Research Article

A. Acharya, N. Fonseka, J. Quiroa, and R. Shivaji*

Σ-Shaped Bifurcation Curves

https://doi.org/10.1515/anona-2020-0180
Received December 2, 2020; accepted March 15, 2021.
Abstract: We study positive solutions to the steady state reaction diffusion equation of the form:

$$
\left\{\begin{array}{c}
-\Delta u=\lambda f(u) ; \Omega \\
\frac{\partial u}{\partial \eta}+\sqrt{\lambda} u=0 ; \partial \Omega
\end{array}\right.
$$

where $\lambda>0$ is a positive parameter, Ω is a bounded domain in \mathbb{R}^{N} when $N>1$ (with smooth boundary $\partial \Omega$) or $\Omega=(0,1)$, and $\frac{\partial u}{\partial \eta}$ is the outward normal derivative of u. Here $f(s)=m s+g(s)$ where $m \geq 0$ (constant) and $g \in C^{2}[0, r) \cap C[0, \infty)$ for some $r>0$. Further, we assume that g is increasing, sublinear at infinity, $g(0)=0$, $g^{\prime}(0)=1$ and $g^{\prime \prime}(0)>0$. In particular, we discuss the existence of multiple positive solutions for certain ranges of λ leading to the occurrence of Σ-shaped bifurcation diagrams. We establish our multiplicity results via the method of sub-supersolutions.

Keywords: Σ-Shaped Bifurcaion Curves, Positive Solutions, Sub-Super Solutions
MSC: 35J15, 35J25, 35J60

1 Introduction

In the recent literature there has been considerable interest in reaction diffusion models where a parameter influences the equation as well as the boundary conditions. See [1, 2, 3] for recent studies in this direction. In this paper, we enhance this study to show that for certain classes of such models the bifurcation diagram $\left(\lambda,\|u\|_{\infty}\right)$ for positive solutions is at least Σ-shaped. Namely, we study boundary value problems of the form:

$$
\left\{\begin{array}{c}
-\Delta u=\lambda f(u) ; \Omega \tag{1.1}\\
\frac{\partial u}{\partial \eta}+\sqrt{\lambda} u=0 ; \partial \Omega
\end{array}\right.
$$

where $\lambda>0$ is a positive parameter, Ω is a bounded domain in \mathbb{R}^{N} when $N>1$ (with smooth boundary $\partial \Omega$) or $\Omega=(0,1)$, and $\frac{\partial u}{\partial \eta}$ is the outward normal derivative of u. Here $f(s)=m s+g(s)$ where $m \geq 0$ (constant) and $g \in C^{2}[0, r) \cap C[0, \infty)$ for some $r>0$. Further, we assume that g is increasing and satisfies:
$\left(H_{1}\right) g(0)=0, g^{\prime}(0)=1, g^{\prime \prime}(0)>0$, and $\lim _{s \rightarrow \infty} \frac{g(s)}{s}=0$.
First, we recall some results from [3]. Namely, for $k>0$, let A_{k} be the principal eigenvalue of the problem:

$$
\left\{\begin{array}{c}
-\Delta \phi=A k \phi ; \Omega \tag{1.2}\\
\frac{\partial \phi}{\partial \eta}+\sqrt{A} \phi=0 ; \partial \Omega
\end{array}\right.
$$

[^0]Then A_{k} is a strictly decreasing function of k with

$$
\begin{equation*}
\lim _{k \rightarrow 0} A_{k}=\infty \tag{1.3}
\end{equation*}
$$

Further, for a fixed $\lambda>0$, let $\sigma_{\lambda, k}$ be the principal eigenvalue and $\theta_{\lambda, k}>0$ on $\bar{\Omega}$ be the corresponding normalized eigenfunction of:

$$
\left\{\begin{array}{l}
-\Delta \theta=(\sigma+\lambda) k \theta ; \Omega \tag{1.4}\\
\frac{\partial \theta}{\partial \eta}+\sqrt{\lambda} \theta=0 ; \partial \Omega
\end{array}\right.
$$

We note that $\sigma_{\lambda, k}>0$ when $\lambda<A_{k}, \sigma_{\lambda, k}<0$ when $\lambda>A_{k}$, and $\sigma_{\lambda, k} \rightarrow 0$ as $\lambda \rightarrow A_{k}$. Next, let $C_{N}=\frac{(N+1)^{N+1}}{2 N^{N}}, R$ be the radius of the largest inscribed ball in Ω, v be the unique solution of

$$
\left\{\begin{align*}
-\Delta v & =1 ; \Omega \tag{1.5}\\
\frac{\partial v}{\partial \eta}+v & =0 ; \partial \Omega
\end{align*}\right.
$$

and let w be the unique solution of

$$
\left\{\begin{array}{c}
-\Delta w=1 ; \Omega \tag{1.6}\\
\frac{\partial w}{\partial \eta}+\sqrt{\frac{A_{1}}{2}} w=0 ; \partial \Omega
\end{array}\right.
$$

Now, we introduce hypotheses $\left(H_{2}\right)$ and $\left(H_{3}\right)$.
$\left(H_{2}\right)$ There exist $a_{1}>0, b_{1}>0$ such that $a_{1}<b_{1}$ and $\min \left\{A_{m}, \frac{a_{1}}{f\left(a_{1}\right)} \frac{1}{\|v\|_{\infty}}\right\}>\max \left\{\frac{b_{1}}{f\left(b_{1}\right)} \frac{2 N C_{N}}{R^{2}}, A_{m+1}, 1\right\}$.
$\left(H_{3}\right)$ There exist $a_{2}>0, b_{2}>0$ such that $a_{2}<b_{2}$ and $\frac{a_{2}}{f\left(a_{2}\right)} \frac{1}{\|w\|_{\infty}} \geq A_{m+1}>\max \left\{\frac{b_{2}}{f\left(b_{2}\right)} \frac{2 N C_{N}}{R^{2}}, \frac{A_{1}}{2}\right\}$.
We note that functions satisfying $\left(H_{1}\right)-\left(H_{3}\right)$ are such that $\frac{s}{f(s)}$ has the shape as in Figure 1 (with $\frac{l_{1}}{l_{2}} \gg 1$).

