
Wireless Pers Commun (2010) 53:529–553
DOI 10.1007/s11277-009-9701-8

S/MIMO MC-CDMA Heuristic Multiuser Detectors
Based on Single-Objective Optimization

Taufik Abrão · Leonardo D. de Oliveira ·
Fernando Ciriaco · Bruno A. Angélico ·
Paul Jean E. Jeszensky · Fernando Jose Casadevall Palacio

Published online: 15 April 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract This paper analyzes the complexity-performance trade-off of several heuristic
near-optimum multiuser detection (MuD) approaches applied to the uplink of synchronous
single/multiple-input multiple-output multicarrier code division multiple access (S/MIMO
MC-CDMA) systems. Genetic algorithm (GA), short term tabu search (STTS) and reac-
tive tabu search (RTS), simulated annealing (SA), particle swarm optimization (PSO), and
1-opt local search (1-LS) heuristic multiuser detection algorithms (Heur-MuDs) are analyzed
in details, using a single-objective antenna-diversity-aided optimization approach. Monte-
Carlo simulations show that, after convergence, the performances reached by all near-
optimum Heur-MuDs are similar. However, the computational complexities may differ
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substantially, depending on the system operation conditions. Their complexities are care-
fully analyzed in order to obtain a general complexity-performance framework comparison
and to show that unitary Hamming distance search MuD (uH-ds) approaches (1-LS, SA, RTS
and STTS) reach the best convergence rates, and among them, the 1-LS-MuD provides the
best trade-off between implementation complexity and bit error rate (BER) performance.

Keywords MC-CDMA · S/MIMO ·Multiuser detection · Heuristic methods ·
Tabu search · Genetic algorithm · Particle swarm optimization · Simulated annealing ·
Local search · Single-objective optimization · Computational complexity

1 Introduction

Multiuser detection (MuD) is a well known alternative to mitigate the multiple access interfer-
ence (MAI) in a code division multiple access (CDMA) system [25,33]. The best performance
is acquired by the optimum multiuser detection (OMuD), based on the log-likelihood function
(LLF) [33]. However, this is achieved at the cost of huge computational complexity, which
increases exponentially with the number of users. In the last decade, a variety of multiuser
detectors with low complexity and sub-optimum performance were proposed, such as linear
detectors [33], subtractive interference canceling [25], semidefinite programming approach
by using interior-point methods [22,24,31,34], sphere decoder [14] and heuristic methods
[7,8,21,27,28]. The last three methods have been used for solving different detection models
and obtaining near-maximum likelihood (near-ML) performance at cost of polynomial com-
putational complexity, except for the sphere decoder algorithm whose expected complexity
increases exponentially according to the number of users for large size problems [14].

Multicarrier CDMA emerged from the combination of direct sequence CDMA (DS-
CDMA) and orthogonal frequency division multiplexing (OFDM) technologies [13]. While in
DS-CDMA the spreading spectrum takes place in the time domain, in the classic
MC-CDMA, the spreading is done in the frequency domain. Hence, the detector has the
capacity to achieve frequency diversity at the cost of a reduced spreading factor. A modified
MC-CDMA system that employs both time and frequency spreading is proposed in [35].

Multiuser reception under additive white Gaussian noise (AWGN) and/or selective fre-
quency single-input single-output (SISO) channels using local search, particle swarm opti-
mization and simulated annealing based detectors has been studied earlier [16,26,27,38] and
shown to have excellent near-optimum performance at low to moderate complexity. Recently,
heuristic algorithms have been applied to symbol detection in non-spreading multiple-input
multiple-output systems [4,24]. PSO heuristic method has been applied to non-spreading
MIMO multiuser detection on 16- and 64-QAM modulation [19,37]. On the other hand,
there are few works applying heuristic sub-optimal multiuser detection approaches to MIMO
MC-CDMA systems. In [32], a large S/MIMO MC-CDMA system 1 with sub-optimal near-
exponential diversity performance and low-complexity, based on a kind of directional search,
was proposed. Essentially, the algorithm searches out a sequence of bit vectors on a mono-
tonic likelihood ascent, and converges to a fixed point, within a finite number of steps [32].
A survey on MIMO OFDM systems, focused on multiuser detection and estimation heuristics
approaches, is provided in [15].

This work aims to evaluate the performance of several heuristic multiuser detectors for syn-
chronous S/MIMO MC-CDMA systems, taking into account their computational complexity.

1 Number of transmit and receive antennas of the order of tens to hundreds.
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In particular, GA, STTS, RTS, SA, PSO and 1-LS algorithms are considered in a single-
objective antenna-diversity-aided optimization. In this sense, the contributions of this paper
are two-fold: (a) provide a general framework analysis for heuristic multiuser detectors
approaches suitable for S/MIMO MC-CDMA systems, since there are no comparative stud-
ies available in the literature; (b) offer evidences for the feasibility of low-complexity uH-ds
MuD approaches, specially for the 1-LS multiuser detector applied to MC-CDMA systems
with low order modulation and flat fading S/MIMO channels.

The paper is organized as follows. The system model and single-objective optimiza-
tion approach are described in Sect. 2. A detailed description of heuristic assisted MuD for
S/MIMO MC-CDMA system, addressing input parameters choices and pseudo-codes for
the implemented algorithms, is provided in Sect. 3. Section 4 analyzes the computational
complexity in terms of necessary floating point operations for each MuD to achieve conver-
gence and presents some complexity indexes. The numerical results, including performance
under channel estimation errors and complexity evaluation, are discussed in Sect. 5. The main
conclusions are pointed out in Sect. 6.

