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Abstract—Advances in information technology, and its use in research, are in-
creasing both the need for anonymized data and the risks of poor anonymization.
[1] presented a new privacy metric, δ-presence, that clearly links the quality of
anonymization to the risk posed by inadequate anonymization. It was shown
that existing anonymization techniques are inappropriate for situations where
δ-presence is a good metric (specifically, where knowing an individual is in the
database poses a privacy risk). This article addresses a practical problem with
[1], extending to situations where the data anonymizer is not assumed to have
complete world knowledge. The algorithms are evaluated in the context of a
real-world scenario, demonstrating practical applicability of the approach.

Index Terms—k-anonymity, privacy, delta presence, medical databases

Note to reviewers: This work extends the work in [1]. Around
70% of the paper (including Sections 4,5,7,8,9, and part of 6)
is new material. The material carried over from [1] has been
revised and summarized, and is needed to make this submission
a standalone paper.

1 INTRODUCTION

T HE increasing ability to collect, manage, and share infor-
mation is raising every-increasing privacy concerns. This

poses a challenging tradeoff between the value (both to society,
and to individuals) from the knowledge available from ubiqui-
tous, shared information, and the risk to individuals posed by
disclosure and misuse of private data.

One solution to this problem is anonymity: ensuring that
disclosed data cannot be linked to the individual whom the data
is about. The European Community Directive 95/46/EC protects
‘personal data’:

‘personal data’ shall mean any information relating
to an identified or identifiable natural person (‘data
subject’); an identifiable person is one who can be
identified, directly or indirectly, in particular by ref-
erence to an identification number or to one or more
factors specific to his physical, physiological, mental,
economic, cultural or social identity;

This lends credence to using anonymity to protect privacy. The
United States Healthcare Information Portability and Account-
ability Act (HIPAA) [2] protects ‘individually identifiable data’,
and allows disclosure of data that has been de-identified. But
what does it mean to be ‘de-identified’?

Health information that does not identify an individual
and with respect to which there is no reasonable basis
to believe that the information can be used to identify
an individual is not individually identifiable health
information.

This material is based upon work supported by the National Science Foun-
dation under Grant No. 0428168.

How do we interpret these rules with respect to anonymity?
Is it enough to say that if we cannot positively identify a record
as belonging to an individual, it is suitably anonymous? What if
we can identify the individual with 90% probability? The U.S.
HIPAA rules do give some guidance: if someone applying gener-
ally accepted statistical and scientific principles “determines that
the risk is very small that the information could be used, alone or
in combination with other reasonably available information, by
an anticipated recipient to identify an individual who is a subject
of the information”. While this could be interpreted as data
is de-identified if the recipient could not be absolutely certain
a record applied to an individual, the regulations give further
guidance suggesting that de-identification can be accomplished
by removing not only identifying numbers/names/images, but
also geographic information that limits granularity to less than
20,000 individuals or dates more specific than the year. This
implies that identification with high probability, even if less than
100%, would probably not be considered suitably de-identified.

An alternative view is to look at the risk posed by disclosure of
information. It is easy to see that anonymity is not enough; for ex-
ample, suppose we use k-anonymity to protect data [3], [4]. This
says that knowing identifying information about an individual,
there are at least k records in the database that could (with equal
probability) refer to that individual. However, suppose that those
records also include sensitive information, e.g., if an individual is
diabetic. If all k individuals share the same value for the sensitive
information (e.g., all are diabetic), then k-anonymity provides
no protection against disclosure of that fact. This has lead to
alternate approaches, such as discernibility [5] / `-diversity [6].
However, it is still difficult to answer the question, “is the data
anonymous enough?”

This paper looks at a basic, and yet common and practical,
problem: the risk is simply from identifying that an individual
is (or is not) in an anonymized dataset. This could occur when
there is a desire to publish a dataset to support research on a
specific condition, but identifying individuals meeting that condi-
tion is damaging. Examples could range from counter-terrorism,
publishing a database containing information about suspected
terrorist groups to support research in automated support for
discoverying terrorism; to medical research, such as a database of
patients with a particular type of cancer. In both cases, identifying
that an individual is present in the database is damaging, both
to the individual, and in the terrorism example by disclosing to
real terrorist groups that their “cover organization” is suspect (or
not suspected).

The basic idea (introduced in [1]) is that anonymizing such
a database should mean that a recipient of the database should
not be able to identify any individual as being in that database
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with certainty greater than δ. This is actually the primary value
of anonymization; anonymizing to protect against linking an
individual with sensitive data in the released dataset can be done
just as effectively without anonymization [7]. As we shall see,
this δ-presence measure has the nice property that it can be
interpreted in terms of increased risk of disclosure. This enables
a meaningful bridge between human-understandable policy and
mathematically sound standards for anonymity. Another, per-
haps surprising, outcome is that the k-anonymity approach is
a bad way to meet this standard; requiring a substantial and
unnecessary loss of detail in the anonymized data. Unfortunately,
while k-anonymity (and related approaches) can be checked
knowing only the data to be released, evaluating δ-presence
requires complete knowledge of all entities, not just those in
the dataset to be anonymized. This paper addresses the issue,
presenting approaches that enable the δ-presence measure to be
used to anonymize a dataset assuming knowledge of only global
distributions of data.

1.1 Example: Diabetes

During the paper, we will use the “medical research dataset”
problem as a running example. Diabetes is an expensive and
widespread health problem, representing 11% of U.S. health
care expenditures [8]. Of note is that people with diabetes have
medical expenditures 2.4 times the expenditures if they did not
have diabetes [9]; under the “employer pays” system used at most
large U.S. companies, this would certainly be an incentive for an
employer to (illegally) discriminate against hiring someone with
diabetes. As we can see, it is clear that there is both great value
in making data available to support research on diabetes, and a
clear need to protect the individuals in such data.

Take the Diabetes dataset from the UCI machine learning
repository [10] as an example. This contains data on 70 patients.
What is a reasonable risk of identifying an individual as being
in this dataset? At first glance, we might say that we don’t
want an adversary to be able to identify with certainty greater
than a random guess: 70/260,000,000 (the size of the dataset
divided by the number of individuals in the U.S. in 1994), or
0.000027%. However, if we look at the larger problem, we realize
that the risk is identifying that an individual has diabetes. As
7% of the U.S. population has diabetes [8], even without the
anonymized dataset an adversary would know the probability
that an individual has diabetes is much greater than 0.000027%.
The real question is, how much could the anonymized database
improve the adversary’s estimate of the probability that an
individual has diabetes? The “no better than a random guess”
standard is clearly too conservative.

It is hard to address the issues stated above without assuming
some knowledge about the world from which the private dataset
was drawn from. The original definition of δ-Presence in [1]
assumes that the data anonymizer has complete information
about the world in the form of a public database (and allows
the adversary to have the same knowledge.) This is perhaps
unrealistic; more appropriate is to assume the anonymizer has
partial knowledge about the outside world such as statistics, lim-
ited selections/projections, count queries, · · ·. Such information
is not privacy sensitive and likely to be publicly available (or
might be publicized upon request). In this paper, we revisit δ-
presence when only distributions for attributes are known by
the data owner and the connections between distinct attributes

is not known. (E.g., the data owner knows exactly how many
male-female, single-married, young-old · · · people there are in
the outside world; but does not know if there is a married, young
woman.1) To ensure privacy, we still keep the strong adversary
assumption; the adversary might have access to the whole world
knowledge (except the presence/absence of individuals in the
private dataset) in the form of a public database. This way, we
guarantee an upper bound on privacy at a user selected confidence
level.

From the view of a data owner that has access to attribute
distributions only, the outside world acts as a random variable.
Given each possible value from the sample space, a given
anonymization satisfies different levels of δ constraints. A given
δ-presence constraint can only be satisfied at a certain confidence
level. In Section 4, we formulate and show how to check for c-
confident δ-presence from a given anonymization and attribute
distributions. In Section 5, we also show the checking process is
computationally expensive and present certain heuristics to speed
up the operations.

