
Received January 19, 2021, accepted January 25, 2021, date of publication February 2, 2021, date of current version February 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3056485

S-Shaped Metasurface-Based Wideband
Circularly Polarized Patch Antenna
for C-Band Applications

NATHAPAT SUPREEYATITIKUL1, TITIPONG LERTWIRIYAPRAPA 2, (Senior Member, IEEE),

AND CHUWONG PHONGCHAROENPANICH 1, (Member, IEEE)
1School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
2Research Center of Innovation Digital and Electromagnetic Technology, Department of Teacher Training in Electrical Engineering, Faculty of Technical

Education, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Corresponding author: Chuwong Phongcharoenpanich (chuwong.ph@kmitl.ac.th)

This work was supported by the King Mongkut’s University of Technology North Bangkok under Grant KMUTNB-64-KNOW-29.

ABSTRACT This research proposed an S-shaped metasurface (MTS)-based wideband circularly

polarized (CP) patch antenna for C-band uplink frequency spectrum. The proposed MTS-based CP patch

antenna was of low profile and fabricated on three substrate layers: upper, middle, and lower. The upper

substrate contained 4 × 4 periodic S-shaped MTS elements, the middle substrate functioned as ground

plane with a rectangular-shaped slot at the center, and the lower substrate contained a coplanar waveguide

with microstrip and ground. The S-shaped MTS elements converted linearly polarized (LP) into CP wave.

Simulations were performed, and an antenna prototype was fabricated and experiments carried out. The

measured impedance bandwidth and axial ratio bandwidth (ARBW) at the center frequency of 5.9 GHz were

43.22% (4.05 – 6.6 GHz) and 22% (5.3 – 6.6 GHz), respectively, rendering the proposed antenna suitable

for satellite communication applications. The proposed antenna achieved the maximum gain of 6.16 dBic

at 5.6 GHz. The novelty of this research lies in the use of S-shaped MTS elements to efficiently convert LP

into CP wave and achieve wider ARBW for the C-band uplink spectrum.

INDEX TERMS C-band, circularly polarized antenna, low-profile, metasurface, wideband.

I. INTRODUCTION

Modern low-profile wideband circularly polarized (CP)

antennas are utilized in a wide range of wireless applications,

including satellite communication, global navigation satellite

systems (GNSS), radio frequency identification (RFID),

wireless power harvesting, and wireless sensors [1]–[4].

Compact CP antennas were used in mobile devices, RFID

handheld readers, WLAN access points, and handheld

satellite terminals [5]–[8]. In [9], CP antennas are also used

to overcome multipath interferences.

The advances in wireless communication devices neces-

sitate the development of new low-profile CP antennas

with wider circular polarization bandwidth, i.e., impedance

bandwidth (IBW) and axial ratio bandwidth (ARBW).

To enhance CP bandwidth, several techniques were adopted

in the design and development of broadband CP antennas,

The associate editor coordinating the review of this manuscript and

approving it for publication was Raghvendra Kumar Kumar Chaudhary .

including a square slot antenna with an L-shaped feed [10],

a ring slot with a hybrid coupler [11], stacked patches [12],

coplanar parasitic patches [13], and dielectric resonators [14].

However, these CP antennas suffer from design complexity,

bulkiness, and low CP bandwidth performance.

To address the drawbacks, metasurface-based structures

have been adopted in the design of more recent wideband CP

antennas with enhanced CP bandwidth. Metasurface (MTS)

structures are used to convert linear polarization (LP) to

circular polarization (CP) wave. The MTS structures are

two-dimensional (2D) equivalents of metamaterials which

are fashioned from artificial materials and composed of

periodically-arranged small elements. The advantages of

MTS-based CP antenna include ease of fabrication, low

profile, and high CP bandwidth performance.

