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Abstract:We study positive solutions to the steady state reaction di�usion equation of the form:{
−∆u = λf (u); Ω
∂u
∂η +

√
λu = 0; ∂Ω

where λ > 0 is a positive parameter, Ω is a bounded domain in RN when N > 1 (with smooth boundary ∂Ω)
or Ω = (0, 1), and ∂u

∂η is the outward normal derivative of u. Here f (s) = ms + g(s)where m ≥ 0 (constant) and
g ∈ C2[0, r) ∩ C[0,∞) for some r > 0. Further, we assume that g is increasing, sublinear at in�nity, g(0) = 0,
g′(0) = 1 and g′′(0) > 0. In particular, we discuss the existence of multiple positive solutions for certain
ranges of λ leading to the occurrence of Σ-shaped bifurcation diagrams. We establish our multiplicity results
via the method of sub-supersolutions.
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1 Introduction
In the recent literature there has been considerable interest in reaction di�usion models where a parameter
in�uences the equation as well as the boundary conditions. See [1, 2, 3] for recent studies in this direction.
In this paper, we enhance this study to show that for certain classes of such models the bifurcation diagram
(λ, ‖u‖∞) for positive solutions is at least Σ-shaped. Namely, we study boundary value problems of the form:{

−∆u = λf (u); Ω
∂u
∂η +

√
λu = 0; ∂Ω, (1.1)

where λ > 0 is a positive parameter, Ω is a bounded domain in RN when N > 1 (with smooth boundary ∂Ω)
or Ω = (0, 1), and ∂u

∂η is the outward normal derivative of u. Here f (s) = ms + g(s)where m ≥ 0 (constant) and
g ∈ C2[0, r) ∩ C[0,∞) for some r > 0. Further, we assume that g is increasing and satis�es:
(H1) g(0) = 0, g′(0) = 1, g′′(0) > 0, and lim

s→∞
g(s)
s = 0.

First, we recall some results from [3]. Namely, for k > 0, let Ak be the principal eigenvalue of the problem:{
−∆ϕ = Akϕ; Ω

∂ϕ
∂η +

√
Aϕ = 0; ∂Ω. (1.2)
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Then Ak is a strictly decreasing function of k with

lim
k→0

Ak =∞. (1.3)

Further, for a �xed λ > 0, let σλ,k be the principal eigenvalue and θλ,k > 0 on Ω be the corresponding normal-
ized eigenfunction of: {

−∆θ = (σ + λ)kθ; Ω
∂θ
∂η +

√
λθ = 0; ∂Ω. (1.4)

We note that σλ,k > 0 when λ < Ak, σλ,k < 0 when λ > Ak, and σλ,k → 0 as λ → Ak. Next, let CN = (N+1)N+1
2NN , R

be the radius of the largest inscribed ball in Ω, v be the unique solution of{
−∆v = 1; Ω

∂v
∂η + v = 0; ∂Ω, (1.5)

and let w be the unique solution of {
−∆w = 1; Ω

∂w
∂η +

√
A1
2 w = 0; ∂Ω.

(1.6)

Now, we introduce hypotheses (H2) and (H3).
(H2) There exist a1 > 0, b1 > 0 such that a1 < b1 and

min{Am , a1
f (a1)

1
‖v‖∞ } > max{ b1

f (b1)
2NCN
R2 , Am+1, 1}.

(H3) There exist a2 > 0, b2 > 0 such that a2 < b2 and
a2
f (a2)

1
‖w‖∞ ≥ Am+1 > max{ b2

f (b2)
2NCN
R2 , A1

2 }.
We note that functions satisfying (H1) − (H3) are such that s

f (s) has the shape as in Figure 1 (with l1
l2 � 1).

Fig. 1: Shape of s
f (s) when our hypotheses are satis�ed.

We now state our main results:

Theorem 1.1.
a) Let (H1) hold. Then (1.1) has a positive solution for λ ∈ [Am+1, Am). Also, a positive solution uλ for λ < Am
and λ ≈ Am such that ||uλ||∞ → ∞ as λ → A−m. Further, there exists λ < Am+1 such that (1.1) has at least two
positive solutions for λ ∈ [λ, Am+1). (Here, by λ ≈ Am, we mean λ is close to Am.)

b) Let (H1) and (H2) hold. Then (1.1) has at least three positive solutions for
λ ∈

(
max{ b1

f (b1)
2NCN
R2 , Am+1, 1},min{Am , a1

f (a1)
1

‖v‖∞ }
)
.
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(a)When m = 0 (b)When m > 0

Fig. 2: An expected bifurcation diagram for (1.1) when hypotheses of Theorem 1.1(b) are satis�ed.