We now give background and notations used in the paper,
based on the original definition of δ-presence in [1]; Section
3, briefly summarizes that work. In Section 4, we reformalize
δ-presence assuming the anonymizer knows only attribute dis-
tributions. Section 8 gives a set of experiments evaluating the
performance of the checking process.

2 BACKGROUND AND NOTATION

Before formalizing the problem of hiding presence of individual
from a given database, we give some basic notation and review
the original k-anonymity framework.

Given a dataset (table) T , T [c][r] refers to the value of column
c, row r of T . T [c] refers to the projection of column c on T and
T [.][r] refers to selection of row r on T (the rth tuple or record).
We write |t ∈ T | for the cardinality of tuple t ∈ T .

Definition 1 (Generalization Function):
Given a data value v, a generalization function ψ returns the set
of all generalizations of v.

Although there are many ways to generalize a given value,
in this paper, we will stick to generalizations according to DGH
structures given in Figure 1. (e.g., ψ(USA) = {USA, N. America,
America, *}) We will also write, for tuples t and t∗, t∗ ∈ ψ(t)
when t∗[i] ∈ ψ(t[i]) for all possible index i.

Definition 2 (Table Generalization): Given two tables T and
T ∗, we say T ∗ is a generalization of T (and write T ∗ ∈ ψ(T )) if
and only if |T | = |T ∗| and records in T , T ∗ can be ordered such
a way that T ∗[i][ j] ∈ ψ(T [i][ j]) for every attribute i ∈ QI and for
every possible index j. We say tuple t = T [.][ j] is linked to tuple
t∗ = T ∗[.][ j] and write (t∗ ∈ T ∗)  (t ∈ T ).

In Tables 1-2, tables P∗
2 and P∗

3 are different generalizations
of table P. (The T tables will be discussed in Section 3.2, and
should be ignored for now.)

Definition 3 (Non-Overlapping Generalization):
Given a private table T and a generalization T ∗ of T , we say T ∗

is non-overlapping if and only if there does not exist t∗1 , t∗2 ∈ T ∗

and any possible tuple t such that t∗1 6= t∗2 and t∗1 ∈ ψ(t), t∗2 ∈ ψ(t)
In other words, a generalization is non-overlapping when any
possible tuple can match at most one generalized tuple. In Tables

1. unless implied by the attribute distributions
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TABLE 1
Public dataset P and research subset T

P
Publicly Known Data

Name Zip Age Nationality Sen.
a Alice 47906 35 USA 0
b Bob 47903 59 Canada 1
c Christine 47906 42 USA 1
d Dirk 47630 18 Brazil 0
e Eunice 47630 22 Brazil 0
f Frank 47633 63 Peru 1
g Gail 48973 33 Spain 0
h Harry 48972 47 Bulgaria 1
i Iris 48970 52 France 1

T
Research Subset

Zip Age Nationality
b 47903 59 Canada
c 47906 42 USA
f 47633 63 Peru
h 48972 47 Bulgaria
i 48970 52 France

D = P−T
Negative Subset

Zip Age Nationality
a 47906 35 USA
d 47630 18 Brazil
e 47630 22 Brazil
g 48973 33 Spain

(Initial “key” columns for clarity only; Sen. represents sensitive data not publicly known.)

S. America

Brazil

W. Europe

Peru

E. Europe

*

America Europe

N. America

Canada USA FranceSpain Bulgaria

42 (40-50] > 40 *

47906 4790* 479* 47* 4* *

N

A

T

I

O

N

A

G

E

Z

I

P

Fig. 1. DGH structures

1 and 2; datasets P∗
2 and P∗

3 are non-overlapping generalizations
of P. Similarly T ∗

3 is such a generalization of T .
Definition 4 (Same Mapping Generalizations):

Let T ∗
1 and T ∗

2 be two non-overlapping generalizations of tables
T1 and T2 respectively. We say T ∗

1 and T ∗
2 have the same

generalization mapping if the following holds;
for all quadruple (t∗1 ∈ T ∗

1 )  (t1 ∈ T1) and (t∗2 ∈ T ∗
2 )  (t2 ∈ T2),

if t∗1 ∈ ψ(t2) then t∗2 = t∗1 and similarly if t∗2 ∈ ψ(t1) then t∗1 = t∗2 .
In Table 1 and 2; generalization P∗

3 of P, and T ∗
3 of T are

same mapping generalizations.
Definition 5 (k-Anonymity): A table T ∗ is k-anonymous w.r.t.

a set of attributes QI if each record in T ∗[QI] appears at least k
times.

The idea behind this definition is the following; each record
in the private dataset contains publicly available information
in some attributes QI (quasi-identifiers). The values of these
attributes can be exploited to (almost uniquely) link those records
to records in other tables. The goal of k-anonymity is to limit an
adversary’s ability of linking a record from a set of released
records to a specific individual. (E.g., for dataset P in Table
1, attributes Zip, Age, Nationality can be considered as QI
attributes. Attribute Sen. can be considered as sensitive. Dataset
P∗

2 of Table 2 is a 3-anonymous generalization of P. Note
that by only seeing P∗

2 , an adversary can at best link a tuple

<47906,35,USA>, Alice, to the tuples a,b, and c of P∗
2 .)

Definition 6 (Equivalence Class): The equivalence class of
tuple t in dataset T ∗ is the set of all tuples in T ∗ with identical
quasi-identifiers to t.
In dataset P∗

2 , the equivalence class for tuple a is {a,b,c}.

3 δ-PRESENCE GIVEN PUBLIC DATABASE

In this section, we summarize and reformalize δ-presence from
[1]. Next sections will build upon the ideas given in this section.

3.1 Public Table Assumption

In this framework the adversary is presumed to have access to
all publicly known data (represented in a, possibly huge, public
table P) that links names to other set of attributes (e.g., day of
birth, sex, race.) When a data holder (e.g., a medical institution)
releases a (private) research subset data, the adversary can match
quasi-identifiers (or common attributes) in both tables to discover
unique links between records in the public and released table.
Given that being linked to the research subset is a privacy risk,
we instantly see that releasing the research subset T in Table 1 is
not acceptable; each individual can be uniquely linked with the
publicly known data. Though by releasing some generalization
of T , T ∗; the risk can be controlled. Thus framework can be
summarized as follows:

Publisher View: P,T
Adversary View: P,T ∗

The challenge is to find a suitable anonymization T ∗ of T that
will limit the risk. [1] shows that neither k-anonymization nor
enforcing `-diversity solve the problem.

We now give a definition for δ-presence, a metric to evaluate
the risk of identifying an individual in a table based on general-
ization of publicly known data.

Definition 7 (δ-Presence): Given an external public table P,
and a private table T , we say that δ-presence holds for a
generalization T ∗ of T , with δ = (δmin,δmax) if

δmin ≤ P (t ∈ T | P,T ∗) ≤ δmax ∀ t ∈ P

In such a dataset, we say that each tuple t ∈ P is δ-present in T
or we say the existence probability of t is within δ. Therefore,
δ = (δmin,δmax) is a range of acceptable probabilities for existence
probability P (t ∈ T | P,T ∗). From now on, we assume T ⊆ P.
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TABLE 2
P∗

2 : (2,2) recursive diverse P; T ∗
3 : ( 1

2 , 2
3 ) present T

P∗
2

Public Dataset Sen.
Zip Age Nationality

a 4790* * N. America 0
b 4790* * N. America 1
c 4790* * N. America 1
d 4763* * S. America 0
e 4763* * S. America 0
f 4763* * S. America 1
g 4897* * Europe 0
h 4897* * Europe 1
i 4897* * Europe 1

P∗
3

Public Dataset Sen.
Zip Age Nationality

a 47* * America 0
b 47* * America 1
c 47* * America 1
d 47* * America 0
e 47* * America 0
f 47* * America 1
g 48* * Europe 0
h 48* * Europe 1
i 48* * Europe 1

T ∗
3

Research Subset
Zip Age Nationality

b 47* * America
c 47* * America
f 47* * America
h 48* * Europe
i 48* * Europe

D∗
3 = P∗

3 −T ∗
3

Negative Subset
Zip Age Nationality

a 47* * America
d 47* * America
e 47* * America
g 48* * Europe

Before we show how to check for the δ-Presence property, we
define two more properties:

3.2 Checking for δ-Presence

Given the public dataset, it is trivial to check a non-overlapping
generalizations of the private dataset for δ-presence. Given a
non-overlapping generalization T ∗ of T and a public dataset P,
construct the generalization P∗ of P with the same mappings
used in T ∗. For any tuple t ∈ P, let t∗ be its generalization in
P∗ (e.g., (t∗ ∈ P∗)  (t ∈ P)). Then the presence (or existence)
probability for t takes the following form:

P (t ∈ T | P,T ∗) =
|t∗ ∈ T ∗|
|t∗ ∈ P∗|

(1)

If the existence probability is within the δ parameters for all
tuples t ∈ P then the presence property holds for T ∗.

