Research Article

A. Acharya, N. Fonseka, J. Quiroa, and R. Shivaji* Σ -Shaped Bifurcation Curves

https://doi.org/10.1515/anona-2020-0180 Received December 2, 2020; accepted March 15, 2021.

Abstract: We study positive solutions to the steady state reaction diffusion equation of the form:

$$\begin{cases} -\Delta u = \lambda f(u); \ \Omega \\ \frac{\partial u}{\partial \eta} + \sqrt{\lambda} u = 0; \ \partial \Omega \end{cases}$$

where $\lambda > 0$ is a positive parameter, Ω is a bounded domain in \mathbb{R}^N when N > 1 (with smooth boundary $\partial \Omega$) or $\Omega = (0, 1)$, and $\frac{\partial u}{\partial n}$ is the outward normal derivative of u. Here f(s) = ms + g(s) where $m \ge 0$ (constant) and $g \in C^2[0, r) \cap C[0, \infty)$ for some r > 0. Further, we assume that g is increasing, sublinear at infinity, g(0) = 0, g'(0) = 1 and g''(0) > 0. In particular, we discuss the existence of multiple positive solutions for certain ranges of λ leading to the occurrence of Σ -shaped bifurcation diagrams. We establish our multiplicity results via the method of sub-supersolutions.

Keywords: *Σ*-Shaped Bifurcaion Curves, Positive Solutions, Sub-Super Solutions

MSC: 35J15, 35J25, 35J60

1 Introduction

In the recent literature there has been considerable interest in reaction diffusion models where a parameter influences the equation as well as the boundary conditions. See [1, 2, 3] for recent studies in this direction. In this paper, we enhance this study to show that for certain classes of such models the bifurcation diagram $(\lambda, ||u||_{\infty})$ for positive solutions is at least Σ -shaped. Namely, we study boundary value problems of the form:

$$\begin{cases} -\Delta u = \lambda f(u); \ \Omega\\ \frac{\partial u}{\partial \eta} + \sqrt{\lambda} u = 0; \ \partial \Omega, \end{cases}$$
(1.1)

where $\lambda > 0$ is a positive parameter, Ω is a bounded domain in \mathbb{R}^N when N > 1 (with smooth boundary $\partial \Omega$) or $\Omega = (0, 1)$, and $\frac{\partial u}{\partial \eta}$ is the outward normal derivative of u. Here f(s) = ms + g(s) where $m \ge 0$ (constant) and $g \in C^2[0, r) \cap C[0, \infty)$ for some r > 0. Further, we assume that g is increasing and satisfies: (*H*₁) g(0) = 0, g'(0) = 1, g''(0) > 0, and $\lim_{s \to 0^+} \frac{g(s)}{s} = 0$.

First, we recall some results from [3]. Namely, for k > 0, let A_k be the principal eigenvalue of the problem:

$$\begin{cases} -\Delta \phi = Ak\phi; \ \Omega\\ \frac{\partial \phi}{\partial \eta} + \sqrt{A}\phi = 0; \ \partial \Omega. \end{cases}$$
(1.2)

A. Acharya, Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA, E-mail: a achary@uncg.edu

N. Fonseka, School of Arts and Sciences, Carolina University, Winston-Salem, NC 27101, USA, E-mail: fonsekan@carolinau.edu J. Quiroa, Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA, E-mail: jequiroa@uncg.edu

^{*}Corresponding Author: R. Shivaji, Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA, E-mail: r_shivaj@uncg.edu

Then A_k is a strictly decreasing function of k with

$$\lim_{k \to 0} A_k = \infty. \tag{1.3}$$

Further, for a fixed $\lambda > 0$, let $\sigma_{\lambda,k}$ be the principal eigenvalue and $\theta_{\lambda,k} > 0$ on $\overline{\Omega}$ be the corresponding normalized eigenfunction of:

$$\begin{cases} -\Delta\theta = (\sigma + \lambda)k\theta; \ \Omega\\ \frac{\partial\theta}{\partial\eta} + \sqrt{\lambda}\theta = 0; \ \partial\Omega. \end{cases}$$
(1.4)

We note that $\sigma_{\lambda,k} > 0$ when $\lambda < A_k$, $\sigma_{\lambda,k} < 0$ when $\lambda > A_k$, and $\sigma_{\lambda,k} \to 0$ as $\lambda \to A_k$. Next, let $C_N = \frac{(N+1)^{N+1}}{2N^N}$, R be the radius of the largest inscribed ball in Ω , ν be the unique solution of

$$\begin{cases} -\Delta v = 1; \ \Omega\\ \frac{\partial v}{\partial \eta} + v = 0; \ \partial \Omega, \end{cases}$$
(1.5)

and let *w* be the unique solution of

$$\begin{cases} -\Delta w = 1; \ \Omega\\ \frac{\partial w}{\partial \eta} + \sqrt{\frac{A_1}{2}} w = 0; \ \partial \Omega. \end{cases}$$
(1.6)

Now, we introduce hypotheses (H_2) and (H_3) .

- (*H*₂) There exist $a_1 > 0$, $b_1 > 0$ such that $a_1 < b_1$ and
- $\min\{A_m, \frac{a_1}{f(a_1)} \frac{1}{\|v\|_{\infty}}\} > \max\{\frac{b_1}{f(b_1)} \frac{2NC_N}{R^2}, A_{m+1}, 1\}.$ (*H*₃) There exist $a_2 > 0, b_2 > 0$ such that $a_2 < b_2$ and

$$\frac{a_2}{f(a_2)} \frac{1}{\|w\|_{\infty}} \ge A_{m+1} > \max\{\frac{b_2}{f(b_2)} \frac{2NC_N}{R^2}, \frac{A_1}{2}\}.$$

We note that functions satisfying $(H_1) - (H_3)$ are such that $\frac{s}{f(s)}$ has the shape as in Figure 1 (with $\frac{l_1}{l_2} \gg 1$).

