrix, setting n =
∑

i nivi and m =
∑

i mivi, the
condition for every node to be balanced reads

Cn = m. (5.19)

Like any real, symmetric matrix, C can be diagonalized with real eigen-
values. C shares with Δ the property that its eigenvector q with the lowest
eigenvalue is unique up to a scalar multiple and can be chosen to have all
entries positive, q =

∑
i qivi with all qi > 0. Suppose that Cq = λq. We have

λ(q, n) = (Cq, n) = (q,Cn) = (q, m). Here q and n have positive coefficients,
and m has non-negative coefficients, so the inner products involved are posi-
tive, except that (q, m) = 0 if m = 0. We deduce that λ ≥ 0 and if λ = 0
then m = 0.

Since λ was defined as the smallest eigenvalue of C, if λ > 0 then C is
positive definite. The graphs Γ with positive-definite Cartan matrix are
nothing else than the ADE Dynkin diagrams.

If the smallest eigenvalue of C is zero, then Γ is the extended Dynkin
diagram of a group of ADE type. Including this case does not add much,
because the requirement that m = 0 means that one U(1) subgroup of the
gauge group is decoupled. We may as well ungauge the extended node of
the Dynkin diagram, reducing to the case that Γ is a Dynkin diagram rather
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than an extended Dynkin diagram. This procedure gives a convenient exam-
ple of a balanced quiver for every ADE diagram: start with the extended
Dynkin diagram with m = 0 and with n annihilated by C, and ungauge the
extended node.

So we have shown that unitary quivers with all nodes balanced are asso-
ciated with ADE Dynkin diagrams, and conversely that for every choice of
an ADE diagram, there are balanced quivers.

If we let Q be a quiver based on a graph Γ of type G, where G is any
ADE group, it is natural to suspect that the Coulomb branch of the gauge
theory associated with Q (assuming that it has a standard IR limit) has G
symmetry. This would generalize what we found in Section 2.4.3 for a quiver
of type A. Actually, the result for any G essentially follows from the case
of type A. For any Γ, the construction of Section 2.4.3 associates an SU(2)
symmetry of the Coulomb branch to every balanced node. Moreover, for
two balanced nodes that are not adjacent, the two SU(2)’s commute, and
for any two adjacent nodes, the two SU(2)’s fit into an SU(3) symmetry.
By the usual structure theory of Lie groups, it follows that the SU(2)’s
associated with all of the nodes generate together a group of type G.

We define the excess of a quiver by e = −Cn + m. A further conjecture
along the lines of Section 2.4.3 would assert that if we are given a quiver of
unitary groups in which each node is good, in the sense that the coefficients
of e =

∑
i eivi are all non-negative, then the whole quiver is good in the sense

that all monopole operators satisfy qR ≥ 1. Given this, we would hope that
gauge theories associated with good quivers flow to standard IR limits. The
symmetry of the Coulomb branch would then presumably be the product of
simply laced Lie groups corresponding to the various balanced subquivers,
times a U(1) factor for each node with positive e. We are not in a position
to prove this general conjecture.

In this subsection, we focus on quivers in the shape of a Dn diagram,
or “bifurcated” quivers, as in figure 56. We will assume that all nodes are

Figure 56: A “bifurcated” or Dn quiver. Some nodes that play an important
role in the text are labeled. The bifurcation occurs at node 1, the short
branches consist of nodes 2 and 3, and the outermost node of the long
branch is labeled 0.
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good and we aim to show that the whole quiver is good. The charge qR

of a monopole operator can be manipulated as usual: the contributions
from positive and negative charges can be separated, and one can restrict
to connected subquivers with non-zero charge at every node. The contribu-
tion from negative charges equals the contribution from an identical set of
positive charges.

Let us consider the contribution to qR from the positive monopole charges.
It is the sum of three kinds of term. At each node we have contributions
Δi = ei

2

∑ni

k=1 ai,k and Ai =
∑ni

k=1 ai,k(2ni − 2k + 1) (the ai are arranged
here in non-decreasing order). At each link there is a contribution Bij =

−1
2

∑ni

k=1

∑nj

t=1 2 min(ai,k, aj,t). Our study of linear quivers was based on
inequalities such as

Bij ≥ −
ni∑

k=1

ai,k(ni − k) −

nj∑

t=1

aj,t(nj − t + 1). (5.20)

The right-hand side is comparable to −1
2Ai − 1

2Aj , enabling us to bound∑
ij Bij in terms of

∑
i Ai. This worked only because there were at most

two B terms contributing at each node. As a result, we had a useful set of
inequalities for qR involving a sum of positive terms.

If we blindly use this method on a bifurcated quiver, the A at the node
with three neighbors would not be sufficient to cancel negative contributions
from the three corresponding B terms, leaving a net negative contribution
to the inequality. We need a new trick, which fortunately is quite simple.
As in the figure, let us label the node with three neighbors as i = 1, and
the nodes at the ends of the short branches of the quiver as i = 2 and i = 3.
Without loss of generality, assume n2 ≥ n3. Roughly, we want to bound
B12 + B13 relative to −(1

2A1 + A2 + A3), after which there will still be a

positive contribution 1
2A1 to help in canceling the contribution from the B’s

on the long branch of the quiver.

Let us introduce a fictitious node labeled c with nc = n2 + n3, and define
the sequence of charges ac,t, 1 ≤ t ≤ nc at this node by the following: ac,t =
a2,t if t ≤ n2 − n3, while otherwise ac,n2−n3+2t−1 = a3,t and ac,n2−n3+2t =
a2,n2−n3+t. This definition ensures that every a2,t and a3,t appears precisely
once in the sequence ac,t. Hence we can write

B1c = B12 + B13 = −
1

2

n1∑

k=1

n2+n3∑

t=1

2 min(a1,k, ac,t) (5.21)
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Even though the ac,t are not ordered, the method used to derive the basic
inequality (2.26) or (2.29) is perfectly valid, and gives

B1c ≥ −
n1∑

k=1

a1,k(n1 − k + 1) −
n2+n3∑

t=1

ac,t(n2 + n3 − t). (5.22)

The first term is familiar, and will be canceled against 1
2A1. The second

term receives contributions from both the 2 and 3 nodes, which need to be
disentangled:

−
n2+n3∑

t=1

ac,t(n2 + n3 − t)

= −
n2−n3∑

t=1

a2,t(n2 + n3 − t) −
n3∑

t=1

a3,t(n2 + n3 − (n2 − n3 + 2t − 1))

−
n2∑

t=n2−n3+1

a2,t(n2 + n3 − (2t − n2 + n3)). (5.23)

Finally, we have

B1c ≥ −
n1∑

k=1

a1,k(n1 − k + 1) −
n3∑

t=1

a3,t(2n3 − 2t + 1) −
n2∑

t=1

a2,t(2n2 − 2t),

(5.24)
as desired. If we had exchanged 2t and 2t − 1 in the definition of ac,t,
alternating the two kind of charges the opposite way, we would have

B1c ≥ −
n1∑

k=1

ai,k(ni − k + 1) −
n3∑

t=1

a3,t(2n3 − 2t) −
n2∑

t=1

a2,t(2n2 − 2t + 1).

(5.25)
Starting instead with the mirror image of (5.22),

B1c ≥ −
n1∑

k=1

a1,k(n1 − k) −
n2+n3∑

t=1

ac,t(n2 + n3 − t + 1), (5.26)

a similar argument gives

B1c ≥ −
n1∑

k=1

ai,k(ni − k) −
n3∑

t=1

a3,t(2n3 − 2t + 2) −
n2∑

t=1

a2,t(2n2 − 2t + 1).

(5.27)
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If j runs over the set N of all nodes and as in the figure i = 0 labels the
outermost node of the long branch, we have from (5.24) and (5.20), summed
along the chain as in Section 2.4, the simple inequality

qR ≥
∑

j∈N

Δj +

n2∑

k=1

a2,k +

n0∑

k=1

a0,k(n0 − k). (5.28)

For a quiver with all ei > 0, so that Δi ≥ 0, this inequality implies that
qR ≥ 1, unless the charges at node 2 vanish. But if those charges vanish,
then we reduce to a quiver of type A, and again qR ≥ 1 by virtue of our
analysis in Section 2.4.3. We also learn from (5.28) and its analog for type
A that to get qR = 1, the Δj must vanish, implying that ej = 0 at any node
with non-zero charges. As usual then, in a good quiver, to analyze monopole
operators of qR = 1, we can omit nodes with ej > 0 and consider a connected
balanced quiver — one in which all nodes are balanced.

A balanced quiver of type Dn has monopole operators that generate a Dn

symmetry of the Coulomb branch, by virtue of an argument given earlier
for all ADE quivers. It remains to show that there are no other monopole
operators of qR = 1. A useful fact is that, as in Section 2.4.3, to get qR =
1, the set of nodes at which the charges are non-zero must be connected;
otherwise each connected component contributes at least 1 to qR. Inequality
(5.28) implies that to get qR = 1, the charge at the 2 node, if not zero,
must be elementary: a2,k = (0, 0, . . . , 0, 1). It is then also true that a0,k =
(0, 0, . . . , 0, 1). The modified inequality

qR ≥
∑

Δi +

n3∑

k=1

a3,k +

n0∑

k=1

a0,k(n0 − k) (5.29)

derived from (5.25) shows that similarly a3,k = (0, 0, . . . , 0, 1). Then the
third inequality (5.27) can similarly be used to show that

qR ≥
∑

Δi −
n3∑

k=1

a3,k +

ns∑

k=1

as,k +

n0∑

k=1

a0,k(n0 − k), (5.30)

for any s in the long chain, implying that
∑

k as,k must be no greater than
2. Hence as,k = (0, 0, . . . , 0, 2) or as,k = (0, 0, . . . , 0, 1, 1). At this point it
is straightforward, though tedious, to show that any charge (0, 0, . . . , 0, 2)
leads to a monopole of qR > 1, and that monopole operators with qR = 1
have at most one connected sequence of nodes with charges of the form
as,k = (0, 0, . . . , 1, 1) starting at the node i = 1, with other non-zero charges
being of the form as,k = (0, 0, . . . , 0, 1). What we have enumerated here are
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the positive roots of Dn, so this is the symmetry generated by the monopole
operators.

5.4.1 Orthosymplectic quivers of type D

We have learned in Section 5.2 that orthosymplectic quivers have the same
expression for the R-charge as unitary quivers once the R-charge is expressed
in terms of excesses, ranks, and monopole charges. Apart from some excep-
tions involving SO(2), the number of monopole operators of qR = 1 in an
orthosymplectic quiver is one-half of what it is for the corresponding unitary
quiver.

So we can apply our results for a unitary quiver of type Dn to an orthosym-
plectic quiver of the same type. Let us start from the case with no SO(2)
node involved. The total number of qR = 1 monopoles in the unitary case
was dim(SO(2n)) − rk(SO(2n)) = 2n(n − 1). Hence we expect n(n − 1)
monopoles in the orthosymplectic case. Monopole operators with charges
supported on an An−1 subquiver generate an SO(n) symmetry. It is possible
to argue by induction that the full symmetry is actually SO(n) × SO(n).

If any endpoint of the quiver is an SO(2) group, the symmetry is enhanced.
In particular an SO(2) node at the end of the long branch leads, for n > 4,
to SO(n + 1) × SO(n + 1) symmetry. An SO(2) node at the end of a short
branch implies that the central node is Sp(2), and then the quiver must be
a D4 quiver, with three SO(2) gauge groups. (In particular, this is equiv-
alent to the n = 4 case of an SO(2) group at the end of the long branch.)
It takes some patience to count all the 33 monopoles hiding in the quiver.
The monopole operators and classical symmetries at each SO(2) node give
rise to an SU(2) symmetry group. The remaining 27 monopole operators
are in the representation (3,3,3) of this subgroup; hence the full group
turns out to be Sp(8). Notice that the Coulomb branch of the theory has
hyper-Kahler dimension 4. This and the symmetry group suggest that the
Coulomb branch is simply C

8/Z2.

6 Orientifolds and orbifolds

Dirichlet and Neumann are the most obvious half-BPS boundary conditions
in N = 4 super Yang–Mills theory. Intermediate between them are boundary
conditions in which the gauge group G is reduced to a subgroup H along
the boundary. Vector multiplets of H obey Neumann boundary conditions,
while the rest of the G vector multiplets obey Dirichlet.
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A particular case of this which is intuitively obvious and natural is the
case that H is the subgroup of G that commutes with a symmetry τ of G of
order 2. A symmetry of order 2 is known as an involution, and may be either
an inner automorphism or an outer automorphism. Boundary conditions
associated with an involution can be obtained by a simple Z2 orbifold of
N = 4 super Yang–Mills on R

4. One simply divides by the reflection y → −y
of space, accompanied by the gauge transformation τ . Of course, this must
be extended to the full N = 4 theory in a supersymmetric fashion. As
explained in Section 2.2 of [1], if we decompose the Lie algebra of G as
g = h ⊕ h⊥, where h is the Lie algebra of H and h⊥ is its orthocomplement,
and write Φ± for the projections of a field Φ to h and h⊥, then the necessary

conditions for �X and �Y are

�X+(0) = 0 = �Y −(0). (6.1)

Many instances of such boundary conditions can be implemented in string
theory via orientifolds or orbifolds.

In this section, we will analyze, for G = U(n), the S-duals of the bound-
ary conditions associated with involutions. These examples illustrate in an
interesting way some of the ideas of the present paper. They are quite differ-
ent from examples that we have considered so far, but are rather tractable,
partly because of their realizations in string theory. Another reason to study
the S-duality of these examples is that one can compare to a mathematical
theory developed by Nadler [41], though we will only go part way in that
direction in the present paper.