In Tables 1 and 2, dataset T ∗
3 shows a ( 1

2 , 2
3 )-present gener-

alization of T w.r.t. public dataset P. P (tuple a ∈ T | T ∗
3 ) =

|{b,c, f}|
|{a,b,c,d,e, f}| = 1

2 . The same probability holds for tuples b,c,d,e,

and f . Probability for tuples g,h, and i is |{h,i}|
|{g,h,i}| = 2

3 .
The probabilities can also be calculated by making use of

the attribute Sen. in P∗s. (see dataset P∗
3 of Table 2) For each

tuple t in an equivalence class |t∗ ∈ T ∗| is the number of entries
with Sen.=1, and |t∗ ∈ P∗| is the size of the equivalence class.
Checking process can be done by processing each equivalence
class of P∗ and by using attribute Sen..

In [1], it is discussed in detail that previous anonymization
approaches such as k-anonymity, `-diversity, or t-closeness do
not provide mechanisms to check for δ-presence. This is mainly
because public dataset P is not taken into account for the ano-
nymization of T . Even when applied on P∗, diversity enforcing
privacy mechanisms (`-diversity, t-closeness) can not be used to
enforce constraints on Equation 1. Due to space limitations, we
do not include further discussion and refer to [1].

[1] also proves the anti-monotonicity property for δ-presence:
Theorem 1: Given a public table P, private table T , a

non-overlapping generalization T ∗
1 of T , and a non-overlapping

generalization T ∗
2 of T ∗

1 . If T ∗
2 is not (δmin,δmax) present w.r.t. P

and T then neither is T ∗
1 .

4 δ-PRESENCE GIVEN PUBLIC ATTRIBUTE DISTRI-
BUTIONS

4.1 Public Attribute Distributions Assumption

Generally the party anonymizing the data does not have knowl-
edge of the whole population, however it is reasonable to assume
knowledge of statistics about the population. (Statistics over data
are not individually identifiable and thus generally not considered
private/protected information.) We now relax our assumption on
the availability of a public table and instead assume that a set
of attribute distribution functions is known by the publisher. We
keep the assumption that adversary has access to the public table;
assuming ignorance on the part of the adversary is not a good idea
if we really want to make statements about privacy protection.
We redefine δ-presence against such an adversary; this definition
subsumes the previous definition that assumes a public table.

Definition 8 (Distribution Function): A distribution function
f D
A for a set of attributes A = {a1, · · · ,an} defined over a popula-

tion D is a function that when given a set of values {v1, · · · ,vn}
returns the number of entities t in D with vi ∈ ψ(t[ai]) for
i ∈ [1−n].

If we assume that we have the population given in
D = P − T of Table 1 (tuples that do not exist in
T ), f D

Zip,Nationality(‘47906’, ‘USA’) = |{Alice}| = 1 and

f D
Nationality(‘America’) = |{Alice,Dirk,Eunice}| = 3. Note that

knowing f D
Zip,Age,Nationality is the same as knowing table

D. Table 3 shows two other examples for sets of distribution
functions; F2d and F3d ( fC(c2) = 3).

Throughout this section, distribution functions will describe
the part of the population that does not exist in the private dataset
(the negative subset D = P−T ) and will not contain superscripts
(e.g., f = f D). While it is more likely that distribution functions
for P are known, the publisher knows T and can easily construct
distribution functions of D from those of P. We also assume,
without loss of generality, each function f describes only one
attribute.

The new framework then looks like the following:

Publisher View: F,T
Adversary View: P,T ∗

Having probabilistic information on the public dataset, the δ-
presence property can now be achieved with a given confidence:
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TABLE 3
Distribution Functions F2d and F3d for negative subset D and the corresponding probability space for D

Distribution Probability space for D
Functions (Last column shows the frequency of the corresponding tuple.)

F2d
fA fB

1a1 1b1
3a2 3b2

D1 : 1
4

A B
a1 b1 1
a2 b2 3

D2 : 3
4

A B
a1 b2 1
a2 b1 1
a2 b2 2

F3d
fA fB fC

1a1 1b1 1c1
3a2 3b2 3c2

D3 : 1
16

A B C
a1 b1 c1 1
a2 b2 c2 3

D4 : 3
16

A B C
a1 b1 c2 1
a2 b2 c1 1
a2 b2 c2 2

D5 : 3
16

A B C
a1 b2 c1 1
a2 b1 c2 1
a2 b2 c2 2

D6 : 3
16

A B C
a1 b2 c2 1
a2 b1 c1 1
a2 b2 c2 2

D7 : 6
16

A B C
a1 b2 c2 1
a2 b1 c2 1
a2 b2 c1 1
a2 b2 c2 1

Definition 9 (c-Confident δ-Presence): Given a public set of
distribution functions F , a private table T , a confidence level
c ∈ [0−1], and a generalization T ∗ of T , let It be the event that
tuple t ∈ T is δ-present w.r.t. T ∗ and the whole population (which
is unknown). In other words; It holds if δmin ≤ P (t ∈ T | T ∗) ≤
δmax. Note that It is a random event since public dataset P is
a random variable. We say that δ-presence holds for T ∗, with
δ = (δmin,δmax) and with confidence c if

P (It | F) ≥ c ∀ t ∈ T (2)

Informally, a c-confident δ-present anonymization ensures that
a given tuple t is δ-present w.r.t. the current population with c
probability. This definition has two important properties.

• Privacy is defined over tuples independently, meaning each
tuple will be δ-present with c probability. An alternative
definition would enforce the anonymization to be δ-present
with c probability. The approach taken has advantages
in estimating the cost of identification, especially when
privacy is personalized. (E.g., some tuples with high cost
of identification may require higher confidence levels.) The
latter gives guaranteed for-all privacy with c probability and
is harder to achieve. In this work, we stick with the former.

• Privacy is satisfied for only those tuples that are in the
private dataset, not all tuples that are possibly in the public
dataset. What this means is that while it is impossible to
determine if e ∈ T given T ∗ with greater than δ probability,
it may be possible to determine that e /∈ T . The reason is
that possible outliers needs to be considered, particularly
challenging given that the public data (and outliers) are not
actually known. (E.g., if there is only one person with age
> 100 in a big population, every attribute-join with age
> 100 needs to be considered.) A better approach would
consider the tuples in the private dataset plus probable
tuples from the attribute distribution. In coming sections,
we discuss how to convert the methodology presented in
this work to handle such tuples.

As an example, assume we have the private table T given
Table 4.1 and the set of distribution functions F3d given in Table
3. To keep the discussion simple, the generalization we check
for c-confident δ-presence is T itself. (T ∗ = T , that means also
D∗ = D.) Let us also assume δmin = .33, δmax = 1. Throughout
the section, we will show that δ presence holds for T with 15

16 -

TABLE 4
Private Table for Section 4

Private Table T
A B C
a1 b1 c1 1
a2 b2 c2 1

confidence. For this, it is sufficient to show that for both tuples
t∗1 = t1 =< a1,b1,c1 >, t∗2 = t2 =< a2,b2,c2 >, P (Iti | F3d) ≥ 15

16 ,
i ∈ [1− 2]. However we do not require, say a tuple t∗3 = t3 =<
a1,b1,c2 >, to satisfy Equation 2 even though it is possible for
t3 to exist in the public dataset. (Actually confidence level for
t3 is intuitively zero, since t3 /∈ T ∗, thus existence probability is
zero.)