2 System Model

The MC-CDMA transmitter shown in Fig. 1 employs both time- and frequency-domain
spreading. The information bit of the kth user with duration Tb is spread in M parallel
subcarriers. On each subcarrier, the resultant signal is time-domain spread by a sequence
ck,m(t), m = 0, . . . , M − 1, with N chips of Tc duration, such that N = Tb/Tc. The kth

Fig. 1 Equivalent S/MIMO MC-CDMA transmitter scheme
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user’s transmitted signal has the form

sk(t) =
√

2Ebk

M

∞∑
i=−∞

M−1∑
m=0

ck,m(t)b(i)
k ejωm t , (1)

where Ebk is the kth signal energy per bit and b(i)
k ∈ [−1, 1] is the i th transmitted bit related

to the kth user. The spreading sequence signed to the mth subcarrier of the kth user can be
expressed by

ck,m(t) =
N−1∑
n=0

c(n)
k,m p (t − nTc), (2)

with c(n)
k,m ∈ [−1, 1], and p(t) being a rectangular pulse shape. Once the signature waveform

ck,m(t) is used to spread the data bits to N chips in the time-domain and to map them into
a total of M subcarriers in the frequency-domain for all K users, then the total processing
gain is NM. Additionally, it is assumed that the signature waveforms have normalized energy,∫ Tb

0 c2
k,m(t)dt = 1,∀k, m.

The synchronous MC-CDMA system has K mobile users equipped with single-antenna
terminals and a base station with Q receive antennas, characterizing a SIMO channel.
Equivalently, the model could describe a MIMO MC-CDMA communication system for
a single-user equipped with K transmit antennas and Q receive antennas. Model extension
for asynchronous MC-CDMA systems is straightforward and can be found in [39].

In antenna-diversity-aided systems, the antennas are assumed to be sufficiently separated
such that the received signals at each element are faded independently, resulting in an indepen-
dent LLF for each antenna. Hence, this model assumes an equivalent independent Rayleigh
flat channel on each subcarrier over all Q receive antennas. For the kth user, the channel
impulse response on the mth subcarrier of the qth receive antenna is given by

h(i)
q,k,m = β

(i)
q,k,m ejϕ

(i)
q,k,m , (3)

where the amplitude β
(i)
q,k,m is a Rayleigh distributed random variable and the phase ϕ

(i)
q,k,m

is uniformly distributed in the [0, 2π) interval, assumed to be constants during the ith infor-
mation bit. The signal received on the qth receive antenna, mth subcarrier, from all K users,
is given by

rq,m(t) =
∞∑

i=−∞

K∑
k=1

√
2Ebk

M
b(i)

k ck,m(t − iTb) β
(i)
q,k,m e

j
(
ωm t+ϕ

(i)
q,k,m

)
+ η(t), (4)

where η(t) is the AWGN term associated to the mth subcarrier bandwidth of qth antenna and
with bilateral power spectral density given by N0/2. For simplicity, from now on, the index
i will be dropped.

The receiver structure is shown in Fig. 2. For each receive antenna of each user, the sig-
nal is demodulated in all M subcarriers and passed through a matched filter bank (MFB),
generating decision variables. The resulting signal is submitted to a heuristic-assisted MuD
described in Sect. 3. Notice that the channel state information (CSI) has to be estimated at
the receiver side by either training or some blind method.

The equivalent baseband representation of the received signal on the mth subcarrier of the
qth antenna, rq,m(t), can be expressed in matrix notation

rq,m(t) = CmWq,mb+ nq,m, (5)
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Fig. 2 MC-CDMA receiver structure considering Q receive antennas

with Cm = [c1,m . . . ck,m . . . cK ,m], ck,m =
[
c(0)

k,m . . . c(N−1)
k,m

]�
, Wq,m = diag

[
A1hq,1,m

. . . Akhq,k,m . . . , AK hq,K ,m
]
, Ak =

√
Ebk
M , b = [b1 . . . bk . . . bK ]�, nq,m being the N-

sampled AWGN, and (·)� representing the transpose operator. A mathematical expression
of the MFB output on the mth subcarrier, qth antenna, without phase compensation, can be
represented in the vector notation

zq,m =
[
zq,1,m . . . zq,k,m . . . zq,K ,m

]� = RmWq,mb+ ñq,m, (6)

where ñq,m =
[
ñq,1,m . . . ñq,k,m . . . ñq,K ,m

]
is the filtered noise vector, and Rm is the

correlation matrix

Rm =

⎡
⎢⎢⎢⎢⎣

1 ρ
(m)
1,2 · · · ρ(m)

1,K

ρ
(m)
2,1 1 · · · ρ(m)

2,K
...

...
. . .

...

ρ
(m)
K ,1 ρ

(m)
K ,2 · · · 1

⎤
⎥⎥⎥⎥⎦ , (7)

with the auto (i = j) and cross-correlation (i �= j) of the spreading code being defined by
ρ

(m)
i, j =

∫ Tb
0 ci,m(t) · c j,m(t) dt . Considering the maximum ratio combining (MRC) rule, the

decision variables for each receive antenna are obtained from (6) as
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z̆q,m =
[
z̆q,1,m . . . z̆q,k,m . . . z̆q,K ,m

]� = Ŵ∗q,mRmWq,mb+ n̆q,m, (8)

where n̆q,m is the AWGN weighted by complex combination coefficients, Ŵq,m is an esti-
mate of Wq,m , and ∗ represents the conjugate complex operator. Hence, for the kth user bit
estimation, the conventional detector (CD) linearly combines decision variables over all M
subcarriers and Q receive antennas

bcMFB
k = sign

⎛
⎝ Q∑

q=1

M−1∑
m=0

� {
z̆q,k,m

}
⎞
⎠ , k = 1, . . . , K , (9)

with bcMFB = [
bcMFB

1 . . . bcMFB
K

]�
,�{·} representing the real operator, and

sign(x) =
{−1 if x < 0
+1 if x ≥ 0

.

