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Abstract— Solving the distributed shortest path problem has a directed graptG = (V, E), verticess andt € V, and
important applications in the theory of distributed systems, \weightsw, > 0 for eache € E, the shortest s-t path problem
most notably routing. In this paper, we provide and prove the is to find the path of minimum weight i6' starting ats and

convergence of a min-sum algorithm to compute the shortest . . .
path between two nodes in a graph with positive edge weights. ending att. If no such path exists the shortest path is

Unlike the standard distributed shortest path algorithms, the infinite. This problem is related to routing and has impartan
rate of convergence depends on the weight of the minimal path applications in distributed systems.
and not necessarily the number of nodes in the network.

A. Total Unimodularity

I. INTRODUCTION Definition 1.1: A matrix A is totally unimodular if every
square sub-matrix has determinahtl, or —1. Note that

The use of the max-product and min-sum algorithm is implies that the entries of are0, 1, or —1.

to solve combinatorial optimization problems has severa

advantages over the typical algorithms that are used t@ solv Theorem1.2: Let A be a totally unimodulam x n matrix
these problems: . . ) andb an integral vector. The polyhedro® = {z|Az < b}
1) Message passing algorithms can be easily convertediniegral,
into distributed algorithms.

2) These algorithms are easy to describe and implement.The theorem implies that if an integer programming prob-
The recent work on max-product and linear programmingem Az < b with A a totally unimodular matrix and
of [1], [2], and [3] has explored the connection betweern integral vectom has a unique solution then the linear
integer programs for the max-weight matching and the mayrogramming problem obtained by relaxing the requirement
weight independent set problems and the convergence tbht the variables in the integer program can only take éiteg
max-product for these problems. These papers suggest thatues also has a unique solution.
starting with any integer program, one can formulate a For an instance of the weighted matching problem and
max-product or min-sum message passing scheme onthe weighted independent set problems, the corresponding
factor graph where the variables are the variables of thateger program is not necessarily totally unimodular. In
integer program and the factors correspond to the contdrainhese cases, a unigue integral solution to the IP does not
of the integer program. Further, they demonstrate that thgiarantee a unique solution to the linear relaxation. This
convergence of max-product depends on the solutions to themplicates the proofs of convergence as evidenced in [1]
relaxation of the integer program. and [3]. Therefore, with the hope of producing a general
The previous results suggest suprising connections beheory, totally unimodular matrices seem an appropriate
tween max-product and linear programs. However, thesgarting point. More information on total unimodularitydan
problems may not be sufficient to develop a general undelinear programming can be found in [4].
standing of when message passing algorithms can be usedn this paper, we will show that if the shortestt path
to solve combinatorial optimization problems: problem has a unique solution then the min-sum algorithm
1) Max-weight independent set is known to be NPalways converges to the correct solution in a number of
complete which suggests that max-product is not likelgteps that depends on the weight of the shortest path and the
to yield an efficient solution. weight of the second shortest path. This paper is organized a
2) The constraints of the integer programs for thestollows: in Section Il we formulate the shortest path proble
problems are all binary which simplifies max-productfor both integer programming and the min-sum algorithm

There are known easy classes of integer programmi@d in Se_ction I we s_how that_min-sum converges if the
problems. In this paper, we explore the connections betweéf relaxation has a unique solution.

integer programming and the min-sum algorithm by exam- ll. SHORTEST ST PATHS
ining the behavior of min-sum on a simple optimization

problem from one such easy class of integer programs: given 1€ shortests-t path problem can be formulated as an
integer program:
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This integer program can be relaxed into a linear program , ,
by changing the last constraint frof§, € {0,1} to X, ¢ F9- 1 A simple graph and computation tree.
[0, 1]. The matrix for this linear program is the combination
of two copies of thé/ x E incidence matrix foiG which is
totally unimodular [4]. Hence, if there is a unique shortesstep. For the shortest path problem, the min-sum algroithm
path froms to ¢t in G then the linear program has a uniquelooks as follows:
optimal solution (by the previous theorem).
Min-Sum Algorithm:

A. Shortest st Paths via Min-Sum 1) Initialize all messages t0.
The above problem can be formulated as a problem on a2) Fore incident tov,
factor graph and then solved using the min-sum algorithm. mr_(z) = min  — log ¥y (z50)
Here we will have variables(, for eache € E and factors voe ToviTe=1 vitov
1, for eachv € V. The factory, is a function depending + Z m™1 (zer)
on all edges incident to which we will denotedv. v, is an e/’ €dv—{e} o
indicator fucntion for the constraints in the integer peogr
at vertexv. Specifically, definaep, for v # s,t as follows: 3) Fore incident tov andu
[ 1 if equation (1) is satisfied at n _ n—1
o) ={ ) hpaee mi_(z) = log oc(x) + mii "L (@)

Similarly, ¢, and ¢, indicate whether or nof2) and (3) 4) Compute the beliefs at step n:

respectively are satisfied. The factor graph then has axverte b2 (x) = pe(z) + Z m?_(z)
for each of the factors and variables with an edge joining a vede
variable and a factor if the factor depends on that variable.