6.1 Three types of involution

Let us first classify the possible involutions of G = U(n).

An inner involution τ is simply conjugation by an element h of U(n) that
obeys h2 = 1. Such an h has p eigenvalues 1 and q eigenvalues −1, for some
p and q with p + q = n. We will loosely follow the notation of [41] and
call this an involution of Class III. The subgroup H that commutes with a
Class III involution is U(p) × U(q). If p = q, we say that the involution is
symmetric.

An outer involution τ is complex conjugation composed with an inner
involution. In other words, τ acts by g → wgw−1, where g → g is complex
conjugation and w is an element of G. There are two essentially different
cases, depending on whether τ2 equals 1 or −1 when acting on the funda-
mental representation of U(n).
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If τ2 = 1, we can take τ to be simply g → g. We will call this a Class I
involution. It reduces the gauge symmetry from G = U(n) to H = O(n).

It is only possible to have τ2 = −1 if n is even. In that case, to realize
τ2 = −1, we can take τ to be g → wgw−1, where w is the direct sum of n/2
blocks of the form (

0 1
−1 0

)
. (6.2)

We call this a Class II involution. It reduces the gauge symmetry from
G = U(n) to H = Sp(n).

Now let us begin to explore the S-duals of boundary conditions associated
with τ of Class I, II, or III. One of the most basic questions is whether the
S-dual has full U(n) gauge symmetry and so is obtained by coupling to a
U(n) invariant SCFT B∨. If so, the mirror of B∨ is given by the familiar
ungauging procedure. In the present case, this simply means (figure 57(a))
that we gauge a subgroup H of the symmetry group G of the Higgs branch
of T (U(n)). Since T (U(n)) can be represented by a quiver, the same is true
for the candidate B∨, as indicated in figure 57(b).

However, of the three cases, only Class I leads to a good quiver. For
example, for the rightmost two nodes of the quiver of Class III to be good,
we need n − 1 ≥ 2p and n − 1 ≥ 2q, which is impossible since n = p + q.
Concerning Class II, we note that according to (5.9), for an Sp(n) node to
be good, the flavor symmetry of the fundamental hypermultiplets, when all
other gauge couplings are turned off, must be at least SO(2n + 2). How-
ever, the Class II quiver in figure 57(b) only leads to a flavor symmetry
SO(2n − 2).

The Class I quiver in figure 57(b) has an SO(n) node, and, according
to (5.5), for this node to be good, the flavor symmetry of the fundamental
hypermultiplets of SO(n), when all other gauge couplings are turned off,
should be at least Sp(2n − 2). That is precisely what we get from the Class
I quiver in the figure. So this quiver is good. In fact, it is a balanced quiver
of a type considered in Section 5.3. The symmetry of the Coulomb branch
is SU(n) × SU(n) (or Sp(4) if n = 2).

The Class I quiver has no Higgs branch. To show this, we use the fact
that this quiver is the one considered in figure 24, which describes T (SU(n)),
except that an SO(n) subgroup of the SU(n) global symmetry of that quiver
has been gauged. As explained in Section 3.3.1, the hyper-Kahler quotient of
the T (SU(n)) quiver is parametrized by an n × n matrix M that takes values
in the nilpotent cone, or a deformation/resolution thereof if FI parameters
are turned on. For our purposes, it is convenient to turn on complex FI
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Figure 57: (a) Applying the ungauging procedure to find the S-dual of a
boundary condition defined by reducing the gauge symmetry from G to H
(with no Nahm pole or SCFT) means that we gauge an H subgroup of the
G symmetry of T (G) and take the IR limit. (b) In the present case, for τ of
Class I, II, or III, this procedure leads to the quivers shown here; a subgroup
of the symmetry of T (U(n)) has been gauged. Only Class I leads to a good
quiver. Here and later, a node of a quiver labeled simply by an integer k
represents a U(k) gauge group; nodes that represent other types of gauge
group are labeled in more detail.

parameters, so that the complex equation obeyed by M is deformed to (3.10),

whose solutions parametrize a deformation Ñ of the nilpotent cone. We take
the FI parameters to be generic so that the eigenvalues of M are distinct.
To construct the Higgs branch of the Class I quiver in the presence of the

FI parameters, we need to take the hyper-Kahler quotient of Ñ by SO(n).
The complex moment map is the antisymmetric part of M . M acts on
a vector space V ∼= C

n; the statement that it is symmetric means more
invariantly that it preserves a complex bilinear form (not a hermitian form)
on V . The group of linear transformations of V that preserve the bilinear
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form is SO(n)C. To show that the Higgs branch is trivial, we must show
that a symmetric matrix M that obeys (3.10) and in particular has distinct
eigenvalues can be diagonalized by an SO(n)C transformation. Indeed, since
M has distinct eigenvalues, its eigenvectors furnish a complex basis for V ;
as M is symmetric, the eigenvectors are mutually orthogonal with respect
to the quadratic form, and we can choose them to be an orthonormal basis.
So there is an orthonormal basis in which M is diagonal and thus we can
diagonalize M by an SO(n)C transformation.

The Coulomb branch C of the Class I quiver has hyper-Kahler dimension
n(n − 1)/2 + [n/2], where [ ] denotes the integer part. For n = 2, the hyper-
Kahler dimension is 2, and in view of the Sp(4) symmetry and absence of free
hypermultiplets, it is natural to suspect that C may be C

4/Z2. (Dividing C
4

by Z2 preserves the Sp(4) symmetry and projects out the chiral operators
of qR = 1/2.) This together with the absence of a Higgs branch suggests
that for n = 2 the theory might be simply a Z2 orbifold of a free theory. For
n > 2, we have not been able to find a good candidate for C, though because
of its large symmetry this might be possible. It appears that for n > 2 there
is no good candidate for C as an orbifold of some C

2s, suggesting that the
SCFT is non-Gaussian despite the absence of a Higgs branch. This is not
a familiar state of affairs. Known examples of non-trivial N = 4 SCFTs in
three dimensions generally have both Coulomb and Higgs branches.

For τ of Class II or III, the badness of the quiver indicates that the
dual of the orbifold boundary condition has reduced gauge symmetry. To
understand the details, we will use a string theory construction.

6.2 String theory constructions

The gauge theory boundary conditions considered in this section arise in
four-dimensional gauge theory from a reflection y → −y together with a
gauge transformation τ and suitable transformations of other fields. We want
to understand how to realize these boundary conditions in 10-dimensional
string theory with D3-branes that generate the U(n) gauge symmetry inter-
acting with orbifold or orientifold fiveplanes that will generate the boundary
condition.

If τ is an outer automorphism of U(n), we have to use an orientifold
fiveplane. The reason for this is that among the symmetries of D3-branes,
it is the reversal of the worldsheet orientation of a string, often called Ω,
that acts on U(n) by an outer automorphism and maps the fundamental
representation of U(n) to its complex conjugate. Thus, to relate Class I or
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Class II boundary conditions to a string theory construction, we need to use
some sort of orientifold.

For the same reason, if τ is an inner automorphism, we have to use an
orbifold operation — constructed using a symmetry that does not reverse
the orientation of a string worldsheet.

Our basic constructions of boundary conditions use D5-branes that fill
dimensions 012456 and NS5-branes that fill dimensions 012789. An orien-
tifold fiveplane can preserve the same supersymmetry as a parallel D5-brane,
and a properly chosen Z2 orbifolding operation can preserve the same super-
symmetry as an NS5-brane whose worldvolume coincides with its fixed
point set.

Hence, we can represent Class I and Class II boundary conditions by an

orientifolding operation that reverses y and �Y (that is, it acts as multipli-
cation by −1 on y = x3 and on x7, x8, x9) and leaves fixed the other coor-
dinates — so its fixed point set coincides with the locus of a D5-brane in
our constructions. And similarly, Class III boundary conditions come from

a carefully chosen orbifolding operation that reverses y and �X (that is, one
which acts as multiplication by −1 on x3, x4, x5, x6). S-duality exchanges
�X and �Y , and as we will see, although it does not merely exchange Class II
and Class III, it maps them to close cousins of one another. On the other
hand, S-duality does not appear to map Class I to a perturbative configura-
tion. This agrees with the fact that the dual of Class I involves a non-trivial
SCFT, since the Class I quiver in figure 57(b) is good.

Now let us describe in more detail the relevant orbifolding and orientifold-
ing operations, all of which have been well analyzed in the literature. First
of all, there are several different kinds of orientifold fiveplane or O5-plane.
The most basic distinction is according to whether the gauge symmetry of
n D5-branes coincident with the O5-plane is SO(2n) or Sp(2n). The former
case is called an O5−-plane since it has a D5-brane charge of −1. The latter
case has D5-brane charge +1 and is called an O5+-plane.

In our problem, we consider n D3-branes with worldvolume spanning
directions 0123, and we obtain a boundary condition by coupling to an
O5-plane that spans directions 012456. The orientifolding operation gives
a boundary condition in the four-dimensional U(n) gauge theory of the
D3-branes, since it reverses the y = x3 direction.

In the case of a Class I boundary condition, which reduces U(n) to O(n) at
the boundary, the flavor symmetry of boundary hypermultiplets in the fun-
damental representation is a symplectic group. Boundary hypermultiplets
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come from coupling to D5-branes supported on the orientifold plane, and
the flavor symmetry is the gauge symmetry of the D5-branes. Symplectic
gauge symmetry of D5-branes corresponds to the case of an O5+-plane, as
asserted in the last paragraph. So this is the orientifold that leads to a
Class I boundary condition.

Similarly, to get a Class II boundary condition, which reduces U(n) to
Sp(n) at the boundary, the flavor symmetry of fundamental boundary hyper-
multiplets should be of orthogonal type. So the appropriate orientifold plane
is of the type O5−.

Finally, let us discuss the Class III boundary condition, which is supposed
to involve some sort of orbifold reflection of directions 3456, leaving fixed
directions 012789. Of course, we want to define this orbifold in Type IIB
superstring theory since we want to do gauge theory on D3-branes. In Type
IIA superstring theory, an orbifold that involves a simple reflection I4 of
four spatial coordinates preserves the same supersymmetry as an NS5-brane
supported on the orbifold fixed set. But for Type IIB this is not so. (One
way to see this is to observe that the I4 orbifold is chiral for Type IIB —
all unbroken supersymmetries have the same six-dimensional chirality —
while the worldvolume theory of a Type IIB NS5-brane is not chiral.) To
preserve the supersymmetry of an NS5-brane, one must divide not by I4

but by I4(−1)FL , where (−1)FL is the operation that counts left-moving
worldsheet fermions modulo 2.

The correspondence between involutions and string theory constructions
is summarized in Table 2. In the last column of the table, we list the
fivebrane charge of the appropriate orientifold or orbifold fiveplane. For
orientifolds, this is the D5-brane charge, while for the I4(−1)FL orbifold, it
is the NS5-brane charge. This NS5-brane charge is zero; it can be computed
as an integral at infinity of the H-field (the curvature of the string theory
B-field) but the orbifold H-field vanishes.

Table 2: For each class of boundary condition derived from an involution,
we indicate here what type of string theory orientifold or orbifold realizes
it, and what is the corresponding O5-brane or NS5-brane charge.

Class of
boundary condition Orientifold or orbifold Fivebrane charge
I O5+ orientifold 1
II O5− orientifold −1
III I4(−1)FL orbifold 0
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6.3 Non-perturbative duality

A non-perturbative duality relating some configurations of the type just
described was discovered some years ago [42,43]. Since the duality symmetry
S : τ → −1/τ exchanges D5-branes, which are related to the first two rows
in our table, with NS5-branes, which are related to the third, we look for a
transformation that relates a Class III boundary condition to Class I or II.

The fivebrane charges make clear what the duality must be. The I4(−1)FL

orbifold has zero fivebrane charge, while the O5±-planes have fivebrane
charge ±1. We can make fivebrane charge 0 by combining an O5−-plane
with a single D5-brane. But there is no way to get to charge 0 by adding
fivebranes to an O5+-plane, which already has positive charge. (Adding
anti-D5-branes would of course break supersymmetry.) So the only reason-
able conjecture is that the I4(−1)FL orbifold is S-dual to an O5−-plane plus
one D5-brane.

Apart from the fact that the fivebrane charges and the unbroken super-
symmetries match, one of the original arguments for this assertion is that
the gauge symmetries match. Quantization of the twisted sector of the
I4(−1)FL orbifold gives a single massless vector multiplet, with gauge group
U(1). On the other hand, a single D5-brane at an O5−-plane has gauge
symmetry SO(2), or equivalently U(1).

We want to apply this duality to the gauge theory on the D3-branes. In
the field of the I(−1)FL orbifold, there are two kinds of fractional D3-brane,
depending on whether the generator of the orbifold symmetry acts on the
Chan–Paton bundle of the D3-brane as multiplication by +1 or −1. If we
pick p D3-branes of one type and q of the other type, with n = p + q, we get
U(n) gauge symmetry broken at the boundary to U(p) × U(q). This is the
general Class III boundary condition.

There is no such choice to be made for the Class II orientifold: we simply
have in bulk n D3-branes, with gauge symmetry reduced from U(n) to Sp(n)
at y = 0. Since there is no choice to be made, we have a puzzle to resolve.
For what values of p and q, if any, is the orbifold dual to the orientifold?