In the presence of diversity, the multiuser detection optimization problem can be mod-
eled using a single or a multi-objective function. The present work considers only a linear
combination single-objective antenna-diversity-aided strategy (LC Q-LLFs).

At the receiver, the maximum likelihood detector jointly detects the data of all users and
minimizes the MAI effects. The optimum multiuser detection for S/MIMO MC-CDMA is
based on the maximum likelihood criterion [33], that chooses a candidate bi which maxi-
mizes

b̂opt = arg

{
max

bi∈AMK
[ f (bi )]

}
, (10)

where M is the message length and A is the dimension of symbol alphabet. In the optimiza-
tion context, bi is a vector-candidate and AMK is the feasible region in the decision space,
and the objective function, f (bi ), considers a combination rule over M subcarriers and Q
receive antenna signals, such that

f (bi ) = 1

Q

Q∑
q=1

M−1∑
m=0

	q,m(bi ) (11)

with [33]

	q,m(bi ) = 2�
{

b�i Ŵ∗q,mzq,m

}
− b�i Ŵq,mRq,mŴ∗q,mbi . (12)

The evaluation in (10) can either be extended along the whole message, where all symbols
of the transmitted vector for all K users are jointly detected (vector ML approach) or the deci-
sions can be taken considering the optimal single symbol detection of all K multiuser signals
(symbol ML approach). This work considers only the symbol ML detection approach, i.e,
M = 1.

Equation (10) is a combinatorial optimization problem, which requires an exhaustive
search in AMK possibilities of bi . Thus, in order to obtain a lower complexity detector,
this paper considers near-optimum detector schemes that search for a solution in a space S,
smaller than the entire space (S ⊂ AMK ), and have a high probability of finding the optimal
solution (i.e., correct symbol detection).
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3 Single-Objective Heur-MUD for S/MIMO MC-CDMA

In the LC Q-LLFs vector-candidate-selection strategy, the choice of vector-candidate(s) for
evolution is based on the highest fitness values of (11) and decisions are based on a sin-
gle-objective optimization procedure, i.e., by combining the subcarriers and antenna-specific
performance measures. Other works considering LC Q-LLFs evaluation in a multiuser detec-
tion problem include [4,36]. Different aspects of PSO have been analyzed previously in [3].
Descriptions, details, pseudo-codes, as well as performance-complexity analysis for all Heur-
MuDs, are provided in the sequel.

3.1 Genetic MuD for S/MIMO MC-CDMA

Genetic algorithms are based on selection mechanism and natural evolution, following Dar-
win’s theory of species’ evolution, which explains the history of life through the action of
physical processes and genetic operators in populations or species. These processes, known as
reproduction, perturbation, competition and selection, are responsible for an efficient search
for the global solution. In GA, each individual represents a vector-candidate.

In the GA applied to MuD, the population size is chosen in the initialization stage and
maintained constant in all generations (iterations). The aptitude is measured through the LC
Q-LLF (11) and it is directly responsible for death or life of individuals. The CD vector
estimates, bcMFB, is adopted as the initial GA’s individual. The other (P−1) members of the
first population are obtained from the initial individual with convenient perturbations [7].

The selection process chooses the best T individuals from the population P as parents for
the next generation. The mating pool size, T, has to be selected in the interval 2 ≤ T < P , in
order to accomplish a good convergence velocity and final solution [12,23]. For this MuD
problem, a fixed mating pool size T = max{2, P/10} is adopted.

For the genetic operators, this work adopts the uniform crossover [12,23] with crossover
probability pc, and mutation based on noise, such that

Zpm {bi } = sign
[
bi +N (0, σ 2)

]
, (13)

where Zpm is the mutation operator over bi individual and N (0, σ 2) represents a Gaussian
distribution with zero mean and standard deviation σ , which is related with the mutation
probability pm [2,7].

The GA-MuD uses a replacement strategy called global elitism [23], where only the best
P individuals from the joint population of parents and offspring are maintained for the next
generation. Finally, the optimization process finishes after a fixed number of generations (G).

Algorithm 1 in Appendix describes the implemented GA-MuD for S/MIMO MC-CDMA
system.

3.2 Simulated Annealing MuD for S/MIMO MC-CDMA

The simulated annealing algorithm concept stems from thermal annealing, which aims to
obtain perfect crystallizations by a sufficiently slow temperature reduction to give atoms the
time to attain the lowest energy state [6,20,30]. In order to escape from a local solution,
the SA algorithm uses an acceptance probability function, proportional to the temperature,
which allows it to accept a particular solution having a higher value (a state of higher energy).
This mechanism makes possible for the algorithm to leave a local solution area and to seek
for the global solution in other areas.
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Classically, the acceptance probability function is inspired by the Boltzman distribution

P(�E) = exp

(
�E

Tk

)
, (14)

where �E = f (b′i)− f(bi), b′i is a set of possible received bits that differs from bi in only
one bit, i.e., it is a unitary Hamming distance from bi , and Tk is the temperature in the current
iteration, defined by

Tk = δk T0, (15)

with T0 being the initial temperature of the process, and δ the cooling rate. The initial tem-
perature of the process has a high value, T0 >> 0, and this temperature is reduced after a
fixed number of iterations It. Hence, after each It iterations, k = k + 1. Equation (15) is not
the only way to describe the cooling process, but one of the usual methods found in literature
[6,17].