Theorem 1.2. Let (H1) and (H3) hold. Then there exists λ* ∈
(
max{ b2

f (b2)
2NCN
R2 , A1

2 }, Am+1
)
such that (1.1) has

at least four positive solutions for λ ∈ [λ*, Am+1).

Corollary 1.3. Let (H1) - (H3) hold. Then there exists λ* such that (1.1) has a positive solution for λ ∈ [λ*, Am),
a positive solution uλ for λ < Am and λ ≈ Am such that ||uλ||∞ →∞ as λ → A−m, at least four positive solutions
for λ ∈ [λ*, Am+1) and at least three positive solutions for
λ ∈

(
max{ b1

f (b1)
2NCN
R2 , Am+1, 1},min{Am , a1

f (a1)
1

‖v‖∞ }
)
.

(a)When m = 0 (b)When m > 0

Fig. 3: An expected bifurcation diagram for (1.1) when hypotheses of Corollary 1.3 are satis�ed.

Remark 1.1. It is easy to show that (1.1) has no positive solutions for λ ≈ 0, and when m > 0 for λ > Am (see
Appendix).

Remark 1.2. A typical f which is likely to produce such a Σ−shaped bifurcation curve is as follows: Convex on
(0, α) for some α > 0 driving the bifurcation curve initially to the left, a strong concavity on (α, β) with β > α
making the bifurcation curve go back to the right, a strong convexity on (β, γ) with γ > β driving the bifurcation
curve back again to the left, and then a strong concavity on (γ,∞) bringing the curve eventually to the right (see
Figure 4).
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Fig. 4: Shape of f producing multiplicity.

For related study of models in biology see also [4, 5].
Finally, for an example for which Theorem 1.1, Theorem 1.2, and Corollary 1.3 hold, consider{

−∆u = λf (u) = λ[mu + g(u)]; Ω
∂u
∂η +

√
λu = 0; ∂Ω,

with

g(s) = gα,k(s) =
{

e
cs
c+s − 1; s ≤ k

[e αs
α+s − e αk

α+k ] + [e ck
c+k − 1]; s > k,

where c > 2 is a �xed number, m ≥ 0, α > 0 and k > 0 are parameters. We will discuss this example in detail
in Section 4.

We present some preliminaries in Section 2. We provide proofs of Theorems 1.1 - 1.2 and Corollary 1.3 in
Section 3. InSection4,wediscuss indetail the example f we introducedaboveand show that Theorems 1.1 - 1.2
and Corollary 1.3 hold for certain parameter values. In Section 5, when Ω = (0, 1), via the quadrature method
discussed in [3], we provide approximations to the exact bifurcation diagrams viaMathematica computations
for the example discussed in Section 4. Our existence and multiplicity results are established via a method
of sub-supersolutions.

2 Preliminaries
In this section, we introduce de�nitions of a (strict) subsolution and a (strict) supersolution of (1.1), and state
a sub-supersolution theorem and a three solution theorem that we will use.
By a subsolution of (1.1) we mean ψ ∈ C2(Ω) ∩ C1(Ω) that satis�es{

−∆ψ ≤ λf (ψ); Ω
∂ψ
∂η +

√
λψ ≤ 0; ∂Ω.

By a supersolution of (1.1) we mean Z ∈ C2(Ω) ∩ C1(Ω) that satis�es{
−∆Z ≥ λf (Z); Ω

∂Z
∂η +

√
λZ ≥ 0; ∂Ω.

By a strict subsolution of (1.1) wemean a subsolution which is not a solution. By a strict supersolution of (1.1)
we mean a supersolution which is not a solution.
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Then the following results hold (see [6, 7]):

Lemma 2.1. Let ψ and Z be a subsolution and a supersolution of (1.1) respectively such that ψ ≤ Z. Then (1.1)
has a solution u ∈ C2(Ω) ∩ C1(Ω) such that u ∈ [ψ, Z].