Fig. 1: Shape of $\frac{s}{f(s)}$ when our hypotheses are satisfied.

We now state our main results:

Theorem 1.1.

a) Let $\left(H_{1}\right)$ hold. Then (1.1) has a positive solution for $\lambda \in\left[A_{m+1}, A_{m}\right)$. Also, a positive solution u_{λ} for $\lambda<A_{m}$ and $\lambda \approx A_{m}$ such that $\left\|u_{\lambda}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow A_{m}^{-}$. Further, there exists $\bar{\lambda}<A_{m+1}$ such that (1.1) has at least two positive solutions for $\lambda \in\left[\bar{\lambda}, A_{m+1}\right)$. (Here, by $\lambda \approx A_{m}$, we mean λ is close to A_{m}.)
b) Let $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. Then (1.1) has at least three positive solutions for $\lambda \in\left(\max \left\{\frac{b_{1}}{f\left(b_{1}\right)} \frac{2 N C_{N}}{R^{2}}, A_{m+1}, 1\right\}, \min \left\{A_{m}, \frac{a_{1}}{f\left(a_{1}\right)} \frac{1}{\|v\|_{\infty}}\right\}\right)$.

(a) When $m=0$

(b) When $m>0$

Fig. 2: An expected bifurcation diagram for (1.1) when hypotheses of Theorem $1.1(b)$ are satisfied.

Theorem 1.2. Let $\left(H_{1}\right)$ and $\left(H_{3}\right)$ hold. Then there exists $\lambda^{\star} \in\left(\max \left\{\frac{b_{2}}{f\left(b_{2}\right)} \frac{2 N C_{N}}{R^{2}}, \frac{A_{1}}{2}\right\}, A_{m+1}\right)$ such that (1.1) has at least four positive solutions for $\lambda \in\left[\lambda^{\star}, A_{m+1}\right)$.

Corollary 1.3. Let $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then there exists λ^{\star} such that (1.1) has a positive solution for $\lambda \in\left[\lambda^{\star}, A_{m}\right)$, a positive solution u_{λ} for $\lambda<A_{m}$ and $\lambda \approx A_{m}$ such that $\left\|u_{\lambda}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow A_{m}^{-}$, at least four positive solutions for $\lambda \in\left[\lambda^{*}, A_{m+1}\right)$ and at least three positive solutions for $\lambda \in\left(\max \left\{\frac{b_{1}}{f\left(b_{1}\right)} \frac{2 N C_{N}}{R^{2}}, A_{m+1}, 1\right\}, \min \left\{A_{m}, \frac{a_{1}}{f\left(a_{1}\right)} \frac{1}{\|v\|_{\infty}}\right\}\right)$.

(a) When $m=0$

(b) When $m>0$

Fig. 3: An expected bifurcation diagram for (1.1) when hypotheses of Corollary 1.3 are satisfied.

Remark 1.1. It is easy to show that (1.1) has no positive solutions for $\lambda \approx 0$, and when $m>0$ for $\lambda>A_{m}$ (see Appendix).

Remark 1.2. A typical f which is likely to produce such a Σ-shaped bifurcation curve is as follows: Convex on $(0, \alpha)$ for some $\alpha>0$ driving the bifurcation curve initially to the left, a strong concavity on (α, β) with $\beta>\alpha$ making the bifurcation curve go back to the right, a strong convexity on (β, γ) with $\gamma>\beta$ driving the bifurcation curve back again to the left, and then a strong concavity on (γ, ∞) bringing the curve eventually to the right (see Figure 4).

Fig. 4: Shape of f producing multiplicity.

For related study of models in biology see also [4, 5].
Finally, for an example for which Theorem 1.1, Theorem 1.2, and Corollary 1.3 hold, consider

$$
\left\{\begin{array}{c}
-\Delta u=\lambda f(u)=\lambda[m u+g(u)] ; \Omega \\
\frac{\partial u}{\partial \eta}+\sqrt{\lambda} u=0 ; \partial \Omega
\end{array}\right.
$$

with

$$
g(s)=g_{\alpha, k}(s)=\left\{\begin{array}{c}
e^{\frac{c s}{c+s}}-1 ; s \leq k \\
{\left[e^{\frac{\alpha s}{\alpha+s}}-e^{\frac{\alpha k}{\alpha+k}}\right]+\left[e^{\frac{c k}{c+k}}-1\right] ; s>k}
\end{array}\right.
$$

where $c>2$ is a fixed number, $m \geq 0, \alpha>0$ and $k>0$ are parameters. We will discuss this example in detail in Section 4.

We present some preliminaries in Section 2. We provide proofs of Theorems 1.1-1.2 and Corollary 1.3 in Section 3. In Section 4, we discuss in detail the example f we introduced above and show that Theorems 1.1-1.2 and Corollary 1.3 hold for certain parameter values. In Section 5 , when $\Omega=(0,1)$, via the quadrature method discussed in [3], we provide approximations to the exact bifurcation diagrams via Mathematica computations for the example discussed in Section 4. Our existence and multiplicity results are established via a method of sub-supersolutions.

2 Preliminaries

In this section, we introduce definitions of a (strict) subsolution and a (strict) supersolution of (1.1), and state a sub-supersolution theorem and a three solution theorem that we will use.
By a subsolution of (1.1) we mean $\psi \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ that satisfies

$$
\left\{\begin{array}{c}
-\Delta \psi \leq \lambda f(\psi) ; \Omega \\
\frac{\partial \psi}{\partial \eta}+\sqrt{\lambda} \psi \leq 0 ; \partial \Omega
\end{array}\right.
$$

By a supersolution of (1.1) we mean $Z \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ that satisfies

$$
\left\{\begin{array}{c}
-\Delta Z \geq \lambda f(Z) ; \Omega \\
\frac{\partial Z}{\partial \eta}+\sqrt{\lambda} Z \geq 0 ; \partial \Omega
\end{array}\right.
$$

By a strict subsolution of (1.1) we mean a subsolution which is not a solution. By a strict supersolution of (1.1) we mean a supersolution which is not a solution.