Besides the initial set of received bits bcMFB and the number of iterations G, the SA-MuD
must be initialized with three more parameters: T0, δ, and It, which were empirically adjusted
through a non-exhaustive attempt procedure [29].

Algorithm 2 in Appendix describes the implemented SA-MuD for S/MIMO MC-CDMA
system.

3.3 Short Term Tabu Search MuD for S/MIMO MC-CDMA

STTS is based on a deterministic operation way of memory. The memory is implemented
through recording displacement characteristics of the previously visited solutions [9–11,30],
avoiding cycling. This is described by the tabu list (TL), which is formed by the search’s
recent past, being called effect of short term memory. Those displacement characteristics are
forbidden on the tabu list for a certain number of iterations. This helps to avoid returns to
local solutions, promoting diversification in the search. The pseudo-code of the STTS-MuD
for S/MIMO MC-CDMA system is described in Appendix, Algorithm 3.

3.4 Reactive Tabu Search MuD for S/MIMO MC-CDMA

RTS combines the effect of short term with another memory effect to avoid returns to local
solution and to provide an efficient search. This effect is known as long term memory, which
alternates between intensification and diversification of the search [5,30].

The tabu list of the STTS algorithm is implemented using the effects of short term mem-
ory. However, it does not avoid returns to local solution. Additionally, the choice of a fixed
prohibition period (PT L ) appropriated for each problem, becomes a difficult task, because
a small period is insufficient to prevent returns to local solutions and an excessively long
period reduces the amount of possible displacements, resulting in an inefficient search.

RTS long-term memory is constituted by the effect of short term memory of the STTS
algorithm, but adapting its tabu list prohibition period during the search, assuming that this
period varies in each iteration (Pg

T L ). The prohibition period is initialized with a small value,
P0

T L , which is adapted when repetitions take place. If a repetition is found, diversification is
encouraged by incrementing Pg

T L .For that diversification not to assume very high values after

some iterations, the period Pg
T L is reduced when

∣∣ f (bi )− f g
best

∣∣ < x f g
best,∀ i , where f g

best
is the best solution (cost function or energy value) until the gth iteration, and 0 < x < 1.
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A robust value for the constant that controls the reduction of Pg
T L was experimentally obtained

in [30], and x = 0.3 was found for the AWGN MuD problem.
The RTS algorithm is very similar to STTS, except for the input parameters and the step

2.f, Algorithm 3 in Appendix, that has to be substituted by the steps given in Algorithm 4.

3.5 Local Search MuD for S/MIMO MC-CDMA

The local search is an optimization method that consists of searches in a previously estab-
lished neighborhood [1]. It is important to restrict the neighborhood and to choose a good
initial vector-candidate in order to find a valid solution with low complexity. In this work it
is adopted the 1-LS algorithm, which seeks the solution within a unitary Hamming distance
space from the vector-solution so far, i.e., the search is done over vectors that differ in only
one bit from the current solution. The combined matched filter outputs, bcMFB, is taken as
the best initial solution [26].

All the K vectors with unitary Hamming distance to the current best solution are evaluated
through the cost function computation, (11). The vector-candidate that results in the largest
value for the cost function is selected, and if it is better than the previous one, it is taken as
the new best solution and a new iteration is performed; otherwise, the search is concluded.
The stop criterion can be seen as the absence of improvement in one iteration.

Three advantages make the local search algorithm a natural choice for the MuD problem:
(a) absence of input parameters; (b) simple stop criterion, avoiding prior calculation; (c)
simple strategy.

The steps to implement the 1-LS-MuD for S/MIMO MC-CDMA system are described in
Appendix, Algorithm 5.

3.6 Particle Swarm Optimization MuD for S/MIMO MC-CDMA

The PSO principle is the movement of a group of particles, randomly distributed in the search
space, each one with its own position and velocity. The position of each particle is modified
by the application of velocity in order to reach a better performance [18]. In PSO, a particle
represents a vector-candidate, with a position at instant (iteration) t, given by

bi [t] = [bi1[t] . . . bik[t] . . . bi K [t]]� . (16)

The particle(s) selection for evolving is based on the highest fitness values in (11). The
interaction among particles is inserted in the calculation of the particles velocity. For the LC
Q-LLF selection strategy, the ith particle velocity, vi [t], is given by

vi [t+ 1] = ωvi [t] + φ1Ui1 [t]
(
bbest

i [t] − bi [t]
)+ φ2Ui2 [t]

(
bbest

g [t] − bi [t]
)

, (17)

where ω is the inertial weight; Ui1 [t] and Ui2 [t] are diagonal matrices with dimension K,
whose elements are random variables uniformly distributed in the [0, 1] interval, generated
for the ith particle at instant t; bbest

g [t] and bbest
i [t] are the best global position and the best

local positions found until the iteration t, respectively; φ1 and φ2 are the individual and global
acceleration coefficients, respectively. Typical values of these parameters are φ1 = 2 and
φ2 = 2 [18].

PSO adopts the selection of only one bbest
i [t] for each particle and only one bbest

g [t] for the
entire population, obtained through the linear combination signals over Q antennas.