This question actually has a very simple answer. In the orientifold, with n

being even, it is possible to give expectation values to �Y , breaking Sp(n) to

U(1)n/2, and leaving no D3-branes at �Y = 0 (that is, at x7 = x8 = x9 = 0).
So in the S-dual orbifold, if there is one, it must similarly be possible to

reduce the gauge group to U(1)n/2 by displacing all D3-branes in �X (recall

that S-duality exchanges �X and �Y ) and leaving none at �X = 0. This is
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possible precisely if p = q = n/2; otherwise, there are “fractional D3-branes”

that cannot be removed from �X = 0. So this must be the right case for the
duality.

Let us look at this a little more closely, taking account of the bound-

ary condition (6.1), which constrains �X(0) and �Y (0). For the orientifold,

(6.1) says that �Y (0) transforms in the adjoint representation of the unbro-
ken Sp(n). Its expectation value can indeed break Sp(n) to the maximal

torus U(1)n/2. For the orbifold, (6.1) implies that �X(0) transforms in the
bifundamental representation of the unbroken U(p) × U(q). The case that
�X(0) can break U(p) × U(q) to U(1)n/2 is the symmetric case p = q = n/2.
So again that is the right case for this duality between perturbative config-
urations. The unbroken groups U(1)n/2 that remain when the orbifold is

perturbed in �X or the orientifold in �Y are equivalent as subgroups of U(n),
as one would expect from the S-duality between these two configurations.

So we have our first case of using orbifolds and orientifolds to answer
the basic question from Section 6.1. The S-dual of the symmetric Class III
boundary condition, with p = q = n/2, is given by a Class II boundary con-
dition supplemented by boundary hypermultiplets.

6.3.1 The general case

We are obviously left with some questions. (1) What is the S-dual of a Class
II boundary condition without boundary hypermultiplets? (2) And what is
the S-dual of a Class III boundary condition with p �= q?

We will show in Sections 6.4 and 6.5 that the answers to these questions
do not involve simple orbifold boundary conditions, but involve Nahm poles:

(1)′ The S-dual of a Class II boundary condition that breaks U(n) to
Sp(n) (without boundary hypermultiplets) is a boundary condition with a
Nahm pole relative to the decomposition n = 2 + 2 + 2 + . . . 2. This breaks
U(n) to what we will call U(n/2)2. Here U(n/2)2 is a diagonal subgroup of
U(n/2) × U(n/2) ⊂ U(n).

(2)′ The S-dual of a Class III boundary condition that breaks U(n) to
U(p) × U(q) with n = p + q and p ≥ q + 2 is a boundary condition built from
a Nahm pole and a further reduction of gauge symmetry. The Nahm pole
is associated with the decomposition n = (p − q) + 1 + 1 + . . . + 1 and com-
mutes with U(1) × U(2q) ⊂ U(n). The boundary condition further reduces
U(1) × U(2q) to H = Sp(2q). If p − q = 1, there is no Nahm pole; the dual
boundary condition simply reduces the symmetry from U(n) to Sp(n − 1).
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Table 3: The first column lists the unbroken subgroups H in boundary con-
ditions in SU(n) gauge theory that are defined by an involution τ . The

second column lists the unbroken gauge symmetry H̃ of the S-dual bound-
ary condition. The third column describes the Nahm pole, if any, that is

part of the reduction of the dual gauge group from SU(n) to H̃. The fourth

column describes the matter system that is coupled to H̃. (The hypermul-
tiplets indicated are in the fundamental representation of Sp(n).)

H H̃ Nahm Pole Matter System
SO(n) SU(n) None Non-trivial SCFT
Sp(n) SU(n/2)2 n = 2 + 2 + · · · + 2 None
S(U(n/2) × U(n/2)) Sp(n) None Hypermultiplets
S(U(p) × U(q)), Sp(2q) n = (p − q) + 1 None

p > q +1 + . . . + 1

In each of these cases, and in contrast to the symmetric case p = q, there
are no boundary hypermultiplets.

These results are summarized in Table 3. The table gives the group H
that is left unbroken by an involution τ , and the construction of the dual

boundary condition in terms of a Nahm pole, a group H̃ that commutes

with the Nahm pole, and a matter system with H̃ symmetry. The table
has been written for G = SU(n) rather than U(n). This is accomplished
by merely dropping central U(1) factors (which in our constructions obey
Dirichlet boundary conditions on one side, and Neumann on the other) from
various entries.

Our table can be compared to the first three lines in Table 1 of [41], which
refer to the group An−1 = SU(n). What is called gR in the first column of
that table is the Lie algebra of a real group GR whose maximal compact
subgroup we call H. (From our point of view, the data determining GR are
the choice of compact gauge group G and involution τ .) What is called h∨ in
the fourth column is the complexification of the Lie algebra of what we call

H̃. With this translation, our table is in perfect agreement with that of [41].

To make clear why the two tables should match, we will briefly describe
the problem treated in [41], but restated in gauge theory language. In
effect, G gauge theory is studied on a four-manifold M with boundary; the
boundary condition is determined by an involution τ of G, which reduces
G to a subgroup H. Then ’t Hooft operators that are supported on the
boundary are classified. It is shown that, although ’t Hooft operators in the
interior of M are classified by representations of the dual group G∨, ’t Hooft
operators supported at the boundary of M are related to representations of
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a more mysterious group H̃, whose origin is not obvious. For example, H̃

is not the dual group of either G or H. From our point of view, H̃ is the
subgroup of the dual gauge group G∨ that is gauged in the dual boundary

condition. So Wilson operators at the boundary are H̃-valued.

The last two columns in Table 3 involve matters that have apparently
not been explored yet in the mathematical literature. The Nahm pole is
plausibly related mathematically to Arthur’s SL2. What from our point of
view is the matter system that is part of the dual boundary condition might
show up mathematically in a precise study of the ’t Hooft operators.

Some remarks about the C and D cases of the table in [41] are made at
the end of Section 7.4.

6.4 Nahm poles

Let us return to the duality between (a) a boundary condition that breaks
U(n) to Sp(n), with coupling to a boundary hypermultiplet, and (b) a
boundary condition that breaks U(n) to U(n/2) × U(n/2).

We want to understand the dual of (a) without the boundary hyper-
multiplet. Our strategy will be to use the fact that it is possible to pre-
serve supersymmetry while giving a bare mass to the hypermultiplet. We
will determine what parameter in (b) corresponds to the hypermultiplet
bare mass, and then we will determine the limit of (b) when the bare mass
becomes large. This will give us the dual of breaking U(n) to Sp(n), without
the hypermultiplet.

Before we introduce any perturbation, the boundary conditions obeyed

by �X and �Y in the presence of boundary hypermultiplets are

�X+(0) + �μZ = 0,

�Y −(0) = 0. (6.3)

where �μZ is the moment map for the space Z that parametrizes the bound-
ary hypermultiplets. (This condition coincides with equation (6.1), except
that now we include the hypermultiplets.) As explained in Sections 2.2.3
and 2.3.5 of [1], it is possible to add central constants to these boundary
conditions, which become

�X+(0) + �μZ = �v,

�Y −(0) = �w. (6.4)
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Here �v takes values in the center of h, and �w takes values in the subspace of
h⊥ that commutes with h. (Moreover, the components of �w must commute
with each other.)

The parameters �v are FI parameters in a generalized sense, transforming
non-trivially under SO(3)X and trivially under SO(3)Y . The parameters �w
are mass parameters, transforming non-trivially under SO(3)Y . In enumer-
ating parameters, we also must include the FI parameters and mass param-
eters of the boundary theory, if any. In the present discussion, the boundary
theory consists of free hypermultiplets and has only mass parameters.

Now in (a), h = sp(n), which is a simple Lie algebra with trivial center.
So there are no FI parameters. There are two mass parameters. One arises

because in (6.3), we can take �Y −(0) = �d · 1n, where 1n is the identity n × n

matrix. The parameter �d would be absent if we took the underlying gauge
group G to be SU(n) instead of U(n). (We use U(n) because it arises more
naturally from branes.) The second parameter is the hypermultiplet bare
mass m.

Dually in (b), there are no mass parameters since the condition that �w
should commute with h forces �w = 0; moreover, this boundary condition
has no boundary hypermultiplets. However, in (b) there are two FI para-
meters, since the center of H = U(n/2) × U(n/2) has rank two. Embedding
U(n/2) × U(n/2) in U(n) in terms of n/2 × n/2 blocks

(
∗ 0
0 ∗

)
, (6.5)

we can take the boundary condition on �X to be

�X(0) =

(
�c1 · 1n/2 ∗

∗ �c2 · 1n/2

)
. (6.6)

(There is no �μZ term here as in this description there are no boundary
hypermultiplets.)

So the two parameters �c1 and �c2 must match on the other side the para-

meters �d and m. The matching is easy to do because one parameter on each
side involves the center U(1) of G = U(n). The boundary conditions that
we are considering do not couple the two factors of G ∼ U(1) × SU(n), so
we can consistently remove the center of G, which means on one side setting
�d = 0 and on the other side �c1 = −�c2. So the dual of the hypermultiplet
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bare mass is a boundary condition

�X(0) =

(
�m · 1n/2 ∗

∗ − �m · 1n/2

)
. (6.7)

Now let us discuss how to preserve supersymmetry in the presence of
this boundary condition. We take the vacuum at infinity to be given by
�X = �Y = 0. Supersymmetry then requires that �Y vanishes everywhere, but
�X cannot vanish identically in view of the boundary condition (6.7). Rather,

we must look for a solution of Nahm’s equations d �X/dy + �X × �X = 0 that

obeys the boundary condition and has �X vanishing at infinity.

Let us first discuss how to do this for n = 2. The general solution of the

SU(2) Nahm equations on the half-line y ≥ 0 with �X → 0 at infinity is

�X = f
�t

y + y0
f−1, (6.8)

with y0 > 0 and f ∈ SU(2)/Z2; �t are the usual su(2) generators. We must
adjust the parameters f and y0 to obey the boundary condition. Without
essential loss of generality, take �m = (0, 0,m3) and work in the usual basis
in which t3 is diagonal and t1, t2 are purely off-diagonal. Then to obey (6.7),
we need to take f = 1 and y0 = 1/|m|.

The limit as �m → ∞ is now easily described. In this limit, y0 → 0 and
�X(y) has an irreducible Nahm pole at y = 0.

Actually, for n = 2 this is not really a new result. The groups SU(2) and
Sp(2) coincide, so the boundary condition that reduces SU(n) to Sp(n) just
coincides, when n = 2, with Neumann boundary conditions. We already
know that Neumann boundary conditions are dual to an irreducible Nahm
pole, and this is what we have just rediscovered from another point of view.

Now, however, we can immediately generalize to the case of any n. (n
must be even for the question about reduction from U(n) to Sp(n) to make
sense.) To solve the SU(n) Nahm equations with the boundary condition
(6.7), we just take the tensor product of the SU(2) solution (6.8) with the

rank n/2 identity matrix 1n/2. Then, taking �m → ∞ as before, �X acquires
a Nahm pole which is obtained simply by taking the tensor product of the
standard rank 2 Nahm pole with 1n/2.

This Nahm pole corresponds to a decomposition n = 2 + 2 + 2 + · · · + 2.
It breaks U(n) to U(n/2)2, a diagonal subgroup of U(n/2) × U(n/2) ⊂ U(n).
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What we have learned is that the dual of the boundary condition defined by
the involution that breaks U(n) to Sp(n) is a boundary condition defined
by a Nahm pole that breaks U(n) to U(n/2)2.

6.5 The last case

To complete our explanation of Table 3, we must justify the last line, which
describes the S-dual of a boundary condition associated with an involution
that breaks SU(p + q) to S(U(p) × U(q)) for p > q. One approach is to
start with the third line of the table, which says what happens for p = q,
and “flow” to q < p by giving suitable expectation values to the scalar fields
�X at infinity.

We will follow another approach, which is simple and possibly illumi-
nating. In this, we will use an elementary relation between Dirichlet and
Neumann boundary conditions. Suppose that, in any gauge theory with
gauge group H, we impose Dirichlet boundary conditions, meaning that
the gauge field A and the generator ǫ of a gauge transformation are both
required to vanish at the boundary. Then we get a theory in which H
acts as a global symmetry at the boundary. The global symmetry is just a
gauge transformation with ǫ constant, but not equal to 1, at the boundary.
(See [1, Section 2.2.2].) This preserves the boundary condition A = 0. As
with any global symmetry, we can seek to gauge this one. In the present case,
this just means that we allow the boundary value of ǫ to be non-constant
and thus arbitrary. So we simply arrive at four-dimensional gauge theory
with a gauge parameter that is unrestricted at the boundary. The gauge
field is then also unconstrained at the boundary. In other words, gauging
the global symmetry of Dirichlet boundary conditions produces Neumann
boundary conditions. We will call this process the regauging trick.

The claim in the last row of the table is that if B is a boundary condition
defined by an involution τ that breaks SU(p + q) to S(U(p) × U(p)), then
the dual is a boundary condition B∨ consisting of a Nahm pole of rank
p − q, followed by a reduction of the structure group from U(2q) to Sp(2q).
It is convenient to start with B∨ and show that the dual is B. B∨ can be
conveniently represented by a configuration of p + q D3-branes intersecting
a D5-brane and ending on an orientifold (figure 58(a)). As usual, to work
with branes we extend the symmetry from SU(p + q) to U(p + q). Later,
we will factor out the central U(1) from the final statement.