Lemma 2.2. Let u1 and u2 be a subsolution and a supersolution of (1.1) respectively such that u1 ≤ u2 in Ω.
Let u2 and u1 be a strict subsolution and a strict supersolution of (1.1) respectively such that u2, u1 ∈ [u1, u2]
and u2 � u1. Then (1.1) has at least three solutions u1, u2 and u3 where ui ∈ [ui , ui] for i = 1, 2 and u3 ∈
[u1, u2]\([u1, u1] ∪ [u2, u2]).

3 Proofs of Theorems 1.1-1.2 and Corollary 1.3
First we construct sub-super solutions for certain λ ranges. Recall θλ,k and σλ,k (see (1.4)).
Construction of a small strict subsolution ψ1 for λ < Am+1 and λ ≈ Am+1 when (H1) is satis�ed

We �rst note that f ′′(s) > 0 for s ≈ 0 since g′′(0) > 0. Hence there exists A* > 0 and s1 > 0 such that
f ′′(s) > A* for s < s1. Let ψ1 = δλθλ,m+1 where δλ = 2(m+1)σλ,m+1

λA* min
Ω
θλ,m+1

. We note that σλ,m+1 > 0, σλ,m+1 → 0 as

λ → A−m+1, andmin
Ω
θλ,m+1 ↛ 0 as λ → A−m+1. Thus δλ → 0+ as λ → A−m+1. Now by Taylor’s Theorem, we have

f (ψ1) = f (0) + f ′(0)ψ1 + f ′′(ζ )
2 ψ1

2 = (m + 1)ψ1 + f ′′(ζ )
2 ψ1

2 for some ζ ∈ [0, ψ1]. Then we have

−∆ψ1 − λf (ψ1) = δλ(σλ,m+1 + λ)(m + 1)θλ,m+1 − λ
[
(m + 1)δλθλ,m+1 +

f ′′(ζ )
2 (δλθλ,m+1)2

]
< δλθλ,m+1

[
(m + 1)σλ,m+1 −

λA*
2 δλmin

Ω
θλ,m+1

]
= 0; Ω

by our choice of δλ, for λ < Am+1 and λ ≈ Am+1 such that ψ1 < s1. Also, ∂ψ1
∂η +

√
λψ1 = 0 on ∂Ω since θλ,m+1

satis�es this boundary condition. Thus, there exists λ < Am+1 such that ψ1 is a strict subsolution of (1.1) for
λ ∈ [λ, Am+1).

Construction of a small subsolution ψ2 for λ ∈ [Am+1, Am)when (H1) is satis�ed
We note that f ′(0) = m + 1, σλ,m+1 ≤ 0 for λ ∈ [Am+1, Am) and σλ,m+1 → 0 as λ → Am+1. Let

ψ2 = nλθλ,m+1 with nλ > 0. Now, consider H(s) = (σλ,m+1 + λ)(m + 1)s − λf (s). Then we have
H(0) = 0, H′(0) = σλ,m+1(m + 1) ≤ 0 and H′′(0) = −λf ′′(0) < 0 since f ′′(0) > 0. This implies that
−∆ψ2 = nλ(σλ,m+1 + λ)(m + 1)θλ,m+1 < λf (nλθλ,m+1) = λf (ψ2) in Ω for nλ ≈ 0. We also have ∂ψ2

∂η +
√
λψ2 = 0

on ∂Ω since θλ,m+1 satis�es this boundary condition. Thus ψ2 is a subsolution of (1.1) for nλ ≈ 0 when
λ ∈ [Am+1, Am).

Construction of a subsolution ψ3 for λ < Am and λ ≈ Am such that ‖ψ3‖∞ → ∞ as λ → A−m when (H1) is
satis�ed

Let m > 0 and ψ3 = ϵλθλ,m where ϵλ =
λg
(
min
Ω
θλ,m
)

mσλ,m‖θλ,m‖∞
. We note that ϵλ > 0 since σλ,m > 0 for λ < Am.