Due to the compact size and inexpensiveness, patch

antennas are typically deployed in the design and devel-

opment of MTS-based wideband CP antennas. In [15],

a circular-ring-slot single-fed microstrip patch antenna with
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7 × 7 rectangular-ring MTS units functioning as artificial

magnetic conductor reflector for C-band spectrum could

achieve an IBW of 36% (3.22 – 4.63 GHz) and 3-dB

ARBW of 28.3% (3.62 – 4.75 GHz). A CP single-fed

corner-truncated square Fabry-Perot patch antenna with

simple MTS structure for C-band spectrum achieved an IBW

of 31.7% (5.23 – 7.20 GHz) and 3-dB ARBW of 13.7%

(5.45 – 6.25 GHz) [16]. In [17], a crossed dipole CP antenna

with 6 × 6 rectangular MTS structure achieved an IBW

of 31.6% (2 – 2.75 GHz) and 3-dB ARBW of 23.2%

(2.1 – 2.65 GHz). In [18], a novel sandwiched anisotropic

metasurface consisting of an elliptical patch as the radi-

ator above the metasurface and a superstrate as partially

reflecting surface for C-band spectrum could achieve an IBW

of 35.29% (3.08 – 4.40 GHz) and 3-dB ARBW of 24.69%

(3.55 – 4.56 GHz).

The MTS-based CP antennas [16]–[18] require a cavity

resonant condition (i.e., air gaps between substrates) to real-

ize wide CP bandwidth [19], resulting in antenna bulkiness

due to the gaps. To tackle the bulkiness, compact MTS-based

CP antennas were proposed to efficiently improve the

IBW, ARBW, and radiation performance [20]–[21]. In [22],

a lattice MTS-based linearly polarized slot-coupled antenna

was proposed to convert LP to CP wave based on two

resonance modes: TM10 and TM20 modes (TM denotes

transverse magnetic wave). The lattice MTS-based antenna

could achieve broad IBW (16%, 3.67 – 4.29 GHz) and 3-dB

ARBW (10%, 3.9 – 4.27 GHz).

Specifically, this research proposes a low-profile S-shaped

MTS-based wideband CP patch antenna for the C-band

uplink frequency spectrum. The S-shaped MTS functions as

the superstrate of the proposed patch antenna because the

MTS (i.e., superstrate) [23] is of an ultrathin two-dimension

artificial layer, consisting of periodically arranged S-shaped

MTS elements. The MTS-based CP antenna was fabricated

on three substrate layers: upper, middle, and lower. The upper

substrate contained 4 × 4 periodic S-shaped MTS elements

to convert LP into CP wave, the middle substrate functioned

as the ground plane with a rectangular slot at the center,

and the lower substrate contained a coplanar waveguide with

microstrip and ground. Simulations were performed by using

CST Studio Suite, and an antenna prototype was fabricated

and experiments carried out.

The organization of this research is as follows: Section I

is the introduction. Section II describes the configuration of

the S-shaped MTS-based wideband CP patch antenna, and

Section III details the proposed antenna evolution and MTS

operation. Section IV deals with the parametric study and

simulation. Section V discusses the experimental results. The

concluding remarks are provided in Section VI.

II. ANTENNA CONFIGURATION

Figure 1 illustrates the geometry of the S-shaped MTS-based

wideband CP patch antenna for the C-band uplink frequency

spectrum (5.925 – 6.425 GHz). The proposed MTS-based

CP antenna was fabricated on three layers of FR-4 substrate:

FIGURE 1. Geometry of the S-shaped metasurface-based wideband CP
patch antenna: (a) front view, (b) side view, (c) rear view.

upper, middle, and lower, without air gap between substrates.

The thickness of the upper (h1), middle (h2), and lower (h3)

substrates were 0.8 mm, 1.6 mm, and 1.6 mm, respectively.

The dielectric constant (εr ) and loss tangent (tan δ) of the

substrates were 4.3 and 0.025, and the substrate dimension

was 34 × 34 mm (Wsub × Lsub).

The upper substrate contained 4 × 4 periodic S-shaped

MTS elements. The vertical length (a) of one S-shaped MTS

element was 7 mm, and the length of the MTS element

including voids (p) was 7.4 mm. The void between two

S-shaped MTS elements was 0.4 mm. The S-shaped MTS

element evolved from square-shaped MTS element, resulting

in identical vertical and horizontal lengths of the S-shaped

element. The middle substrate contained a copper plate

functioning as the ground plane with a rectangular-shaped
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TABLE 1. Parameters and optimal dimensions of the proposed S-shaped MTS wideband CP patch antenna.

slot at the center. The dimensions of the ground plane and

rectangular-shaped slot were 34 × 34 mm (Wsub × Lsub) and

2 × 25 mm (Ws × Ls).