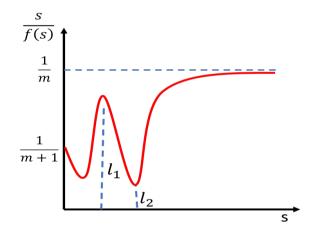


Fig. 1: Shape of $\frac{s}{f(s)}$ when our hypotheses are satisfied.

We now state our main results:

Theorem 1.1.

a) Let (H_1) hold. Then (1.1) has a positive solution for $\lambda \in [A_{m+1}, A_m)$. Also, a positive solution u_{λ} for $\lambda < A_m$ and $\lambda \approx A_m$ such that $||u_{\lambda}||_{\infty} \to \infty$ as $\lambda \to A_m^-$. Further, there exists $\overline{\lambda} < A_{m+1}$ such that (1.1) has at least two positive solutions for $\lambda \in [\overline{\lambda}, A_{m+1})$. (Here, by $\lambda \approx A_m$, we mean λ is close to A_m .)

b) Let (H_1) and (H_2) hold. Then (1.1) has at least three positive solutions for $\lambda \in \left(\max\{\frac{b_1}{f(b_1)}, \frac{2NC_N}{R^2}, A_{m+1}, 1\}, \min\{A_m, \frac{a_1}{f(a_1)}, \frac{1}{\|V\|_{\infty}}\}\right).$

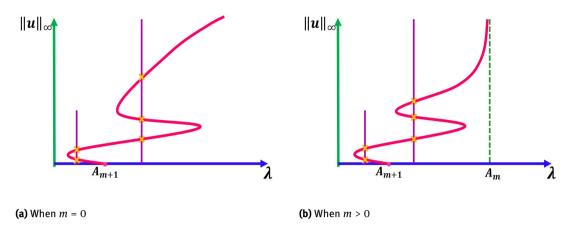


Fig. 2: An expected bifurcation diagram for (1.1) when hypotheses of Theorem 1.1(*b*) are satisfied.

Theorem 1.2. Let (H_1) and (H_3) hold. Then there exists $\lambda^* \in \left(\max\{\frac{b_2}{f(b_2)}, \frac{2NC_N}{R^2}, \frac{A_1}{2}\}, A_{m+1}\right)$ such that (1.1) has at least four positive solutions for $\lambda \in [\lambda^*, A_{m+1})$.

Corollary 1.3. Let $(H_1) - (H_3)$ hold. Then there exists λ^* such that (1.1) has a positive solution for $\lambda \in [\lambda^*, A_m)$, a positive solution u_λ for $\lambda < A_m$ and $\lambda \approx A_m$ such that $||u_\lambda||_{\infty} \to \infty$ as $\lambda \to A_m^-$, at least four positive solutions for $\lambda \in [\lambda^*, A_{m+1})$ and at least three positive solutions for $\lambda \in \left(\max\{\frac{b_1}{f(b_1)}, \frac{2NC_N}{R^2}, A_{m+1}, 1\}, \min\{A_m, \frac{a_1}{f(a_1)}, \frac{1}{\|v\|_{\infty}}\}\right)$.

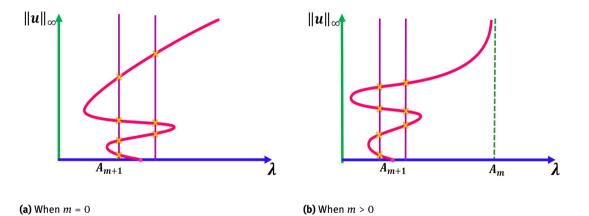


Fig. 3: An expected bifurcation diagram for (1.1) when hypotheses of Corollary 1.3 are satisfied.

Remark 1.1. It is easy to show that (1.1) has no positive solutions for $\lambda \approx 0$, and when m > 0 for $\lambda > A_m$ (see *Appendix*).

Remark 1.2. A typical f which is likely to produce such a Σ -shaped bifurcation curve is as follows: Convex on $(0, \alpha)$ for some $\alpha > 0$ driving the bifurcation curve initially to the left, a strong concavity on (α, β) with $\beta > \alpha$ making the bifurcation curve go back to the right, a strong convexity on (β, γ) with $\gamma > \beta$ driving the bifurcation curve back again to the left, and then a strong concavity on (γ, ∞) bringing the curve eventually to the right (see Figure 4).

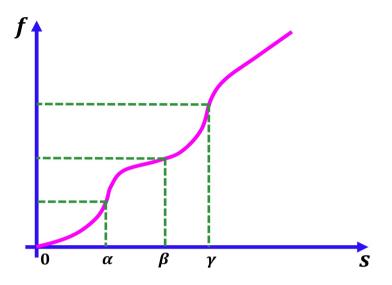


Fig. 4: Shape of *f* producing multiplicity.

For related study of models in biology see also [4, 5]. Finally, for an example for which Theorem 1.1, Theorem 1.2, and Corollary 1.3 hold, consider

$$\begin{cases} -\Delta u = \lambda f(u) = \lambda [mu + g(u)]; \ \Omega \\ \frac{\partial u}{\partial \eta} + \sqrt{\lambda} u = 0; \ \partial \Omega, \end{cases}$$

with

$$g(s) = g_{\alpha,k}(s) = \begin{cases} e^{\frac{cs}{c+s}} - 1; s \le k\\ [e^{\frac{as}{a+s}} - e^{\frac{ak}{a+k}}] + [e^{\frac{ck}{c+k}} - 1]; s > k, \end{cases}$$

where c > 2 is a fixed number, $m \ge 0$, $\alpha > 0$ and k > 0 are parameters. We will discuss this example in detail in Section 4.