For the MuD optimization problem with binary modulation, each element bik[t] in (17)
just assumes “0” or “1” values. Hence, a discrete mode for the position choice is carried out
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Table 1 Minimum bit change probability as a function of Vmax

Vmax 1 2 3 4 5

1− S(Vmax) 0.2690 0.1192 0.0474 0.0180 0.0067

inserting a probabilistic decision step based on threshold, depending on the velocity. Several
functions have this characteristic, such as the sigmoid function: S(vik[t]) = {1+ e−vik [t]}−1

where vik[t] is the kth element of the ith particle velocity. This function is limited in the
[0, 1] interval. Therefore, in this work, the selection of the future particle position is obtained
through the statement

if vik[t] < S(vik[t]),
bik[t+ 1] = 1,

otherwise,

bik[t+ 1] = 0, (18)

where vik[t] is a random variable with uniform distribution in the [0, 1] interval.
The population size is maintained constant in all iterations. In order to obtain further

diversification for the search universe, a factor (Vmax) is added to the PSO model, which is
responsible for limiting the velocity in the range [±Vmax], allowing the algorithm to escape
from a possible local solution. Some probabilities of bit change when the particle velocity
crosses the limits established by [±Vmax] are shown in Table 1.

After the search has finished (G iterations), the estimated vector is calculated as: b̂ =
bbest

g [G], which is associated with the particle position that maximizes (11).
Algorithm 6 in Appendix describes the implemented PSO-MuD for S/MIMO MC-CDMA

system.

4 Computational Complexity

Although the Heur-MuD schemes have similar performances, the number of operations var-
ies according to the strategy. This work takes into account the number of floating point
operations necessary for achieving convergence, defined here as computational complexity.
The considered operations are: multiplication, comparison and random number generation.
This analysis is limited by the fact that operations of distinct computational complexity
are considered as having the same cost. The complexity is expressed as a function of the
number of users (K), receivers (Q), subcarriers (M), iterations needed for convergence
(G ≤ G), Tabu prohibition period (PT L and

〈
Pm

T L

〉
), and population size (P). The total

number of operations C for all heuristic multiuser detectors and OMuD is summarized in
Table 2.

The cost function calculation in (11) is the most significant factor in determining the
complexity of the detectors. The terms Ŵq,mRq,mŴ∗q,m and Ŵ∗q,mzq,m are evaluated outside
the iterations loop and are constant during the detection search. The algorithms perform
4K 3 + K 2 operations on those two terms, which are calculated QM times. Inside each loop,
the number of operations needed for evaluating a vector-candidate through the cost function
becomes QM(K 2 + 2K ). Thus, for reference, the complexity to evaluate the cost function
once (one-cfc) is included in Table 2.
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Table 2 Computational
complexity C for the
Heur-MuDs

MUD Operations

OMuD 2K QM(K 2 + 2K )+ QM(4K 3 + K 2)

GA QM
[

K 2(4K + 1)+PK (G + 1)(K + 2)
]

+P [K (8.5G + 2)+ 4(G + 1)]− (K + 3P)

SA QM
[

K 3(G + 5)+ 2K 2(G + 1)
]
+ KG

(
4+ 7

K + M
G

)

STTS QM
[

K 3 (G + 5)+ 2K 2(G + 1)
]

+KG
(

5+ 2K + PT L + 9
K + M

G
)

RTS QM
[

K 3 (G + 5)+ 2K 2(G + 1)
]

+KG
(

5+ 2K + 〈
Pm

T L

〉+ 13
K + M

G
)

1-LS G[QM K (K 2 + 2K )+ 2K + 1] + QM(4K 3+2K 2+2K )

PSO G[QMP(K 2 + 2K )+ 9PK + 2P + 1]
+QM(4K 3 + K 2)+ (P − 1)K

one-cfc 2QM K (2K 2 + K + 1)

Essentially, the difference in terms of computational complexity among the Heur-MuDs
lies on the generation of the new vector-candidate populations for each search iteration.
Hence, for 1-LS, the cost function is evaluated K times in each iteration and there are
also G(K + 1) multiplications and G(K + 1) + 1 comparisons. For PSO, P cost func-
tions are performed in each iteration, and 3GPK + (P − 1)K random number generations,
G (3PK + 2P + 1) comparisons and G (3PK + 1) multiplications are required. In each SA
iteration, K cost functions are evaluated; there are also G(3K +1) multiplications, G(K +5)

comparisons and G random number generations. For GA, P cost functions are performed
in each iteration, and 3PG + P − 1 bit generations, T G selections, 3PG ordinations, PG
comparisons and PG changes of bits are required. For STTS, GK + 1 cost functions, GK
changes of bits, GK bit generations and 4GK + GK PT L comparisons are performed. Finally,
for RTS, GK +1 cost functions, GK changes of bits, and 4GK + GK

〈
Pm

T L

〉
comparisons are

performed, where
〈
Pm

T L

〉 = 1
G

∑G
g=1 Pg

T L .
In addition, the complexities of the Heur-MuDs are numerically evaluated in Sect. 5.3

considering two figures of merit, the complexity factor (cf) and the complexity reduction
(cr) indexes,

cfHeur = CHeur

one-cfc
and crHeur = CHeur

COMuD
, (19)

whereCHeur is the computational complexity needed for each Heur-MuD to converge,COMuD

is the complexity of the OMuD, and one-cfc is the computational complexity of one cost
function calculation, presented in Table 2.