Then the following results hold (see [6, 7]):
Lemma 2.1. Let ψ and Z be a subsolution and a supersolution of (1.1) respectively such that $\psi \leq Z$. Then (1.1) has a solution $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ such that $u \in[\psi, Z]$.

Lemma 2.2. Let \underline{u}_{1} and \bar{u}_{2} be a subsolution and a supersolution of (1.1) respectively such that $\underline{u}_{1} \leq \bar{u}_{2}$ in Ω. Let \underline{u}_{2} and \bar{u}_{1} be a strict subsolution and a strict supersolution of (1.1) respectively such that $\underline{u}_{2}, \bar{u}_{1} \in\left[\underline{u}_{1}, \bar{u}_{2}\right]$ and $\underline{u}_{2} \not \approx \bar{u}_{1}$. Then (1.1) has at least three solutions u_{1}, u_{2} and u_{3} where $u_{i} \in\left[u_{i}, \bar{u}_{i}\right]$ for $i=1,2$ and $u_{3} \in$ $\left[\underline{u}_{1}, \bar{u}_{2}\right] \backslash\left(\left[\underline{u}_{1}, \bar{u}_{1}\right] \cup\left[\underline{u}_{2}, \bar{u}_{2}\right]\right)$.

3 Proofs of Theorems 1.1-1.2 and Corollary 1.3

First we construct sub-super solutions for certain λ ranges. Recall $\theta_{\lambda, k}$ and $\sigma_{\lambda, k}$ (see (1.4)).
Construction of a small strict subsolution ψ_{1} for $\lambda<A_{m+1}$ and $\lambda \approx A_{m+1}$ when $\left(H_{1}\right)$ is satisfied
We first note that $f^{\prime \prime}(s)>0$ for $s \approx 0$ since $g^{\prime \prime}(0)>0$. Hence there exists $A^{\star}>0$ and $s_{1}>0$ such that $f^{\prime \prime}(s)>A^{\star}$ for $s<s_{1}$. Let $\psi_{1}=\delta_{\lambda} \theta_{\lambda, m+1}$ where $\delta_{\lambda}=\frac{2(m+1) \sigma_{\lambda, m+1}}{\lambda A^{*} \frac{\min }{\bar{n}} \theta_{\lambda, m+1}}$. We note that $\sigma_{\lambda, m+1}>0, \sigma_{\lambda, m+1} \rightarrow 0$ as $\lambda \rightarrow A_{m+1}^{-}$, and $\min _{\bar{\Omega}} \theta_{\lambda, m+1} \rightarrow 0$ as $\lambda \rightarrow A_{m+1}^{-}$. Thus $\delta_{\lambda} \rightarrow 0^{+}$as $\lambda \rightarrow A_{m+1}^{-}$. Now by Taylor's Theorem, we have $f\left(\psi_{1}\right)=f(0)+f^{\prime}(0) \psi_{1}+\frac{f^{\prime \prime}(\zeta)}{2} \psi_{1}{ }^{2}=(m+1) \psi_{1}+\frac{f^{\prime \prime}(\zeta)}{2} \psi_{1}{ }^{2}$ for some $\zeta \in\left[0, \psi_{1}\right]$. Then we have

$$
\begin{aligned}
-\Delta \psi_{1}-\lambda f\left(\psi_{1}\right) & =\delta_{\lambda}\left(\sigma_{\lambda, m+1}+\lambda\right)(m+1) \theta_{\lambda, m+1}-\lambda\left[(m+1) \delta_{\lambda} \theta_{\lambda, m+1}+\frac{f^{\prime \prime}(\zeta)}{2}\left(\delta_{\lambda} \theta_{\lambda, m+1}\right)^{2}\right] \\
& <\delta_{\lambda} \theta_{\lambda, m+1}\left[(m+1) \sigma_{\lambda, m+1}-\frac{\lambda A^{\star}}{2} \delta_{\lambda} \min _{\bar{\Omega}} \theta_{\lambda, m+1}\right]=0 ; \Omega
\end{aligned}
$$

by our choice of δ_{λ}, for $\lambda<A_{m+1}$ and $\lambda \approx A_{m+1}$ such that $\psi_{1}<s_{1}$. Also, $\frac{\partial \psi_{1}}{\partial \eta}+\sqrt{\lambda} \psi_{1}=0$ on $\partial \Omega$ since $\theta_{\lambda, m+1}$ satisfies this boundary condition. Thus, there exists $\bar{\lambda}<A_{m+1}$ such that ψ_{1} is a strict subsolution of (1.1) for $\lambda \in\left[\bar{\lambda}, A_{m+1}\right)$.

Construction of a small subsolution ψ_{2} for $\lambda \in\left[A_{m+1}, A_{m}\right)$ when $\left(H_{1}\right)$ is satisfied
We note that $f^{\prime}(0)=m+1, \sigma_{\lambda, m+1} \leq 0$ for $\lambda \in\left[A_{m+1}, A_{m}\right)$ and $\sigma_{\lambda, m+1} \rightarrow 0$ as $\lambda \rightarrow A_{m+1}$. Let $\psi_{2}=n_{\lambda} \theta_{\lambda, m+1}$ with $n_{\lambda}>0$. Now, consider $H(s)=\left(\sigma_{\lambda, m+1}+\lambda\right)(m+1) s-\lambda f(s)$. Then we have $H(0)=0, H^{\prime}(0)=\sigma_{\lambda, m+1}(m+1) \leq 0$ and $H^{\prime \prime}(0)=-\lambda f^{\prime \prime}(0)<0$ since $f^{\prime \prime}(0)>0$. This implies that $-\Delta \psi_{2}=n_{\lambda}\left(\sigma_{\lambda, m+1}+\lambda\right)(m+1) \theta_{\lambda, m+1}<\lambda f\left(n_{\lambda} \theta_{\lambda, m+1}\right)=\lambda f\left(\psi_{2}\right)$ in Ω for $n_{\lambda} \approx 0$. We also have $\frac{\partial \psi_{2}}{\partial \eta}+\sqrt{\lambda} \psi_{2}=0$ on $\partial \Omega$ since $\theta_{\lambda, m+1}$ satisfies this boundary condition. Thus ψ_{2} is a subsolution of (1.1) for $n_{\lambda} \approx 0$ when $\lambda \in\left[A_{m+1}, A_{m}\right)$.