For each edge € E define a self-potentiab, (X.) — 5) Estimate membership ef= (u,v) in the min path as

eweXe. We then define 1 if b2(1) < b2(0)
_ =< 0 if b7(0) < b2(1)
f(XE) = EZElOg d)e(Xe) - ze‘:/log y (Xﬁv) ?  otherwise

Given an assignment of eacti, to some value 0,1},
f(Xg) is equal to the)  _,w.X. if the nonzeroX.’s
define a directed edge disjoint path fromto ¢ in G and
infinity otherwise. Therefore, minima of correspond to
minimal s-¢t paths. If no such path exists theghis infinity
for all choices ofXg. To prove convergence of the min-sum algorithm we will

We can now use the min-sum message passing procedunaeke extensive use of the notion of a computation tree. The
in an attempt to minimize the objective functigh The computation tree rooted at a nogein the factor graph is
message passing procedure is iterative in that at each atageonstructed by starting atand adding all neighbors of as
messagen,,.)—, IS sent from each variabl&',, ,y to the children ofy in the tree. The next level of the tree is then
factorsv, and, and a message,_.. is sent from each generated by taking a leaf of the tree and adding all of the
factor ¢, to each variableX, such thate is incident tov in  leaf's neighbors that are not its parent.

G. At any point, a variableX, ,,) can compute an estimate This process is the repeated for the new leaf nodes and
of whether or not it is in the minimums-¢ path by using the so on. Notice that this computation tree has nodes for both
messages that it received from, and ), in the last time edges and vertices in the original graph. We will, for ease of

We say that the message passing procedure has converged at
stepn if there is no time step’ > n such thatz.,” # z." .

IIl. CONVERGENCE OFMIN-SUM



illustration replace theX. nodes with a directed edge joining

tree is different from the originat-¢t path problem. There
are now multiple copies ot and t making the problem . .
on the computation tree a multi-source/multi-sink shartes .oigh

path problem. Contrast this with the cases of max-weight o
matching and max-weight independent set where the problem
on the original graph and the problem on the computation
tree are exactly the same. Specifically, a feasible solution

e’s two endpoints. We will denote this new tree starting with s ey
edgec and repeating the process fon steps a<l,(n). 7a d)
The resulting minimization problem on the computation / S
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(a) Solution on the computation tree (dashed edges) rooted
at (¢, d) with optimal paths —a—b—c—d—e— f —t
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the computation tree is a set of edges such that every copy /? -y 5o .t
of s in the tree has a path to a copytér a boundary node S e d d \
(allowed by the message initialization), every copytah / y -t t-
the tree has a path from a copy ©b6r some boundary node, C f s
and every vertex has at least as many out edges as in edges. ¢ -t
A feasible solution is minimal if no feasible solution has a . s t
smaller weight.
The computation tree models the message passing struc- (b) Mop: (+) edges andVlsup—op: (-) edges

ture of the min-sum algorithm: minimal solutions @a(n) Fig. 2.
correspond to the beliefs of the root obtained by running the
min-sum algorithm fo2n steps.

Define w(S) = > qwe for S a set of edges. Let
Wmin = Mineec g we ande be the difference in weight of the
second best-t path in G and the optimal path iz then
we have the following theorem:

lllustration of the construction.

iN Mgyp—opt, Choose such a patR’ in M and
follow it backwards untils or the boundary. Add
this sub-path taV/s,p—opt-

3) By construction, for each sub-pathin M,y NOt

Theorem3.1: If P* is the unique minimums-t path in touching the boundary, there must be a copy/of
G then an edge € E is in P* iff every minimal solution that either
on T, (n) contains the root for > u;v(UP*v)2 % a) leaves the head aP and terminates in a copy
e e of ¢t or in a leaf of T.(n). If this path is not in
Proof: (=) Suppose by way of contradiction that= Moy, follow it until ¢ or when traversing an edge
(u,v) is in the mins-t path P* on G but that there is some requires traversing an edge M. Add this sub-
minimal solutionM on the computation tree rooted afat path to M,t.
time 2n that does not contain the root. b) enters the tail of> and originates in a copy of
This proof, similar to that of [1], builds an alternating set or in a leaf ofT¢.(n). If this path is not inM.,
of paths that can be swapped to improve the optimality of follow it backwards untils or when traversing an
the solution. Because the constraints are not binary in our edge requires traversing an edgelih Add this
case, the construction is slightly more complicated. sub-path toM,:
Construct two subgraph¥/s,,—.p: and M, of T.(n) as 4) Repeat steps 2 through 3 until it is no longer possible
follows: to add any more paths.