Further, ϵλ →∞ as λ → A−m since σλ,m → 0+ as λ → A−m andmin
Ω
θλ,m ↛ 0. This implies that ‖ψ3‖∞ →∞ as

λ → A−m. Now we have

−∆ψ3 − λf (ψ3) = ϵλ[(λ + σλ,m)mθλ,m] − λ[mϵλθλ,m + g(ϵλθλ,m)]
= ϵλmσλ,mθλ,m − λg(ϵλθλ,m)
≤ ϵλmσλ,m‖θλ,m‖∞ − λg(ϵλθλ,m)
= λ[g

(
min
Ω
θλ,m

)
− g(ϵλθλ,m)]

≤ 0; Ω
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for λ ≈ Am, since ϵλ > 1 for λ ≈ Am and g is increasing. Hence, we have −∆ψ3 ≤ λf (ψ3) in Ω. Also, on
the boundary we have ∂ψ3

∂η +
√
λψ3 = 0 since θλ,m satis�es this boundary condition. Consequently ψ3 is a

subsolution of (1.1) such that ‖ψ3‖∞ →∞ as λ → A−m.
Next, let m = 0. Here we can show (1.1) has a subsolution ψ3 such that ‖ψ3‖∞ → ∞ as λ → ∞ by using

a well known result in [8] for semipositone problems. Namely, de�ne h ∈ C2([0,∞)) such that h(0) < 0,
h(s) ≤ f (s) for s ∈ (0,∞) and lim

s→∞
h(s) > 0. Then the boundary value problem{

−∆w = λh(w); Ω,
w = 0; ∂Ω,

has a solution wλ > 0 for λ � 1 such that ‖wλ‖∞ → ∞ as λ → ∞. Since by the Hopf maximum principle
∂wλ
∂η < 0 on ∂Ω, it is easy to show that ψ3 = wλ is a subsolution of (1.1) for λ � 1 such that ‖ψ3‖∞ → ∞ as
λ →∞.

Construction of a strict subsolution ψ4 for λ > b
f (b)

2NCN
R2 where b = b1 when (H2) is satis�ed and b = b2

when (H3) is satis�ed
Here we construct a strict subsolution ψ4 for λ > b

f (b)
2NCN
R2 using the iteration of a subsolution ψ̃ created

originally in [9] and later also used in [10]. Namely, the authors in [10] take ψ to be the solution of:{
−ψ′′(r) − N−1

r ψ
′(r) = λf (w(r)); r ∈ (0, R)

ψ′(0) = 0 = ψ(R),
(3.1)

where R is the radius of the largest inscribed ball, BR, in Ω (see Figure 5) and w(r) = bρ(r) with

Fig. 5: Largest inscribed ball in Ω.

ρ(r) =
{

1; r ∈ [0, ϵ]
1 −
[
1 −
( R−r
R−ϵ
)β]α ; r ∈ (ϵ, R], α, β > 1.

When λ > b
f (b)

2NCN
R2 for certain choices of α > 1, β > 1, and ϵ ∈ (0, 1) it was proven that (see [9] for details)

ψ ≥ w on [0, R] and hence a subsolution of (3.1) since f is increasing. Now since f (0) = 0 it follows that

ψ̃ =
{

ψ; BR
0; Ω\BR ,
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is a strict subsolution of: {
−∆u = λf (u); Ω
u = 0; ∂Ω,

for λ > b
f (b)

2NCN
R2 such that ‖ψ̃‖∞ ≥ b.

Now let ψ4 be the �rst iteration of ψ̃, namely, ψ4 be the solution to the problem:{
−∆ψ4 = λf (ψ̃); Ω

∂ψ4
∂η +

√
λψ4 = 0; ∂Ω.

Then we have −∆(ψ4 − ψ̃) ≥ 0 and ∂(ψ4−ψ̃)
∂η +

√
λ(ψ4 − ψ̃) = − ∂ψ̃∂η > 0 by the Hopf maximum principle. This

implies that ψ4 > ψ̃ in Ω. Hence, ψ4 is a strict subsolution of (1.1) for λ > b
f (b)

2NCN
R2 .