Construction of a subsolution ψ_{3} for $\lambda<A_{m}$ and $\lambda \approx A_{m}$ such that $\left\|\psi_{3}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow A_{m}^{-}$when $\left(H_{1}\right)$ is satisfied

Let $m>0$ and $\psi_{3}=\epsilon_{\lambda} \theta_{\lambda, m}$ where $\epsilon_{\lambda}=\frac{\lambda g\left(\min _{\Omega} \theta_{\lambda, m}\right)}{m \sigma_{\lambda, m}\left\|\theta_{\lambda, m}\right\|_{\infty}}$. We note that $\epsilon_{\lambda}>0$ since $\sigma_{\lambda, m}>0$ for $\lambda<A_{m}$. Further, $\epsilon_{\lambda} \rightarrow \infty$ as $\lambda \rightarrow A_{m}^{-}$since $\sigma_{\lambda, m} \rightarrow 0^{+}$as $\lambda \rightarrow A_{m}^{-}$and $\min _{\bar{\Omega}} \theta_{\lambda, m} \rightarrow 0$. This implies that $\left\|\psi_{3}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow A_{m}^{-}$. Now we have

$$
\begin{aligned}
-\Delta \psi_{3}-\lambda f\left(\psi_{3}\right) & =\epsilon_{\lambda}\left[\left(\lambda+\sigma_{\lambda, m}\right) m \theta_{\lambda, m}\right]-\lambda\left[m \epsilon_{\lambda} \theta_{\lambda, m}+g\left(\epsilon_{\lambda} \theta_{\lambda, m}\right)\right] \\
& =\epsilon_{\lambda} m \sigma_{\lambda, m} \theta_{\lambda, m}-\lambda g\left(\epsilon_{\lambda} \theta_{\lambda, m}\right) \\
& \leq \epsilon_{\lambda} m \sigma_{\lambda, m}\left\|\theta_{\lambda, m}\right\| \infty-\lambda g\left(\epsilon_{\lambda} \theta_{\lambda, m}\right) \\
& =\lambda\left[g\left(\min _{\bar{\Omega}} \theta_{\lambda, m}\right)-g\left(\epsilon_{\lambda} \theta_{\lambda, m}\right)\right] \\
& \leq 0 ; \Omega
\end{aligned}
$$

for $\lambda \approx A_{m}$, since $\epsilon_{\lambda}>1$ for $\lambda \approx A_{m}$ and g is increasing. Hence, we have $-\Delta \psi_{3} \leq \lambda f\left(\psi_{3}\right)$ in Ω. Also, on the boundary we have $\frac{\partial \psi_{3}}{\partial \eta}+\sqrt{\lambda} \psi_{3}=0$ since $\theta_{\lambda, m}$ satisfies this boundary condition. Consequently ψ_{3} is a subsolution of (1.1) such that $\left\|\psi_{3}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow A_{m}^{-}$.

Next, let $m=0$. Here we can show (1.1) has a subsolution ψ_{3} such that $\left\|\psi_{3}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow \infty$ by using a well known result in [8] for semipositone problems. Namely, define $h \in C^{2}([0, \infty))$ such that $h(0)<0$, $h(s) \leq f(s)$ for $s \in(0, \infty)$ and $\lim _{s \rightarrow \infty} h(s)>0$. Then the boundary value problem

$$
\left\{\begin{array}{c}
-\Delta w=\lambda h(w) ; \Omega \\
w=0 ; \partial \Omega
\end{array}\right.
$$

has a solution $\bar{w}_{\lambda}>0$ for $\lambda \gg 1$ such that $\left\|\bar{w}_{\lambda}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow \infty$. Since by the Hopf maximum principle $\frac{\partial \bar{w}_{\lambda}}{\partial \eta}<0$ on $\partial \Omega$, it is easy to show that $\psi_{3}=\bar{w}_{\lambda}$ is a subsolution of (1.1) for $\lambda \gg 1$ such that $\left\|\psi_{3}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow \infty$.

Construction of a strict subsolution ψ_{4} for $\lambda>\frac{b}{f(b)} \frac{2 N C_{N}}{R^{2}}$ where $b=b_{1}$ when $\left(H_{2}\right)$ is satisfied and $b=b_{2}$ when $\left(H_{3}\right)$ is satisfied

Here we construct a strict subsolution ψ_{4} for $\lambda>\frac{b}{f(b)} \frac{2 N C_{N}}{R^{2}}$ using the iteration of a subsolution $\tilde{\psi}$ created originally in [9] and later also used in [10]. Namely, the authors in [10] take ψ to be the solution of:

$$
\left\{\begin{array}{c}
-\psi^{\prime \prime}(r)-\frac{N-1}{r} \psi^{\prime}(r)=\lambda f(w(r)) ; r \in(0, R) \tag{3.1}\\
\psi^{\prime}(0)=0=\psi(R),
\end{array}\right.
$$

where R is the radius of the largest inscribed ball, B_{R}, in Ω (see Figure 5) and $w(r)=b \rho(r)$ with

Fig. 5: Largest inscribed ball in Ω.