5 Numerical Results and Discussion

The BER performance results are obtained as a function of the signal-to-noise ratio (SNR, or
equivalently Eb/N0), the iterations (generations) needed for convergence, and the number
of users (or system loading, L = K

N M ). A perfect power control is assumed, which means
that Ebk = Eb (Ak = A). The main system and channel parameters used in this section are
summarized in Table 3. This paper adopts random generated sequences of length 32. The
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Table 3 System, algorithm and
channel parameters

Parameter Adopted values

S/MIMO MC-CDMA System
# Rx antennas Q =1–3
Code sequences Random with length 32
Processing gain N = 8
Subcarriers M = 4
Bit period, Tb 300 µs
# mobile users K = 2; 5; 10; 15; 20; 25; 32
Received SNR Eb/N0 ∈ [0; 18] dB
All Heur-MuDs
# iterations G ∈ [3; 40], depending on (K , Q)

GA parameters
GA pop. size P = 30 vector-candidates
Mutation probability pm = 1/K
Crossover probability pc = 0.5
Mating pool size T = max{2, P/10}
SA parameters
# iterations @Tk I t = 2
Initial Temperature T0 = 0.3K
Cooling rate δ = 0.9
STTS parameters
Tabu list length PT L = 3
RTS parameters

Tabu list: initial & final length P0
T L = 1; Pg

T L = 3;
Reduction control x = 0.3
1-LS parameters: none
PSO parameters
Swarm pop. size P = 30 vector-candidates
Veloc. bound factor Vmax = 4
Inertial weight ω = 1
Acceleration coefficients φ1 = 2 (local); φ2 = 2 (global)
Rayleigh channel
Max. Doppler freq. fDpl = 100 Hz (slow channel)
Per subcarrier Flat-frequency
Channel state info. Perfectly known at Rx and with errors

single-user bound (SuB) is included in some performance plots. In all simulated systems,
the time processing gain is N = 8, and there are M = 4 subcarriers, i.e., the equivalent
processing gain is NM = 32.

It is assumed perfect CSI estimation in all numerical results, except in Sect. 5.2, where
channel estimation errors are modeled stochastically.

5.1 Convergence and BER Performance

First of all, it is important to highlight that the obtained Monte-Carlo simulation (MCS)
results indicate that SA, PSO, STTS, RTS, GA, and 1-LS MuDs reach a similar performance
after convergence, although with different computational complexity, as discussed in Sect. 4.
Then, assuming different number of receive antennas, the BER performance of these algo-
rithms, as a function of Eb/N0 ∈ [0; 18] dB, is represented in Fig. 3 by the label “Heur”,
while “CD” indicates conventional detector performance. For medium (Fig. 3a) and full sys-
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Fig. 3 BER performance of Heur-MuD as a function of Eb/N0 in dB. a K = 20, b K = 32

tem loading (L = 1) (Fig. 3b), the MC-CDMA system equipped with one of the Heur-MuDs
achieves a better BER performance than the CD. In both evaluated system loadings, it is
observed a BER floor for Eb/N0 > 12 dB and Q = 1. For L = 1, such a BER floor is
also noticed with Q = 2 antennas. Moreover, mainly for Eb/N0 > 9 dB, an increase in the
number of users from K = 20 to K = 32 causes a BER performance degradation.

The performance of Heur-MuDs as a function of K ∈ [2, 32], for Eb/N0 =3, 6 and 9 dB,
Q = 1 and 2 antennas, is shown in Fig. 4. In these SNR conditions, an increase in the system
loading causes a minor BER degradation. Such a degradation is more evident for Q = 1.
However, according to Fig. 3, for higher SNRs, it is expected a greater sensitivity regarding
the system loading conditions.

To corroborate the assertion that after convergence all Heur-MuDs reach a similar BER
performance, their convergence speed are selected and compared in Figs. 5 and 6, consider-
ing medium and full system loadings, perfect CSI estimation, and Eb/N0 =6 dB. For GA
and PSO, the population size is set to P = 30. Note that, an increase in the number of users
causes only a little BER degradation, but the convergence becomes slower, since the initial
solution (CD) is worst.2

It is worth noticing that, in all convergence figures, 1-LS, STTS, RTS and SA have the
same convergence speed, which is faster than GA and PSO.

2 With an increase in the system loading, the MAI effect is more evident, resulting in more bit errors to be
corrected and, consequently, a longer search.
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Fig. 4 BER performance of Heur-MuDs as a function of the number of users. a Q = 1 and b Q = 2 receive
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Fig. 5 Convergence performance of all Heur-MuDs with Eb/N0 = 6dB, K = 20, P = 30 (GA and PSO)
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5.2 BER Performance Under CSI Errors Estimate

In this subsection the impact of the channel estimation errors on the BER performance of the
Heur-MuDs is analyzed. These errors are modeled stochastically using a continuous uniform
distribution3 U [1± ε], centralized on the true coefficients values, resulting in

β̂q,k,m = U [
1± εβ

]× βq,k,m; ϕ̂q,k,m = U [
1± εϕ

]× ϕq,k,m, (20)

where εβ and εϕ are the maximum normalized amplitude and phase errors for the channel
coefficients, respectively.

Figure 7 shows the Heur-MuDs convergence for full system loading, considering CSI
estimation errors modeled as (20), with εβ = εϕ = 5% and 15%. Note from Fig. 7c that,
even for εβ = εϕ = 15%, the BER performance degradation is marginal when compared to
the perfect CSI estimation case.

5.3 Numerical Comparison of Computational Complexity

Figure 8 presents the PG product as an representative complexity measure to guarantee con-
vergence under distinct system loadings and number of receive antennas for all heuristic
multiuser detectors. Note that, while the product PG for the unitary Hamming distance local
search strategies shows a reduction trend when the number of receive antennas increases,
the PSO and GA complexities mostly increase with an increment in Q. In addition, all
Heur-MuD schemes exhibit an increment in the PG product when the system loading
increases. Indeed, these two behaviors can be observed in Figs. 5, 6, and 7.