Construction of a large supersolution Z1 for λ < Am when (H1) is satis�ed
Letm > 0. Choose Z1 = Mθλ,m forM > 0. Then−∆Z1−λf (Z1) = M(σλ,m+λ)mθλ,m−λ[mMθλ,m+g(Mθλ,m)] =

mMθλ,m
[
σλ,m −

λg(Mθλ,m)
mMθλ,m

]
> 0 in Ω for M � 1 since σλ,m > 0 for λ < Am and g(s)

s → 0 as s → ∞. Further,
∂Z1
∂η +

√
λZ1 = 0 on ∂Ω since θλ,m satis�es this boundary condition. Hence, Z1 is a supersolution of (1.1) for

M � 1.
Next, let m = 0. Here we choose Z1 = Meλ, where eλ is the unique solution of −∆e = 1 in Ω and

∂e
∂η +

√
λe = 0 on ∂Ω. Note eλ > 0 on Ω. Then −∆Z1 − λf (Z1) = M − λg(Meλ) ≥ M

[
1 − λ g(M‖eλ‖∞)

M‖eλ‖∞
‖eλ‖∞

]
> 0

for M � 1 since g is increasing and g(s)
s → 0 as s → ∞. Also, ∂Z1∂η +

√
λZ1 = 0 on ∂Ω since eλ satis�es this

boundary condition. Hence, Z1 is a supersolution of (1.1) for M � 1.

Construction of a strict supersolution Z2 for λ < Am+1 when (H1) is satis�ed
Let Z2 = mλθλ,m+1 and l(s) = (σλ,m+1 + λ)(m + 1)s − λf (s). We note that σλ,m+1 > 0 for λ < Am+1. Then we

have l(0) = 0 and l′(0) = (σλ,m+1 + λ)(m + 1) − λf ′(0) = σλ,m+1(m + 1) > 0 since f ′(0) = m + 1. This implies
that −∆Z2 = mλ(σλ,m+1 + λ)(m + 1)θλ,m+1 > λf (mλθλ,m+1) = λf (Z2) in Ω for mλ ≈ 0. On the boundary, we have
∂Z2
∂η +

√
λZ2 = 0 since θλ,m+1 satis�es this boundary condition. Thus Z2 with mλ ≈ 0 is a strict supersolution

of (1.1) for λ < Am+1.

Construction of a strict supersolution Z3 for λ ∈
(
1, a1

f (a1)
1

‖v‖∞

)
when (H2) is satis�ed

Let Z3 = a1v
‖v‖∞ where v is as in (1.5). Then −∆Z3 = a1

‖v‖∞ > λf (a1) ≥ λf (Z3) since λ < a1
f (a1)

1
‖v‖∞ and f is

increasing. Further, Z3 satis�es ∂Z3
∂η +

√
λZ3 = a1

‖v‖∞
∂v
∂η +

√
λ a1v
‖v‖∞ > a1

‖v‖∞ [
∂v
∂η + v] = 0 on ∂Ω since λ > 1. Thus

Z3 is a strict supersolution of (1.1) for λ ∈
(
1, a1

f (a1)
1

‖v‖∞

)
.

Construction of a strict supersolution Z4 for λ ∈
(
A1
2 , a2

f (a2)
1

‖w‖∞

)
when (H3) is satis�ed

Let Z4 = a2w
‖w‖∞ where w is as in (1.6). Then −∆Z4 = a2

‖w‖∞ > λf (a2) ≥ λf (Z4) since λ < a2
f (a2)

1
‖w‖∞ and f

is increasing. Further, Z4 satis�es ∂Z4
∂η +

√
λZ4 = a2

‖w‖∞
∂w
∂η +

√
λ a2w
‖w‖∞ > a2

‖w‖∞ [
∂w
∂η +

√
A1
2 w] = 0 on ∂Ω since

λ > A1
2 . Thus Z4 is a strict supersolution of (1.1) for λ ∈

(
A1
2 , a2

f (a2)
1

‖w‖∞

)
.

Nowwe prove Theorems 1.1-1.2 and Corollary 1.3.
Proof of Theorem 1.1: a) LetM be as in the construction of the supersolution Z1 and nλ be as in the construc-
tion of the subsolution ψ2. We chooseM � 1 and nλ ≈ 0 such that Z1 ≥ ψ2. By Lemma 2.1, (1.1) has a positive
solution uλ ∈ [ψ2, Z1] for λ ∈ [Am+1, Am).

Recall the subsolution ψ3 of (1.1). Now we choose M � 1 such that ψ3 ≤ Z1. Hence, recalling that
‖ψ3‖∞ → ∞ as λ → A−m, by Lemma 2.1, (1.1) has a positive solution uλ ∈ [ψ3, Z1] such that ‖uλ‖∞ → ∞ as
λ → A−m.

