
s-t Paths Using the Min-Sum Algorithm

Nicholas Ruozzi†

Computer Science
Yale University

New Haven, CT 06520-8285, USA
Nicholas.Ruozzi@yale.edu

Sekhar Tatikonda
Electrical Engineering

Yale University
New Haven, CT 06520-8285, USA
Sekhar.Tatikonda@yale.edu

Abstract— Solving the distributed shortest path problem has
important applications in the theory of distributed systems,
most notably routing. In this paper, we provide and prove the
convergence of a min-sum algorithm to compute the shortest
path between two nodes in a graph with positive edge weights.
Unlike the standard distributed shortest path algorithms, the
rate of convergence depends on the weight of the minimal path
and not necessarily the number of nodes in the network.

I. I NTRODUCTION

The use of the max-product and min-sum algorithms
to solve combinatorial optimization problems has several
advantages over the typical algorithms that are used to solve
these problems:

1) Message passing algorithms can be easily converted
into distributed algorithms.

2) These algorithms are easy to describe and implement.

The recent work on max-product and linear programming
of [1], [2], and [3] has explored the connection between
integer programs for the max-weight matching and the max-
weight independent set problems and the convergence of
max-product for these problems. These papers suggest that
starting with any integer program, one can formulate a
max-product or min-sum message passing scheme on a
factor graph where the variables are the variables of the
integer program and the factors correspond to the constraints
of the integer program. Further, they demonstrate that the
convergence of max-product depends on the solutions to the
relaxation of the integer program.

The previous results suggest suprising connections be-
tween max-product and linear programs. However, these
problems may not be sufficient to develop a general under-
standing of when message passing algorithms can be used
to solve combinatorial optimization problems:

1) Max-weight independent set is known to be NP-
complete which suggests that max-product is not likely
to yield an efficient solution.

2) The constraints of the integer programs for these
problems are all binary which simplifies max-product.

There are known easy classes of integer programming
problems. In this paper, we explore the connections between
integer programming and the min-sum algorithm by exam-
ining the behavior of min-sum on a simple optimization
problem from one such easy class of integer programs: given

† Supported by NSF grant 0534052

a directed graphG = (V,E), verticess and t ∈ V , and
weightswe > 0 for eache ∈ E, the shortest s-t path problem
is to find the path of minimum weight inG starting ats and
ending att. If no such path exists the shortests-t path is
infinite. This problem is related to routing and has important
applications in distributed systems.

A. Total Unimodularity

Definition 1.1: A matrix A is totally unimodular if every
square sub-matrix has determinant0, 1, or −1. Note that
this implies that the entries ofA are0, 1, or −1.

Theorem1.2: LetA be a totally unimodularm×n matrix
andb an integraln vector. The polyhedronP = {x|Ax ≤ b}
is integral.

The theorem implies that if an integer programming prob-
lem Ax ≤ b with A a totally unimodular matrix andb
an integral vectorb has a unique solution then the linear
programming problem obtained by relaxing the requirement
that the variables in the integer program can only take integer
values also has a unique solution.

For an instance of the weighted matching problem and
the weighted independent set problems, the corresponding
integer program is not necessarily totally unimodular. In
these cases, a unique integral solution to the IP does not
guarantee a unique solution to the linear relaxation. This
complicates the proofs of convergence as evidenced in [1]
and [3]. Therefore, with the hope of producing a general
theory, totally unimodular matrices seem an appropriate
starting point. More information on total unimodularity and
linear programming can be found in [4].

In this paper, we will show that if the shortests-t path
problem has a unique solution then the min-sum algorithm
always converges to the correct solution in a number of
steps that depends on the weight of the shortest path and the
weight of the second shortest path. This paper is organized as
follows: in Section II we formulate the shortest path problem
for both integer programming and the min-sum algorithm
and in Section III we show that min-sum converges if the
LP relaxation has a unique solution.