3 As a result, the probability density function is given by f (x) =
{

1/2ε, (1− ε)c ≤ x ≤ (1+ ε)c
0, otherwise

,

where c is the true value of either the module β, or the phase ϕ.
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Fig. 7 Heur-MuDs convergence for K = 32 users, Eb/N0 = 6dB, P = 30 (GA and PSO), and a εβ =
εϕ = 0% (perfect CSI estimation), b εβ = εϕ = 5%, and c εβ = εϕ = 15%

Using the expressions presented in Table 2, Fig. 9 takes in perspective the complexity
figures of merit considering perfect CSI estimation and the conditions described in Table 4.
The cf factor decreases slightly with an increase in the number of antennas for all uH-ds
strategies, resulting in approximately twice the one-CFC, while for the PSO and GA, the cf
increases with Q. This trend indicates that PSO and GA algorithms may need some extra
adjustment over input parameters (see Table 3), when the number of receive antennas and/or
system loading change.

Besides, Figs. 9c and d show the complexity reduction (cr) index for K = 20 (System I)
and K = 32 (System II). All the six Heur-MuDs achieve considerable reductions on the com-
plexity when compared to the OMuD implementation (of the order of 104 and 107, for System
I and II, respectively). Among these heuristic approaches, the uH-ds strategies represent the
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Table 4 Number of iterations for
convergence (G) under different
conditions; P = 30 (GA and
PSO)

Q ∈ [1 2 3] Syst. I (20 us.) Syst. II (32 us.)

GuH−ds [5 4 3] [8 6 5]
GGA [10 12 14] [19 22 25]
GPSO [15 16 18] [27 31 30]
Obs Fig. 5 Fig. 6

best choice. Moreover, the 1-LS-MuD results in the best complexity-performance trade-off,
with further advantages of absence of input parameters and simple stop criterion.

6 Conclusions

This work took in perspective six near-optimum heuristic multiuser detectors suitable for syn-
chronous S/MIMO MC-CDMA systems. A single-objective antenna-diversity-aided strategy
was considered. Based on extensive Monte-Carlo simulation results, an accurate perfor-
mance-complexity trade-off analysis was carried out.

All the Heur-MuD approaches reached a similar BER performance with moderate com-
plexity costs, evidencing the potentiality of these techniques in multiple-access wireless
detection applications.

The complexities of uH-ds strategies are quite similar but substantially smaller than PSO
and GA approaches, resulting in a complexity reduction factor of at least two times. This
represents an implementation advantage of the unitary Hamming distance search strategies.

While under unitary Hamming distance search strategies the number of iterations for con-
vergence decreases with an increase in the number of receive antennas, it is interesting to
note the opposite tendency with the PSO and GA schemes.

Finally, results showed that 1-LS-MuD provides the best performance-complexity
trade-off among all the Heur-MuD schemes analyzed, with additional advantages regard-
ing the absence of input parameters and a simple stop criterion.
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Appendix

Pseudo-Codes

Algorithm 1 GA- MuD for S/MIMO MC- CDMA

Input: bcMFB,P, G, T, pm , pc; Output: b̂
begin
1. initialize first population (g = 0): B[0] = bcMFB ∪ B̃,

where B̃ contains (P − 1) individuals obtained from the initial
individual with mutation procedure;

2. calculate f (bi ), ∀ bi ∈ B using (11);
3. while g ≤ G

a. BS = S(B, T );
b. crossover: BX = Xpc {bi , bj}, ∀ bi , bj ∈ BS ∧ i �= j ;
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Algorithm 1 continued
c. mutation: BZ = Zpm {bX }, ∀ bX ∈ BX
d. calculate f (bZ ), ∀ bZ ∈ BZ using (11);
e. elitism: B = S(B ∪ BZ , P);
f. g = g + 1;

end
4. b̂ = b1, the best individual of B[G].
end
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bcMFB: Decisions over linear combination of the MFB outputs, given by (9).
P : Genetic population size;
G: Number of genetic generations
T: (mating pool size) number of the best individuals chosen from

the population P as the parents for the next generation;
pm : Mutation probability;
pc: Crossover probability;
S(X, Y ) : Selection operator with size Y (the best individuals) over

a individual’s population X;
Xpc {x, y}: Crossover operator over {x, y} individuals;
Zpm {x}: Mutation operator over x individual.

Algorithm 2 SA- MuD for S/MIMO MC- CDMA

Input: bcMFB, G, T0, δ, I t ; Output: b̂
begin
1. calculate E = f (bcMFB) using (11);

bbest = bcMFB ; b = bcMFB ; Ebest = E ; g = 1 and k = 1;
2. while g ≤ G

a. Bg =
{

b j ∈ {−1, 1}K
∣∣∣ ∥∥b j − b

∥∥
H = 1

}
for j = 1, ..., K ;

b. calculate Eg = f (b j ) ∀ b j ∈ Bg using (11);
c. evaluate the comparisons:

if �E = max
[
Eg

]− Ebest > 0,

Ebest = max
[
Eg

]
; bbest = b j for b j that max

[
Eg

]
;

E = max
[
Eg

]
; b = b j ;

end
if g = k.I t , k = k + 1;
end

d. calculate P (�E) using (14); evaluate the comparisons:
if �E = max

[
Eg

]− E ≥ 0,
E = max

[
Eg

]
; b = b j ;

else if �E = max
[
Eg

]− E < 0 and uS A < P (�E) ,
E = max

[
Eg

]
; b = b j ;

end
e. g = g + 1;

end
3. b̂ = bbest .
end
−−−−−−−−−−−−−−−−−−−−−−−−−−−
bcMFB: Decisions over linear combination of the MFB outputs, given by (9).
‖a‖H : Hamming norm of vector a is the number of values i for which ai �= 0.
uS A ∈ [0, 1]: Random number with uniform distribution.
G: Number of iterations.
T0: Initial temperature of the process.
δ: Cooling rate.
It: Fixed number of iterations needed for a temperature reduction.
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Algorithm 3 STTS- MuD for S/MIMO MC- CDMA