We next show how to check for c-confident δ-presence for a
given anonymization and distribution function.

4.2 Checking for c-Confident δ-Presence

We now show how to calculate the confidence given a δ param-
eter, a private table T , an anonymization T ∗ of T , and a set of
distribution functions F (for P−T ).

Let t be any tuple in T , then

P (It | F) = ∑
D

P (It | D) ·P (D | F) (3)

From Section 3, we know how to calculate P (It | P).

P (It | P) =

{
1, δmin ≤ |t∗∈T ∗|

|t∗∈P∗| ≤ δmax;
0, otherwise.

Since we assume F describes D = P−T , we now rewrite the
above for D.

P (It | D) =

{
1, δmin ≤ |t∗∈T ∗|

|t∗∈T ∗|+|t∗∈D∗| ≤ δmax;
0, otherwise.

We are interested in only those Ds satisfying δ-presence.
Setting the cardinality numbers n1 = |t∗ ∈ T ∗| and n0 = |t∗ ∈ D∗|,
the requirement for Ds to make t δ-present:
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δmin ≤ n1
n0+n1

≤ δmax

1
δmax

≤ n1+n0
n1

≤ 1
δmin⌈

1
δmax

n1 −n1

⌉
≤ n0 ≤

⌊
1

δmin
n1 −n1

⌋
In other words, the cardinality of t∗ in dataset D∗ needs to be

within some boundaries. Each boundary number can be calcu-
lated from the T ∗. From now on for the sake of compactness,
we use clow =

⌈
1

δmax
n1 −n1

⌉
, and chigh =

⌊
1

δmin
n1 −n1

⌋
for the

boundary requirements for D∗ given T ∗ and t.
In Table 3, we list all possible Ds given the set of distribution

functions F3d . Following the above example, suppose we check
tuple t∗ = t =< a2,b2,c2 > which have cardinality 1 in T ∗ for
presence property. By the above equation, clow =

⌈ 1
1 ·1−1

⌉
= 0

and chigh =
⌊ 1

.33 ·1−1
⌋

= 2. So t will be δ-present for all D with
0 ≤ |t∗ ∈ D∗| ≤ 2. Among 5 possible D, only D4,D5,D6, and D7
makes t δ-present in T ∗.

Given above, we can rewrite Equation 3;

P (It | F) = ∑
x∈[clow−chigh]

P (|t∗ ∈ D∗| = x | F) (4)

which basically states the summation of likelihoods for each
possible D (given F) satisfying the cardinality boundary condi-
tion gives us our confidence on the δ-presence of t w.r.t. T ∗.

In Table 3, we also list likelihoods of all possible D given
F3d . Following the example above, |t∗ ∈ D∗| is 1 for D7 and 2
for D4,D5,D6, so the confidence level is 6

16 +( 3
16 + 3

16 + 3
16 ) = 15

16 .
We now show how to calculate the likelihood of getting a D

with |t∗ ∈ D∗| = x. More precisely, we show how to solve for
x-cardinality likelihood, P (|t∗ ∈ D∗| = x | F).

The x-cardinality likelihood for T with n dimensions and a set
of distributions F = { f1, · · · , fn} explaining a population of size U
can be calculated recursively by starting with only one dimension
and adding one dimension at a time. Let In

x be the event that |t[1−
n]∗ ∈ D[1− n]∗| = x and let `n

x = P (In
x | F) (`n

x is x-cardinality
likelihood for T projected on the first n dimensions.), then

`n
x = P (In

x | F)
= ∑

y
P (In

x | In−1
y , fn) ·P (In−1

y | F)

= ∑
y

P (In
x | In−1

y , fn) · `n−1
y

P (In
x | In−1

y , fn) is the probability of selecting exactly x t∗[n]s
(from the fn(t∗[n]) available) next to y available t∗[n−1]s. This
is a hypergeometric distribution2. More precisely;

`n
x =


1, n = 1,x = f1(t∗[1]);
0, n = 1,x 6= f1(t∗[1]);

∑
y∈[1−U ]

`n−1
y ·hyp(x;y, fn(t∗[n]),U), otherwise.

where hyp is the hypergeometric density function defined as

2. A sample of n balls is drawn from an urn containing M white and N−M
black balls without replacement. hyp gives the probability of selecting exactly
x white balls.

hyp(x;n,M,N) =

{ (M
x)(N−M

n−x )
(N

n)
, x = 0, · · · ,n;

0, otherwise.

`n
x can be calculated by dynamic programming in O(n ·U)

hyp calculations in O(U) space. In one run, we calculate all `n
i

i ∈ [0−x]. So we can check for presence property w.r.t. a single
tuple t in O(n ·U). By Definition 9, we need to check for all
t ∈ T , so the worst case complexity of checking for the presence
property is O(n ·U · |T |).

Following the example, suppose we want to calculate `3
2 =

P (|t∗ ∈D∗|= 2 | F3d ,T ). We first set, for dimension A, `1
0 = `1

1 =
`1

2 = 0, and `1
3 = 1 since fA(a2) = 3. Possible Ds for dimension

A,B are given in Table 3. `2
2 = 0 + 1 · (3

2)(1
1)

(4
3)

= 3
4 (cardinality of

< a2,b2 > is 2 in D2 only.) `2
3 = 1 · (3

3)(1
0)

(4
3)

= 1
4 (cardinality of

< a2,b2 > is 3 in D3 only.) Finally `3
2 = 3

4 ·
(3

2)(1
0)

(4
2)

+ 1
4 ·

(3
2)(1

1)
(4

3)
= 9

16 .

Similarly `3
1 = 0+ 1

4 ·
(3

1)(1
2)

(4
3)

+ 3
4 ·

(3
1)(1

1)
(4

2)
= 6

16 . The confidence level

for T is given by `3
0 + `3

1 + `3
2 = 0+ 6

16 + 9
16 = 15

16 .
Even though checking process can be done in polynomial

time, calculation of hyp is very costly for large arguments. It
is practically impossible to calculate all likelihoods directly for
big datasets. In Section 5, we will address this issue by presenting
optimizations.

4.3 Privacy for all Possible Tuples

In this section, we show how to extend the methodology given
in Section 4.2, so that we achieve the desired privacy level not
just for the tuples in the private dataset but for all tuples that can
possibly exist in the outside world.

In Section 4.2, we derived the confidence level for tuples in the
private dataset. More precisely, Equation 3 gives the confidence
level for all tuples t ∈ T given T ∗,F . However this is not the
exact set of tuples whose confidence levels can be computed by
Equation 3. The next theorem identifies the exact set:

Definition 10 (Coverage): A given tuple t is in the coverage of
a table T ∗, iff there exist at least one tuple t∗ ∈ T ∗ with t∗ ∈ψ(t).

For example, in Table 2, tuples <47906,Canada>,
<47903,US> are covered by a table containing the generalized
tuple <4790*,N. America>.

Theorem 2: Let T ∗ be a c-confident δ-present anonymization
of private dataset T w.r.t. public distribution F . If a given tuple
t is in coverage of T ∗, then t is δ-present w.r.t. T ∗,F with c
confidence.

Proof: Since T ∗ is a generalization of T , there exist a tuple
t ′ ∈ T with t∗ ∈ ψ(t ′). By Definition 9, t ′ is δ-present w.r.t. T ∗,F
with c confidence. Since T ∗ is the only input to the adversary,
t and t ′ are indistinguishable. t should also be c-confident δ-
present. Also note that right hand side of Equation 3 depends on
the generalized tuple t∗, not the atomic tuple t.