We present some preliminaries in Section 2. We provide proofs of Theorems 1.1 - 1.2 and Corollary 1.3 in Section 3. In Section 4, we discuss in detail the example *f* we introduced above and show that Theorems 1.1 - 1.2 and Corollary 1.3 hold for certain parameter values. In Section 5, when $\Omega = (0, 1)$, via the quadrature method discussed in [3], we provide approximations to the exact bifurcation diagrams via Mathematica computations for the example discussed in Section 4. Our existence and multiplicity results are established via a method of sub-supersolutions.

2 Preliminaries

In this section, we introduce definitions of a (strict) subsolution and a (strict) supersolution of (1.1), and state a sub-supersolution theorem and a three solution theorem that we will use. By a subsolution of (1.1) we mean $\psi \in C^2(\Omega) \cap C^1(\overline{\Omega})$ that satisfies

$$\begin{cases} -\Delta \psi \leq \lambda f(\psi); \ \Omega \\ \frac{\partial \psi}{\partial \eta} + \sqrt{\lambda} \psi \leq 0; \ \partial \Omega \end{cases}$$

By a supersolution of (1.1) we mean $Z \in C^2(\Omega) \cap C^1(\overline{\Omega})$ that satisfies

$$\begin{cases} -\Delta Z \ge \lambda f(Z); \ \Omega\\ \frac{\partial Z}{\partial \eta} + \sqrt{\lambda} Z \ge 0; \ \partial \Omega. \end{cases}$$

By a strict subsolution of (1.1) we mean a subsolution which is not a solution. By a strict supersolution of (1.1) we mean a supersolution which is not a solution.

Then the following results hold (see [6, 7]):

Lemma 2.1. Let ψ and Z be a subsolution and a supersolution of (1.1) respectively such that $\psi \leq Z$. Then (1.1) has a solution $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ such that $u \in [\psi, Z]$.

Lemma 2.2. Let \underline{u}_1 and \overline{u}_2 be a subsolution and a supersolution of (1.1) respectively such that $\underline{u}_1 \leq \overline{u}_2$ in Ω . Let \underline{u}_2 and \overline{u}_1 be a strict subsolution and a strict supersolution of (1.1) respectively such that \underline{u}_2 , $\overline{u}_1 \in [\underline{u}_1, \overline{u}_2]$ and $\underline{u}_2 \leq \overline{u}_1$. Then (1.1) has at least three solutions u_1 , u_2 and u_3 where $u_i \in [\underline{u}_i, \overline{u}_i]$ for i = 1, 2 and $u_3 \in [\underline{u}_1, \overline{u}_2] \setminus ([\underline{u}_1, \overline{u}_1] \cup [\underline{u}_2, \overline{u}_2])$.

3 Proofs of Theorems 1.1-1.2 and Corollary 1.3

First we construct sub-super solutions for certain λ ranges. Recall $\theta_{\lambda,k}$ and $\sigma_{\lambda,k}$ (see (1.4)).

Construction of a small strict subsolution ψ_1 for $\lambda < A_{m+1}$ and $\lambda \approx A_{m+1}$ when (H_1) is satisfied

We first note that f''(s) > 0 for $s \approx 0$ since g''(0) > 0. Hence there exists $A^* > 0$ and $s_1 > 0$ such that $f''(s) > A^*$ for $s < s_1$. Let $\psi_1 = \delta_\lambda \theta_{\lambda,m+1}$ where $\delta_\lambda = \frac{2(m+1)\sigma_{\lambda,m+1}}{\lambda A^* \min_{\overline{\Omega}} \theta_{\lambda,m+1}}$. We note that $\sigma_{\lambda,m+1} > 0$, $\sigma_{\lambda,m+1} \to 0$ as $\lambda \to A^-_{m+1}$, and $\min_{\overline{\Omega}} \theta_{\lambda,m+1} \neq 0$ as $\lambda \to A^-_{m+1}$. Thus $\delta_\lambda \to 0^+$ as $\lambda \to A^-_{m+1}$. Now by Taylor's Theorem, we have $f(\psi_1) = f(0) + f'(0)\psi_1 + \frac{f''(\zeta)}{2}\psi_1^2 = (m+1)\psi_1 + \frac{f''(\zeta)}{2}\psi_1^2$ for some $\zeta \in [0, \psi_1]$. Then we have

$$-\Delta \psi_{1} - \lambda f(\psi_{1}) = \delta_{\lambda} (\sigma_{\lambda,m+1} + \lambda)(m+1)\theta_{\lambda,m+1} - \lambda \Big[(m+1)\delta_{\lambda}\theta_{\lambda,m+1} + \frac{f''(\zeta)}{2} (\delta_{\lambda}\theta_{\lambda,m+1})^{2} \Big]$$

$$< \delta_{\lambda}\theta_{\lambda,m+1} \Big[(m+1)\sigma_{\lambda,m+1} - \frac{\lambda A^{*}}{2} \delta_{\lambda} \min_{\overline{\Omega}} \theta_{\lambda,m+1} \Big] = 0; \ \Omega$$

by our choice of δ_{λ} , for $\lambda < A_{m+1}$ and $\lambda \approx A_{m+1}$ such that $\psi_1 < s_1$. Also, $\frac{\partial \psi_1}{\partial \eta} + \sqrt{\lambda} \psi_1 = 0$ on $\partial \Omega$ since $\theta_{\lambda,m+1}$ satisfies this boundary condition. Thus, there exists $\overline{\lambda} < A_{m+1}$ such that ψ_1 is a strict subsolution of (1.1) for $\lambda \in [\overline{\lambda}, A_{m+1})$.