The lower substrate consisted of a coplanar waveg-

uide (CPW) with a microstrip feed line and ground, fed

by an SMA connector. The dimensions of the microstrip

feed line and ground were 1.8 × 24 mm (Wf × Lf ) and

8 × 12.5 mm (Wg × Lg). The distance between the feed line

and the ground (gf ) was 1.1 mm. The overall dimension of

the S-shaped MTS-based wideband CP patch antenna was

34 × 34 × 4 mm (0.485 λ0× 0.485 λ0× 0.057 λ0, where

λ0 is the free-space wavelength corresponding to the lowest

operating frequency achievable by the proposed S-shaped

MTS-based CP antenna at 4.25 GHz). Table 1 tabulates the

parameters and optimal dimensions of the proposed S-shaped

MTS wideband CP patch antenna. Simulations were carried

out using CST Studio Suite.

III. ANTENNA EVOLUTION AND MTS OPERATION

A. EVOLUTION OF S-SHAPED MTS-BASED CP

PATCH ANTENNA

Figure 2 shows the evolution stages of the S-shaped

MTS-based wideband CP patch antenna, consisting of three

stages: first stage (Antenna I), second stage (Antenna II),

and final stage (Antenna III). Antenna I was comprised of

a rectangular-shaped slot at the center of the ground plane

(the middle substrate) and CPW on the lower substrate

(Figure 2(a)). In Antenna II, the upper substrate containing

4 × 4 symmetric square-shaped MTS was integrated with

Antenna I (Figure 2(b)). To realize circular polarization, the

square-shaped MTS elements were truncated for S-shaped

MTS elements (Antenna III), as shown in Figure 2(c).

Specifically, Antenna III was comprised of 4 × 4 periodic

S-shaped MTS elements on the upper substrate, a rectangular

slot at the center of the ground plane on the middle substrate,

and CPW on the lower substrate.

Figure 3 illustrates the simulated IBW (|S11| ≤ −10 dB)

and ARBW (AR ≤ 3 dB) of Antennas I, II, and III.

In Figure 3(a), Antenna I achieved the first resonance

(|S11| ≤ −10 dB) between 4.3 – 5.15 GHz and the second

resonance between 6.4 – 6.75 GHz. The IBW of Antenna I

however failed to fully cover the C-band uplink frequency

spectrum (5.925 – 6.425 GHz). The IBW of Antenna II

(5.25 – 6.8 GHz) covered the C-band uplink spectrum, but

the AR was greater than 3 dB (AR > 3 dB). Antenna III

achieved two resonance frequencies at 5.1 GHz and 6.2 GHz,

with IBW (4.3 – 6.5 GHz) covering the C-band uplink

spectrum.

Figure 3(b) shows the simulated ARBW (AR ≤ 3 dB) of

Antenna III, with ARBW covering 5.5 – 6.8 GHz. Since the

FIGURE 2. Evolution of the S-shaped MTS-based wideband CP patch
antenna: (a) Antenna I, (b) Antenna II, (c) Antenna III.

AR of Antennas I and II were excessively larger than 3 dB

(approximately 40 and 31 dB for Antennas I and II), their

simulated ARBW were a linear polarization.

B. MTS OPERATION

The coupling between the rectangular-shaped slot (on the

middle substrate) and the S-shaped MTS (on the upper

substrate) was characterized by two resonance modes: TM10
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FIGURE 3. Simulated results of Antennas I, II, and III: (a) impedance
bandwidth, (b) axial ratio bandwidth.

FIGURE 4. Diagrams of TM10 and TM20 modes at 5.9 and 6.5 GHz.

and TM20 modes (Figure 4). The cavity model was used to

determine the resonance modes of the S-shaped MTS-based

CP patch antenna [24]. The resonance frequencies of TM10

and TM20 modes can be determined by equations (1) and (2),

respectively [25].