II. SHORTEST S-T PATHS

The shortests-t path problem can be formulated as an
integer program:

minimize:
∑

e∈E

weXe

subject to:
∑

(u,v)∈E

X(u,v) =
∑

(v,u)∈E

X(v,u) for v ∈ V − {s, t} (1)

∑

(s,u)∈E

X(s,u) = 1 +
∑

(u,s)∈E

X(u,s) (2)

∑

(u,t)∈E

X(u,t) = 1 +
∑

(t,u)∈E

X(t,u) (3)

Xe ∈ {0, 1} for eache ∈ E (4)

This integer program can be relaxed into a linear program
by changing the last constraint fromXe ∈ {0, 1} to Xe ∈
[0, 1]. The matrix for this linear program is the combination
of two copies of theV ×E incidence matrix forG which is
totally unimodular [4]. Hence, if there is a unique shortest
path froms to t in G then the linear program has a unique
optimal solution (by the previous theorem).

A. Shortest s-t Paths via Min-Sum

The above problem can be formulated as a problem on a
factor graph and then solved using the min-sum algorithm.
Here we will have variablesXe for eache ∈ E and factors
ψv for eachv ∈ V . The factorψv is a function depending
on all edges incident tov which we will denote∂v. ψv is an
indicator fucntion for the constraints in the integer program
at vertexv. Specifically, defineψv for v 6= s, t as follows:

ψv(X∂v) =

{

1 if equation (1) is satisfied atv
0 otherwise

Similarly, ψs and ψt indicate whether or not(2) and (3)
respectively are satisfied. The factor graph then has a vertex
for each of the factors and variables with an edge joining a
variable and a factor if the factor depends on that variable.

For each edgee ∈ E define a self-potentialφe(Xe) =
eweXe . We then define

f(XE) =
∑

e∈E

log φe(Xe) −
∑

v∈V

logψv(X∂v)

Given an assignment of eachXe to some value in{0, 1},
f(XE) is equal to the

∑

e∈E weXe if the nonzeroXe’s
define a directed edge disjoint path froms to t in G and
infinity otherwise. Therefore, minima off correspond to
minimal s-t paths. If no such path exists thenf is infinity
for all choices ofXE .

We can now use the min-sum message passing procedure
in an attempt to minimize the objective functionf . The
message passing procedure is iterative in that at each stagea
messagem(u,v)→v is sent from each variableX(u,v) to the
factorsψv andψu and a messagemv→e is sent from each
factorψv to each variableXe such thate is incident tov in
G. At any point, a variableX(u,v) can compute an estimate
of whether or not it is in the minimums-t path by using the
messages that it received fromψu andψv in the last time

(a) The graphG (b) A few levels of the com-
putation tree rooted at(s, a)

Fig. 1. A simple graph and computation tree.

step. For the shortest path problem, the min-sum algroithm
looks as follows:

Min-Sum Algorithm:

1) Initialize all messages to0.
2) For e incident tov,

mn
v→e(x) = min

x∂v :xe=x
− logψv(x∂v)

+
∑

e′:e′∈∂v−{e}

mn−1
e′→v(xe′)

3) For e incident tov andu,

mn
e→v(x) = log φe(x) +mn−1

u→e(x)

4) Compute the beliefs at step n:

bne (x) = φe(x) +
∑

v∈∂e

mn
v→e(x)

5) Estimate membership ofe = (u, v) in the min path as

xe
n =







1 if bne (1) < bne (0)
0 if bne (0) < bne (1)
? otherwise

We say that the message passing procedure has converged at
stepn if there is no time stepn′ > n such thatxe

n 6= xe
n′

.

III. C ONVERGENCE OFM IN-SUM

To prove convergence of the min-sum algorithm we will
make extensive use of the notion of a computation tree. The
computation tree rooted at a nodey in the factor graph is
constructed by starting aty and adding all neighbors ofy as
children of y in the tree. The next level of the tree is then
generated by taking a leaf of the tree and adding all of the
leaf’s neighbors that are not its parent.