Construction of a small subsolution ψ_2 for $\lambda \in [A_{m+1}, A_m)$ when (H_1) is satisfied

We note that f'(0) = m + 1, $\sigma_{\lambda,m+1} \leq 0$ for $\lambda \in [A_{m+1}, A_m)$ and $\sigma_{\lambda,m+1} \to 0$ as $\lambda \to A_{m+1}$. Let $\psi_2 = n_\lambda \theta_{\lambda,m+1}$ with $n_\lambda > 0$. Now, consider $H(s) = (\sigma_{\lambda,m+1} + \lambda)(m + 1)s - \lambda f(s)$. Then we have H(0) = 0, $H'(0) = \sigma_{\lambda,m+1}(m + 1) \leq 0$ and $H''(0) = -\lambda f''(0) < 0$ since f''(0) > 0. This implies that $-\Delta \psi_2 = n_\lambda (\sigma_{\lambda,m+1} + \lambda)(m + 1)\theta_{\lambda,m+1} < \lambda f(n_\lambda \theta_{\lambda,m+1}) = \lambda f(\psi_2)$ in Ω for $n_\lambda \approx 0$. We also have $\frac{\partial \psi_2}{\partial \eta} + \sqrt{\lambda}\psi_2 = 0$ on $\partial\Omega$ since $\theta_{\lambda,m+1}$ satisfies this boundary condition. Thus ψ_2 is a subsolution of (1.1) for $n_\lambda \approx 0$ when $\lambda \in [A_{m+1}, A_m)$.

Construction of a subsolution ψ_3 for $\lambda < A_m$ and $\lambda \approx A_m$ such that $\|\psi_3\|_{\infty} \to \infty$ as $\lambda \to A_m^-$ when (H_1) is satisfied

Let m > 0 and $\psi_3 = \epsilon_\lambda \theta_{\lambda,m}$ where $\epsilon_\lambda = \frac{\lambda g\left(\min_{\overline{\Omega}} \theta_{\lambda,m}\right)}{m\sigma_{\lambda,m} \|\theta_{\lambda,m}\|_{\infty}}$. We note that $\epsilon_\lambda > 0$ since $\sigma_{\lambda,m} > 0$ for $\lambda < A_m$. Further, $\epsilon_\lambda \to \infty$ as $\lambda \to A_m^-$ since $\sigma_{\lambda,m} \to 0^+$ as $\lambda \to A_m^-$ and $\min_{\overline{\Omega}} \theta_{\lambda,m} \neq 0$. This implies that $\|\psi_3\|_{\infty} \to \infty$ as $\lambda \to A_m^-$. Now we have

$$-\Delta \psi_{3} - \lambda f(\psi_{3}) = \epsilon_{\lambda} [(\lambda + \sigma_{\lambda,m})m\theta_{\lambda,m}] - \lambda [m\epsilon_{\lambda}\theta_{\lambda,m} + g(\epsilon_{\lambda}\theta_{\lambda,m})]$$

$$= \epsilon_{\lambda} m\sigma_{\lambda,m}\theta_{\lambda,m} - \lambda g(\epsilon_{\lambda}\theta_{\lambda,m})$$

$$\leq \epsilon_{\lambda} m\sigma_{\lambda,m} \|\theta_{\lambda,m}\|_{\infty} - \lambda g(\epsilon_{\lambda}\theta_{\lambda,m})$$

$$= \lambda [g(\min_{\overline{\Omega}} \theta_{\lambda,m}) - g(\epsilon_{\lambda}\theta_{\lambda,m})]$$

$$\leq 0; \ \Omega$$

for $\lambda \approx A_m$, since $\epsilon_{\lambda} > 1$ for $\lambda \approx A_m$ and g is increasing. Hence, we have $-\Delta \psi_3 \leq \lambda f(\psi_3)$ in Ω . Also, on the boundary we have $\frac{\partial \psi_3}{\partial \eta} + \sqrt{\lambda} \psi_3 = 0$ since $\theta_{\lambda,m}$ satisfies this boundary condition. Consequently ψ_3 is a subsolution of (1.1) such that $\|\psi_3\|_{\infty} \to \infty$ as $\lambda \to A_m^-$.

Next, let m = 0. Here we can show (1.1) has a subsolution ψ_3 such that $\|\psi_3\|_{\infty} \to \infty$ as $\lambda \to \infty$ by using a well known result in [8] for semipositone problems. Namely, define $h \in C^2([0, \infty))$ such that h(0) < 0, $h(s) \le f(s)$ for $s \in (0, \infty)$ and $\lim h(s) > 0$. Then the boundary value problem

$$\begin{cases} -\Delta w = \lambda h(w); \ \Omega, \\ w = 0; \ \partial \Omega, \end{cases}$$

has a solution $\overline{w}_{\lambda} > 0$ for $\lambda \gg 1$ such that $\|\overline{w}_{\lambda}\|_{\infty} \to \infty$ as $\lambda \to \infty$. Since by the Hopf maximum principle $\frac{\partial \overline{w}_{\lambda}}{\partial \eta} < 0$ on $\partial \Omega$, it is easy to show that $\psi_3 = \overline{w}_{\lambda}$ is a subsolution of (1.1) for $\lambda \gg 1$ such that $\|\psi_3\|_{\infty} \to \infty$ as $\lambda \to \infty$.

Construction of a strict subsolution ψ_4 for $\lambda > \frac{b}{f(b)} \frac{2NC_N}{R^2}$ where $b = b_1$ when (H_2) is satisfied and $b = b_2$ when (H_3) is satisfied

Here we construct a strict subsolution ψ_4 for $\lambda > \frac{b}{f(b)} \frac{2NC_N}{R^2}$ using the iteration of a subsolution $\tilde{\psi}$ created originally in [9] and later also used in [10]. Namely, the authors in [10] take ψ to be the solution of:

$$\begin{cases} -\psi''(r) - \frac{N-1}{r}\psi'(r) = \lambda f(w(r)); \ r \in (0, R) \\ \psi'(0) = 0 = \psi(R), \end{cases}$$
(3.1)

where *R* is the radius of the largest inscribed ball, B_R , in Ω (see Figure 5) and $w(r) = b\rho(r)$ with

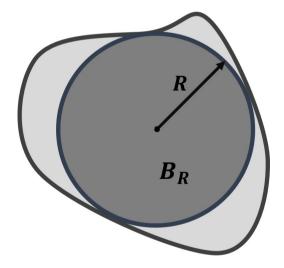


Fig. 5: Largest inscribed ball in Ω .