β0pN x + 2βeff 1L = π (1)

β0pN x/2 + 2βeff 1L = π (2)

where β0 is the propagation constant of an S-shaped MTS

element, Nx is the number of MTS elements in the x direction

(Nx = 4), βeff is the propagation constant in the effective

extended region (i.e., the void between any pair of S-shaped

elements) in the x direction, and 1L is the distance between

any pair of S-shaped elements. βeff can be calculated by using

equations (3) – (6) [26, 27].

βeff = k0
√

εreff =
2π f

c

√
εreff (3)

1L

h
= 0.412

(εreff + 0.3)(Wp/h+ 0.262)

(εreff − 0.258)(Wp/h+ 0.813)
(4)

εreff =
εr + 1

2
+

εr − 1

2

(

1 + 12
h

Wp

)−1/2

(5)

Wp = Nyp−
(

p− a

2

)

(6)

where k0 is the wave number in free space, f is the operating

frequency, and c is the free-space velocity of light, εreff is the

effective dielectric constant, εr is the relative permittivity of

substrate, h is the height of the middle and upper substrates

(h2 + h3), andWp is the effective width of an S-shaped MTS

(i.e., the width of the MTS element and voids on either side),

and Ny is the number of MTS elements in the y direction

(Ny = 4).

Using equations (1) and (2), the phase shift (β0p/π ) of

an S-shaped MTS element in TM10 and TM20 modes were

0.195 and 0.378, corresponding to the resonance frequencies

of 5.97 GHz and 6.48 GHz, as shown in Figure 5. The

resulting resonance frequencies were consistent with the

electrical field of the two resonancemodes at 5.9 and 6.5 GHz

(Figure 4).

FIGURE 5. Dispersion diagram of S-shaped MTS element.

The circular polarization of the S-shaped MTS-based

wideband CP patch antenna was characterized by the phase

difference between the far-field boresight (+z) direction

electric fields of two orthogonal components (Ex and Ey) and

the corresponding magnitude ratio [28].

Figure 6 shows the phase difference between electric fields

of two orthogonal components ( 6 Ey - 6 Ex) and magnitude

ratio (|Ey|/|Ex |). The phase difference was approximately

±90◦ in the frequency range of 5.3 – 7.6 GHz, as shown

in Figure 6(a), and the magnitude ratio was ±3 dB in the

4.1 – 7.9 GHz frequency range (Figure 6(b)).
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FIGURE 6. Simulated results of the proposed S-shaped MTS-based CP
patch antenna: (a) phase difference, (b) magnitude ratio.

FIGURE 7. Cluster of S-shaped MTS elements: (a) four-element cluster,
(b) equivalent circuit model.

Figure 7(a) illustrates a cluster of four S-shaped MTS

elements of the proposed MTS-based CP patch antenna.

In the operation, the coupling between the rectangular-shaped

slot on the middle substrate and the CPW on the lower

substrate generated LP wave in the direction of electric field

(E) along the Y-axis and, upon contact with the four-element

cluster, diverged into two orthogonal electric fields (E1
and E2). Figure 7(b) shows the equivalent circuit model of

four-element cluster whose impedance (Zi) can be calculated

by using (7) [29].

Zi = Ri + jωLi + 1/jωCi (7)

where Ri, Li, and Ci are the resistance, inductance, and

capacitance of two diagonally adjacent MTS elements where

i = 1, 2; j is the imaginary inductance and capacitance; and

FIGURE 8. Equivalent circuit diagrams: (a) 4 × 4 S-shaped MTS, (b) CPW
with slot ground plane, (c) the proposed S-shaped MTS-based CP patch
antenna.