The S-dual of the D5-brane in figure 58(a) is simply an NS5-brane. As
for the orientifold in the figure, it has no simple string theory dual. If there
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Figure 58: (a) A boundary condition in U(p + q) gauge theory (depicted
here for p = 4, q = 2) consisting of a Nahm pole of rank p − q followed
by an orientifold (represented by the vertical jagged line) that reduces the
gauge symmetry to Sp(2q). (b) A brane configuration that is closely related
to the S-dual of (a). q D5-branes create a Nahm pole that is associated
to the decomposition 2q = 2 + 2 + · · · + 2. In the limit that the separation
between these fivebranes vanishes, there is a global U(q) symmetry; gaug-
ing this symmetry gives the S-dual of (a). (c) Instead, before gauging the
symmetry, we can move the D5-branes across the NS5-brane, arriving at
this configuration. Now if we take the D5-branes to coincide and gauge the
global U(q) symmetry, we arrive at a gauge theory representation of the
S-dual of the original configuration (a). This is a boundary condition in
U(p + q) gauge theory in which a subgroup U(p) × U(q) is gauged at the
boundary.

were an additional D5-brane with no D3-branes ending on it, there would
be a simple S-dual given by the I4 · (−1)FL orbifold. However, we learned
in Section 6.4 how to describe the dual of the boundary condition due to
the “bare” orientifold unaccompanied by an extra D5-brane: it is given by
a Nahm pole for the decomposition 2q = 2 + 2 + · · · + 2, with gauging of
the resulting U(q) symmetry. We can easily represent the Nahm pole by
incorporating q D5-branes with two D3-branes ending on each one, as in
figure 58(b). In this figure, a U(q) global symmetry appears if we take the
separations between the D5-branes to vanish. If we gauge this symmetry,
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we arrive at the S-dual of the boundary condition set by the bare orien-
tifold. There is no convenient way in a brane construction to gauge the
U(q) symmetry. So we will simply remember to gauge it at the end of the
construction.

With this understanding, figure 58(b) can be used to construct the S-dual
of figure 58(a). On the other hand, we can make a standard brane manip-
ulation. We simply move the D5-branes to the right of the NS5-brane, to
arrive at figure 58(c). Now only a single D3-brane ends on each D5-brane,
leaving p D3-branes to end on the NS5-brane. The collection of q D5-branes
therefore reduces the gauge symmetry from U(p + q) to U(p), which then
obeys Neumann boundary conditions because of the NS5-brane. From a
field theory point of view, this boundary condition admits a global U(q)
symmetry (the commutant of the unbroken gauge group U(p)). The U(q)
symmetry appears as a symmetry of the brane configuration if the D5-branes
are taken to be coincident. To construct the S-dual, we are now supposed to
gauge this global U(q) symmetry. At this stage, we have a U(p + q) gauge
symmetry in the half-space y ≥ 0, with a subgroup U(p) × U(q) gauged at
the boundary.

Thus the dual of a boundary condition B with U(p + q) reduced to U(p) ×
U(q) at the boundary, for p > q, is a boundary condition B∨ with a Nahm
pole reducing U(p + q) to U(1) × U(2q), which is then reduced to Sp(2q) at
the boundary. Notice that in B, the central U(1) obeys Neumann boundary
conditions, while in B∨ it obeys Dirichlet boundary conditions. Factoring
out this central U(1), we arrive at the statement of the last line of Table 3
for gauge group SU(p + q).

A key step in this argument — gauging the U(q) global symmetry at
the very end of the process — was essentially the regauging trick in which
Neumann boundary conditions (here for the subgroup H = U(q)) can be
obtained by gauging the global symmetry of Dirichlet boundary conditions.

6.6 More elaborate examples

Once one understands the S-duality between the O5−-plane and the I4(−1)FL

orbifold, one can understand the S-duals of more general boundary con-
ditions made by combining these with fivebranes. We will describe a few
examples and compare the results we get to results of the standard T (SU(n))
construction.

We can start by considering the configuration in figure 59(a), consisting
of an the orbifold plane plus a D5-brane. This adds a fundamental flavor
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Figure 59: (a) A boundary condition in U(n) gauge theory created by a
D5-brane together with an orbifold plane (which is depicted by a circle
containing the symbol O). (b) The S-dual, constructed from an NS5-brane,
D5-brane, and an orientifold plane, represented by the jagged line. (The
D5-brane is generated from S-duality applied to the orbifold plane in (a),
while the NS5-brane is dual to the D5-brane in (a).) (c) A quiver related
to (b). It is balanced, so the Coulomb branch has U(1) symmetry. (d) The
quiver description of the S-dual to (a) that comes by using T (SU(n)). This
should be mirror to the quiver in (c). (e) A boundary condition in which only
one of the two U(n/2) factors is coupled to a fundamental hypermultiplet
leads to this quiver.

to both U(n/2) gauge groups at the boundary. The S-dual configuration
in figure 59(b) involves n D3-branes crossing an NS5-brane followed by a
D5-brane, and ending on an O5−-plane. This configuration produces a non-
trivial SCFT, which arises as the IR limit of a three-dimensional Sp(n)
gauge theory coupled to fundamental hypermultiplets with flavor symmetry
SO(2n + 2). This gauge theory is balanced; hence the Coulomb branch has
a hidden SO(2) symmetry. The bulk U(n) gauge group is embedded in an
SO(2n) subgroup of SO(2n + 2).
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The T (SU(n)) recipe corresponds to the quiver in figure 59(d). This
is a balanced Dn+1 type quiver, with a hidden SO(2n + 2) symmetry in
the Coulomb branch, and an obvious U(1) ∼= SO(2) symmetry of the Higgs
branch. The quivers in (c) and (d) must be mirror and indeed we see that
their symmetries match. Such mirror quivers have been considered before
in [44].

Alternatively, we can introduce a single flavor for one of the U(n/2) groups
only. This makes sense as a half-BPS boundary condition, though we cannot
realize it by a brane construction. It is entertaining to look at the T (SU(n))
prescription. The quiver in figure 59(e) has a single minimally unbalanced
node, and all other nodes are balanced. Though not a good quiver, this
quiver can be readily analyzed with the inequalities of Section 5.4. The
inequality (5.29), with the unbalanced node labeled as node 3, implies that
a monopole operator with charge at that node has qR ≥ 1/2; moreover,
that value can indeed be achieved. Hence the quiver is ugly. Omitting the
unbalanced node, the symmetry group is SU(n + 1). The unbalanced node
has a classical U(1) symmetry. The monopole operators which previously
extended SU(n + 1) × U(1) to SO(2n + 2) now have qR = 1/2 instead of
qR = 1. They transform in the antisymmetric tensor of SU(n + 1), and have
charge 1 under the classical U(1) at the unbalanced node. The dimension of
the Coulomb branch is n(n + 1)/2, which coincides with the number of free
qR = 1/2 hypermultiplets, so the theory is completely free. The U(n) gauge
symmetry is embedded in SU(n + 1) × U(1). (How the center of U(n) is
embedded is not quite clear.)

One can add more matter fields coupled to U(n/2) × U(n/2) at the bound-
ary, but this does not seem to add many new ideas. Instead we will do
the opposite and add matter fields on the Sp(n) side of the duality. We
begin with figure 60(a): n D3-branes cross two D5-branes and end on an
O5−-plane. This is a boundary at which the U(n) bulk gauge theory is bro-
ken to Sp(n), and fundamental hypermultiplets with SO(4) flavor symmetry
are coupled to the surviving gauge group.

The S-dual brane configuration in figure 60(b) involves an orbifold plane
and a single NS5-brane. The 4d U(n) gauge theory in the slab between
the orbifold and the fivebrane is broken to U(n/2) × U(n/2) by the orbifold
boundary condition. At the NS5-brane, there are bifundamental hypermul-
tiplets coupling each of the U(n/2) groups to the bulk U(n) gauge theory
on the half space. In the infrared we are led to a boundary condition in
which the full U(n) gauge theory is preserved, and coupled diagonally to
an SCFT which is the product of two copies of a U(n/2) three-dimensional
gauge theory with n flavors, as in figure 60(c).
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Figure 60: (a) The Sp(n) orientifold plus two half D5-branes. (b) The S-dual
of (a), constructed from an orbifold plane and a half NS5-brane. (c) The
corresponding quiver. (d) The result of applying the T (SU(n)) recipe to (a).

This SCFT has a hidden SU(2) × SU(2) symmetry on the Coulomb
branch due to the two independent balanced nodes. This matches the SO(4)
flavor symmetry of the original boundary condition.

It is also interesting to compare this to the T (SU(n)) prescription for
the S-dual boundary condition. The quiver is depicted in figure 60(d), and
is a balanced quiver with a symplectic node at the end. We know from
the monopole analysis that we should expect an SU(n) × SU(n) hidden
symmetry in the Coulomb branch, which matches well the symmetry of the
Higgs branch of figure 60(c).

Finally, we may consider a similar situation with k > 2 flavors, as in
figure 61(a). The S-dual brane configuration in figure 61(b) leads to a
boundary condition in which the full U(n) gauge group at the boundary
is coupled to the SCFT depicted in figure 61(c). This SCFT is described
by a balanced Dk quiver. The monopole analysis predicts an SO(2k) sym-
metry of the Coulomb branch, which matches the symmetry of the orig-
inal boundary condition. The T (SU(n)) prescription provides the quiver
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Figure 61: (a) The analog of figure 60(a) with k half D5-branes (sketched
here for k = 5) rather than 2. (b–d) The corresponding dual brane config-
urations and quivers. The main difference is that the quiver in (c) is now
connected and is of type D. The quivers in (c) and (d) are still mirror.

in figure 61(d): only the unitary nodes are balanced, and indeed we only
expected an SU(n) symmetry of the Coulomb branch, not SU(n) × SU(n).

7 Boundary conditions for orthogonal and
symplectic gauge groups

We want to extend some of the explicit constructions of Section 3 to orthog-
onal and symplectic gauge groups. A well-known way to generate in string
theory an N = 4 super Yang–Mills gauge theory with orthogonal or symplec-
tic gauge groups is to consider D3-branes in the background of an O3-plane.
Brane constructions involving D3-branes and fivebranes in the presence of an
O3-plane have been introduced in [35] as a tool to construct mirror pairs of
orthosymplectic linear quivers. We will review and clarify this construction
in the next subsection, and then adapt it to describe S-duality of boundary
conditions.
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Table 4: The discrete RR and NS fluxes of an O3-plane, its name, its
D3-brane charge, the type of gauge group is produces when combined with
D3-branes, and its S-dual.

Fluxes Name D3-brane charge Gauge group S-dual
(0, 0) O3− −1/4 SO(2n) O3−

(0, 1) Õ3− 1/4 SO(2n + 1) O3+

(1, 0) O3+ 1/4 Sp(2n) Õ3−

(1, 1) Õ3+ 1/4 Sp′(2n) Õ3+

7.1 Review of O3 planes

O3-planes in type IIB string theory come in four kinds, distinguished by
Z2 valued discrete fluxes of RR and NS B-fields. The S-duality SL(2, Z)
symmetry acts on the discrete fluxes much like SL(2, Z) acts on the spin
structures of a two-torus. If the fluxes are zero, the orientifold plane, indi-
cated here as O3−, is invariant under S-duality and carries −1/4 unit of
D3-brane charge. n D3-branes in the background of an O3−-plane carry an
SO(2n) gauge theory.

Adding half a D3-brane changes the RR discrete flux to 1 and the
D3-brane charge to +1/4. The resulting gauge group is SO(2n + 1). This

Õ3−-plane is invariant under T : τ → τ + 1 and transforms under S : τ →
−1/τ to an object O3+ with NS discrete flux. n D3-branes in the background
of an O3+-plane carry an Sp(2n) gauge group. Finally, a T transformation
on O3+ adds half a unit of theta-angle to the Sp(2n) gauge theory, leading

to an object called Õ3+. Whenever we label the O3-planes by the corre-
sponding gauge group, we will label this as Sp′(2n). (The prime means the
following: the theta-angle of the Sp′(2n) gauge theory differs by π from
the theta-angle of the underlying Type IIB superstring theory. In the other
cases, the two angles are equal.)

The most obvious question for us is what fivebrane configurations will
lead to simple boundary conditions and domain walls in the presence of
O3-planes. Roughly speaking one can introduce “half” D5 and NS5-branes,
which lead to simple field theory constructions, similar to those for unitary
groups. But there are important subtleties.

An NS5-brane is defined simply by a conformal field theory, although
not one which is known explicitly. If we take the NS5-brane to have world-
volume in the 012789 directions and to be localized at y = x4 = x5 = x6 = 0,
then the SCFT is invariant under reflection of directions 456789, so one can
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construct an orientifold SCFT. This describes the O3-plane interacting with
what is usually called a half NS5-brane. All fields and couplings in this
orientifold spacetime are obtained by applying a Z2 projection to whatever
one has before orientifolding.

At large distances along the y-direction, the target spacetime of the ori-
entifold must resemble one of the four flat space O3-planes. Because of the
H-field of the half NS5-brane, the NS flux will jump across the NS5-brane
and the type of O3-plane will be actually different at large positive or large
negative y. This means that if the gauge group is of orthogonal type on one
side of the NS5-brane, it will be of symplectic type on the other.

Before orientifolding, if D3-branes end on an NS5-brane from both sides,
one gets bifundamental hypermultiplets of the appropriate U(n) × U(m)
group. In the present situation, U(n) × U(m) is projected to SO(n) ×
Sp(m) (or Sp(n) × SO(m)); the bifundamental representation of SO(n) ×
Sp(m) is pseudoreal, making it possible to define the Z2 projection for the
hypermultiplets. It follows from what we have just explained that construc-
tions based on half NS5-branes will generally produce the sort of orthosym-
plectic quivers considered in Section 5.2.

