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1 Introduction

The SPQR (Soccer Player Quadruped Robots, but also Senatus PopulusQue

Romanus) team was a newcomer of the Sony Legged League in RoboCup 2000.
The work started in April 2000, based on the previous experience gained in the
Middle Size League [3] and on the collaboration of Arti�cial Intelligence and
Robotics researchers of our Department. Due to the very short time to prepare
the team for the competition, we decided to focus on the previously developed
software architecture, based on the explicit representation of the knowledge of
the robotic agent [1, 2] and on the e�ective realization of some control primitives,
the kick in particular. Given the above constraints, the performance of the team
in Melbourne was very satisfactory. In fact, SPQR classi�ed fourth, winning
games with more experienced teams, playing very tightly with the 99 winners in
the semi-�nal, and generally showing a good level of play.

2 Team Development

Team Leader: Daniele Nardi (nardi@dis.uniroma1.it)
Team Members: Luigia Carlucci Aiello, Alessandro De Luca, Daniele Nardi?

(Professors); Claudio Castelpietra ?, Alice Guidotti ?, Massimiliano Salerno?,
Claudia Sanitati ? (students).

AÆliation: same as above
Country: Italy
Web page: http://www.dis.uniroma1.it/~ leggedro

3 Architecture

In order to integrate deliberation and reactivity [4], we decided to build for
our system a hybrid architecture with two layers [1]. In Figure 1 the functional
modules forming our architecture are shown. A Perception module is involved
in analyzing sensor data (especially from the camera and from the head and
leg sensors): it stores and updates the internal world model. A Deliberation
module receives the world model from Perception. It consists of a plan execution
monitor, which controls the plan of actions to be executed, and of a set of
primitive actions. These actions are then translated into commands either to our

? Attended to RoboCup 2000.
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Fig. 1. Architecture

Locomotion module or to the OPEN-Rmiddleware, OMoNet [5]. Locomotion is a
module enclosing a set of four objects, each of which implements a di�erent kick;
this module provides an interface to the physical functionalities of the robot: it
accepts abstract commands from the Deliberation module and translates them
into e�ective commands to the actuators. A further module, named Debugging,
is responsible for accepting debugging requests from the keyboard (through the
serial connection to the robot): it allows printing sensor data on a terminal or
storing images from the on-board camera in the memory stick.

The two-level layered architecture is based on a di�erent representation of
the information: there is a high-level symbolic representation, where knowing
the exact position of the objects on the �eld is not necessary, and a low-level
numerical representation, which instead is based upon the exact co-ordinates of
the various objects. In the Deliberation module, there are: high-level plans, where
the decisions on the actions to be executed are based on abstract conditions,
such as KnownBallPosition or NearBall ; primitive low-level atomic actions, that
allow for an immediate reaction to unexpected situations and a certain amount
of damping of the typical uncertainties of a dynamic environment.

4 Vision and Localization

Our vision system is based on AIBOs' hardware recognition and on a software
module developed to build colour tables. The technique we used is to select,
from a collection of pictures taken by the cameras of our robots, those areas
containing the objects of the desired colour. We then check the Y, U, V value of
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the pixels therein and set the extremes of the U and V ranges for each di�erent
value of Y, using an algorithm that aims at reducing, but cannot avoid, the
intersections between colour tables.

Our localization is currently based on the recognition of two landmarks: the
goals. This landmark recognition is done only when certain actions are being
executed. Thus, there is no continuous localization and, at present, the robot
does not determine its exact coordinates on the �eld. The objects' coordinates
(ball and goals) are relative to the robots.

5 Behaviors

A Plan Execution Monitor is in charge of the correct execution of the actions
composing the plans. In the monitor's implementation, a plan is stored as a
graph data structure. The monitor's task is that of visiting the graph, calling
and suspending the appropriate actions.

Each primitive implemented action is a C++ class derived from an abstract
base class, named pemAction2. All the implemented actions have then basically
the same structure. Each plan is an object of the pemPlan type, which is also
a class derived from pemAction. This strategy allows plans and actions to be
treated in the same manner, combining them in plans of higher hierarchical or-
der. This approach has the advantage of being modular, extensible, readable and
reusable. Moreover, as the plans are composed in growing hierarchical order, it
is possible to design them leaving aside the robot physical platform or the imple-
mentation of the lower plans. In other words, each level uses the functionalities
o�ered by the underlying levels, without caring about their implementation's
details.

Furthermore, a plan selector allows the monitor to choose the current plan
to be executed. In fact, besides the normal playing actions, the robot must deal
with a set of particular situations, such as the initial kick or rising from a fall.
These situations are managed by a set of speci�c plans, each of which has an
associated condition. The monitor's task is that of verifying these conditions and
of activating the higher priority plan whose activation condition is valid.

A library of boolean functions, based on the world model received from Per-
ception, represents the abstract conditions that allow the state transition or the
plan activation. These functions are based on the local co-ordinates of the ball
and of the goals, and on the reliability of this information. A hysteresis mecha-
nism allows the decisions to be stabilized [2].

We implemented more than thirty primitive actions: head, tail and leg move-
ments are treated in separate primitive actions. For instance, a primitive action
is in charge of all the head searching movement: the class constructor of this
action takes, as a parameter, the type of search that is needed and, on the basis
of this parameter the appropriate commands are send to the head. Another kind
of atomic action manages all the commands that can be sent to the tail. More
complex are the actions involved with the leg movements. They are based on

2 pem stands for "plan execution monitor".
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the local co-ordinates of the ball and goals. For instance, a GoToBall action
calculates the angle between the ball and the robot direction and, depending on
this angle, sends the appropriate movement commands to the robot: if the angle
is small the robot must move straight forward, otherwise it must go to the right
or to the left according to the angle's sign.

The primitive actions are combined together to form plans at di�erent levels
of abstraction. In a higher level plan, external conditions determine the plan to
be activated next. We have three main high level plans, distinguished according
to the roles of goalkeeper, defender (back) and forward.

Our robots have static co-ordination: this results from the di�erences between
the plans for the various roles. In particular, the goalkeeper remains in front of
its own goal and leaves it only if the ball is close enough, the defender tends
to return to a backward position, while the forward attacks over the whole
�eld. This strategy avoids interference among the robots and, most important,
the execution of the same action at the same time, which would generally be
counterproductive [2].

6 Action/Walking

We use the oMoNet service for walking, with a combination of default and fast
walk, and kicking actions made by us. We developed two main kind of kicking
actions: one using the front legs and the other using the head. In order to design
the leg kick, we analyzed the cinematic of the leg and tried to maximize the speed
in the motion direction. We then introduced this kicking action in a particular
phase of the walking movement and we overlapped the kicking command to the
walking command in order to make the action more e�ective through the help of
the main-body push. The head kick can be frontal or lateral. Both these actions
have been developed mainly by experimental tests.

7 Special Team Features and Conclusion

The main focus of our work has been the robots'architecture and the decision
making system. In addition, we have designed several e�ective kicking actions.

In the future we intend to develop a more systematic approach to localization,
to a robust vision system and to robot coordination.
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