ω is the angular frequency. To realize circular polarization,

the impedance of two orthogonal electric fields (Z1 and Z2)

must be identical (|Z1| = |Z2|) and (6 Z1 − 6 Z2) = ±90◦.
Figures 8(a)-(c) show the equivalent circuit diagrams

of 4 × 4 S-shaped MTS elements on the upper substrate;

CPW with slot ground plane on the lower substrate;

and the proposed S-shaped MTS-based CP patch antenna,

respectively. In Figure 8(a), the equivalent circuit diagram

of an S-shaped MTS element [30] consisted of inductor

(LM ), series capacitor (CM ), and parallel capacitor (CG),

representing the S-shaped MTS element, a void between any

pair of S-shaped MTS elements, and the coupling between

the S-shaped MTS element and the slot ground plane,

respectively.
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In Figure 8(b), the equivalent circuit diagram of

CPW [31], [32] consisted of inductor (LP), parallel

capacitor (CP1), and parallel capacitor (CP2), representing

the microstrip feed line, the gap between the microstrip feed

line and the ground, and the coupling between CPW and the

slot ground plane. Specifically, the equivalent circuit diagram

of the slot ground plane [33] consisted of inductor (LA),

capacitor (CA), and resistor (RS ), representing the copper

plate, rectangular-shaped slot, and resistance of the ground

plane.

In Figure 8(c), the equivalent circuit diagram of the

proposed S-shaped MTS-based CP patch antenna consisted

of the parallelly-connected equivalent circuits in Figures 8(a)

and (b). The impedance of S-shaped MTS element (Z1),

slot ground plane (Z2), and CPW (Z3) can be calculated by

equations (8) – (10), respectively.

Z1 = (LM+CM )||CG=
j(1 − ω2CGLM )

ω(ω2CMCGLM−CM−CG)
(8)

Z2 = (Rs + CA)||LA =
jωRsLA + LA/CA

Rs + (1 − ω2LACA)/jωCA
(9)

Z3 = LP||CP1||CP2 =
−j (LP/ωCP1CP2)

jωLP + 1/jω (1CP1 + 1/CP2)
(10)

The components (R, L, C) of the equivalent circuit of

the proposed S-shaped MTS-based CP patch antenna were

optimized by Advanced Design System (ADS) simulation

software. The simulation results were as follows: LM = 1.865

nH, CM = 0.85 pF, CG = 0.97 pF, LP = 1.45 nH, CP1 =
0.775 pF, CP2 = 0.45 pF, LA = 1.725 nH, CA = 0.93 pF, and

RS = 37 �.

FIGURE 9. Comparison between the CST- and ADS-simulated IBW.

Figure 9 compares the simulated IBW using CST and

ADS simulation programs, and the simulation results were in

good agreement. Using CST simulation, the lowest resonance

frequencies (|S11| ≤ −10 dB) occurred at 4.87 and

6.22 GHz. Meanwhile, the lowest resonance frequencies

(|S11| ≤ −10 dB) occurred at 4.88 and 6.15 GHz using ADS

simulation.

Figures 10 (a)-(b) respectively show the magnified surface

current distribution on the S-shaped MTS of the proposed

antenna (Antenna III) at 0◦, 90◦, 180◦, and 270◦ phase

at 5.9 GHz and 6.5 GHz. The frequencies of 5.9 GHz

FIGURE 10. Simulated surface current distribution on the S-shaped MTS
at 0◦, 90◦, 180◦, and 270◦ phase: (a) 5.9 GHz, (b) 6.5 GHz.

and 6.5 GHz corresponded to TM10 and TM20 resonance

modes. The vectors traveled in the +z direction and

rotated counterclockwise, giving rise to left-hand circular

polarization (LHCP).

IV. PARAMETRIC STUDY

This section investigates the effects of key antenna param-

eters on the IBW and ARBW of the S-shaped MTS-based

wideband CP patch antenna. The key antenna parameters

included the substrate dimension (Wsub× Lsub), thickness of

the upper substrate (h3), length of the rectangular-shaped slot

(Ls), width of the rectangular-shaped slot (Ws), the length of

MTS element (a), and the length of MTS element including

voids between two MTS elements (p).