When $\lambda>\frac{b}{f(b)} \frac{2 N C_{N}}{R^{2}}$ for certain choices of $\alpha>1, \beta>1$, and $\epsilon \in(0,1)$ it was proven that (see [9] for details) $\psi \geq w$ on $[0, R]$ and hence a subsolution of (3.1) since f is increasing. Now since $f(0)=0$ it follows that

$$
\tilde{\psi}=\left\{\begin{array}{c}
\psi ; B_{R} \\
0 ; \Omega \backslash B_{R}
\end{array}\right.
$$

is a strict subsolution of:

$$
\left\{\begin{array}{c}
-\Delta u=\lambda f(u) ; \Omega \\
u=0 ; \partial \Omega,
\end{array}\right.
$$

for $\lambda>\frac{b}{f(b)} \frac{2 N C_{N}}{R^{2}}$ such that $\|\tilde{\psi}\|_{\infty} \geq b$.
Now let ψ_{4} be the first iteration of $\tilde{\psi}$, namely, ψ_{4} be the solution to the problem:

$$
\left\{\begin{array}{c}
-\Delta \psi_{4}=\lambda f(\tilde{\psi}) ; \Omega \\
\frac{\partial \psi_{4}}{\partial \eta}+\sqrt{\lambda} \psi_{4}=0 ; \partial \Omega .
\end{array}\right.
$$

Then we have $-\Delta\left(\psi_{4}-\tilde{\psi}\right) \geq 0$ and $\frac{\partial\left(\psi_{4}-\tilde{\psi}\right)}{\partial \eta}+\sqrt{\lambda}\left(\psi_{4}-\tilde{\psi}\right)=-\frac{\partial \tilde{\psi}}{\partial \eta}>0$ by the Hopf maximum principle. This implies that $\psi_{4}>\tilde{\psi}$ in Ω. Hence, ψ_{4} is a strict subsolution of (1.1) for $\lambda>\frac{b}{f(b)} \frac{2 N C_{N}}{R^{2}}$.

Construction of a large supersolution Z_{1} for $\lambda<A_{m}$ when $\left(H_{1}\right)$ is satisfied
Let $m>0$. Choose $Z_{1}=M \theta_{\lambda, m}$ for $M>0$. Then $-\Delta Z_{1}-\lambda f\left(Z_{1}\right)=M\left(\sigma_{\lambda, m}+\lambda\right) m \theta_{\lambda, m}-\lambda\left[m M \theta_{\lambda, m}+g\left(M \theta_{\lambda, m}\right)\right]=$ $m M \theta_{\lambda, m}\left[\sigma_{\lambda, m}-\frac{\lambda g\left(M \theta_{\lambda, m}\right)}{m M \theta_{\lambda, m}}\right]>0$ in Ω for $M \gg 1$ since $\sigma_{\lambda, m}>0$ for $\lambda<A_{m}$ and $\frac{g(s)}{s} \rightarrow 0$ as $s \rightarrow \infty$. Further, $\frac{\partial Z_{1}}{\partial \eta}+\sqrt{\lambda} Z_{1}=0$ on $\partial \Omega$ since $\theta_{\lambda, m}$ satisfies this boundary condition. Hence, Z_{1} is a supersolution of (1.1) for $M \gg 1$.

Next, let $m=0$. Here we choose $Z_{1}=M e_{\lambda}$, where e_{λ} is the unique solution of $-\Delta e=1$ in Ω and $\frac{\partial e}{\partial \eta}+\sqrt{\lambda} e=0$ on $\partial \Omega$. Note $e_{\lambda}>0$ on $\bar{\Omega}$. Then $-\Delta Z_{1}-\lambda f\left(Z_{1}\right)=M-\lambda g\left(M e_{\lambda}\right) \geq M\left[1-\lambda \frac{g\left(M\left\|e_{\lambda}\right\|_{\infty}\right)}{M\left\|e_{e}\right\|_{\infty}}\left\|e_{\lambda}\right\|_{\infty}\right]>0$ for $M \gg 1$ since g is increasing and $\frac{g(s)}{s} \rightarrow 0$ as $s \rightarrow \infty$. Also, $\frac{\partial Z_{1}}{\partial \eta}+\sqrt{\lambda} Z_{1}=0$ on $\partial \Omega$ since e_{λ} satisfies this boundary condition. Hence, Z_{1} is a supersolution of (1.1) for $M \gg 1$.

Construction of a strict supersolution Z_{2} for $\lambda<A_{m+1}$ when $\left(H_{1}\right)$ is satisfied

Let $Z_{2}=m_{\lambda} \theta_{\lambda, m+1}$ and $l(s)=\left(\sigma_{\lambda, m+1}+\lambda\right)(m+1) s-\lambda f(s)$. We note that $\sigma_{\lambda, m+1}>0$ for $\lambda<A_{m+1}$. Then we have $l(0)=0$ and $l^{\prime}(0)=\left(\sigma_{\lambda, m+1}+\lambda\right)(m+1)-\lambda f^{\prime}(0)=\sigma_{\lambda, m+1}(m+1)>0$ since $f^{\prime}(0)=m+1$. This implies that $-\Delta Z_{2}=m_{\lambda}\left(\sigma_{\lambda, m+1}+\lambda\right)(m+1) \theta_{\lambda, m+1}>\lambda f\left(m_{\lambda} \theta_{\lambda, m+1}\right)=\lambda f\left(Z_{2}\right)$ in Ω for $m_{\lambda} \approx 0$. On the boundary, we have $\frac{\partial Z_{2}}{\partial \eta}+\sqrt{\lambda} Z_{2}=0$ since $\theta_{\lambda, m+1}$ satisfies this boundary condition. Thus Z_{2} with $m_{\lambda} \approx 0$ is a strict supersolution of (1.1) for $\lambda<A_{m+1}$.

Construction of a strict supersolution Z_{3} for $\lambda \in\left(1, \frac{a_{1}}{f\left(a_{1}\right)} \frac{1}{v v \|_{\infty}}\right)$ when $\left(H_{2}\right)$ is satisfied
Let $Z_{3}=\frac{a_{1} v}{\|v\|_{\infty}}$ where v is as in (1.5). Then $-\Delta Z_{3}=\frac{a_{1}}{\|v\|_{\infty}}>\lambda f\left(a_{1}\right) \geq \lambda f\left(Z_{3}\right)$ since $\lambda<\frac{a_{1}}{f\left(a_{1}\right)} \frac{1}{\|v\|_{\infty}}$ and f is increasing. Further, Z_{3} satisfies $\frac{\partial Z_{3}}{\partial \eta}+\sqrt{\lambda} Z_{3}=\frac{a_{1}}{\|v\|_{\infty}} \frac{\partial v}{\partial \eta}+\sqrt{\lambda} \frac{a_{1} v}{\|v\|_{\infty}}>\frac{a_{1}}{\|v\|_{\infty}}\left[\frac{\partial v}{\partial \eta}+v\right]=0$ on $\partial \Omega$ since $\lambda>1$. Thus Z_{3} is a strict supersolution of (1.1) for $\lambda \in\left(1, \frac{a_{1}}{f\left(a_{1}\right)} \frac{1}{\|v\|_{\infty}}\right)$.