Next, let λ ∈ [λ, Am+1)where λ be as in the construction of the strict subsolution ψ1. We note that ψ0 = 0
is a solution and hence a subsolution of (1.1). Recall the strict supersolution Z2 of (1.1). Now we choose mλ
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small enough such that ‖Z2‖∞ < ‖ψ1‖∞. Next, we choose M � 1 such that ψ1 ≤ Z1 and Z2 ≤ Z1 (see Figure
6). By Lemma 2.2, (1.1) has at least two positive solutions u1 ∈ [ψ1, Z1] and u2 ∈ [ψ0, Z1]\([ψ0, Z2]∪ [ψ1, Z1])

Fig. 6: Subsolutions ψ0 , ψ1 and supersolutions Z1 , Z2.

for λ ∈ [λ, Am+1).

b) Recall the strict subsolution ψ4 when b = b1 and the strict supersolution Z3 of (1.1). Now we choose nλ
small enough such that ψ2 ≤ ψ4 and ψ2 ≤ Z3. Next we choose M � 1 such that ψ4 ≤ Z1 and Z3 ≤ Z1 (see
Figure 7). We note that ‖ψ4‖∞ ≥ b1 > a1 = ‖Z3‖∞. By Lemma 2.2, (1.1) has at least three positive solutions
for λ ∈

(
max{ b1

f (b1)
2NCN
R2 , Am+1, 1},min{Am , a1

f (a1)
1

‖v‖∞ }
)
. We note that in the construction of ψ2, ψ4, Z1, and

Z3, the intersection of intervals of λ is
(
max{ b1

f (b1)
2NCN
R2 , Am+1, 1},min{Am , a1

f (a1)
1

‖v‖∞ }
)
. This completes the

proof.

Fig. 7: Subsolutions ψ2 , ψ4 and supersolutions Z1 , Z3.

Proof of Theorem 1.2: Let λ* = λ and ψ0 be as in the proof of Theorem 1.1. Recall the strict supersolution
Z4 and the strict subsolution ψ4 when b = b2. First we choose λ* > max{ b2

f (b2)
2NCN
R2 , A1

2 }, λ* < Am+1, and
λ* ≈ Am+1 (making δλ ≈ 0) such that ψ1 < ψ4 and ψ1 < Z4 for λ ∈ [λ*, Am+1). Next, we choose mλ small
enough such that ‖Z2‖∞ < ‖ψ1‖∞. Further, we can choose M � 1 such that ψ1 ≤ Z1 and Z2 ≤ Z1 (see Figure
(8)). By Lemma 2.2, (1.1) has a positive solution u1 ∈ [ψ0, Z1]\([ψ0, Z2] ∪ [ψ1, Z1]) for λ ∈

[
λ*, Am+1

)
. We

also have ψ4 ≤ Z1, Z4 ≤ Z1 for M � 1 and ‖ψ4‖∞ ≥ b2 > a2 = ‖Z4‖∞ (see Figure 8). Again, by Lemma 2.2,
(1.1) has at least three positive solutions u2 ∈ [ψ1, Z4], u3 ∈ [ψ4, Z1], and u4 ∈ [ψ1, Z1]\([ψ1, Z4] ∪ [ψ4, Z1])
for λ ∈ [λ*, Am+1). Hence (1.1) has at least four positive solutions for λ ∈ [λ*, Am+1). This completes the proof.

Proof of Corollary 1.3: We note that the proof of Corollary 1.3 is an immediate consequence of the proof of
Theorem 1.1 and Theorem 1.2.
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Fig. 8: Subsolutions ψ0 , ψ1 , ψ4 and supersolutions Z1 , Z2 , Z4.

4 Example
In this section, we provide an example for which Theorems 1.1 - 1.2 and Corollary 1.3 hold. Consider{

−∆u = λf (u) = λ[mu + g(u)]; Ω
∂u
∂η +

√
λu = 0; ∂Ω, (4.1)

where

g(s) = gα,k(s) =
{

e
cs
c+s − 1; s ≤ k

[e αs
α+s − e αk

α+k ] + [e ck
c+k − 1]; s > k.