A. EFFECT OF THE SUBSTRATE DIMENSION (Wsub× Lsub)

Figures 11 (a)-(b) show the simulated IBW (|S11| ≤
−10 dB) and ARBW (AR ≤ 3 dB) under variable substrate

dimensions (Wsub × Lsub): 30 × 30, 34 × 34, and 38 ×
38 mm2. In Figure 11(a), IBW shifted to lower frequency

as the substrate dimension increased. Given the substrate

dimensions of 30 × 30 and 38 × 38 mm2, an impedance

mismatch (|S11| > −10 dB) occurred over 5.25 – 5.8 GHz

and 4.7 – 5.25 GHz, respectively. Similar to IBW, ARBW

also shifted to lower frequency with increase in the substrate
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FIGURE 11. Simulated results of the S-shaped MTS CP patch antenna
under variable substrate dimensions (Wsub×

Lsub): (a) IBW, (b) ARBW.

dimension, as shown in Figure 11(b). In the figure, ARBW

(AR ≤ 3 dB) of 30 × 30 and 38 × 38 mm2 substrates

were between 5.8 – 6.8 GHz and 5.5 – 6.1 GHz, but with

impedance mismatch. With the substrate dimension of 34 ×
34 mm2, ARBW (5.6 – 6.8 GHz) covered the entire C-band

uplink spectrum. As a result, the optimal substrate dimension

(Wsub×Lsub) was 34 × 34 mm2.

B. EFFECT OF UPPER SUBSTRATE THICKNESS (h3)

Figures 12 (a)-(b) show the simulated IBW (|S11| ≤ −10 dB)

and ARBW (AR ≤ 3 dB) under variable upper substrate

thicknesses (h3): 0.8, 1.6, and 2.4 mm. In Figure 12(a),

as the thickness of the upper substrate increased, IBW was

shifting to lower frequency and became wider. Similar to

IBW, ARBW also shifted to lower frequency with increase

in the upper substrate thickness, as shown in Figure 12(b).

Specifically, given h3 = 0.8 mm, ARBW was very narrow

(6.3 – 6.5 GHz), seriously falling short of the C-band uplink

frequency spectrum (5.925 – 6.425 GHz). With h3 = 2.4

mm, ARBW (5.1 – 5.8 GHz) fell outside the C-band uplink

spectrum. With h3 = 1.6 mm, ARBW (5.5 – 6.8 GHz)

covered the target C-band spectrum. As a result, the optimal

h3 was 1.6 mm.

C. EFFECT OF THE LENGTH OF RECTANGULAR-SHAPED

SLOT (Ls)

Figures 13 (a)-(b) show the simulated IBW and ARBW

under different lengths of the rectangular slot on the middle

substrate (Ls): 23, 25, and 27 mm. In Figure 13(a), with

FIGURE 12. Simulated results of the S-shaped MTS CP patch antenna
under variable h3: (a) IBW, (b) ARBW.

Ls = 23 mm, an impedance mismatch (|S11| > −10 dB)

occurred between 5.2 – 5.75 GHz. With Ls = 25 and

27 mm, IBW fell between 4.2 – 6.5 GHz and 4.2 – 6.45 GHz,

respectively, covering the C-band uplink frequency spectrum

(5.925 – 6.425 GHz). In Figure 13(b), with Ls = 23 and

25 mm, ARBW (AR ≤ 3 dB) covered the entire C-band

uplink spectrum, with ARBW between 5.6 – 6.85 GHz and

5.5 – 6.8 GHz for Ls = 23 and 25mm, respectively. However,

Ls = 23 resulted in impedance mismatch. With Ls = 27,

ARBW was very narrow (5.45 – 6 GHz), failing to cover

the entire the C-band uplink spectrum. The optimal Ls was

thus 25 mm.

D. EFFECT OF THE WIDTH OF RECTANGULAR-SHAPED

SLOT (Ws)
Figures 14 (a)-(b) show the simulated IBW and ARBW

under variable widths of the rectangular slot on the middle

substrate (Ws): 1.5, 2.0, and 2.5 mm. In Figure 14(a),

as Ws increased, |S11| of the first resonance increased (from

originally -32.5 dB to -18 dB) while the impedance matching

of the second resonance improved. Meanwhile, variation in

Ws had a minimal effect on the ARBW of the S-shaped

MTS-based CP patch antenna, as shown in Figure 14(b). The

optimalWs was 2.0 mm.