Construction of a strict supersolution Z_{4} for $\lambda \in\left(\frac{A_{1}}{2}, \frac{a_{2}}{f\left(a_{2}\right)} \frac{1}{\|w\|_{\infty}}\right)$ when $\left(H_{3}\right)$ is satisfied
Let $Z_{4}=\frac{a_{2} w}{\|w\|_{\infty}}$ where w is as in (1.6). Then $-\Delta Z_{4}=\frac{a_{2}}{\|w\|_{\infty}}>\lambda f\left(a_{2}\right) \geq \lambda f\left(Z_{4}\right)$ since $\lambda<\frac{a_{2}}{f\left(a_{2}\right)} \frac{1}{\|w\|_{\infty}}$ and f is increasing. Further, Z_{4} satisfies $\frac{\partial Z_{4}}{\partial \eta}+\sqrt{\lambda} Z_{4}=\frac{a_{2}}{\|w\|_{\infty}} \frac{\partial w}{\partial \eta}+\sqrt{\lambda} \frac{a_{2} w}{\|w\|_{\infty}}>\frac{a_{2}}{\|w\|_{\infty}}\left[\frac{\partial w}{\partial \eta}+\sqrt{\frac{A_{1}}{2}} w\right]=0$ on $\partial \Omega$ since $\lambda>\frac{A_{1}}{2}$. Thus Z_{4} is a strict supersolution of (1.1) for $\lambda \in\left(\frac{A_{1}}{2}, \frac{a_{2}}{f\left(a_{2}\right)} \frac{1}{\|w\|_{\infty}}\right)$.

Now we prove Theorems 1.1-1.2 and Corollary 1.3.

Proof of Theorem 1.1: a) Let M be as in the construction of the supersolution Z_{1} and n_{λ} be as in the construction of the subsolution ψ_{2}. We choose $M \gg 1$ and $n_{\lambda} \approx 0$ such that $Z_{1} \geq \psi_{2}$. By Lemma 2.1, (1.1) has a positive solution $u_{\lambda} \in\left[\psi_{2}, Z_{1}\right]$ for $\lambda \in\left[A_{m+1}, A_{m}\right)$.

Recall the subsolution ψ_{3} of (1.1). Now we choose $M \gg 1$ such that $\psi_{3} \leq Z_{1}$. Hence, recalling that $\left\|\psi_{3}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow A_{m}^{-}$, by Lemma 2.1, (1.1) has a positive solution $u_{\lambda} \in\left[\psi_{3}, Z_{1}\right]$ such that $\left\|u_{\lambda}\right\|_{\infty} \rightarrow \infty$ as $\lambda \rightarrow A_{m}^{-}$.

Next, let $\lambda \in\left[\bar{\lambda}, A_{m+1}\right)$ where $\bar{\lambda}$ be as in the construction of the strict subsolution ψ_{1}. We note that $\psi_{0}=0$ is a solution and hence a subsolution of (1.1). Recall the strict supersolution Z_{2} of (1.1). Now we choose m_{λ}
small enough such that $\left\|Z_{2}\right\|_{\infty}<\left\|\psi_{1}\right\|_{\infty}$. Next, we choose $M \gg 1$ such that $\psi_{1} \leq Z_{1}$ and $Z_{2} \leq Z_{1}$ (see Figure 6). By Lemma 2.2, (1.1) has at least two positive solutions $u_{1} \in\left[\psi_{1}, Z_{1}\right]$ and $u_{2} \in\left[\psi_{0}, Z_{1}\right] \backslash\left(\left[\psi_{0}, Z_{2}\right] \cup\left[\psi_{1}, Z_{1}\right]\right)$

Fig. 6: Subsolutions ψ_{0}, ψ_{1} and supersolutions Z_{1}, Z_{2}.
for $\lambda \in\left[\bar{\lambda}, A_{m+1}\right)$.
b) Recall the strict subsolution ψ_{4} when $b=b_{1}$ and the strict supersolution Z_{3} of (1.1). Now we choose n_{λ} small enough such that $\psi_{2} \leq \psi_{4}$ and $\psi_{2} \leq Z_{3}$. Next we choose $M \gg 1$ such that $\psi_{4} \leq Z_{1}$ and $Z_{3} \leq Z_{1}$ (see Figure 7). We note that $\left\|\psi_{4}\right\|_{\infty} \geq b_{1}>a_{1}=\left\|Z_{3}\right\|_{\infty}$. By Lemma 2.2, (1.1) has at least three positive solutions for $\lambda \in\left(\max \left\{\frac{b_{1}}{f\left(b_{1}\right)} \frac{2 N C_{N}}{R^{2}}, A_{m+1}, 1\right\}, \min \left\{A_{m}, \frac{a_{1}}{f\left(a_{1}\right)} \frac{1}{\|v\|_{\infty}}\right\}\right)$. We note that in the construction of $\psi_{2}, \psi_{4}, Z_{1}$, and Z_{3}, the intersection of intervals of λ is $\left(\max \left\{\frac{b_{1}}{f\left(b_{1}\right)} \frac{2 N C_{N}}{R^{2}}, A_{m+1}, 1\right\}, \min \left\{A_{m}, \frac{a_{1}}{f\left(a_{1}\right)} \frac{1}{\|v\|_{\infty}}\right\}\right)$. This completes the proof.

Fig. 7: Subsolutions ψ_{2}, ψ_{4} and supersolutions Z_{1}, Z_{3}.