Given the existence of a half NS5-brane, S-duality implies the existence
of a “half” D5-brane across which the RR flux of the O3-planes jumps. This
will correspond to a domain wall between SO(2n) and SO(2n + 1) gauge
theories, or between Sp(2n) and Sp′(2n). The two cases are fundamentally
different, however. In the Sp(2n) case, the half D5-brane can be constructed
explicitly from free fields, and all its properties can be calculated. In the
orthogonal case, there is no explicit construction, and this will lead to some
unusual properties. The difference can be explained as follows.

In general, before introducing the O3-plane, we can consider for any pos-
itive integer k a system of k D5-branes of worldvolume 012456. Their gauge
symmetry is U(k). To make an orientifold projection of this object, we need
to choose an outer involution τ̃ of the Chan–Paton bundle that squares to
±1. An outer involution is one which acts by complex conjugation times con-
jugation by an element of U(k). Similarly to define the orientifold projection
for D3-branes, one picks an outer involution τ squaring to ±1. The D3-brane
gauge symmetry is orthogonal or symplectic for τ2 = 1 or −1. The flavor
symmetry of hypermultiplets arising from 3–5 strings is the gauge symme-
try of the D5-branes and is likewise orthogonal or symplectic for τ̃2 = 1 or
−1. As before, the D3–D5 strings admit an orientifold projection only if
one group is orthogonal and one is symplectic, so we need τ2 = −τ̃2. (Of
course, one can also give a conformal field theory explanation of this fact as
in [45].)
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To get a half D5-brane, we want k = 1, but this is possible only if τ̃2 = 1
and hence τ2 = −1. So it is possible only for an O3-plane of Sp type. Mak-
ing the orientifold projection of the usual D3–D5 system leads to a single
fundamental hypermultiplet of Sp(2n), with flavor symmetry O(1). The
jumping of the RR flux across the half D5-brane means that the theta-angle
must jump by π in crossing it. This is consistent with the Z2 anomaly of
three–dimensional Sp(2n) gauge theory with an odd number of real hyper-
multiplets: the anomaly can be cancelled by a half-integral Chern–Simons
term, or equivalently in our context by letting the four-dimensional theta-
angle jump by π.

If τ̃2 = −1, k must be even. After taking the Z2 projection, the D5-brane
charge k/2 is an integer. The object with smallest D5-brane charge has
k = 2 and is called a full D5-brane.

We call the k = 2 object a full D5-brane for either sign of τ̃2. However,
for τ̃2 = 1, the full D5-brane is trivially a direct sum of two half D5-branes.

For τ̃2 = −1, the zero mode of the worldvolume scalar field Φ which
parametrizes the relative motion of the two original D5-branes along y is
projected out by the orientifold. The relative motion of two D5-branes is
described by fields valued in the adjoint representation of SU(2), so let us
omit the diagonal part of Φ and consider only the adjoint-valued part. We
also set �x = (x4, x5, x6). The orientifold projection on Φ is

Φ(−�x) = −Φ(�x), (7.1)

ensuring that Φ has no zero mode.

There is no free field construction of a half D5-brane in the presence of an
O3-plane of orthogonal type, but still, as already noted, S-duality implies
its existence. In crossing such an object, since the RR flux jumps, the gauge
group jumps between SO(2n) and SO(2m + 1) for some n, m. Actually
it is possible to show that this object must exist without making use of
S-duality. We use the fact that in Type IIB superstring theory, without any
orientifolding, one can have a supersymmetric configuration consisting of a
D5-brane with different numbers p and q of D3-branes ending on the two
sides. The gauge group jumps from U(p) to U(q), with a Nahm pole of rank
|p − q|, but with no extra degrees of freedom supported at the intersection.
(See Section 3.4.4 of [1] for more detail.) The orthogonal-type orientifold
projection of this configuration has SO(p) gauge symmetry on one side, and
SO(q) on the other. It still has no degrees of freedom supported at the
intersection, since the projection of nothing is nothing. It is only consistent
if p − q is odd, because that is the case that the Nahm pole is real. So this
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Figure 62: (a) D3-branes parallel to an O3-plane of orthogonal type (not
drawn) intersecting a full D5-brane. Here and later, a vertical dotted line
labeled by the letter F represents a full D5-brane, while an unlabeled vertical
dotted line represents a half D5-brane. (b) The same O3-plane intersecting
a pair of parallel half D5-branes.

type of D-brane configuration exists even though it cannot be constructed
with free two-dimensional fields.

At this stage, for intersection with an O3-plane of orthogonal gauge
symmetry, we have two superficially similar configurations with the same
D5-brane charge, namely a full D5-brane or a pair of parallel half D5-branes
(figure 62). If the number of half D3-branes on the left and right of the figure
is p (corresponding to SO(p) gauge symmetry), then the number inside must
differ from p by an odd number. For reasons that will become clear, we have
chosen the number inside to be p + 1.

7.1.1 Splitting and R-symmetry

Consider a full D5-brane that intersects an O3-plane of orthogonal type?
Can we “split” the full D5-brane into a pair of half D5-branes by giving an
expectation value to Φ? The orientifold projection (7.1) makes it impossible
to give Φ a constant expectation value, which we usually think of as the way
to separate two branes. What saves the day is that the full D5-brane has
an Sp(2) ∼= SU(2) gauge symmetry. To preserve the supersymmetry of the
orientifold plane, we need not take Φ to be constant. It is enough to obey
the Bogomolny equations of SU(2):

F = ∗DΦ. (7.2)

The usual hedgehog solution of monopole charge 1 on R
3 is of the form

Φ = f(r)�x · �t, (7.3)
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where �t are the su(2) generators and r = |�x| (and the gauge field is given by
an analogous ansatz). Moreover, f(r) ∼ L/r for large r for some constant
L, so that |Φ| approaches L at infinity.

This solution obeys the orientifold condition (7.1). At large r, it describes
two D5-branes separated by an amount L, just as in figure 62(b). (For small
r, inside the core of the monopole, the solution is more complicated; the size
of the core is of order 1/L and so is negligible for large L. This is consistent
with the semiclassical picture of figure 62(b) in which L is much larger
than the string scale and the core is not seen.) Interpreting the solution
on R

3/Z2 rather than R
3, the monopole charge is 1/2. This represents one

extra half D3-brane stretched between the two D5-branes in the figure, in
addition to those already present in figure 62(a). This explains the fact that
in figure 62(b), there is precisely one extra half D3-brane between the two
half D5-branes.

So the two configurations can be deformed into each other. But there is
a very important point to be made about the symmetries. In figure 62(a),
there is an SU(2)X symmetry that rotates �x. (The group that acts faith-
fully on �x is of course SO(3)X .) There is also an SU(2) gauge symmetry of
the D5-branes, which is realized in the D3-brane theory as a flavor symme-
try SU(2)F .

On the other hand, in the separated configuration of figure 62(b), we see
only one combination of these symmetries — the rotation symmetry SU(2)′

X
that acts on �x. (Again, it is the quotient SO(3)′

X that acts faithfully on �x.)
The second symmetry has been lost. The reason that we have given SU(2)′

X
a different name from the SU(2)X rotation symmetry of figure 62(a) is that
actually they do not coincide even in the limit L → 0. The hedgehog solution
is not invariant under either the rotation symmetry SU(2)X or the gauge
symmetry SU(2)F , but only under a diagonal subgroup. It therefore is this
diagonal subgroup that is the symmetry of the separated configuration with
two half D5-branes and so corresponds to SU(2)′

X .

Going back to the configuration with the full D5-brane, from the point
of view of the SO(p) gauge theory on the D3-brane, the low-energy physics
is described by the coupling of the bulk four-dimensional gauge fields to a
three-dimensional SCFT. This SCFT is a free field theory that describes the
bifundamental hypermultiplet H. The bosonic components of H transform
as (1/2, 1/2) under SU(2)X × SU(2)F . They also have conformal dimen-
sion 1/2, telling us that they must transform with spin 1/2 under the R
symmetry that is part of the superconformal algebra. Since SU(2)F com-
mutes with supersymmetry while SU(2)X is an R-symmetry, the candidate
R symmetries are SU(2)X or a diagonal subgroup of SU(2)X × SU(2)F .
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The condition that H must transform with spin 1/2 tells us that the super-
conformal R-symmetry in the low-energy limit of figure 62(a) is actually
SU(2)X .

The split configuration has a mass scale L−1. We can recover from it
a superconformal field theory by going to a low-energy limit in which the
separation of the half D5-branes is unimportant and we recover the physics
of the full D5-brane. However, in view of what we have said, the R-symmetry
SU(2)′

X that is visible in the split configuration is not the superconformal
R-symmetry of the IR limit.

In a sense, this should come as no surprise. The split configuration does
not obey the usual constraint that linking numbers should be non-decreasing
from left to right. The linking numbers in the orthosymplectic case are
defined for half branes in essentially the same way that they are defined in
the unitary case for full branes: the linking number of a half fivebrane is
the number of half fivebranes of the opposite kind to its left plus the jump
in the half D3-brane charge across it, including the D3-brane charge of the
O3-planes. From left to right of figure 62(b), the linking numbers are 1 and
−1. So naturally, the ultraviolet and infrared R-symmetries are different.

Even though the configuration of figure 62(b) violates the linking number
constraint, the above analysis implies that as the separation between the
two half D5-branes is taken to zero, there is a smooth limit to the unsplit
configuration of figure 62(b). This is rather special in that, as shown via
Nahm’s equations in Section 3.5.1 of [1], a generic D3–D5 configuration that
violates the linking number constraint does not have a similar natural limit
to an unsplit configuration when the D5 separations are taken to zero. This
is shown in [1] for unitary groups (that is, without the O3-plane) and is also
true for generic configurations that violate the linking number constraint in
the presence of the O3-plane. But evidently (and as one can verify from
Nahm’s equations), it is not true when the violation of the linking number
constraint comes only by splitting full D5-branes.

Violating the usual linking number constraint means that, underS-duality,
we should expect to encounter bad quiver gauge theories. We will now give
a simple example. We define a full NS5-brane to be the S-dual of a full
D5-brane. We want to determine the IR dynamics at the intersection of an
O3-plane with a full NS5-brane, by splitting the full NS5-brane to a pair
of half NS5-branes and constructing a quiver. S-duality will enable us to
determine exactly what is the correct quiver.

First we consider a full NS5-brane intersecting an Õ3−-plane with gauge
group SO(2r + 1) for some r (figure 63). The S-dual is a full D5-brane
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Figure 63: (a) A full NS5-brane intersecting an O3-plane of type SO(2r + 1)
(sketched here for r = 2). S-duality leads to (b), in which the O3-plane is
now of symplectic type. Splitting the full D5-brane leads to (c), and finally
S-duality brings us back to (d). The theory in the central slab is Sp′(2r).
The three-dimensional limit is described by the good quiver shown in (e).
In (b) and (c), and below, the horizontal dotted line represents a half unit
of D3-brane charge carried by an O3-plane of symplectic type. This dotted
line contributes to linking numbers (though not to gauge symmetries) and
drawing it lets us distinguish visually between O3-planes of orthogonal or
symplectic type. By contrast, in these figures, an O3-plane of orthogonal
type is not explicitly drawn.

intersecting an O3+-plane with gauge group Sp(2r). This can be straight-
forwardly split to two perturbative half D5-branes, with gauge group Sp′(2r)
between them. Then applying S-duality again, we find that the original con-
figuration with the full NS5-brane is dual to a system of two half NS5-branes
with Sp′(2r) in the central slab. The difference between Sp(2r) and Sp′(2r)
is unimportant in the low-energy three-dimensional limit, so that limit gives
an Sp(2r) gauge theory with flavor symmetry SO(4r + 2), coming from
bifundamentals at the two ends. This is a good and in fact balanced theory,
in the sense of Section 5.1, so the infrared and ultraviolet R-symmetries
agree, consistent with the fact that in this case the splitting of the D5-brane
was straightforward. Moreover, since the theory is balanced, the Coulomb
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Figure 64: (a) A full NS5-brane intersecting an O3-plane of type SO(2r)
(again sketched for r = 2). S-duality leads again to (b), and splitting the full
D5-brane and applying S-duality again leads to (c) and then (d). But now,
as the O3-plane in (b) is of orthogonal type, the R-symmetry is modified
in this process. Accordingly, the quiver in (e), which describes the three-
dimensional limit of the configuration in (d), is now a bad one.

branch has an SO(2) symmetry in the infrared, which is dual to the flavor
symmetry of two half D5-branes.

The splitting of a full NS5-brane intersecting an Õ3+-plane is similar,
since the dual D5-brane again intersects an O3-plane of symplectic type
and can be split straightforwardly. The gauge theory describing the full
NS5-brane turns out to be a balanced SO(2r + 1) gauge theory with flavor
symmetry Sp(4r). Again the ultraviolet and infrared R-symmetries match
and the Coulomb branch has an SO(2) symmetry in the infrared.

The other two cases behave differently. A full NS5-brane intersecting
an O3−-plane is shown in figure 64(a). In carrying out the usual duality
operations, we have to split a full D5-brane interacting with an O3-plane
of orthogonal type, so we expect the R-symmetry to be modified. Indeed,
the gauge theory description turns out to be an Sp(2r) theory with flavor
symmetry SO(4r). This theory is bad, by the criterion of Section 5.1, so
it is indeed impossible to match the ultraviolet and infrared R-symmetries.
In the infrared, the Coulomb branch is supposed to have an Sp(2) global
symmetry, matching the flavor group of the full D5-brane. But as the gauge
theory is bad, we cannot see this symmetry by studying monopole operators.
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The last case of a full NS5-brane intersecting O3+-plane is similar. It is
dual to an SO(2r + 2) theory with flavor symmetry Sp(4r). This is a bad
theory according to Section 5, consistent with the fact that the R-symmetry
is modified in splitting the full D5-brane.