E. EFFECT OF METASURFACE LENGTH (A)
Figures 15 (a)-(b) illustrate the simulated IBW and ARBW

under variable MTS lengths (a): 5, 7, and 9 mm. In

Figure 15(a), as a increased, the simulated IBW shifted to
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FIGURE 13. Simulated results of the S-shaped MTS CP patch antenna
under variable Ls: (a) IBW, (b) ARBW.

FIGURE 14. Simulated results of the S-shaped MTS CP patch antenna
under variable Ws: (a) IBW, (b) ARBW.

lower frequency. However, with excessively large 9mm, IBW

(4.1 – 6.3 GHz) failed to cover the entire C-band uplink

FIGURE 15. Simulated results of the S-shaped MTS CP patch antenna
under variable a: (a) IBW, (b) ARBW.

frequency spectrum (5.925 – 6.425 GHz). In Figure 15(b),

with a = 5 and 9 mm, ARBW (AR ≤ 3 dB) were between

6.3 – 6.5 GHz and 5.25 – 5.8 GHz, respectively, failing to

cover the entire C-band uplink spectrum. With a = 7 mm,

ARBW (5.6 – 6.8 GHz) covered the entire C-band uplink

spectrum. The optimal a was thus 7 mm.

F. EFFECT OF THE LENGTH OF MTS ELEMENT

INCLUDING VOIDS (P)

Figures 16 (a)-(b) show the simulated IBW and ARBWunder

variable lengths ofMTS element including voids (p): 7.2, 7.4,

and 7.6 mm. In Figure 16(a), the impedance matching (|S11|)
significantly improved as p increased, with IBM covering

the entire C-band uplink spectrum. In Figure 16(b), with

p = 7.2 mm, AR was larger than 3 dB (AR > 3 dB)

between 5.85 – 6.15 GHz, thus failing to cover the entire

C-band uplink spectrum. ARBWwere between 5.5 – 6.8 GHz

and 5.8 – 6.4 GHz for p = 7.4 and 7.6 mm, respectively.

By comparison, ARBW of p = 7.4 mm was significantly

wider than that of p = 7.6 mm. The optimal p was

thus 7.4 mm.

V. EXPERIMENTAL RESULTS

To validate, a prototype antenna was fabricated and exper-

iments were carried out. Figure 17 depicts the front and

rear views of the S-shaped MTS-based CP antenna prototype

for the C-band uplink frequency spectrum. The experiments
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FIGURE 16. Simulated results of the S-shaped MTS CP patch antenna
under variable p: (a) IBW, (b) ARBW.

FIGURE 17. A prototype antenna: (a) front view, (b) rear view.

were performed by using a vector network analyzer (ZVB

20 model) in an anechoic chamber.

In Figure 18, the simulated IBW (|S11| ≤ −10 dB) and

ARBW (AR ≤ 3 dB) at the center frequency (5.9 GHz) were

38.98% (4.2 – 6.5 GHz) and 22% (5.5 – 6.8 GHz), and the

measured IBW and ARBW were 43.22% (4.05 – 6.6 GHz)

and 22% (5.3 – 6.6 GHz). The simulated and measured

results were agreeable. The measured ARBW slightly shifted

to lower frequency probably due to coaxial connector

loss and antenna fabrication. To mount the three substrate

layers together, the left and right sides of the substrates

of the antenna prototype were each 3 mm wider than the

antenna schematic (Figure 1). Nevertheless, the measured

ARBW covered the entire C-band uplink frequency spectrum

(5.925 – 6.425 GHz).

Figures 19 (a)-(b) compare the simulated and measured

LHCP and right-hand circular polarization (RHCP) radiation

patterns of the S-shaped MTS-based wideband CP patch

antenna in the xz- and yz-planes at 5.9 and 6.5 GHz,

FIGURE 18. The simulated and measured results of the S-shaped
MTS-based wideband CP patch antenna: (a) IBW, (b) ARBW.

respectively. The simulated and measured LHCP were in

good agreement, and those of RHCP were satisfactorily

agreeable. ETS-Lindgren Model 3100 Series Conical Log

Spiral antennas were used to verify the LHCP and RHCP

radiations.