1) Let P be a copy of the minimuns-¢ path that uses  This process builds a set of paths starting at the root
the root edgee = (u,v). Starting atv, follow P  that alternates between subpaths of copiesdfand sub-
forward until doing so would require traversing an edggaths of the solutionV/. Figure 2 illustrates the construc-
in M. Similarly, starting atu follow the edges inP  tion for a graphG whose unique minimums-t path is
backwards until doing so would require traversing afs, a), (a,b), (b, ¢), (c,d), (d,e), (e, f), (f,1).
edge inM. Add this sub-path of” to M. Let M* = (M — Myp—opt) U M,y Notice thatM* is a

2) By construction, for each sub-path in M,,; not feasible solution ofT,(n) since the in degree and out degree
originating at a leaf, there must be at least one patbf every node inM is preserved and, by the construction,
in M that either (possibly both for the edge added isub-paths in)/,,; satisfy the constraints at their heads and
step 1) tails when added td/.

a) leaves the head dP and terminates in a copy Let k& be the number of disjoint sub-paths iv,,, and
of ¢ or in a leaf of T.(n). If no such path is %’ be the number of disjoint sub-paths M,;—op:. In the
i Mgyp—opt, Choose such a patR’ in M and worst casek = k’+1 due to the alternating construction. As
follow it until ¢ or the boundary. Add this sub- all other possible outcomes can be reduced to this sityation
path to Mup—opt- we only illustrate the proof in this instance. There are two
b) enters the tail ofP and originates in a copy cases:
of s or in a leaf of T.(n). If no such path is
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Fig. 3. Example of non-unigueness.
Case 1: k> 2P 4

In this case there are — 1 disjoint sub-paths imV/,s—opt
each of which cannot have a weight closer thato the

may or may not be tight. A different or more careful proof
may be able to reduce the time bound further.
Understanding the shortest path problem is an important
first step in understanding how the max-product and min-
sum algorithms can be used to solve totally unimodular
linear programs. This problem highlights some complesgitie
that are not present in the max-weight matching and max-
weight independent set problems; most notably, the opti-
mization problem on the computation tree is not the same
as the original problem (recall that there were multiple
and multiplet's on the computation tree). The result here
suggests that similar techniques may have some success
when applied to more general totally unimodular linear

weight of the sub-path id/,,; that enters its tail. We have
(k—1)e > w(P*), so

U)(M*) = w(M) - w(]V[sub—Opt) + w(Mopt) 1]
< wM)—-(k—1)e+w(P")
< w(M)
. [2]
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In either case,w(M*)
minimality of M.

< w(M) contradicting the

(<) For the opposite direction, suppose by way of con-
tradiction that every minimal solution dfi.(n) contains the
root edgee but thate is not in P*. We can then construct
M sup—opt and M, in an alternating fashion similar to the
above. As the details of the proof are nearly identical, we
omit them here. [ ]

A. Non-Unigueness

If the shortest path is not unique, the min-sum algorithm
may not produce the correct answer. For example, consider
Figure 3. Thes-t path is not unique, and by symmetry,
the computation tree rooted &t,a) is isomorphic to the
computation tree rooted &t, b). As a result, their beliefs at
any fixed time will be the same.

IV. CONCLUSION AND FUTURE WORK

We have demonstrated that the shortestpath problem
can be solved by a min-sum procedure derived from an
integer program. If the integer program has a unique salutio
then the estimates produced by the min-sum algorithm can
be used to find the mis-¢ path inG after 21 2wy
iterations of the algorithm. However, the above t|me ‘bound

optimization problems.

REFERENCES

S. Sanghavi, D. Malioutov, and A. Willsky, “Linear pragnming anal-
ysis of loopy belief propagation for weighted matching,’Advances in
Neural Information Processing Systems 20, J. Platt, D. Koller, Y. Singer,
and S. Roweis, Eds. Cambridge, MA: MIT Press, 2008, pp. 1273—
1280.

M. Bayati, D. Shah, and M. Sharma, “Max-product for maximum
weight matching: Convergence, correctness, and Ip ddiaility| nfor-
mation Theory, |[EEE Transactions on, 2008, pp. 1241-1251.

S. Sanghavi and D. Shah, “Tightness of Ip via
max-product belief propagation,” 2005. [Online]. Availabl
http://www.citebase.org/abstract?id=oai:arXiv.ogg0508097

[4] A. Schrijver, Theory of Linear and Integer Programming. John Wiley

& Sons Ltd., 1987.