Input: bcMFB, G, PT L ; Output: b̂
begin
1. calculate E = f (bcMFB) using (11);

bbest = bcMFB ; b = bcMFB ; Ebest = E ; g = 1;
T abu0

List = �; Aspiration = 0 and Equal = 0;
2. while g ≤ G

a. Bg =
{

b j ∈ {−1, 1}K
∣∣∣ ∥∥b j − b

∥∥
H = 1

}
for j = 1, ..., K ;

b. calculate Eg = f (b j ) ∀ b j ∈ Bg using (11);
c. C j = b j ⊕ b for b j that max

[
Eg

]
;

d. evaluate the comparisons:

if T abug−1
List �= �,

while Aspiration = 0,

if C j ∈ T abug−1
List , Equal = 1;

else, Equal = 0;
end
if Equal �= 0,

if max
[
Eg

]
> Ebest , Aspiration = 1;

else, Aspiration = 0;
end

else, Aspiration = 1;
end

end
end
Aspiration = 0;
if max

[
Eg

]
> Ebest ,

bbest = b j and b = b j ;

Ebest = max
[
Eg

]
and E = max

[
Eg

]
;

Aspiration = 1;
else if max

[
Eg

]
> E ,

b = b j and E = max
[
Eg

]
;

end
e. Update the tabu list: T abug

List =
[
T abug−1

List , C j

]
;

f. if length
[
T abug

List

]
≥ PT L , (comparison)

T abug
List is emptied and Equal = 0;

end
g. g = g + 1;

end
3. b̂ = bbest .
end
−−−−−−−−−−−−−−−−−−−−−−−−−−−
bcMFB: Decisions over linear combination of the MFB outputs, given by (9).
‖a‖H : Hamming norm of vector a is the number of values i for which ai �= 0.
G: Number of iterations.
PT L : Fixed prohibition period.

Algorithm 4 RTS- MuD for S/MIMO MC- CDMA

Input: bcMFB, G, P0
T L , x ; Output: b̂

begin
.
.
.

2. while g ≤ G
.
.
.
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Algorithm 4 continued
f. evaluate the comparisons:

if Equal = 1,

Pg
T L = Pg−1

T L + 2;

if Pg
T L > K ,

Pg
T L = K ;

end
else if

∣∣∣E − Ebest
∣∣∣ < x Ebest ,

Pg
T L = Pg−1

T L − 2;

if Pg
T L ≤ 0,

Pg
T L = 1;

end
end
if length

[
T abug

List

]
≥ Pg

T L ,

T abug
List is emptied and Equal = 0;

end
.
.
.

end
−−−−−−−−−−−−−−−−−−−−−−−−−−−
bcMFB: Decisions over linear combination of the MFB outputs, given by (9).
G: Number of iterations.
P0

T L : Fixed prohibition period.

x: Constant that controls the reduction of the period P0
T L .

Algorithm 5 1- LS- MuD for S/MIMO MC- CDMA

Input: bcMFB; Output: b̂
begin
1. Initialize local search: g = 0,

bbest[1] = bcMFB, the best initial solution;
2. for g = 0, 1, . . .

a. generate all feasible unitary Hamming distance neighbors of bbest[g], named Bi [g];
b. calculate f (bi [g]), ∀bi [g] ∈ Bi [g], using (11);

c. if ∃ bi [g] such that
[

f (bi [g]) > f (bbest[g])
]
∧ [

f (bi [g]) > f (b j [g]), j �= i
]
,

bbest[g + 1] ← bi [g];
else go to step 3;
end

end
3. b̂ = bbest[g].
end
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bcMFB: Decisions over linear combination of the MFB outputs, given by (9).

Algorithm 6 PSO- MuD for S/MIMO MC- CDMA

Input: bcMFB, P , G, ω, φ1, φ2, Vmax; Output: b̂
begin
1. initialize first population: t = 0;

B[0] = bcMFB ∪ B̃, where B̃ contains (P − 1) particles randomly generated;
bbest

i [0] = bi [0] and bbest
g [0] = bcMFB;

vi [0] = 0: null initial velocity;
2. while t ≤ G

a. calculate f (bi [t]), ∀ bi [t] ∈ B[t], using (11);
b. update velocity vi [t], i = 1, . . . , P , through (17);
c. update best positions:
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Algorithm 6 continued
for i = 1, . . . , P

if f (bi [t]) > f (bbest
i [t]), bbest

i [t + 1] ← bi [t]
else bbest

i [t + 1] ← bbest
i [t]

end
if ∃ bi [t] such that

[
f (bi [t]) > f (bbest

g [t])
]
∧[

f (bi [t]) > f (b j [t]), j �= i
]
,

bbest
g [t + 1] ← bi [t]

else bbest
g [t + 1] ← bbest

g [t]
d. new swarm population B[t + 1], Eq. (18);
e. set t = t + 1.

end
3. b̂ = bbest

g [G].
end
−−−−−−−−−−−−−−−−−−−−−−−−−
bcMFB: Decisions over linear combination of the MFB outputs, given by (9).
P : Swarm population size.
G: Number of swarm iterations.
ω: Inertial weight.
φ1: Individual acceleration coefficient.
φ2: Global acceleration coefficient.
Vmax: Factor included for limiting the velocity.
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