For any other tuple t not in the coverage of the generalization,
the existence probability is intuitively zero. (If there is no
generalization for t in T ∗, then t is definitely not in T .) That
means for tuple t, when δmin 6= 0, confidence becomes 0; and
anonymization violates privacy requirements with c > 0.

It is easy to check if every possible tuple that can exist
(or most likely exists) in the public dataset is covered by
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an anonymization. However, as mentioned before providing c-
confident δ-presence for all possible tuples is perhaps too strong
a privacy requirement. In the following sections, we stick to
definition 9.

5 SPEEDING UP THE CHECKING PROCESS

We now present several optimizations to reduce the number of
hyp function calculations. All of the optimizations presented in
this section stand as a trade-off between utility and efficiency.
We do not sacrifice privacy. In other words, the privacy level
achieved with the optimizations is at least as good as the original
privacy level. In Section 8, we show experimentally that the
loss in the utility is very small while a huge speed up can be
achieved from the use of optimizations. We also show that each
optimization is effective independently of the others.

5.1 Practical Anti-monotonicity

Unfortunately c-confident δ-presence does not possess the anti-
monotonicity property (which we proved for the original δ-
presence in Theorem 1). In other words, given a non-overlapping
generalization T ∗

1 of T and a non-overlapping generalization T ∗
2

of T ∗
1 , even though T ∗

2 does not respect c-confident δ-presence
(w.r.t. a public distribution), it is possible that T ∗

1 does. This so
because of the ’per tuple’ definition we adopt for c-confident
δ-presence. More precisely, for a tuple t ∈ T and a public
distribution F , let PT ∗

1
be the set of all possible public tables

in which t is not δ-present w.r.t. T ∗
1 , and let PT ∗

2
be the set

containing those violating the presence property w.r.t. T ∗
2 . PT ∗

1

is not necessarily a subset of PT ∗
2

and thus the sum of the
corresponding likelihoods may increase towards the confidence
level. This does not contradict Theorem 1. Theorem 1 states
given T ∗

2 is not δ-present, there will be at least one tuple in
T ∗

1 violating the presence property. Tuples violating the property
in each generalization do not necessarily match, there may be
tuples that are present w.r.t. T ∗

1 although they are not w.r.t. T ∗
2 .

We can argue that, although it is possible, such a situation
is unlikely. Given a tuple t violating the presence property
with respect to a more general anonymization (e.g., T ∗

2 ) and
a fixed public dataset P, let us derive an upper bound for the
probability that t is present w.r.t. a more precise randomly created
anonymization (e.g., T ∗

1 | T ∗
2 ∈ ψ(T ∗

1 )) and P:
Let P∗

1 and P∗
2 be the generalizations of P with the same

mappings used in T ∗
1 and T ∗

2 respectively. Let ec1,ec2 be the
equivalence classes of P∗

1 ,P∗
2 containing t respectively. Since

T ∗
2 ∈ ψ(T ∗

1 ), also P∗
2 ∈ ψ(P∗

1 ) and also ec1 ⊂ ec2. Let ep1 ⊂ ec1
and ep2 ⊂ ec2 be the set of present tuples in ec1 and ec2 respec-
tively. Without loss of generality, assume upper bound condition
of δmin = 0. We are interested in the following probability:

P

(
|ep1|
|ec1|

≤ δmax | |ep2|
|ec2|

≥ δmax

)
It is complicated to derive the exact probability. However, if we

restrict the random ec2s to be sufficiently large3, we can model
each tuple in ec2 as an independent random variable. Let Xi be a
Bernoulli random number representing ti[sen.] with P (Xi = 1) =
p = |ep2|

|ec2| . Note that assuming independence of random variables
is not realistic but unbiased towards what we try to prove. Most

3. Large datasets are more likely to have large equivalence classes.

of the time, the tuples (data points) are skewed in the whole
space. Present tuples are more likely to be clustered together
and are relatively far from absent tuples. The presence property
is more likely to fail in such skewed spaces compared to uniform
spaces.

Suppose ec1 contains n of these tuples then the probability
above takes the following form:

P (Xn ≤ δmax)

where Xn = X1+···+Xn
n

We can bound the mean of Bernoulli variables using Hoeffd-
ing’s Inequality:

P (Xn − p < −ε) ≤ e−2nε2

P (Xn < p− (p−δmax)) ≤ e−2n(p−δmax)2

P (Xn < δmax) ≤ e−2n(p−δmax)2

Similarly it can be showed for any δmin,δmin;

P (Xn < δmax) ≤ e−2n(pdist)
2

where pdist = min(|p−δmin|, |p−δmax|).
For a small value of n = 100 and pdist = 0.1, the upper bound

probability is 0.13. For a moderate value of n = 1000 and pdist =
0.05, the probability is 0.006. Generally when pdist is more than
0.1, the bounding probability is sufficiently low for most probable
n values.

Using this tool, we can have a rough estimate of the confidence
level for T ∗

2 without calculating it (thus only calculating the final
anonymization for verification). It should also be noted that there
may be more than one tuple t violating the presence property
which further makes an anti-monotonic behavior very probable.
In Section 8, we show experimentally that pdist is generally
high enough to make a correct estimate, and it is safe to use
apriori pruning even though anti-monotonicity does not hold
theoretically.

5.2 Normal Approximation to Hypergeometric Distribution

Hypergeometric calculations are costly for big datasets since
they require factorization of huge numbers. Fortunately
hyp(x;n,M,N) can be approximated by the normal distribution
N(µ,σ) where µ = x M

N , σ =
√

N M
N (1− M

N ) n
N (1− n

N ) when M
N

and n
N are bounded away from 0 and 1 which are called

standard cases [11]. Non-standard cases are also studied [12]
and guaranteed error bounds have been proposed. For example,
theoretical upper bound for total deviation between the normal
approximation and the hypergeometric distribution (over all
possible x) is 0.12 for N = 2000, M

N = 0.9, n
N = 0.9. In Figure 2(a),

we plot the two distributions for this case. Actual total deviation
is 0.037, much smaller than the theoretical upper bound. However
when M

N = 0.975, n
N = 0.975 as shown in Figure 2(b), deviation

increases to 0.24.
Unfortunately, we cannot use the normal approximation as an

alternative to hypergeometric distribution, even in standard cases,
for the following reasons:

• The sign of the deviation is not known. In other words,
a normal approximation can give a higher confidence level
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Fig. 2. Normal Approximation and Discretization for Hyper Geometric Distribution

than the original level. Since we want to guarantee an upper
bound on the privacy, this is not desirable.

• A guaranteed cdf-error bound of the approximation could
be subtracted from the normal approximation to ensure that
approximation is smaller than the original value. However,
we are required to calculate the probability at each integer
value (which is as big as the size of the population) and
probabilities tend to be smaller than the error bound itself.

Instead of using the normal approximation as an alternative
to the hypergeometric distribution, we use the approximation
to identify those parameters that contribute little to the total
confidence level. About 95% of values drawn from a normal
distribution are within two standard deviations of the mean (see
Figure 2(a)). For standard cases, we can assume the same for the
hypergeometric distribution and avoid calculating hyp function
on x points far from the mean and assume a zero probability for
those points. So we define a new function hyp’ as

hyp′(x;n,M,N) =

 hyp(x;n,M,N), x ∈ [µ−2σ · · ·µ+2σ]
∨ Standard Case;

0, otherwise.

In Figure 2(a), there are 200 possible x values for which
function hyp would return a positive probability. Only 16 of these
values are within two standard deviations of the mean. So hyp’
returns 0 instantly for 92% of the cases.

In our experiments, we considered all parameters M
N <

0.99, n
N < 0.99 for N = 40000 as standard cases. The Normal

approximation caused little distortion for these parameters. It
should also be noted that it is easier to compute hyp for non-
standard cases compared to standard cases, since there are not
as many possible x values (with a non-zero probability). In
Figure 2(b), we have only 50 possible x values that require a
hypergeometric calculation as opposed to 200.

5.3 Tuple Dominance

In Section 4.2, we calculate the confidence level for all tuples in
T ∗. In this section, we present a technique that will reduce the
number of tuples required to be checked for confidence when
either δmin = 0 or δmax = 1.