$$\rho(r) = \begin{cases} 1; & r \in [0, \epsilon] \\ 1 - \left[1 - \left(\frac{R-r}{R-\epsilon}\right)^{\beta}\right]^{\alpha}; r \in (\epsilon, R], \alpha, \beta > 1. \end{cases}$$

When $\lambda > \frac{b}{f(b)} \frac{2NC_N}{R^2}$ for certain choices of $\alpha > 1$, $\beta > 1$, and $\epsilon \in (0, 1)$ it was proven that (see [9] for details) $\psi \ge w$ on [0, R] and hence a subsolution of (3.1) since f is increasing. Now since f(0) = 0 it follows that

$$ilde{\psi} = egin{cases} \psi; \ B_R \ 0; \ \Omega ackslash B_R, \end{cases}$$

is a strict subsolution of:

$$\begin{cases} -\Delta u = \lambda f(u); \ \Omega \\ u = 0; \ \partial \Omega, \end{cases}$$

for $\lambda > \frac{b}{f(b)} \frac{2NC_N}{R^2}$ such that $\|\tilde{\psi}\|_{\infty} \ge b$.

Now let ψ_4 be the first iteration of $\hat{\psi}$, namely, ψ_4 be the solution to the problem:

$$\begin{cases} -\Delta \psi_4 = \lambda f(\tilde{\psi}); \ \Omega \\ \frac{\partial \psi_4}{\partial \eta} + \sqrt{\lambda} \psi_4 = 0; \ \partial \Omega \end{cases}$$

Then we have $-\Delta(\psi_4 - \tilde{\psi}) \ge 0$ and $\frac{\partial(\psi_4 - \tilde{\psi})}{\partial \eta} + \sqrt{\lambda}(\psi_4 - \tilde{\psi}) = -\frac{\partial \tilde{\psi}}{\partial \eta} > 0$ by the Hopf maximum principle. This implies that $\psi_4 > \tilde{\psi}$ in Ω . Hence, ψ_4 is a strict subsolution of (1.1) for $\lambda > \frac{b}{f(h)} \frac{2NC_N}{R^2}$.

Construction of a large supersolution Z_1 **for** $\lambda < A_m$ **when** (H_1) **is satisfied**

Let m > 0. Choose $Z_1 = M\theta_{\lambda,m}$ for M > 0. Then $-\Delta Z_1 - \lambda f(Z_1) = M(\sigma_{\lambda,m} + \lambda)m\theta_{\lambda,m} - \lambda[mM\theta_{\lambda,m} + g(M\theta_{\lambda,m})] = mM\theta_{\lambda,m} \left[\sigma_{\lambda,m} - \frac{\lambda g(M\theta_{\lambda,m})}{mM\theta_{\lambda,m}}\right] > 0$ in Ω for $M \gg 1$ since $\sigma_{\lambda,m} > 0$ for $\lambda < A_m$ and $\frac{g(s)}{s} \to 0$ as $s \to \infty$. Further, $\frac{\partial Z_1}{\partial \eta} + \sqrt{\lambda}Z_1 = 0$ on $\partial\Omega$ since $\theta_{\lambda,m}$ satisfies this boundary condition. Hence, Z_1 is a supersolution of (1.1) for $M \gg 1$.

Next, let m = 0. Here we choose $Z_1 = Me_{\lambda}$, where e_{λ} is the unique solution of $-\Delta e = 1$ in Ω and $\frac{\partial e}{\partial \eta} + \sqrt{\lambda}e = 0$ on $\partial\Omega$. Note $e_{\lambda} > 0$ on $\overline{\Omega}$. Then $-\Delta Z_1 - \lambda f(Z_1) = M - \lambda g(Me_{\lambda}) \ge M \left[1 - \lambda \frac{g(M\|e_{\lambda}\|_{\infty})}{M\|e_{\lambda}\|_{\infty}} \|e_{\lambda}\|_{\infty}\right] > 0$ for $M \gg 1$ since g is increasing and $\frac{g(s)}{s} \to 0$ as $s \to \infty$. Also, $\frac{\partial Z_1}{\partial \eta} + \sqrt{\lambda}Z_1 = 0$ on $\partial\Omega$ since e_{λ} satisfies this boundary condition. Hence, Z_1 is a supersolution of (1.1) for $M \gg 1$.

Construction of a strict supersolution Z_2 **for** $\lambda < A_{m+1}$ **when** (H_1) **is satisfied**

Let $Z_2 = m_\lambda \theta_{\lambda,m+1}$ and $l(s) = (\sigma_{\lambda,m+1} + \lambda)(m+1)s - \lambda f(s)$. We note that $\sigma_{\lambda,m+1} > 0$ for $\lambda < A_{m+1}$. Then we have l(0) = 0 and $l'(0) = (\sigma_{\lambda,m+1} + \lambda)(m+1) - \lambda f'(0) = \sigma_{\lambda,m+1}(m+1) > 0$ since f'(0) = m+1. This implies that $-\Delta Z_2 = m_\lambda(\sigma_{\lambda,m+1} + \lambda)(m+1)\theta_{\lambda,m+1} > \lambda f(m_\lambda \theta_{\lambda,m+1}) = \lambda f(Z_2)$ in Ω for $m_\lambda \approx 0$. On the boundary, we have $\frac{\partial Z_2}{\partial \eta} + \sqrt{\lambda}Z_2 = 0$ since $\theta_{\lambda,m+1}$ satisfies this boundary condition. Thus Z_2 with $m_\lambda \approx 0$ is a strict supersolution of (1.1) for $\lambda < A_{m+1}$.