7.1.2 Monopoles and orientifolds

Depending on the type of orientifold projection, only a net even or odd
number of half D3-branes can end on a half D5-brane. From the viewpoint of
the D3-brane theory, this reflects the reality property of the Nahm pole. We
want to investigate the matter from the point of view of the D5-brane theory.

The endpoint of a half D3-brane looks like a singular monopole of charge 1
in the U(1) gauge theory of the D5-brane. So to use D5-brane field theory,
we will omit the points where D3-branes end, and discuss the topology of
the orientifold projection on a large two-sphere S given by r = constant.

Let L → S be any line bundle. Let π : S → S be the antipodal map
�x → −�x. There exists an antiunitary isomorphism φ between L and π∗(L),
because L is completely classified topologically by its first Chern class c1(L),
which is odd under both π∗ and complex conjugation. There is no natural
choice of φ, but φ2 is independent of the choice and equals 1 or −1, depending
only on the topology of L. The formula is in fact that φ2 = (−1)c1(L).

Now we can refine the criterion for when a half D5-brane exists. The
definition of the orientifold projection requires a choice of antiunitary iso-
morphism τ̃ from the Chan–Paton gauge bundle of the D5-brane to itself.
For a single half D5-brane, this bundle is a line bundle L, and in view of
what is said in the last paragraph, we have τ̃2 = (−1)c1(L). If the D3-brane
gauge theory is symplectic, we want τ̃2 = 1, so in this case c1(L) must be
even. Since a half D3-brane ending on a half D5-brane carries magnetic
charge, this result means that only a net even number of half D3-branes can
end on a single half D5-brane, as we already know.

If the D3-brane gauge theory is orthogonal, we want τ̃2 = −1, so c1(L)
must be odd. Hence only a net odd number of half D3-branes can end on
the half D5-brane, as we also already know.

Now, taking the gauge theory of the D3-branes to be symplectic, we want
to consider a problem of 4s + 2 half D3-branes ending on a full D5-brane
(figure 65(a)). The D5-brane gauge bundle E → S is now a rank two bundle
with c1(E) = 4s + 2. It is possible for such a configuration to have an SU(2)
global symmetry which we call SU(2)F . For this, we require E = L ⊕ L,
where L is a line bundle with c1(L) = 2s + 1. The orientifold projection
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Figure 65: (a) An O3-plane of symplectic type intersecting a full D5-brane,
on which 4s + 2 half D3-branes end, drawn here for s = 0. (b) The gauge
bundle at infinity in the last figure is L ⊕ L, so after splitting the full
D5-branes, one might expect 2s + 1 half D3-branes to end on each half
D5-brane. Instead, solving the Bogomolny equations leads to the situation
drawn here, the numbers (from left to right) being 2s + 2 and 2s. (c) An
O3-plane of orthogonal type intersecting a full D5-brane on which 4s half
D3-branes end, drawn here for s = 1. (d) Upon splitting the D5-brane, an
extra D3-brane fragment is created via the Bogomolny equations, with the
result that a net odd number of half D3-branes ends on each half D5-brane.

now has an unusual property. The antiunitary isomorphism τ̃ : E → π∗E
must square to 1, even though any antiunitary isomorphism φ : L → π∗L
obeys φ2 = −1. So we pick

τ̃ =

(
0 φ

−φ 0

)
, (7.4)

still leaving SU(2)F symmetry.

Now we would like to split the D5-brane to a pair of half D5-branes.
Because of the form of τ̃ , we are in a situation similar to what happened when
we tried to split a full D5-brane in the presence of an orthogonal O3-plane.
The zero mode of the relevant adjoint-valued field Φ is projected out, but the
splitting is possible anyway with the help of an ’t Hooft-Polyakov monopole.
The result is that the split configuration exists, but it is not true, as one
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might expect from the choice E = L ⊕ L with c1(L) = 2s + 1, that 2s + 1
half D3-branes end on each half D5-brane. Rather, the ’t Hooft-Polyakov
monopole gives an extra half D3-brane between the two half D5-branes, so
from left to right the net numbers are 2s + 2 and 2s, as in figure 65(b). As
before, SU(2)X × SU(2)F is broken to a diagonal subgroup.

This has a variant (figure 65(c)) for a full D5-brane interacting with an
O3-plane of orthogonal type. We recall that this is obtained by orientifolding
a configuration with a pair of D5-branes intersecting the O3-plane. Suppose
that, before the orientifolding, a net of 4s D3-branes end on the pair of
D5-branes. We can take the D5-brane gauge bundle E → S to be E = L ⊕ L,
c1(L) = 2s, giving a configuration again with flavor symmetry SU(2)F . The
orientifold projection must obey τ̃2 = −1, and since c1(L) is even, ensuring
that φ2 = 1, we can accomplish this with τ̃ of the same form as in (7.4). With
the help of the Bogomolny equations, we can again split the full D5-brane,
once again breaking SU(2)X × SU(2)F to a diagonal subgroup and arriving
at figure 65(d).

7.2 Simple boundary conditions from branes

The basic idea of Section 3 was to realize boundary conditions in U(n) gauge
theory in terms of D3-branes ending on a system of fivebranes, and use the
properties of the branes to determine the action of S-duality. We have
developed the tools we need to do the same for orthogonal and symplectic
groups, by adding an O3-plane to the previous constructions.

n D3-branes ending on a single NS5-brane gives Neumann boundary con-
ditions in U(n) gauge theory. So, applying an orientifold projection, n half
D3-branes ending on a single half NS5-brane gives Neumann boundary con-
ditions in SO(n) or Sp(n) gauge theory.24

The dual of Neumann boundary condition then corresponds to a config-
uration in which all D3-branes end on a single half D5-brane. This must
correspond to a regular Nahm pole, as otherwise upon solving Nahm’s equa-
tions, it would support a moduli space of vacua. If the bulk gauge group
is Sp(2n), the regular su(2) embedding corresponds to the 2n-dimensional
irreducible representation of SU(2), and similarly for SO(2n + 1) it corre-
sponds to the 2n + 1-dimensional irreducible representation. On the other
hand, the regular embedding of SO(2n) corresponds to the decomposition

24A variant is the case that an Sp′ theory ends on a half NS5-brane, with a single half
D3-brane on the other side. There is then a real fundamental hypermultiplet of Sp(n) at
the boundary.
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2n = (2n − 1) + 1. This is consistent with the fact that on the other side

of the half D5-brane the orientifold is of the Õ3− type, which supports odd
orthogonal gauge symmetry. Only 2n − 1 of the 2n half D3-branes stop at
the half D5-brane, leaving O(1) on the other side.

More general Nahm poles can be produced by combining several half
D5-branes. Consider an SO(n) bulk gauge theory. We have learned that at
a single half D5-brane only an odd number of half D3-branes can end. This
produces naturally any Nahm pole of odd rank. We can split any Nahm pole
in which every summand is odd dimensional into a sequence of elementary
Nahm poles, ordered by increasing dimension, in complete parallel with
the unitary construction. S-duals of such boundary conditions are trivially
found. The corresponding set of half NS5-branes gives rise to a good linear
orthosymplectic quiver. The quiver has balanced nodes whenever successive
summands of the Nahm pole have the same dimension, and the enhanced
orthogonal symmetries of the Coulomb branch match the subgroup of SO(n)
which commutes with the Nahm pole.

From a field theory point of view, this is not the end of the story. In the
most general su(2) embedding in so(n), it is possible to have an even number
of summands of the same even dimension. If there are 2k such summands,
the commutant of this embedding contains a factor of Sp(2k). This is the
symmetry group associated to k full D5-branes; hence it is natural to suspect
that full D5-branes will be needed to describe these even rank Nahm poles.
The Nahm pole can indeed be realized by orientifold projection of 2k poles
of rank 2d in the unitary gauge theory.

To describe the S-dual configuration via gauge theory, we need to split
the D5-branes to half D5-branes (whose duals are half NS5-branes that have
a simple gauge theory interpretation). This splitting, however, involves the
process of figure 65(c),(d) in which a half D3-brane is created and the half
D5-branes violate the linking number constraint. After the splitting, an odd
number of half D3-branes end on each half D5-brane, but the R-symmetry
no longer coincides with the R-symmetry of the unsplit configuration. Once
the configuration has been split in this way, it is straightforward to identify
its S-dual as an orthosymplectic quiver. The only drawback is that this
quiver will be a bad quiver, with a bad node corresponding to each unusually
ordered pair of half D5-branes.

We can proceed in much the same fashion for symplectic gauge theories.
Now the simplest Nahm poles to describe are the ones of even rank. Those
are easily mapped to half D5-branes on which an even numbers of half
D3-branes end, with the gauge group changing from Sp(2n) to Sp′(2m)
or vice versa. As usual a Nahm pole with several even summands can be
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Figure 66: (a) Dirichlet boundary conditions in SO(2n) gauge theory can
be achieved by letting 2n half D3-branes end on 2n half D5-branes (sketched
here for n = 2). (b) The S-dual configuration, which leads to the self-mirror
quiver of fig. 54(a).

decomposed into a sequence of elementary Nahm poles of increasing rank,
and then S-duality is straightforward. The result is a good orthosymplectic
quiver. Again the commutant of the su(2) embedding has orthogonal factors
for every set of summands of the same dimension. This will map to sequences
of consecutive balanced nodes in the S-dual quiver gauge theory.

Just as in the case of an orthogonal gauge group, the full story is more
complicated. In the most general su(2) embedding in sp(2n), it is possible
to have a pair of summands of the same odd dimension d = 2s + 1. The
simplest example of this is Dirichlet boundary conditions, where all sum-
mands are of dimension 1. We have learned in Section 7.1.2 that we can
realize two Nahm poles of the same odd dimension with a full D5-brane
using the orientifold projection (7.4). We have also learned how to split
such a full D5-brane, with the help of the Bogomolny equations. This leads
to a configuration like that of figure 65(b) in which, from left to right, d + 1
half D3-branes end on the first half D5-brane and d − 1 on the second. As
before, this splitting modifies the R-symmetry.

S-duality is straightforward and leads to a linear orthosymplectic quiver.
The quiver, however, will have a bad node for each pair of unusually ordered
Nahm poles in the split configuration.

7.2.1 Quiver representations for T(G)

We are finally prepared to give a quiver description of T (G) for orthog-
onal and symplectic groups. The simplest example is T (SO(2n)). The
Dirichlet boundary condition for SO(2n) is realized by 2n half D3-branes,
each ending on a separate half-D5 brane, as in figure 66(a). The S-dual of
this brane configuration is depicted in figure 66(b), and corresponds to the
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Figure 67: (a) A brane realization of Dirichlet boundary conditions for
SO(2n + 1), sketched here for n = 2. (b) The S-dual, which leads to the
quiver of figure 54(b).

good and perhaps even beautiful self-mirror quiver in figure 54(a), which
describes T (SO(2n)).

One more half D3 and half D5-brane leads (figure 67) to a Dirichlet bound-
ary condition for SO(2n + 1), and to a slightly longer quiver in figure 54(b).
This is a good quiver description of T (Sp(2n)).

The theory T (SO(2n + 1)) (which is also the mirror of T (Sp(2n))) is the
dual of Dirichlet boundary conditions for an Sp(2n) gauge group. Dirich-
let boundary conditions are a very special case of an even number of odd
dimensional summands in the decomposition of 2n. As in the examples just
treated, we can realize Dirichlet boundary conditions for Sp(2n) by letting
2n half D3-branes end on 2n half D5-branes. But now, when we separate
the half D5-branes in y in preparation for S-duality, the R-symmetry is
modified and several half D3-branes are added, to lead to the configura-
tion depicted in figure 68(a). The dual NS5-brane configuration is depicted
in figure 68(b), and the resulting bad quiver in figure 54(c). This gives a
description of T (SO(2n + 1)) which completely obfuscates the symmetries
of the Coulomb branch. For T (SO(3)), this description was analyzed in
Section 5.2.2.

Finally, we can ask for the S-dual of a Dirichlet boundary condition for
Sp′(2n). The half D5-brane configuration is essentially identical to the one
in figure 68(a), but with the labelling Sp and Sp′ permuted. The S-dual
boundary condition involves the bad quiver in figure 68(c). The resulting
theory, which we could still call T (Sp′(2n)), is apparently self-mirror, and
would be useful to find the S-dual of boundary conditions for an Sp′ gauge
theory.

We can similarly give quiver descriptions of the various T ρ
ρ∨(G) for orthog-

onal and symplectic gauge groups. The simplest case, which does not require
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Figure 68: (a) A brane realization of the dual of Dirichlet boundary condi-
tions for Sp(2n), sketched here for n = 2. Between the D5-branes, the gauge
theories are alternately Sp and Sp′ theories; that is, the θ-angle jumps by
π in crossing each half D5-brane. (b) The S-dual of (a), leading to the bad
quiver of figure 54(c) which describes T (SO(2n + 1)). (c) If we exchange all
Sp and Sp′ labels in (a), the dual looks like this, and the gauge theory limit
is the bad quiver in (d). In (a), (b), and (c), linking numbers are alternately
2 and 0.

brane manipulations, is Tρ∨(G), which is the S-dual of a ρ∨ Nahm pole for
G∨. The Nahm pole is built out of half D5-branes by following the rules
already formulated, and the S-dual orthosymplectic quiver has the same
structure as the T (G) quiver, but with missing nodes.