Definition 11 (Tuple Dominance): Given some public distri-
bution F = ∪Ai fi, an anonymization T ∗ of table T , and tuples
t∗1 , t∗2 ∈ T ∗, we say t∗1 dominates t∗2 on the min parameter if
|t∗1 ∈ T ∗| ≤ |t∗2 ∈ T ∗| and fi(t∗1 [Ai]) ≥ fi(t∗2 [Ai]) for all attributes
Ai. Similarly we say t∗1 dominates t∗2 on the max parameter if
|t∗1 ∈ T ∗| ≥ |t∗2 ∈ T ∗| and fi(t∗1 [Ai]) ≤ fi(t∗2 [Ai]) for all attributes
Ai.

Given F3d in Table 3 and T ∗ = T in Table 4.1, tuple t∗2 :<
a2,b2,c2 > dominates t∗1 :< a1,b1,c1 > on the min parameter
since both have cardinality 1 and ( fA(a2) = fB(b2) = fC(c2) =
3) > ( fA(a1) = fB(b1) = fC(c1) = 1). Similarly t∗1 dominates t∗2
on the max parameter.

The next Theorem proves that to check for the presence
property when δmin = 0 or δmin = 1, it is enough to calculate
the confidence level only for the dominant tuples.

Theorem 3: Following the definitions above, given that tuple
t∗1 dominates tuple t∗2 on the min parameter, if t∗1 respects c
confident (δmin,1) presence, so does t∗2 .

Proof:
1: We first assume |t∗1 ∈ T ∗| ≤ |t∗2 ∈ T ∗| and fi(t∗1 [Ai]) =

fi(t∗2 [Ai]). By equation 4, confidence level for tuple t∗i is

∑
x≤ci

high

P (|t∗i ∈ D∗| = x | F)

where ci
high =

⌊
1

δmin
|t∗i ∈ T ∗|− |t∗i ∈ T ∗|

⌋
.

By definition, |t∗1 ∈ T ∗| ≤ |t∗2 ∈ T ∗|, so c1
high ≤ c2

high. So the
confidence for t∗1 will be higher (or the same) if fi(t∗1 [Ai]) =
fi(t∗2 [Ai]) for all attribute Ai.

2: We now assume |t∗1 ∈ T ∗| ≤ |t∗2 ∈ T ∗|, fi(t∗1 [An]) =
fi(t∗2 [An])+1 = M +1 where An is the last attribute, fi(t∗1 [Ai]) =
fi(t∗2 [Ai]) for any other attribute Ai. Therefore t∗1 , t∗2 differ on
their last attribute cardinality by 1. Since the calculations are
independent of the attribute order, the proof can be extended by
induction even if any subset of attributes differ by any amount.
From Section 4.2, the confidence level for tuple t∗i is

∑
x≤chigh

P (|t∗i ∈ D∗| = x | F) = ∑
x≤chigh

(`n
x)t∗i

= ∑
x≤chigh

∑
y∈[1−U ]

(`n−1
y )t∗i ·hyp(x;y, fn(t∗i [n]),U)
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= ∑
y∈[1−U ]

(`n−1
y )t∗i ∑

x≤chigh

hyp(x;y, fn(t∗i [n]),U)

Since the first n − 1 attributes are the same for t∗1 and t∗2 ,
(`n−1

y )t∗1 = (`n−1
y )t∗2 , we need to prove;

∑
x≤chigh

hyp(x;y,M +1,U) ≤ ∑
x≤chigh

hyp(x;y,M,U)

for all x. In other words, we need to prove that the cumulative for
the hypergeometric distribution is non-increasing with increasing
M. There is no closed form for the hypergeometric cumulative.
Fortunately, however, we can work on the difference of two
cumulatives. If we substitute for the hyp function:

hyp(x ≤ a;n,M +1,N)−hyp(x ≤ a;n,M,N)

= ∑
0≤x≤a

(M+1
x

)(N−M−1
n−x

)(N
n

) −
(M

x

)(N−M
n−x

)(N
n

)
= C[ ∑

0≤x≤a
(
(

M
x−1

)
+

(
M
x

)
)
(

N −M−1
n− x

)
− ∑

0≤x≤a

(
M
x

)
(
(

N −M−1
n− x−1

)
+

(
N −M−1

n− x

)
)]

= C ∑
0≤x≤a

(
M

x−1

)(
N −M−1

n− x

)
−

(
M
x

)(
N −M−1
n− x−1

)
= C[ ∑

−1≤x≤a−1

(
M
x

)(
N −M−1
n− x−1

)
− ∑

0≤x≤a

(
M
x

)(
N −M−1
n− x−1

)
]

= C[
(

M
−1

)(
N −M−1

n

)
−

(
M
a

)(
N −M−1
n−a−1

)
]

= −C
(

M
a

)(
N −M−1
n−a−1

)
≤ 0

for all a, where C = 1
(N

n)
.

Corollary 1: Given that tuple t∗1 dominates tuple t∗2 on the max
parameter, if t∗1 respects c confident (0,δmax) presence, so does
t∗2 .

Definition 12 (Minimum Dominant Subset(MDS)): We say a
set of tuples MDS is a minimum dominant subset for a set of
tuples T ∗ if MDS ⊆ T ∗, no two tuples in MDS dominate each
other, and every tuple in T ∗ is dominated by some tuple in MDS.

For δmin = 0 or δmax = 1, we only need to calculate the
confidence levels for the MDS of a set of tuples since the rest
of the tuples will have higher confidence levels than at least one
tuple in MDS. Following the example above, if we assume we
have δmin = .33, δmax = 1, the MDS only contains tuple t∗2 which
has a confidence level of 15

16 . Tuple t∗1 has a confidence of 1 which
is higher than that of t∗2 .

5.4 Discretization

As mentioned above, the hyp function is calculated for a large
range of x parameters. Fortunately, a hypergeometric distribution
has a well defined behavior. As in a normal distribution, the
probability density function monotonically increases for x < µ,
is maximized for x = µ and monotonically decreases for x > µ,
having a concave shape. We can exploit this property for further
discretization of the hypergeometric distribution. In other words,
we partition the probability space into fixed sized buckets and

calculate the hyp function on only the boundaries of the buckets.
We set the minimum of the boundary probabilities as the prob-
ability of the points inside the bucket, thus sacrificing utility for
efficiency. If we have a fixed bucket size of b, the discretized
function hyp” will take the following form:

hyp′′(x;n,M,N) =

 min(hyp′(x;n,M,N),
hyp′(x+b;n,M,N)), x|b;

hyp′(x−1;n,M,N), otherwise.
(5)

Figure 2 shows 3-discretization of two hypergeometric dis-
tributions. An important point to make is that the utility loss
due to the discretization is negatively correlated with the size
of the probability space within 2 standard deviations from the
mean. For example, in Figure 2(a) where we have 16 points 2σ
close to µ, the area covered by the discretization is 79% of the
total area under the hypergeometric distribution while it is 8%
in Figure 2(b) with 6 points close to mean. In experiments, we
used discretization only if we have at least 4 buckets within a
2σ range.

6 LIMITING HARM:
SELECTING A GOOD δ,c

The presence parameters δmin, δmax defines the level of trade-off
between the utility and privacy of the anonymized dataset. As
δmin increases (or δmax decreases), more information is hidden
leading to better privacy protection but poorer dataset utility.
This means that a maximal δmin and minimal δmax value should
be selected such that privacy conditions of the application are
met. In this section, we use the diabetes dataset example to
demonstrate how to bound probability of disclosure in ways that
correspond to real risk of misuse.