Proof of Theorem 1.2: Let $\lambda^{\star}=\bar{\lambda}$ and ψ_{0} be as in the proof of Theorem 1.1. Recall the strict supersolution Z_{4} and the strict subsolution ψ_{4} when $b=b_{2}$. First we choose $\lambda^{\star}>\max \left\{\frac{b_{2}}{f\left(b_{2}\right)} \frac{2 N C_{N}}{R^{2}}, \frac{A_{1}}{2}\right\}, \lambda^{\star}<A_{m+1}$, and $\lambda^{\star} \approx A_{m+1}$ (making $\delta_{\lambda} \approx 0$) such that $\psi_{1}<\psi_{4}$ and $\psi_{1}<Z_{4}$ for $\lambda \in\left[\lambda^{*}, A_{m+1}\right.$). Next, we choose m_{λ} small enough such that $\left\|Z_{2}\right\|_{\infty}<\left\|\psi_{1}\right\|_{\infty}$. Further, we can choose $M \gg 1$ such that $\psi_{1} \leq Z_{1}$ and $Z_{2} \leq Z_{1}$ (see Figure (8)). By Lemma 2.2, (1.1) has a positive solution $u_{1} \in\left[\psi_{0}, Z_{1}\right] \backslash\left(\left[\psi_{0}, Z_{2}\right] \cup\left[\psi_{1}, Z_{1}\right]\right)$ for $\lambda \in\left[\lambda^{\star}, A_{m+1}\right)$. We also have $\psi_{4} \leq Z_{1}, Z_{4} \leq Z_{1}$ for $M \gg 1$ and $\left\|\psi_{4}\right\|_{\infty} \geq b_{2}>a_{2}=\left\|Z_{4}\right\|_{\infty}$ (see Figure 8). Again, by Lemma 2.2, (1.1) has at least three positive solutions $u_{2} \in\left[\psi_{1}, Z_{4}\right], u_{3} \in\left[\psi_{4}, Z_{1}\right]$, and $u_{4} \in\left[\psi_{1}, Z_{1}\right] \backslash\left(\left[\psi_{1}, Z_{4}\right] \cup\left[\psi_{4}, Z_{1}\right]\right)$ for $\lambda \in\left[\lambda^{\star}, A_{m+1}\right.$). Hence (1.1) has at least four positive solutions for $\lambda \in\left[\lambda^{\star}, A_{m+1}\right.$). This completes the proof.

Proof of Corollary 1.3: We note that the proof of Corollary 1.3 is an immediate consequence of the proof of Theorem 1.1 and Theorem 1.2.

Fig. 8: Subsolutions $\psi_{0}, \psi_{1}, \psi_{4}$ and supersolutions Z_{1}, Z_{2}, Z_{4}.

4 Example

In this section, we provide an example for which Theorems 1.1-1.2 and Corollary 1.3 hold. Consider

$$
\left\{\begin{array}{c}
-\Delta u=\lambda f(u)=\lambda[m u+g(u)] ; \Omega \tag{4.1}\\
\frac{\partial u}{\partial \eta}+\sqrt{\lambda} u=0 ; \partial \Omega,
\end{array}\right.
$$

where

$$
g(s)=g_{\alpha, k}(s)=\left\{\begin{array}{c}
e^{\frac{c s}{c+s}}-1 ; s \leq k \\
{\left[e^{\frac{\alpha s}{\alpha+s}}-e^{\frac{\alpha k}{\alpha+k}}\right]+\left[e^{\frac{c k}{c+k}}-1\right] ; s>k}
\end{array}\right.
$$

Here $c>2$ is a fixed number, $m \geq 0, \alpha>0$ and $k>0$ are parameters. It is easy to verify that $\left(H_{1}\right)$ is satisfied.
We first consider the case when $m=0$. Since $\frac{k}{f(k)}=\frac{k}{e^{\frac{c k}{c+k}-1}} \longrightarrow \infty$ as $k \longrightarrow \infty$, there exists $k_{0}>0$ (independent of α) such that for $k>k_{0}$

$$
\begin{equation*}
\frac{k}{f(k)}>\max \left\{A_{1}, 1\right\} . \max \left\{\|v\|_{\infty},\|w\|_{\infty}\right\} \tag{4.2}
\end{equation*}
$$

Let $k>k_{0}$. Next, for $\alpha>k$, since $\frac{\alpha}{f(\alpha)}=\frac{\alpha}{\left[e^{\frac{\alpha}{2}}-e^{\left.\frac{\alpha k}{\alpha+k}\right]+\left[e^{\frac{c k}{c+k}}-1\right]}\right.} \longrightarrow 0$ as $\alpha \longrightarrow \infty$, there exists $\alpha_{0}(k)(>k)$ such that for $\alpha>\alpha_{0}(k)$

$$
\begin{equation*}
A_{1}>\frac{\alpha}{f(\alpha)} \cdot \frac{2 N C_{N}}{R^{2}} \tag{4.3}
\end{equation*}
$$

Thus, choosing $a_{1}=a_{2}=k, b_{1}=b_{2}=\alpha$, by (4.2), (4.3), it is easy to see that both $\left(H_{2}\right)$ and $\left(H_{3}\right)$ are also satisfied when $k>k_{0}$ and $\alpha>\alpha_{0}(k)$. Hence Theorems 1.1-1.2 and Corollary 1.3 hold for this example when $k>k_{0}$ and $\alpha>\alpha_{0}(k)$.

By continuity, it follows that Theorems 1.1-1.2 and Corollary 1.3 also hold for this example when $k>k_{0}$, $\alpha>\alpha_{0}(k)$ and $m \approx 0$.

5 Approximation to the exact bifurcation diagrams for (4.1) when $\boldsymbol{\Omega}=(\mathbf{0}, \mathbf{1})$

In this case, we note that the solutions of (4.1) can be completely analyzed by the quadrature method discussed in [3]. Here, (4.1) reduces to

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=\lambda f(u) ;(0,1) \tag{5.1}\\
-u^{\prime}(0)+\sqrt{\lambda} u(0)=0 \\
u^{\prime}(1)+\sqrt{\lambda} u(1)=0
\end{array}\right.
$$

and the positive solutions to (5.1) are symmetric about $x=\frac{1}{2}$. Namely, the solutions take the shape as in Figure 9.