This process is the repeated for the new leaf nodes and
so on. Notice that this computation tree has nodes for both
edges and vertices in the original graph. We will, for ease of

illustration replace theXe nodes with a directed edge joining
e’s two endpoints. We will denote this new tree starting with
edgee and repeating the process for2n steps asTe(n).

The resulting minimization problem on the computation
tree is different from the originals-t path problem. There
are now multiple copies ofs and t making the problem
on the computation tree a multi-source/multi-sink shortest
path problem. Contrast this with the cases of max-weight
matching and max-weight independent set where the problem
on the original graph and the problem on the computation
tree are exactly the same. Specifically, a feasible solutionon
the computation tree is a set of edges such that every copy
of s in the tree has a path to a copy oft or a boundary node
(allowed by the message initialization), every copy oft in
the tree has a path from a copy ofs or some boundary node,
and every vertex has at least as many out edges as in edges.
A feasible solution is minimal if no feasible solution has a
smaller weight.

The computation tree models the message passing struc-
ture of the min-sum algorithm: minimal solutions onTe(n)
correspond to the beliefs of the root obtained by running the
min-sum algorithm for2n steps.

Define w(S) =
∑

e∈S we for S a set of edges. Let
wmin = mine∈E we andǫ be the difference in weight of the
second bests-t path inG and the optimal path inG then
we have the following theorem:

Theorem3.1: If P ∗ is the unique minimums-t path in
G then an edgee ∈ E is in P ∗ iff every minimal solution
on Te(n) contains the root forn > w(P∗)2

ǫwmin
+ w(P∗)

wmin
.

Proof: (⇒) Suppose by way of contradiction thate =
(u, v) is in the mins-t pathP ∗ onG but that there is some
minimal solutionM on the computation tree rooted ate at
time 2n that does not contain the root.

This proof, similar to that of [1], builds an alternating set
of paths that can be swapped to improve the optimality of
the solution. Because the constraints are not binary in our
case, the construction is slightly more complicated.

Construct two subgraphsMsub−opt andMopt of Te(n) as
follows:

1) Let P be a copy of the minimums-t path that uses
the root edgee = (u, v). Starting atv, follow P

forward until doing so would require traversing an edge
in M . Similarly, starting atu follow the edges inP
backwards until doing so would require traversing an
edge inM . Add this sub-path ofP to Mopt.

2) By construction, for each sub-pathP in Mopt not
originating at a leaf, there must be at least one path
in M that either (possibly both for the edge added in
step 1)

a) leaves the head ofP and terminates in a copy
of t or in a leaf of Te(n). If no such path is
in Msub−opt, choose such a pathP ′ in M and
follow it until t or the boundary. Add this sub-
path toMsub−opt.

b) enters the tail ofP and originates in a copy
of s or in a leaf of Te(n). If no such path is

(a) Solution on the computation tree (dashed edges) rooted
at (c, d) with optimal paths− a− b− c− d− e− f − t

(b) Mopt (+) edges andMsub−opt (-) edges

Fig. 2. Illustration of the construction.

in Msub−opt, choose such a pathP ′ in M and
follow it backwards untils or the boundary. Add
this sub-path toMsub−opt.

3) By construction, for each sub-pathP in Msub−opt not
touching the boundary, there must be a copy ofP ∗

that either
a) leaves the head ofP and terminates in a copy

of t or in a leaf ofTe(n). If this path is not in
Mopt, follow it until t or when traversing an edge
requires traversing an edge inM . Add this sub-
path toMopt.

b) enters the tail ofP and originates in a copy ofs
or in a leaf ofTe(n). If this path is not inMopt,
follow it backwards untils or when traversing an
edge requires traversing an edge inM . Add this
sub-path toMopt

4) Repeat steps 2 through 3 until it is no longer possible
to add any more paths.

This process builds a set of paths starting at the root
that alternates between subpaths of copies ofP ∗ and sub-
paths of the solutionM . Figure 2 illustrates the construc-
tion for a graphG whose unique minimums-t path is
(s, a), (a, b), (b, c), (c, d), (d, e), (e, f), (f, t).