Let Ip be the event that person p has diabetes. Since the rate
of diabetes in all US population is public information [8], any
adversary will have a prior belief br on Ip given the public dataset
P:

br = P (Ip) = 0.07

The private dataset T is a subset of the set of all diabetes
patients in P. Seeing some anonymization T ∗ of T , attacker will
have a posterior belief bo on Ip:

bo

= P (Ip | T ∗)
= P (Ip|p ∈ T ) ·P (p ∈ T |T ∗)+P (Ip|p 6∈ T ) ·P (p 6∈ T |T ∗)

= 1 ·P (p ∈ T |T ∗)+
P (Ip) · |P|− |T |

|P|− |T |
· (1−P (p ∈ T |T ∗))

= P (p ∈ T | T ∗) · |P| · (1−br)
|P|− |T |

+
br · |P|− |T |
|P|− |T |

We start with an acceptable cost due to misuse. Assume a
hiring decision, and that a $100 annual difference in total cost
of employee is noise (difference in productivity, taking an extra
sick day, salary negotiation, etc.) Thus if expected annual cost of
medical treatment of diabetes based on misuse of the database is
m < $100, the risk of misuse is acceptably small. The total cost of
diabetes per person is around d = $10,000 [9]. The probabilistic
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acceptable misuse, a, is then m
d = 1

100 ; we must ensure:

bo ·d −br ·d ≤ m

bo −br ≤ a

P (p ∈ T | T ∗) · (1−br)|P|
|P|− |T |

+
br|P|− |T |
|P|− |T |

−br ≤ a

P (p ∈ T | T ∗) ≤ a · |P|+(1−a−br)|T |
(1−br)|P|

Unfortunately, this does not take into account the c parameter
(possibility that we fail to maintain δ-presence for a tuple.)
The risk that an individual is exposed with greater than δmin

probability is a different kind of risk; the possible damage to the
individual could be significantly greater than a. While this could
be calculated as a = m+1/c

d , it is more appropriate to separate this
out as a liability risk that should fall on the anonymizer. 1/c

d can
thus be viewed as a separate parameter, set based on the needs
of the anonymizer rather than as protection for the individuals.

Letting |T | ' 0.04|P| as in our experiments and applying the
above numbers, we get:

P (p ∈ T | T ∗) . 0.05

This gives us the minimum δmax parameter to protect against
substantial misuse when hiring a single job applicant. However
the upper bound does not protect against misuse when comparing
two job applicant p1, p2. The reason is that in this setting, an
anonymization that gives bo = 0.032 for p1 (this happens when
P (p1 ∈ T | T ∗) w 0) and bo = br = 0.07 for p2 is perfectly
okay, which implies p2 is much more likely to have diabetes
than p1. We need to ensure that the company can’t “cherry-pick”
employees known not to be in the database. Thus the posterior
belief should not be arbitrarily low. If we let probabilistic
acceptable misuse a = 200

10000 = 0.02 then

br −bo ≤ a

P (p ∈ T | T ∗) ≥ −a · |P|+(1+a−br)|T |
(1−br)|P|

& 0.02

This gives us a maximum δmin parameter.

7 ALGORITHMS

Given the “world knowledge” assumption made in [1], we pro-
vided an optimal full-domain generalization algorithm SPALM;
this works under the constraint that if a value is generalized, all
occurrence of that value must be generalized. We also gave an
algorithm MPALM that relaxed this restriction. (The difference
between these approaches is analogous to the difference between
the k-anonymization algorithms of [13] and [14].)

In this section, we present a c-confident δ-presence algorithm
SFALM that makes use of the optimizations discussed in Section
5. We basically modify the SPALM algorithm from [1] to accept
a confidence threshold and a public distribution instead of a
public table. The practical anti-monotonicity claim discussed
previously enables us to use this same approach to give an
algorithm that is comparable in performance to SPALM; if anti-
monotonicity does not hold we lose only the optimality (with
respect to the amount of generalization); the privacy guarantee
of c-confident δ-presence still holds. The following notations and
definitions briefly recall the problem setting:

[0,0,0]

[0,0,1] [0,1,0] [1,0,0]

[0,0,2] [0,1,1] [1,0,1] [0,2,0] [2,0,0][1,1,0]

.

.

.

[5,3,3]

[4,3,3] [5,2,3] [5,3,2]

Fig. 3. Full Domain Generalization Lattice

For two values v∗,v of the same attribute Ai, we write
v∗ = ∆i(v) if and only if v∗ is the immediate parent of v in
the domain generalization hierarchy for Ai. To express greater
levels of generalization, for the nth generalization of v, we write
∆n

i (v) = ∆i(· · ·∆i︸ ︷︷ ︸
n

(v) · · ·).

We say a table T ′ is a [g′1, · · · ,g′n] full domain generalization
of table T with set of attributes {A1, · · · ,An} if and only if for
all pairs of tuples t, t ′ such that (t ∈ T )  (t ′ ∈ T ′); we have
t ′[Ai] = ∆g′i

i (t[Ai]) for all 1 ≤ i ≤ n. Let T ′′ be a [g′′1 , · · · ,g′′n ] full
domain generalization of table T , We say T ′′ is a higher level
generalization than T ′ and write T ′′ À T ′ if and only if T ′ 6= T ′′

and g′i ≤ g′′i for all 1 ≤ i ≤ n. For cost metrics proposed so far, a
high level generalization (e.g., T ′′) is more costly than a lower
generalization (e.g., T ′).

In Tables 1 and 2, T ∗
3 is a [3,3,2] full domain generalization

of T .

The possible full domain generalizations of table T form a
lattice on the À relation. (see Figure 3.) To find a cost-optimal
δ-present (or k-anonymous) generalization, each generalization
on the lattice needs to be checked and the lowest cost δ-
present dataset should be identified. However the practical anti-
monotonicity property of presence can be used to prune the
lattice and reduce the search space. In contrast to previous k-
anonymity algorithms, we exploit only the anti-monotonicity
property of presence and propose a top-down approach. (E.g.,
if T ′′ is not δ-present, neither is T ′.) We observed that a top-
down approach prunes much faster, especially when the data
is of high dimensionality and sparsely distributed (as in the
experimental data used in coming section). Notice that, for
very high dimensional spaces, optimal solutions for k-anonymity
(and therefore, optimal δ-presence) are subject to the curse of
dimensionality, as discussed in [15].

The pseudo-code in Algorithm 1 summarizes SFALM. At line
5, the algorithm creates the Minimum Dominant Subset of the
anonymization given the δ parameters are one-sided. At line 7,
algorithm calls for Equation 4 (with 2σ-cut and discretization
optimizations) to get confidence levels for all tuples and checks
if any confidence level falls below the threshold.
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Algorithm 1 SFALM
Require: publicly available distribution F ; private table T , a cost

metric COST;
Ensure: return minimum cost c-confident (δmin,δmax) present

full domain generalization of T .
1: create lattice lat for all possible generalization mappings for

T . Let n be the number of levels in lat.
2: for all level i : 1−n do
3: for all node m in level i of lat do
4: create T ∗; full domain generalization of T according to

mapping in m
5: let set of tuples ST be the MDS of T ∗ if δmin = 0 or

δmax = 1. Otherwise ST = T ∗

6: for all tuple t∗ ∈ ST do
7: use Eqn 4 with function hyp” to get the confidence

level ct∗ for t∗ given F .
8: if ct∗ < c then
9: delete node m and all children and grandchildren

of m from lat
10: return the least-cost generalization and the corresponding

mapping among the generalizations being tested.

8 EXPERIMENTS

As in [1], a simulated dataset is created through random selection
of a 4% subset of the UCI adult dataset [10]. The entire adult
dataset (specifically, the 45222 records with no unknowns) is
considered the “Universe”, a randomly selected subset of 1957
records is taken as the dataset of individuals whose discovery
in the dataset is to be protected against (we refer to this as the
Random dataset.) Note that for this paper, only the distribution
of the Universe is used by the algorithm; the only data needed
is the 1957 record subset to be anonymized.

As was done in [1], for a more realistic test we also generate
a diabetes dataset by performing a biased selection simulating
a database of individuals with diabetes; the selection is biased
toward individuals with demographics matching those of actual
diabetes patients (as given in [8].) Specifically, for each individ-
ual we estimate their probability of being in the diabetes subset
based on independent probabilities for diabetes given age, race,
and gender as shown in [8]; this gives a dataset skewed towards
people with similar characteristics. (This is also the reason for
1957 records in the dataset, as this is the number obtained using
these statistics to guide selection.)