Here c > 2 is a �xed number, m ≥ 0, α > 0 and k > 0 are parameters. It is easy to verify that (H1) is satis�ed.

We �rst consider the casewhenm = 0. Since k
f (k) =

k
e
ck
c+k −1

−→∞ as k −→∞, there exists k0 > 0 (independent
of α) such that for k > k0

k
f (k) > max{A1, 1}.max{‖v‖∞, ‖w‖∞}. (4.2)

Let k > k0. Next, for α > k, since α
f (α) =

α
[e

α
2 −e

αk
α+k ]+[e

ck
c+k −1]

−→ 0 as α −→ ∞, there exists α0(k)(> k) such that

for α > α0(k)
A1 >

α
f (α) .

2NCN
R2 . (4.3)

Thus, choosing a1 = a2 = k, b1 = b2 = α, by (4.2), (4.3), it is easy to see that both (H2) and (H3) are also
satis�ed when k > k0 and α > α0(k). Hence Theorems 1.1 - 1.2 and Corollary 1.3 hold for this example when
k > k0 and α > α0(k).

By continuity, it follows that Theorems 1.1-1.2 and Corollary 1.3 also hold for this example when k > k0,
α > α0(k) and m ≈ 0.

5 Approximation to the exact bifurcation diagrams for (4.1) when
Ω = (0, 1)

In this case, we note that the solutions of (4.1) can be completely analyzed by the quadrature method dis-
cussed in [3]. Here, (4.1) reduces to 

−u′′ = λf (u); (0, 1)
−u′(0) +

√
λu(0) = 0

u′(1) +
√
λu(1) = 0,

(5.1)

and the positive solutions to (5.1) are symmetric about x = 1
2 . Namely, the solutions take the shape as in Figure

9.
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Fig. 9: The shape of the solutions of (5.1).

Further, the exact bifurcation diagrams for positive solutions to (5.1) are described by the equations:

λ = 2
( ρ∫
q

ds√
F(ρ) − F(s)

)2
(5.2)

and
2[F(ρ) − F(q)] = q2 (5.3)

where, ρ = u(12 ), q = u(0) = u(1), and F(s) =
∫ s
0 f (t)dt.

Belowwe provide some bifurcation diagrams for the example discussed in the previous section viaMath-
ematica computation of (5.2)-(5.3). In fact, we obtain exact Σ−shaped bifurcation curves for certain parameter
values.

Fig. 10: The local view of the bifurcation diagrams near the bifurcation point (A1 , 0) when m = 0 and c = 2.5.

Appendix
Proof of Remark 1.1: First, we show the non-existence of positive solutions for λ ≈ 0. Let u be a positive
solution of (1.1). Then by the Green’s second identity we obtain:

0 =
∫
Ω

[θλ,m+1∆u − u∆θλ,m+1]dx
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Fig. 11: The local view of the bifurcation diagrams near the bifurcation point (A1.01 , 0) when m = 0.01 and c = 2.5.

=
∫
Ω

[−λf (u) + u(σλ,m+1 + λ)(m + 1)]θλ,m+1dx

≥
∫
Ω

[−λMu + u(σλ,m+1 + λ)(m + 1)]θλ,m+1dx

=
∫
Ω

λ
{
(m + 1)σλ,m+1

λ − [M − (m + 1)]
}
uθλ,m+1dx (.4)

where M > (m + 1) is such that f (s) ≤ Ms for all s ∈ [0,∞). Now for λ < Am+1, σλ,m+1 > 0, and lim
λ→0

σλ,m+1
λ = ∞

(see [11]). This contradicts (.4) for λ ≈ 0 and hence (1.1) has no positive solution for λ ≈ 0.
Next, when m > 0, if u is a positive solution of (1.1), then again by the Green’s second identity we obtain:

0 =
∫
Ω

[θλ,m∆u − u∆θλ,m]dx

=
∫
Ω

[−λf (u) + u(σλ,m + λ)m]θλ,mdx

≤
∫
Ω

[−λmu + u(σλ,m + λ)m]θλ,mdx

=
∫
Ω

mσλ,muθλ,mdx (.5)

since f (s) ≥ ms on [0,∞). Now if λ > Am then σλ,m < 0 which contradicts (.5). Hence (1.1) has no positive
solution for λ > Am.

Con�ict of interest: The authors state no con�ict of interest.
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