It is almost as easy to describe a general T ρ
ρ∨(G): ρ∨ can be realized

as a configuration of D5-branes in the G∨ duality frame, and converted to
an identical configuration of NS5-branes in the G duality frame. In some
cases, splitting of these NS5-branes will modify the R-symmetry, but we
do not need to split fully the D5-brane configuration that generates ρ. It
is convenient to represent summands in ρ of the “correct” dimension (odd
for orthogonal G, even for symplectic G) by a half D5-brane, and pairs
of summands of the “wrong” dimension by full D5-branes. To order the
branes properly so as to get a gauge theory description, a half D5-brane
with a Nahm pole of odd dimension d needs to be moved across d half
NS5-branes, and ends up representing a single real flavor at the dth node
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of the quiver (which is symplectic). A full D5-brane with two poles each
of even dimension d also is moved across d half NS5-branes and ends up
as a full flavor at the dth node, which now is orthogonal. The ranks of
the gauge groups at the nodes are then determined by following the brane
manipulations or more simply from the linking numbers of the original half
NS5-brane configuration.

The set of T ρ
ρ∨(G) includes all mirror pairs built from linear orthosym-

plectic quivers.

7.3 Examples of interesting boundary conditions

As in Section 3, we can use these methods to understand S-duality for a
much wider class of examples. We consider some illustrative cases involving
Neumann boundary conditions with fundamental matter at the boundary.

We begin with the brane configuration in figure 69(a). It produces a Neu-
mann boundary condition in SO(2n) gauge theory coupled to a fundamental
hypermultiplet with an Sp(2) flavor symmetry. 2n half D3-branes end on
the NS5-brane, but the half D3-brane charge of the O3-plane also jumps by
−1 across the NS5-brane, so its linking number is 2n − 1. To do S-duality,
the full D5-brane has to be split as in figure 69(b). The resulting configu-
ration has two half D5-branes of linking numbers 2 and 0. The reordered
S-dual configuration is shown in figure 69(c). The SO(2n) gauge group is
broken to SO(3) by a Nahm pole of dimension 2n − 3, and it is coupled to
the CFT associated to the quiver in figure 69(d), which describes an Sp(2)
gauge theory with SO(4) flavor symmetry group. Notice that one of the four
flavors arises from the bifundamental hypermultiplet at the leftmost NS5-
brane, where the gauge theory jumps from Sp′(2) to O(1). This bad quiver
was analyzed in Section 5.2.2. Its low-energy limit is T (SO(3)) = T (SU(2)),
though in this flow the microscopic R-symmetry is not the one that is rele-
vant in the infrared.

We can check that our general prescription based on T (SO(2n)) agrees
with this answer. We want to reproduce the original boundary condition
as the S-dual of the boundary condition in figure 69(c). As a Nahm pole
ρ (related to the decomposition 2n = (2n − 3) + 1 + 1 + 1) is present, we
need to use T ρ(SO(2n)), which is the infrared limit of the good quiver in
figure 69(e). We could couple this to the quiver in figure 69(d) to produce
a dual boundary condition, but as that quiver is bad we would learn little
from it. Alternatively, we can couple it to a more useful description of the
theory: the usual T (SU(2)) realization as U(1) with two flavors. The price
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Figure 69: (a) D3-branes intersecting a full D5-brane, leading to SO(2n)
gauge theory coupled to a fundamental hypermultiplet of flavor symmetry
Sp(2). (b) Splitting the D5-brane. Linking numbers are indicated. (c) The
S-dual of (b). The gauge symmetry is reduced to SO(3) by a Nahm pole. (d)
The SO(3) gauge symmetry near the boundary is coupled to the SCFT that
is generated by this quiver. This is a bad quiver representing T (SU(2)). (e)
The quiver representing T ρ(SO(2n)) for the decomposition 2n = (2n − 3) +
1 + 1 + 1, sketched here for n = 3. (f) The result of diagonally coupling
SO(3) gauge fields to T ρ(SO(2n)) × T (SU(2)) is this “quiver,” in which the
jagged line represents the tensor product of the fundamental representation
of Sp(2) and the fundamental of SO(3), viewed as a U(2) representation.

to pay is that the resulting theory is not a quiver in the strict sense, as the
SO(3) ∼ SU(2) node is coupled to hypermultiplets in both the triplet and
the doublet of SU(2). One can verify that monopoles with qR = 1/2 exist
in this quiver, with weights which match the ones of an SO(2n) × Sp(2)
bifundamental free hypermultiplet. (To get all the monopoles, one needs
to know that in coupling SO(3) to the T (SU(2)) quiver the gauge group is
really U(2), not SO(3) × U(1).)
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Figure 70: (a) Neumann boundary condition for SO(2n + 1) (in the figure
n = 2) with addition of a full D5-brane, which has been split to arrive at
this picture. Linking numbers are indicated. The R-symmetry has been
modified by splitting D5-branes. (b) The S-dual configuration after standard
reordering. (c) The bad quiver representing the boundary SCFT.

A similar brane configuration in figure 70(a) gives the same boundary
condition for SO(2n + 1). The construction of the S-dual boundary con-
dition is rather similar to the previous example; in particular the linking
number of the NS5-brane is 2n and those of the two half D5-branes are
again 2 and 0. The final result is shown in figure 70(b) and corresponds
to a boundary condition for an Sp(2n) gauge theory reduced to Sp(2) by
a Nahm pole of dimension 2n − 2. The SCFT living at the boundary is
depicted in figure 70(c): it is the IR limit of an SO(3) gauge theory with
Sp(2) flavor symmetry. This is again a bad quiver theory, but it is also
a very well-known theory in disguise: N = 8 SO(3) gauge theory. In the
infrared, the moduli space of this theory is a mixed branch: R

8/Z2, with
an SO(8) R-symmetry group. Since the Sp(2) flavor symmetry is coupled
to the bulk gauge fields, only the Coulomb factor of the moduli space is
really visible, and corresponds to the moduli space of Nahm equations in
figure 70(a).

The third example, a Neumann boundary condition for Sp(2n) together
with a coupling to a fundamental hypermultiplet of flavor symmetry SO(2),
is depicted in figure 71(a). The brane manipulations are more elementary, as
the full D5-brane is equivalent to two half D5-branes, as in figure 71(b). The
S-dual configuration in figure 71(c) shows clearly that the dual SO(2n + 1)
gauge theory is broken to an SO(2) subgroup by a Nahm pole of dimension
2n − 1, and the SO(2) subgroup is gauged at the boundary.
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Figure 71: (a) Sp(2n) gauge theory interacting with a full D5-brane at
the boundary. (b) The split configuration, with linking numbers indicated.
(c) The S-dual.

Figure 72: (a) Sp′(2n) gauge theory coupled to fundamental hypermulti-
plets with SO(3) flavor symmetry. In the split version, the hypermultiplets
come from both the two half D5-branes and the boundary. (b) The S-dual
configuration.

Finally, the same brane configuration for an Sp′(2n) gauge group rep-
resents an Sp′(2n) gauge theory coupled to fundamental hypermultiplets
with an SO(3) flavor symmetry at the boundary, because of the extra
O(1) × Sp′(2) bifundamental hypermultiplet at the location of the NS5-
brane. The split brane configuration and the S-dual brane configuration
are shown in figure 72. The dual Sp′(2n) gauge theory is broken to Sp(2)
by a Nahm pole of dimension 2n − 2 and coupled to an SO(2) gauge theory
with Sp(2) flavor symmetry group, which is nothing else but T (SU(2)).

7.4 O3-planes with O5-planes

Now we will study orthosymplectic gauge groups realized by the combination
of an O3-plane and an O5-plane. O5-planes were described in Section 6,
where we also studied an I4(−1)FL orbifold fiveplane. So in toto we have
three objects: the O3-plane with reflection of the coordinates 456789, the
O5-plane with reflection of coordinates 3789, and the orbifold fiveplane with
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reflection of 3456. We will now study models in which all three of these
objects are present. In fact, as soon as one has any two of them, the third
arrives for free, since the product of any two of these reflection symmetries
is the third.

To some extent, we can S-dualize the product of these objects if we know
how to S-dualize them separately, since we can go to a region in spacetime
in which only one of the reflection symmetries has a fixed point. Though
O5+ does not have a useful S-dual, there is a useful duality [42,43] involving
O5−. The following two objects are S-dual: (i) the combination of O5− with
a D5-brane and (ii) the orbifold fiveplane.

Now suppose that objects (i) and (ii) are both present. This gives a con-
figuration that is invariant under S-duality at least away from the locus
where the two objects meet. That locus, which is where �x and �y vanish,
will be the locus of an O3-plane. The O5− creates orthogonal gauge sym-
metry for D5-branes, so D3-branes intersecting it should have symplectic
gauge symmetry. Hence the O3-plane is of symplectic type. For the overall
configuration to be S-dual, the gauge group must be Sp′(2n) and so the

O3-plane is of type Õ3+. We therefore propose that the combination of
the following objects is S-dual: an O5−-plane together with a D5-brane; a

orbifold fiveplane; and an Õ3+-plane.

This statement implies the S-duality of a certain field theory boundary
condition. This is a boundary condition in Sp′(2n) gauge theory in which
Sp′(2n) couples to a fundamental hypermultiplet and is broken at the bound-
ary to Sp(n) × Sp(n). Of course, n must be even.

Once we understand S-duality for this example, we can deduce how
S-duality must act for a very large class of additional examples. We will give
an interesting and illustrative example, using the knowledge gained in Sec-
tion 5.4. We add one more half D5-brane to the system, so that it represents
a boundary condition for an Sp(2n) gauge theory, broken to Sp(n) × Sp(n),
with each factor coupled to a hypermultiplet with SO(2) flavor symmetry.
The global symmetry of the Higgs branch is therefore SO(2) × SO(2).

The brane construction and its S-dual are depicted in figures 73(a),(b).
The S-dual boundary condition for the SO(2n + 1) gauge theory involves
coupling with the product of two copies of a certain boundary theory. That
theory is the IR limit of Sp(n) gauge theory coupled to hypermultiplets with
SO(2n + 2) flavor symmetry, as depicted in figure 73(c). These balanced
theories each have an SO(2) symmetry of the Coulomb branch, matching
the SO(2) × SO(2) flavor symmetry of the original boundary condition. We
can reproduce the mirror of this theory through T (Sp(2n)), as usual. The
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Figure 73: (a) A configuration involving a combination of O3 and O5 ori-
entifold planes and an orbifold plane, together with two half D5-branes.
(The circle containing the symbol O represents the orbifold plane.) (b) S-
duality converts the rightmost half D5-brane to a half NS5-brane, while, as
explained in the text, the rest of the configuration is self-dual. (c) The cor-
responding boundary CFT. (d) The mirror of the same CFT, built through
the use of T (Sp(2n)).

resulting composite gauge theory is depicted in figure 73(d): it is a balanced
orthosymplectic quiver with the shape of a Dn Dynkin diagram, and its
Coulomb branch has SO(2n + 2) × SO(2n + 2) symmetry, as desired.

Our starting point has been a self-dual configuration that describes Sp′(2n)
broken at the boundary to Sp(n) × Sp(n) with a boundary hypermultiplet.
Can we find the S-dual with the hypermultiplet removed? This question
is superficially similar to the one treated in Section 6.4. One could try to
imitate the approach used there by adding an extra half D5-brane, as we
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Figure 74: A bad quiver resulting from application of the T (Sp(2n)) recipe.

have done in, figure 72(a), and then turning on a mass parameter to remove
the boundary hypermultiplets (which means, in terms of branes, that the
two half D5-branes recombine into a full D5-brane which is then displaced
to large �y). Unfortunately, that mass parameter is dual to the “hidden” FI
parameter in figure 73(c), which corresponds to the SO(2) symmetry of the
Coulomb branch. That deformation is difficult to analyze, so we will not
follow this path.

Alternatively, we can use the standard S-duality prescription involving
T (Sp(2n)). This gives rise to the bad quiver in figure 74, indicating that in
the desired dual boundary condition, the SO(2n + 1) dual gauge symmetry
is broken.

We will just conjecture an answer based on the analogy with the similar
boundary conditions for the unitary case: a Nahm pole related to the decom-
position 2n + 1 = 2 + 2 + · · · + 2 + 1 together with a gauging of the “level
two” subgroup Sp(n)2 which commutes with the Nahm pole. We can extend
this conjecture to a boundary condition breaking Sp(p + q) to Sp(p) × Sp(q)
at the boundary (p > q): the dual has a Nahm pole related to the decom-
position 2n + 1 = 2 + 2 + · · · + 2 + (p − q) together with a gauging of the
“level two” subgroup Sp(q)2 which commutes with the Nahm pole. This
statement, which we suspect can be justified by adapting the arguments of
Section 6.5, is related to the case CII in Table 1 of [41]. The case CI in that
table is a case in which the T (G) prescription leads to a good quiver, so there
is full gauge symmetry at the boundary; the split case of DI/DII is similar.

8 S-duality and theta-angle

It is natural to wonder if our construction of S-dual pairs of boundary con-
ditions extends to an action of25 SL(2, Z) on half-BPS boundary conditions
corresponding to the full duality group of N = 4 SYM. In this section, we
will argue that the answer is positive, and define a pair of abstract transfor-
mations S and T which generate the duality group.