Figure 20 illustrates the simulated and measured radiation

efficiency and boresight gains of the S-shaped MTS-based

wideband CP patch antenna. The simulated and measured

results were agreeable, with themeasured radiation efficiency

over the C-band uplink frequency spectrum was over 70%.

The measured 3-dB boresight gain bandwidth was 49.15%

(4 – 6.9 GHz), with the maximum gain of 6.16 dBic at

5.6 GHz. The sharp decline in the measured boresight gain

beyond 6.5 GHz could be attributed to the low radiation

efficiency and impedance mismatch.

Table 2 compares existing MTS-based CP antennas and

the proposed low-profile S-shaped MTS-based wideband CP

patch antenna in terms of IBW, ARBW, maximum gain, and

electrical dimension. In [24], the antenna achieved wide IBW

but narrow AR due to the complex design of slanted slot on

the ground plane. In [34], the antenna achieved wide IBW and

high gain but narrow AR. The antenna design was also very

complex as through-holes were drilled between substrates.

In [35], the antenna achieved high gain but suffered from

bulkiness and narrow IBW. In [36], the antenna achieved

wide IBW and high gain but suffered from bulkiness and

failed to cover the C-band uplink frequency spectrum. In [37],

the antenna achieved high gain but narrow IBM and AR. The

antenna also suffered from bulkiness.
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TABLE 2. Comparison between existing MTS-based CP antennas and the proposed low-profile S-shaped MTS-based wideband CP patch antenna.

FIGURE 19. Simulated and measured LHCP (co-polarized) and RHCP
(cross-polarized) radiation patterns at: (a) 5.9 GHz, (b) 6.5 GHz.

In [38], the single-layer MTS antenna had a straight-

forward design but suffered from narrow IBM, AR, and

bulkiness. In [39], the sequential-phase fed CP patch array,

consisting of a single-layer substrate and 2 × 2 patch array,

achieved high gain but suffered from the sequential-phase

design complexity and bulkiness.

For antennas operable in the C-band frequency spectrum

(4 – 8 GHz), the proposed low-profile S-shaped MTS-based

FIGURE 20. Simulated and measured radiation efficiency and boresight
gains of the proposed antenna.

wideband CP patch antenna efficiently achieved wide IBW

and ARBW. Specifically, the proposed MTS-based CP patch

antenna is the deployment of S-shaped MTS elements to

efficiently convert linear polarization (LP) into circular

polarization (CP) waves for the C-band uplink frequency

spectrum. The proposed antenna achieves wide IBW and

ARBW of 43.22% (4.05 - 6.6 GHz) and 22% (5.3 – 6.6 GHz)

with low-profile structure, rendering the antenna scheme

suitable for satellite communication applications.

VI. CONCLUSION

This research proposed a low-profile S-shaped MTS-based

wideband CP patch antenna for C-band uplink frequency

spectrum. The proposed antenna was fabricated on three

layers of FR-4 substrate: upper, middle, and lower, without

air gap between substrates. The upper substrate contained 4

× 4 periodic S-shaped MTS elements, the middle substrate

functioned as the ground plane with a rectangular-shaped

slot at the center, and the lower substrate consisted of CPW.

In the operation, the coupling between the rectangular-shaped

slot and the CPW generated LP wave which was converted

into CP wave by the S-shaped MTS elements. Simulations

were carried out, and an antenna prototype was fabricated

and experiments carried out. The simulated IBW (|S11| ≤
−10 dB) and ARBW (AR ≤ 3 dB) at the center frequency
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of 5.9 GHz were 38.98% (4.2 – 6.5 GHz) and 22%

(5.5 – 6.8 GHz), and the measured IBW and ARBW were

43.22% (4.05 – 6.6 GHz) and 22% (5.3 – 6.6 GHz).

The simulated and measured LHCP radiation patterns were

in good agreement, with the measured maximum gain

of 6.16 dBic at 5.6 GHz. Given the IBW and ARBW

of 43.22% (4.05 – 6.6 GHz) and 22% (5.3 – 6.6 GHz),

the proposed S-shaped MTS-based wideband CP patch

antenna is suitable for satellite communication applications.
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