Construction of a strict supersolution Z_3 for $\lambda \in \left(1, \frac{a_1}{f(a_1)} \frac{1}{\|V\|_{\infty}}\right)$ when (H_2) is satisfied

Let $Z_3 = \frac{a_1 v}{\|v\|_{\infty}}$ where v is as in (1.5). Then $-\Delta Z_3 = \frac{a_1}{\|v\|_{\infty}} > \lambda f(a_1) \ge \lambda f(Z_3)$ since $\lambda < \frac{a_1}{f(a_1)} \frac{1}{\|v\|_{\infty}}$ and f is increasing. Further, Z_3 satisfies $\frac{\partial Z_3}{\partial \eta} + \sqrt{\lambda} Z_3 = \frac{a_1}{\|v\|_{\infty}} \frac{\partial v}{\partial \eta} + \sqrt{\lambda} \frac{a_1 v}{\|v\|_{\infty}} > \frac{a_1}{\|v\|_{\infty}} \frac{\partial v}{\partial \eta} + v = 0$ on $\partial \Omega$ since $\lambda > 1$. Thus Z_3 is a strict supersolution of (1.1) for $\lambda \in \left(1, \frac{a_1}{f(a_1)} \frac{1}{\|v\|_{\infty}}\right)$.

Construction of a strict supersolution Z_4 for $\lambda \in \left(\frac{A_1}{2}, \frac{a_2}{f(a_2)} \frac{1}{\|\|w\|_{\infty}}\right)$ when (H_3) is satisfied

Let $Z_4 = \frac{a_2 w}{\|w\|_{\infty}}$ where w is as in (1.6). Then $-\Delta Z_4 = \frac{a_2}{\|w\|_{\infty}} > \lambda f(a_2) \ge \lambda f(Z_4)$ since $\lambda < \frac{a_2}{f(a_2)} \frac{1}{\|w\|_{\infty}}$ and f is increasing. Further, Z_4 satisfies $\frac{\partial Z_4}{\partial \eta} + \sqrt{\lambda} Z_4 = \frac{a_2}{\|w\|_{\infty}} \frac{\partial w}{\partial \eta} + \sqrt{\lambda} \frac{a_2 w}{\|w\|_{\infty}} > \frac{a_2}{\|w\|_{\infty}} [\frac{\partial w}{\partial \eta} + \sqrt{\frac{A_1}{2}}w] = 0$ on $\partial\Omega$ since $\lambda > \frac{A_1}{2}$. Thus Z_4 is a strict supersolution of (1.1) for $\lambda \in (\frac{A_1}{2}, \frac{a_2}{f(a_2)} \frac{1}{\|w\|_{\infty}})$.

Now we prove Theorems 1.1-1.2 and Corollary 1.3.

Proof of Theorem 1.1: a) Let *M* be as in the construction of the supersolution Z_1 and n_{λ} be as in the construction of the subsolution ψ_2 . We choose $M \gg 1$ and $n_{\lambda} \approx 0$ such that $Z_1 \ge \psi_2$. By Lemma 2.1, (1.1) has a positive solution $u_{\lambda} \in [\psi_2, Z_1]$ for $\lambda \in [A_{m+1}, A_m)$.

Recall the subsolution ψ_3 of (1.1). Now we choose $M \gg 1$ such that $\psi_3 \leq Z_1$. Hence, recalling that $\|\psi_3\|_{\infty} \to \infty$ as $\lambda \to A_m^-$, by Lemma 2.1, (1.1) has a positive solution $u_{\lambda} \in [\psi_3, Z_1]$ such that $\|u_{\lambda}\|_{\infty} \to \infty$ as $\lambda \to A_m^-$.

Next, let $\lambda \in [\overline{\lambda}, A_{m+1})$ where $\overline{\lambda}$ be as in the construction of the strict subsolution ψ_1 . We note that $\psi_0 = 0$ is a solution and hence a subsolution of (1.1). Recall the strict supersolution Z_2 of (1.1). Now we choose m_{λ}

small enough such that $||Z_2||_{\infty} < ||\psi_1||_{\infty}$. Next, we choose $M \gg 1$ such that $\psi_1 \le Z_1$ and $Z_2 \le Z_1$ (see Figure 6). By Lemma 2.2, (1.1) has at least two positive solutions $u_1 \in [\psi_1, Z_1]$ and $u_2 \in [\psi_0, Z_1] \setminus ([\psi_0, Z_2] \cup [\psi_1, Z_1])$

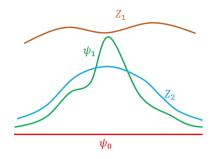


Fig. 6: Subsolutions ψ_0 , ψ_1 and supersolutions Z_1 , Z_2 .

for $\lambda \in [\overline{\lambda}, A_{m+1})$.

b) Recall the strict subsolution ψ_4 when $b = b_1$ and the strict supersolution Z_3 of (1.1). Now we choose n_λ small enough such that $\psi_2 \le \psi_4$ and $\psi_2 \le Z_3$. Next we choose $M \gg 1$ such that $\psi_4 \le Z_1$ and $Z_3 \le Z_1$ (see Figure 7). We note that $\|\psi_4\|_{\infty} \ge b_1 > a_1 = \|Z_3\|_{\infty}$. By Lemma 2.2, (1.1) has at least three positive solutions for $\lambda \in \left(\max\{\frac{b_1}{f(b_1)}, \frac{2NC_N}{R^2}, A_{m+1}, 1\}, \min\{A_m, \frac{a_1}{f(a_1)}, \frac{1}{\|v\|_{\infty}}\}\right)$. We note that in the construction of ψ_2, ψ_4, Z_1 , and Z_3 , the intersection of intervals of λ is $\left(\max\{\frac{b_1}{f(b_1)}, \frac{2NC_N}{R^2}, A_{m+1}, 1\}, \min\{A_m, \frac{a_1}{f(a_1)}, \frac{1}{\|v\|_{\infty}}\}\right)$. This completes the proof.

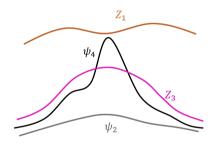


Fig. 7: Subsolutions ψ_2 , ψ_4 and supersolutions Z_1 , Z_3 .