Fig. 9: The shape of the solutions of (5.1).

Further, the exact bifurcation diagrams for positive solutions to (5.1) are described by the equations:

$$
\begin{equation*}
\lambda=2\left(\int_{q}^{\rho} \frac{d s}{\sqrt{F(\rho)-F(s)}}\right)^{2} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
2[F(\rho)-F(q)]=q^{2} \tag{5.3}
\end{equation*}
$$

where, $\rho=u\left(\frac{1}{2}\right), q=u(0)=u(1)$, and $F(s)=\int_{0}^{s} f(t) d t$.
Below we provide some bifurcation diagrams for the example discussed in the previous section via Mathematica computation of (5.2)-(5.3). In fact, we obtain exact Σ-shaped bifurcation curves for certain parameter values.

Fig. 10: The local view of the bifurcation diagrams near the bifurcation point $\left(A_{1}, 0\right)$ when $\mathrm{m}=0$ and $c=2.5$.

Appendix

Proof of Remark 1.1: First, we show the non-existence of positive solutions for $\lambda \approx 0$. Let u be a positive solution of (1.1). Then by the Green's second identity we obtain:

$$
0=\int_{\Omega}\left[\theta_{\lambda, m+1} \Delta u-u \Delta \theta_{\lambda, m+1}\right] d x
$$

Fig. 11: The local view of the bifurcation diagrams near the bifurcation point $\left(A_{1.01}, 0\right)$ when $\mathrm{m}=0.01$ and $c=2.5$.

$$
\begin{align*}
& =\int_{\Omega}\left[-\lambda f(u)+u\left(\sigma_{\lambda, m+1}+\lambda\right)(m+1)\right] \theta_{\lambda, m+1} d x \\
& \geq \int_{\Omega}\left[-\lambda M u+u\left(\sigma_{\lambda, m+1}+\lambda\right)(m+1)\right] \theta_{\lambda, m+1} d x \\
& =\int_{\Omega} \lambda\left\{\frac{(m+1) \sigma_{\lambda, m+1}}{\lambda}-[M-(m+1)]\right\} u \theta_{\lambda, m+1} d x \tag{.4}
\end{align*}
$$

where $M>(m+1)$ is such that $f(s) \leq M s$ for all $s \in[0, \infty)$. Now for $\lambda<A_{m+1}, \sigma_{\lambda, m+1}>0$, and $\lim _{\lambda \rightarrow 0} \frac{\sigma_{\lambda, m+1}}{\lambda}=\infty$ (see [11]). This contradicts (.4) for $\lambda \approx 0$ and hence (1.1) has no positive solution for $\lambda \approx 0$. Next, when $m>0$, if u is a positive solution of (1.1), then again by the Green's second identity we obtain:

$$
\begin{align*}
0 & =\int_{\Omega}\left[\theta_{\lambda, m} \Delta u-u \Delta \theta_{\lambda, m}\right] d x \\
& =\int_{\Omega}\left[-\lambda f(u)+u\left(\sigma_{\lambda, m}+\lambda\right) m\right] \theta_{\lambda, m} d x \\
& \leq \int_{\Omega}\left[-\lambda m u+u\left(\sigma_{\lambda, m}+\lambda\right) m\right] \theta_{\lambda, m} d x \\
& =\int_{\Omega} m \sigma_{\lambda, m} u \theta_{\lambda, m} d x \tag{.5}
\end{align*}
$$

since $f(s) \geq m s$ on $[0, \infty)$. Now if $\lambda>A_{m}$ then $\sigma_{\lambda, m}<0$ which contradicts (.5). Hence (1.1) has no positive solution for $\lambda>A_{m}$.

Conflict of interest: The authors state no conflict of interest.

References

[1] J. T. Cronin, N. Fonseka, J. Goddard, J. Leonard, and R. Shivaji, Modeling the effects of density dependent emigration, weak Allee effects, and matrix hostility on patch-level population persistence, Mathematical Biosciences and Engineering, 17(2) (2019), 1718-1742.
[2] N. Fonseka, R. Shivaji, B. Son and K. Spetzer, Classes of reaction diffusion equations where a parameter influences the equation as well as the boundary condition, J. Math. Anal. Appl. 476 (2019), No. 2, 480-494.
[3] J. Goddard II, Q. Morris, S. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics, Boundary Value Problems 2018, 170 (2018).
[4] Eun Kyoung Lee, Sarath Sasi and R. Shivaji, An ecological model with a Σ-shaped bifurcation curve, J. Nonlinear Analysis, Series B: Real World Applications, Vol. 13 (2012), No. 2, pp. 634-642.
[5] M. Winkler, The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in L^{1}, Adv. Nonlinear Anal. 9 (2020), no. 1, 526-566.
[6] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620709.
[7] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture notes in pure and applied mathematics, 109 (1987), 561-566, Ed. V. Lakshmikantham.
[8] A. Castro, J. B. Garner and R. Shivaji, Existence results for classes of sublinear semipositone problems, Results Math. 23 (1993), 214-220.
[9] M. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of p-Laplacian equations, Differential Integral Equations 17 (2004), 1255-1261.
[10] E. K. Lee, S. Sasi and R. Shivaji, S-shaped bifurcation curves in ecosystems, J. Math. Anal. Appl. 381 (2011), 732-741.
[11] N. Fonseka, A. Muthunayake, R. Shivaji and B. Son, Singular reaction diffusion equations where a parameter influences the reaction term and the boundary conditions, Topol. Methods Nonlinear Anal., Vol 57, No. 1 (2021), 221-242.

[^0]: A. Acharya, Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA, E-mail: a_achary@uncg.edu
 N. Fonseka, School of Arts and Sciences, Carolina University, Winston-Salem, NC 27101, USA, E-mail: fonsekan@carolinau.edu J. Quiroa, Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA, E-mail: jequiroa@uncg.edu
 *Corresponding Author: R. Shivaji, Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA, E-mail: r_shivaj@uncg.edu