We evaluate how varying δ affects the cost of anonymizing the
dataset (w.r.t. utility of the dataset), as determined by the Loss
Metric (LM) [16] and the Discernibility Metric (DM) [17]. We
only present results on LM since the DM results were almost
identical. The LM cost for a given generalized data value v∗

from an atomic domain of size |A| is defined as |ψ(v∗)|−1
|A|−1 . For

example, in Figure 1 generalizing “Canada” to “N. America”
incurs a penalty of (2−1)/(7−1) = .16; to “America” gives a
penalty of (4−1)/(7−1) = .5. The LM cost for a generalization
T ∗ is the normalized cost of all data values in T ∗. The higher the
LM cost of the anonymization, the higher the distortion caused
by the anonymization.

Fixing the private dataset and distribution functions as inputs,
we evaluate the behavior of SFALM and the effectiveness of
the optimizations SD (4σ cut on normal approximation), PA
(Practical Anti-monotonicity), DM (minimum dominant subset),

and DC (4-Discretization) presented in Section 5 with respect to
efficiency and utility.

In Figure 4(a) and 4(c), we use the first 4 attributes of the
diabetes dataset and random dataset respectively, fix confidence
to be 0.8 4 and plot the execution time for runs of SFALM
using different subsets of 4 optimizations (note the log scale).
The first 4 bars refers to SFALM with all but one optimization.
(E.g., the first bar, ˜SD, shows the results when we have
PA+DM+DC (all but SD).) The fifth bar is for SFALM with
all optimizations. Thus the graph explains the effectiveness of a
particular optimization even when all others are also in effect. We
see that PA is quite effective and dominant especially for tight
ranges of δ parameters. This is expected since in such levels,
anonymization is very distorting and anti-monotonicity allows
us to prune the majority of the lattice nodes. As we loosen
the privacy constraints, SD starts to kick in and DC becomes
a bit more effective, but DM optimization is not significant even
when δmin = 0. We see that with few attributes, the time gained
due to the small size of the minimum dominant subset does not
compensate for the time spent on the creation of the dominant
set.

In all our experiments, SFALM with optimization PA or SD
nearly always returned the same output. DM by definition is
not an approximation and does not change the original output.
Figure 4(b) and 4(d) plot the LM cost metric results for the above
mentioned runs. DC does result in a slight increase in the loss
metric, but the overall utility-time trade-off is very good. When
all optimizations are in place, SFALM runs more than 1000 times
faster with less than 5% worse LM cost. For the random dataset,
DC results in a relatively higher utility loss but also provides
a higher speed up. While the complexity of obtaining values
without any optimization was prohibitive, the fact that removing
any single optimization (except DC) had little impact on the loss
metric gives confidence that these values would be close to the
exact SFALM algorithm.

When we have more attributes, it becomes impractical to run
SFALM without SD and PA. In such cases, the significance
of DM and DC becomes more observable. In Figures 5(a) and
5(c), we show execution times for ˜DM˜DC, ˜DM, ˜DC, and
ALL when we use the first 7 attributes of the Diabetes and
Random datasets. DM and DC are both effective in speeding
up SFALM especially for loose δ constraints. DC seems to be
better, however, as we see in Figures 5(b) and 5(d), it introduces
an 8% increase in utility cost of the output. The use of DM+DC
stands as a beneficial trade-off, since SFALM runs 100 times
faster when both optimizations are active. Results for the random
dataset are similar except that utility cost levels were a bit lower
(justifying the discussion in Section 5).

We show in Figure 6 how much pruning SD, PA, and DM do
when we use all optimizations. Prune rates of 80-95% for SD
and PA clearly shows why it becomes infeasible to run SFALM
without them. For SD, pruning is displayed as an average for
each recursive step in Equation 4. In fact, SD prunes much more
than what the figures show since each cut cancels out additional
calculations in the tail of the recursion.

In Figure 7 we show the behavior of SFALM with respect to
decreasing confidence by setting δmin = 0,δmax = 0.1. From the

4. We will show results for higher confidence levels in Figure 7, but the
0.8 confidence level provides a more effective view of the tradeoffs between
optimizations
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Fig. 4. Results with 4 dimensions

TABLE 5
Table shows decrease in execution time and increase in cost with

varying bucket sizes for DC optimization

bs 2 4 6 8 10
x .62 .36 .20 .13 .11
+ 0 .05 .05 .09 .11

shape of the graphs, the same conclusions can be made about
the effect of the various pruning techniques.

Table 5 shows how varying bucket size affects the utility-
efficiency tradeoff for optimization DC. We set c = 0.8,δmin =
0,δmax = 0.1 for the diabetes dataset. The increase in speed starts
quickly but stabilize for large bucket sizes. This is mostly due to
the minimum limit we set for the number of points within 4σ.

9 CONCLUSIONS AND FUTURE WORK

While k-anonymity and related techniques have received consid-
erable attention, it isn’t clear that they are the best way to balance
privacy and data utility [7]. We have presented a problem where
anonymization is an appropriate solution, and a metric δ-presence
that correlates to the real risk/cost of a privacy violation. Datasets
anonymized directly to meet the δ-presence standard distort data
less than k-anonymization to comparable privacy levels, and
provide a clear risk-based guarantee of privacy. Introducing a

“liability risk” confidence metric allows the δ-presense metric to
be utilized in practical scenarios.

The ability to anonymize data to meet δ-presence without
complete world knowledge does come with a cost. Knowing the
public dataset, the single-dimensional approach in [1] achieved
LM cost under 0.6 for the scenario in Figure 7(b). They also
showed that k-anonymity could achieve similar LM costs, but
again this requires knowing the public dataset (as well as trying
multiple values of k) as there is no direct relationship between
choice of k and the disclosure risk measured by δ-presence, and
thus no way to determine if δ-presence has been met other than
by testing against the public dataset. A typical example from the
experiments depicted in Figure 7(b) generalizes the tuple (39,
State-gov, Bachelors, Never-married, Adm-clerical, Not-in-family,
White) to (Any, Any, University, Any, Other, Not-in-family, Any) at
confidence 0.8, and (Any, Any, Any, Any, Adm-clerical, Any, Any) at
confidence 0.98. Note the suppression of relatively specific items
(age, working for state government). Significant improvement
may be possible through algorithms achieving c-confident δ-
presence with multi-domain generalization, as done for basic δ-
presence in [1].

Extending this work to linking with sensitive data in a dis-
closed dataset, as with `-diversity at t-closeness, is straightfor-
ward (and could be easily accomplished using the technique of
[7].) It may be possible to design δ-presence algorithms that
guarantee bounds on optimality as done for k-anonymity in [18].
Further development of δ-presence will address a variety of real-
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Fig. 5. Results with varying δ and 7 dimensions
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Fig. 6. Prune Rates for 7 dimensions

world privacy issues not adequately addressed by other methods.
The δ-presence definition can be revisited by assuming an

adversary with varying levels of background knowledge; an
adversary who knows more (e.g., the weight of an individual)
gains in their ability to identify an individual, but also in their
prior estimation of sensitive data. For example, knowing an
individual is obese may make them easier to identify than
not knowing their weight, but even without the anonymized
data an adversary would have a strong reason to believe the
individual was at risk for diabetes. As adversary prior knowledge
increases, the probability of disclosure increases but the cost

from disclosure decreases; giving a cost-utility tradeoff (instead
of simply privacy-utility).

It is also possible to use randomization instead of generaliza-
tions on the private dataset to provide δ-presence. The authors
are currently working on a hybrid approach where generalization
is done through probability distributions. In all these cases, more
advanced bayesian or statistical techniques would be required.

We have shown that the δ-presence measure first introduced
in [1] not only provides a more meaningful approach to privacy
than competing metrics, but with this paper we show that it can
be practically achieved.
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Fig. 7. Result with varying confidence with 7 dimensions
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