Proof of Theorem 1.2: Let $\lambda^* = \overline{\lambda}$ and ψ_0 be as in the proof of Theorem 1.1. Recall the strict supersolution Z_4 and the strict subsolution ψ_4 when $b = b_2$. First we choose $\lambda^* > \max\{\frac{b_2}{f(b_2)}, \frac{2NC_N}{R^2}, \frac{A_1}{2}\}, \lambda^* < A_{m+1}$, and $\lambda^* \approx A_{m+1}$ (making $\delta_{\lambda} \approx 0$) such that $\psi_1 < \psi_4$ and $\psi_1 < Z_4$ for $\lambda \in [\lambda^*, A_{m+1})$. Next, we choose m_{λ} small enough such that $\|Z_2\|_{\infty} < \|\psi_1\|_{\infty}$. Further, we can choose $M \gg 1$ such that $\psi_1 < Z_1$ and $Z_2 < Z_1$ (see Figure (8)). By Lemma 2.2, (1.1) has a positive solution $u_1 \in [\psi_0, Z_1] \setminus [[\psi_0, Z_2] \cup [\psi_1, Z_1])$ for $\lambda \in [\lambda^*, A_{m+1})$. We also have $\psi_4 \leq Z_1, Z_4 \leq Z_1$ for $M \gg 1$ and $\|\psi_4\|_{\infty} \geq b_2 > a_2 = \|Z_4\|_{\infty}$ (see Figure 8). Again, by Lemma 2.2, (1.1) has at least three positive solutions $u_2 \in [\psi_1, Z_4], u_3 \in [\psi_4, Z_1]$, and $u_4 \in [\psi_1, Z_1] \setminus [[\psi_1, Z_4] \cup [\psi_4, Z_1])$ for $\lambda \in [\lambda^*, A_{m+1})$. Hence (1.1) has at least four positive solutions for $\lambda \in [\lambda^*, A_{m+1})$. This completes the proof.

Proof of Corollary 1.3: We note that the proof of Corollary 1.3 is an immediate consequence of the proof of Theorem 1.1 and Theorem 1.2.

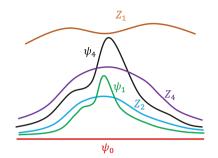


Fig. 8: Subsolutions ψ_0 , ψ_1 , ψ_4 and supersolutions Z_1 , Z_2 , Z_4 .

4 Example

In this section, we provide an example for which Theorems 1.1 - 1.2 and Corollary 1.3 hold. Consider

$$\begin{cases} -\Delta u = \lambda f(u) = \lambda [mu + g(u)]; \ \Omega \\ \frac{\partial u}{\partial \eta} + \sqrt{\lambda} u = 0; \ \partial \Omega, \end{cases}$$
(4.1)

where

$$g(s) = g_{\alpha,k}(s) = \begin{cases} e^{\frac{cs}{c+s}} - 1; s \le k\\ [e^{\frac{as}{\alpha+s}} - e^{\frac{ak}{\alpha+k}}] + [e^{\frac{ck}{c+k}} - 1]; s > k. \end{cases}$$

Here c > 2 is a fixed number, $m \ge 0$, $\alpha > 0$ and k > 0 are parameters. It is easy to verify that (H_1) is satisfied.

We first consider the case when m = 0. Since $\frac{k}{f(k)} = \frac{k}{e^{\frac{ck}{c+k}}-1} \longrightarrow \infty$ as $k \longrightarrow \infty$, there exists $k_0 > 0$ (independent of α) such that for $k > k_0$

$$\frac{k}{f(k)} > \max\{A_1, 1\}. \max\{\|v\|_{\infty}, \|w\|_{\infty}\}.$$
(4.2)

Let $k > k_0$. Next, for $\alpha > k$, since $\frac{\alpha}{f(\alpha)} = \frac{\alpha}{[e^{\frac{\alpha}{2}} - e^{\frac{\alpha k}{\alpha + k}}] + [e^{\frac{ck}{c + k}} - 1]} \longrightarrow 0$ as $\alpha \longrightarrow \infty$, there exists $\alpha_0(k)(>k)$ such that for $\alpha > \alpha_0(k)$

$$A_1 > \frac{\alpha}{f(\alpha)} \cdot \frac{2NC_N}{R^2}.$$
(4.3)

Thus, choosing $a_1 = a_2 = k$, $b_1 = b_2 = \alpha$, by (4.2), (4.3), it is easy to see that both (H_2) and (H_3) are also satisfied when $k > k_0$ and $\alpha > \alpha_0(k)$. Hence Theorems 1.1 - 1.2 and Corollary 1.3 hold for this example when $k > k_0$ and $\alpha > \alpha_0(k)$.

By continuity, it follows that Theorems 1.1-1.2 and Corollary 1.3 also hold for this example when $k > k_0$, $\alpha > \alpha_0(k)$ and $m \approx 0$.

5 Approximation to the exact bifurcation diagrams for (4.1) when $\Omega = (0, 1)$

In this case, we note that the solutions of (4.1) can be completely analyzed by the quadrature method discussed in [3]. Here, (4.1) reduces to

$$\begin{cases} -u'' = \lambda f(u); (0, 1) \\ -u'(0) + \sqrt{\lambda}u(0) = 0 \\ u'(1) + \sqrt{\lambda}u(1) = 0, \end{cases}$$
(5.1)

and the positive solutions to (5.1) are symmetric about $x = \frac{1}{2}$. Namely, the solutions take the shape as in Figure 9.

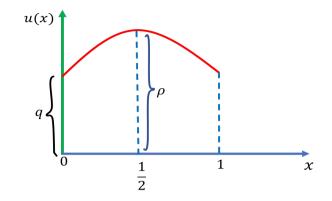


Fig. 9: The shape of the solutions of (5.1).