Let M∗ = (M −Msub−opt) ∪Mopt. Notice thatM∗ is a
feasible solution onTe(n) since the in degree and out degree
of every node inM is preserved and, by the construction,
sub-paths inMopt satisfy the constraints at their heads and
tails when added toM .

Let k be the number of disjoint sub-paths inMopt and
k′ be the number of disjoint sub-paths inMsub−opt. In the
worst case,k = k′+1 due to the alternating construction. As
all other possible outcomes can be reduced to this situation,
we only illustrate the proof in this instance. There are two
cases:

Fig. 3. Example of non-uniqueness.

Case 1: k >
w(P∗)

ǫ
+ 1

In this case there arek − 1 disjoint sub-paths inMsub−opt

each of which cannot have a weight closer thanǫ to the
weight of the sub-path inMopt that enters its tail. We have
(k − 1)ǫ > w(P ∗), so

w(M∗) = w(M) − w(Msub−opt) + w(Mopt)

< w(M) − (k − 1)ǫ+ w(P ∗)

< w(M)

Case 2: k ≤ w(P∗)
ǫ

+ 1

w(M∗) = w(M) − w(Msub−opt) + w(Mopt)

≤ w(M) − (2x− k|P ∗|)wmin + w(Mopt)

≤ w(M) − (2x−
kw(P ∗)

wmin

)wmin + kw(P ∗)

≤ w(M) − 2xwmin + 2kw(P ∗)

< w(M)

In either case,w(M∗) < w(M) contradicting the
minimality of M .

(⇐) For the opposite direction, suppose by way of con-
tradiction that every minimal solution onTe(n) contains the
root edgee but thate is not in P ∗. We can then construct
Msub−opt andMopt in an alternating fashion similar to the
above. As the details of the proof are nearly identical, we
omit them here.

A. Non-Uniqueness

If the shortest path is not unique, the min-sum algorithm
may not produce the correct answer. For example, consider
Figure 3. Thes-t path is not unique, and by symmetry,
the computation tree rooted at(s, a) is isomorphic to the
computation tree rooted at(s, b). As a result, their beliefs at
any fixed time will be the same.

IV. CONCLUSION AND FUTURE WORK

We have demonstrated that the shortests-t path problem
can be solved by a min-sum procedure derived from an
integer program. If the integer program has a unique solution,
then the estimates produced by the min-sum algorithm can
be used to find the mins-t path inG after w(P∗)2

ǫwmin
+ w(P∗)

wmin

iterations of the algorithm. However, the above time bound

may or may not be tight. A different or more careful proof
may be able to reduce the time bound further.

Understanding the shortest path problem is an important
first step in understanding how the max-product and min-
sum algorithms can be used to solve totally unimodular
linear programs. This problem highlights some complexities
that are not present in the max-weight matching and max-
weight independent set problems; most notably, the opti-
mization problem on the computation tree is not the same
as the original problem (recall that there were multiples’s
and multiplet’s on the computation tree). The result here
suggests that similar techniques may have some success
when applied to more general totally unimodular linear
optimization problems.

REFERENCES

[1] S. Sanghavi, D. Malioutov, and A. Willsky, “Linear programming anal-
ysis of loopy belief propagation for weighted matching,” inAdvances in
Neural Information Processing Systems 20, J. Platt, D. Koller, Y. Singer,
and S. Roweis, Eds. Cambridge, MA: MIT Press, 2008, pp. 1273–
1280.

[2] M. Bayati, D. Shah, and M. Sharma, “Max-product for maximum
weight matching: Convergence, correctness, and lp duality,” in Infor-
mation Theory, IEEE Transactions on, 2008, pp. 1241–1251.

[3] S. Sanghavi and D. Shah, “Tightness of lp via
max-product belief propagation,” 2005. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0508097

[4] A. Schrijver, Theory of Linear and Integer Programming. John Wiley
& Sons Ltd., 1987.