25When the gauge group is G2 or F4, the appropriate duality group is not actually
SL(2, Z), but a group generated by T : τ → τ + 1, S : τ → −1/ngτ , where ng is 2 for G2

and 3 for F4, as shown in [46]. For simplicity, we will refer to the duality group as SL(2, Z).
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Before trying to do this, we should explain what exactly the statement is
supposed to mean. Let us first review the case that we have focused on so far:
τ is imaginary and we want to know how a boundary condition transforms
under S : τ → −1/τ . We start with a boundary condition in weakly coupled
G gauge theory, and S maps us to an equivalent configuration in strongly
coupled G∨ gauge theory. This is not really illuminating, however. What
we really mean by the dual boundary condition is a boundary condition in
weakly coupled G∨ gauge theory. To find it, after acting with S, we have
to continue the G∨ boundary condition from strong coupling back to weak
coupling. This makes sense because all boundary conditions that we have
studied in this paper can be defined (at θ = 0) for any value of the gauge
coupling g. The ability to continue a boundary condition in g is built into
what we mean in studying the action of S on boundary conditions.

This has an analog when we include θ and consider a more general duality
transformation γ : τ → (aτ + b)/(cτ + d). We start at Im τ ≫ 1 and, say,
Re τ = 0. After acting with γ, we land in the strongly coupled region,
generically with a different value of θ = 2π Re τ . Then we have to continue
back to the starting point. For this, we have to restrict ourselves to boundary
conditions that can be varied with both Im τ and Re τ in a natural way.

Another way to describe the situation is this. If one is given a boundary
condition that can be naturally continued as τ varies in the upper half-plane,
then one can approach any cusp on the real τ axis and ask what the boundary
condition looks like in that duality frame. So under these conditions it makes
sense to ask how SL(2, Z) acts on a boundary condition. If instead one is
given a boundary condition that is only defined for imaginary τ , then it only
makes sense to ask what happens under τ → −1/τ .

While very general half-BPS boundary conditions allow a natural vari-
ation of the gauge coupling g2 = 4π/Im τ , only very special ones admit a
similar variation of θ. For example, consider a boundary condition with full
G gauge symmetry coupled to a boundary SCFT B with N = 4 supersym-
metry. We suppose that G acts on the Higgs branch of B. A generalization
of such a boundary condition, preserving its full supersymmetry, is possi-
ble [1] precisely if the moment map �μ satisfies the so-called fundamental
identity: the complex moment map μC associated with any choice of an
N = 2 subalgebra must obey26

Tr μ2
C = constant. (8.1)

26See equation (3.57) of [2] for the fact that there can be a constant on the right-hand
side of the fundamental identity.
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The same condition allows coupling of B to a three-dimensional gauge theory
with Chern–Simons action.

Similarly the Coulomb branch of an N = 4 theory can be coupled to bulk
gauge fields if the twisted moment map obeys the fundamental identity. A
perhaps surprising generalization [47] is that if we are given a pair of theories,
one with a G-action on the Higgs branch and one with a G-action on the
Coulomb branch, both satisfying the fundamental identity, their product
can be coupled to a G Chern–Simons gauge theory preserving the full N = 4
supersymmetry. By contrast, if both theories have G action on the same
branch, such a coupling is generally not possible, as the fundamental identity
is not additive in μ.

A wide class of G-invariant N = 4 SCFTs that obey the fundamental
identity has appeared in this paper. These are the theories Tρ∨(G) for any
G and ρ∨. The Higgs branch of such a theory is always a union of nilpotent
orbits. The complex moment map μC takes values in those orbits; hence its
quadratic Casimir vanishes, and the fundamental identity is obeyed, with
the constant being zero. The examples given in [2] are special cases of these.
If one makes an FI deformation of Tρ∨(G), smoothing the singularities and
preserving the G symmetry, the nilpotent orbits are deformed to semisimple
ones, and the (8.1) remains valid, now with a possibly non-zero constant.

A more obvious example of a boundary condition that can be naturally
continued for all τ is Dirichlet modified by a Nahm pole. With such a
boundary condition, the topological term (θ/8π2)

∫
Tr F ∧ F can be added

to the action, preserving all supersymmetry. This gives a natural way to
vary θ. So such boundary conditions should lie on an SL(2, Z) orbit. Not
coincidentally, the duality transformation S : τ → −1/τ converts Dirichlet
with a pole of type ρ∨ to a boundary condition B associated with the theory
Tρ∨(G). Since this theory obeys the fundamental identity, the boundary
condition B can again be contained in an SL(2, Z) orbit. Orbits of this
type are the only SL(2, Z) orbits of half-BPS boundary conditions that we
know about.

8.1 Definition of S and T

For simplicity, we will describe the action of SL(2, Z) in terms of a transfor-
mation on the three-dimensional SCFT B that lives at the boundary. When
the dual does not have full gauge symmetry but contains a Nahm pole or
a gauge group reduction, one must adapt the following procedure along the
lines of Section 4.3.1.
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When we say that B is a theory with G symmetry, what we mean,
to be more exact, is that we are given a precise recipe to couple B to a
background N = 4 supermultiplet with gauge group G. Assuming the fun-
damental identity is obeyed, such a coupling can include a Chern–Simons
coupling. We define the T operation as a unit shift of the Chern–Simons
coefficient.

To define an S operation, we need to refine what we mean by saying that
T (G) has G × G∨ symmetry. Again, we need to specify a standard coupling
of T (G) to background G × G∨ vector multiplets. We specify this coupling
by asking that it should be parity-symmetric. (This excludes the possibility
of adding N = 4 Chern–Simons couplings, which otherwise are possible since
T (G) obeys the fundamental identity.)

We call the G symmetry of T (G) a direct action, and the G∨ symmetry a
twisted action. The terminology is motivated by the idea that G acts on the
Higgs branch, which is parameterized by hypermultiplets, while G∨ acts on
the Coulomb branch, which is parameterized by twisted hypermultiplets.

Now we are in position to define the S action: a theory B with a direct
action of G is mapped by S to a composite theory T (G∨) ×G B with a direct
G∨ action. Here we define T (G∨) ×G B as the result of gauging the product
of the twisted G action on T (G∨) and the direct G action on B. In general,
there will be a Chern–Simons action for G implicit in the coupling to B;
otherwise we add a supersymmetric Yang–Mills coupling and then flow to
the infrared. This S operation was essentially defined in Section 4.3; in
the analysis of figure 52, we argued that it satisfies S2 = 1. We now plan
to show27 that (ST )3 is also 1, so that the two transformations generate
an SL(2, Z) duality group. (For G = U(1), where everything is much more
elementary, the fact that (ST )3 = 1 can be shown by a direct path integral
computation [22].)

We would like to mimic the S2 = 1 proof, which used the Janus inter-
pretation of S. Unfortunately the N = 4 Janus configurations are relatively
“rigid” (only certain paths in the upper half plane are allowed), so that
different N = 4 Janus walls cannot be concatenated in a fashion which pre-
serves N = 4 supersymmetry. On the other hand, it is possible to relax this
constraint at the price of reducing supersymmetry from N = 4 to N = 3.
Indeed, there is a relatively straightforward description of an N = 3 Janus
configuration which allows for a generic y-dependence of τ . We start with

27As mentioned in footnote 25, for gauge group G2 or F4, S acts differently on the
upper half plane. Consequently, the appropriate relation is not (ST )3 = 1. The argument
that follows really shows that any word in S and T that acts trivially on the upper half
plane acts trivially on the theory; in this form, it applies also to G2 and F4.
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the fact [4, 48–50] that for any group Ĝ and hypermultiplet representation
R there is an N = 3 action with a gauge coupling and a Chern–Simons
coupling. Both of these couplings depend on choices of invariant quadratic
forms on the Lie algebra, of which the first should be positive definite. We

take Ĝ to be the infinite dimensional group of G-valued functions g(y) of
the real variable y, and we take R to be the twisted version of the adjoint
representation described in Section 2.3.1 of [1]. We pick quadratic forms on
the Lie algebra that depend on arbitrary functions of y, as at the end of
section 2.3.1 in that reference. The result is an N = 3 Janus configuration
with an arbitrary τ(y).

We can represent the S operation by a Janus domain wall which interpo-
lates from τ to −1/τ . Similarly T is a Janus wall which interpolates between
τ and τ + 1. So (ST )3 comes from a succession of six Janus domain walls, at
the end of which we return to the initial value of the coupling parameter τ .
Each of the six domain walls preserves N = 4 supersymmetry, but the com-
bination has only N = 3. As we flow to the infrared, the details of the path
are forgotten, and we only remember the initial and final points of the path.
Since these coincide, the infrared limit is a trivial domain wall, confirming
that (ST )3 = 1. Notice that a similar temporary N = 3 deformation which
flows to a fixed point with enhanced supersymmetry has been used in [51].

8.2 Effective action for interaction with a (p, q) fivebrane

A long standing puzzle in string theory has been to describe the intersection
between n D3-branes and a (p, q) fivebrane. As an illustration of our con-
struction, we will use it to resolve this puzzle. We start from a configuration
that is already understood, n D3-branes intersecting a single NS5-brane,
and apply a general SL(2, Z) transformation. To put this in our framework,
we use the folding trick to describe this intersection as a boundary condition
for U(n) × U(n) gauge theory.

An important fact is that the folding trick reverses orientation, so it maps
T to T−1 while preserving S. The initial boundary condition consists of a
parity-invariant coupling to a bifundamental hypermultiplet of U(n) × U(n).
The action of T k gives Chern–Simons coefficients (k,−k) for U(n) × U(n).
A single bifundamental hypermultiplet with these Chern–Simons coefficients
gives a basic solution of the fundamental identity [2]. This theory, which was
described in detail in the reference, describes the intersection of n D3-branes
with a (1, k) fivebrane.

An application of S maps this theory to the “quiver” in figure 75(a), which
therefore describes the intersection of n D3-branes and one (k, 1) fivebrane.
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Figure 75: Schematic representations of “quivers” in which the hexagons
represent Chern–Simons gauge theories, with levels indicated by subscripts;
the central edges represent ordinary bifundamental hypermultiplets, while
other edges represent couplings to T (G) or T (G∨), as labeled; with lev-
els indicated by subscripts; and the squares indicate the remaining flavor
symmetries.

A hexagon in the figure represents a U(n) gauge group with the Chern–
Simons coefficient indicated by the subscript. Repeated action of T and S
generates longer “quivers” of this type. For example, the result of ST rST k

is represented in figure 75(b).

Continuing in this way, we get a “quiver” describing the interaction of
n D3-branes with a (p, q) five-brane whenever p and q are relatively prime.
Even if p and q are not relatively prime, but have greatest common divisor
k > 1, we can make the same type of construction starting with k NS5-
branes. We simply begin with the conventional linear quiver of figure 40(e),
which describes the intersection of n D3-branes with a chain of k NS five-
branes, and then apply the above operations.

We can generalize this slightly to the case that the numbers of D3-branes
on the two sides of the (p, q) fivebranes are different. A special case is that
there are D3-branes on only one side, leading to a boundary condition in
U(n) gauge theory. A boundary condition involving a chain of NS5-branes
with varying linking numbers leads to the SL(2, Z) orbit containing the
theories Tρ∨(SU(n)).

8.3 (p, q) Fivebranes and fractional Chern–Simons couplings

We will conclude with an analysis of a single D3-brane ending on a (p, q)
fivebrane. (Supersymmetry will play no important role and is omitted.) We
begin with the case of a (1, 0) fivebrane. The boundary theory is trivial;
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that is, the U(1) gauge theory of the D3-brane obeys Neumann boundary
conditions, coupled to nothing else. We regard this trivial boundary theory
as a theory with U(1) symmetry by introducing a background U(1) gauge
field B whose couplings are zero. Then we act with T k, after which the
action for B is a level k Chern–Simons action k

∫
B ∧ dB/4π. In view of the

description of T (U(1)) in Section 4.4, acting with S means that we add a
second U(1) gauge field A with coupling

∫
A ∧ dB/2π. At this point, then,

the boundary action is

1

2π

∫

∂M
A ∧ dB +

k

4π

∫

∂M
B ∧ dB. (8.2)

This is the boundary action for a single D3-brane ending on a (k, 1) fivebrane.
In that application, B is defined only on the boundary, but A is defined in
bulk (and has a conventional bulk kinetic energy).

A somewhat inaccurate procedure that is frequently followed at this stage
is to treat B as a linear field, ignoring the fact that it may have quantized
Dirac fluxes. In this approximation, one can perform a Gaussian integral
over B, leading to a boundary Chern–Simons coupling for A that is not
properly quantized:

−
1

4πk

∫

∂M
A ∧ dA. (8.3)

This is not really the right answer, because in deriving it one has omitted
the sum over fluxes of B. Still, this computation sheds light on the sense
in which one might claim [52] that ending a D3-brane on a (k, 1) fivebrane
induces a Chern–Simons coupling −1/k.

An action much like (8.2) is often studied in relation to the fractional
quantum Hall effect. (For example, see equation (2.11) in [53].) In that con-
text, A is the ordinary electromagnetic vector potential, and B is an effec-
tive U(1) gauge field induced by strong coupling effects in a two-dimensional
material. The couplings (8.2) in that context are supported on a defect in
spacetime — the world-volume of the material — rather than on a bound-
ary. In that context, the effective Chern–Simons coefficient for A is the
quantum Hall conductivity. This conductivity is unaffected by the sum over
fluxes of B, so the computation leading to (8.3) is a valid way to explain the
fractional quantum Hall effect.

On the other hand, we will get into trouble if we take (8.3) literally.
For example, consider a D3-brane suspended between a (1, 0) fivebrane,
which generates Neumann boundary conditions, and a (1, k) fivebrane. (The
configuration is not supersymmetric, but that does not affect the point we
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are about to make.) The effective three-dimensional physics is given by
the action (8.2), now understood in purely three-dimensional terms. This
theory is completely consistent, but if we naively treat B as a Gaussian field
and integrate it out, we will arrive at the theory (8.3) which is inconsistent,
because the Chern–Simons coefficient is not properly quantized.
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