Further, the exact bifurcation diagrams for positive solutions to (5.1) are described by the equations:

$$\lambda = 2\left(\int_{q}^{\rho} \frac{ds}{\sqrt{F(\rho) - F(s)}}\right)^{2}$$
(5.2)

and

$$2[F(\rho) - F(q)] = q^2$$
(5.3)

where, $\rho = u(\frac{1}{2})$, q = u(0) = u(1), and $F(s) = \int_0^s f(t) dt$.

Below we provide some bifurcation diagrams for the example discussed in the previous section via Mathematica computation of (5.2)-(5.3). In fact, we obtain exact Σ -shaped bifurcation curves for certain parameter values.

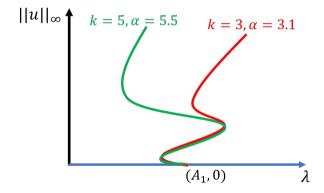


Fig. 10: The local view of the bifurcation diagrams near the bifurcation point $(A_1, 0)$ when m = 0 and c = 2.5.

Appendix

Proof of Remark 1.1: First, we show the non-existence of positive solutions for $\lambda \approx 0$. Let *u* be a positive solution of (1.1). Then by the Green's second identity we obtain:

$$0 = \int_{\Omega} [\theta_{\lambda,m+1} \Delta u - u \Delta \theta_{\lambda,m+1}] dx$$

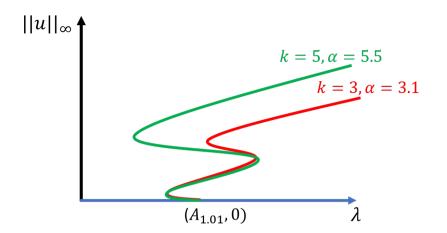


Fig. 11: The local view of the bifurcation diagrams near the bifurcation point $(A_{1,01}, 0)$ when m = 0.01 and c = 2.5.

$$= \int_{\Omega} \left[-\lambda f(u) + u(\sigma_{\lambda,m+1} + \lambda)(m+1) \right] \theta_{\lambda,m+1} dx$$

$$\geq \int_{\Omega} \left[-\lambda M u + u(\sigma_{\lambda,m+1} + \lambda)(m+1) \right] \theta_{\lambda,m+1} dx$$

$$= \int_{\Omega} \lambda \left\{ \frac{(m+1)\sigma_{\lambda,m+1}}{\lambda} - [M - (m+1)] \right\} u \theta_{\lambda,m+1} dx$$
(4)

where M > (m + 1) is such that $f(s) \le Ms$ for all $s \in [0, \infty)$. Now for $\lambda < A_{m+1}$, $\sigma_{\lambda,m+1} > 0$, and $\lim_{\lambda \to 0} \frac{\sigma_{\lambda,m+1}}{\lambda} = \infty$ (see [11]). This contradicts (.4) for $\lambda \approx 0$ and hence (1.1) has no positive solution for $\lambda \approx 0$.

Next, when m > 0, if u is a positive solution of (1.1), then again by the Green's second identity we obtain:

$$0 = \int_{\Omega} [\theta_{\lambda,m} \Delta u - u \Delta \theta_{\lambda,m}] dx$$

=
$$\int_{\Omega} [-\lambda f(u) + u(\sigma_{\lambda,m} + \lambda)m] \theta_{\lambda,m} dx$$

$$\leq \int_{\Omega} [-\lambda m u + u(\sigma_{\lambda,m} + \lambda)m] \theta_{\lambda,m} dx$$

=
$$\int_{\Omega} m \sigma_{\lambda,m} u \theta_{\lambda,m} dx \qquad (.5)$$

since $f(s) \ge ms$ on $[0, \infty)$. Now if $\lambda > A_m$ then $\sigma_{\lambda,m} < 0$ which contradicts (.5). Hence (1.1) has no positive solution for $\lambda > A_m$.

Conflict of interest: The authors state no conflict of interest.

References

 J. T. Cronin, N. Fonseka, J. Goddard, J. Leonard, and R. Shivaji, *Modeling the effects of density dependent emigration, weak Allee effects, and matrix hostility on patch-level population persistence*, Mathematical Biosciences and Engineering, 17(2) (2019), 1718-1742.

- [2] N. Fonseka, R. Shivaji, B. Son and K. Spetzer, *Classes of reaction diffusion equations where a parameter influences the equation as well as the boundary condition*, J. Math. Anal. Appl. 476 (2019), No. 2, 480-494.
- [3] J. Goddard II, Q. Morris, S. Robinson and R. Shivaji, *An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics*, Boundary Value Problems 2018, 170 (2018).
- [4] Eun Kyoung Lee, Sarath Sasi and R. Shivaji, An ecological model with a Σ-shaped bifurcation curve, J. Nonlinear Analysis, Series B: Real World Applications, Vol. 13 (2012), No. 2, pp. 634–642.
- [5] M. Winkler, *The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in L*¹, Adv. Nonlinear Anal. 9 (2020), no. 1, 526-566.
- [6] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709.
- [7] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture notes in pure and applied mathematics, 109 (1987), 561-566, Ed. V. Lakshmikantham.
- [8] A. Castro, J. B. Garner and R. Shivaji, Existence results for classes of sublinear semipositone problems, Results Math. 23 (1993), 214-220.
- [9] M. Ramaswamy and R. Shivaji, *Multiple positive solutions for classes of p-Laplacian equations*, Differential Integral Equations 17 (2004), 1255-1261.
- [10] E. K. Lee, S. Sasi and R. Shivaji, S-shaped bifurcation curves in ecosystems, J. Math. Anal. Appl. 381 (2011), 732-741.
- [11] N. Fonseka, A. Muthunayake, R. Shivaji and B. Son, *Singular reaction diffusion equations where a parameter influences the reaction term and the boundary conditions*, Topol. Methods Nonlinear Anal., Vol 57, No. 1 (2021), 221-242.