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Abstract. S-TaLiRo is a Matlab toolbox that searches for falsifying
trajectories of temporal logic properties of Simulink/Stateflow models.
It can analyze arbitrary Simulink models or user defined functions that
model the system. At the heart of the tool, we use randomized test-
ing based on stochastic optimization techniques including Monte-Carlo
methods and ant-colony optimization. Among the advantages of the tool-
box is the seamless integration inside the Matlab environment, which is
widely used in the industry for model-based development of control soft-
ware. We present the architecture of S-TaLiRo and its working on an
application example.

1 Introduction

Temporal verification involves the ability to prove as well as falsify temporal
logic properties of systems. In this paper, we present our tool S-TaLiRo1 for
temporal logic falsification. S-TaLiRo searches for counterexamples to Metric
Temporal Logic (MTL) properties for non-linear hybrid systems through global
minimization of a robustness metric [3]. The global optimization is carried out
using stochastic optimization techniques that perform a random walk over the
initial states, controls and disturbances of the system [5, 1].

S-TaLiRo supports systems implemented as Simulink/Stateflow (TM) mod-
els as well as general m-functions in Matlab. Other frameworks can be supported
readily, provided a Matlab (TM) interface is made available to their simulators.
S-TaLiRo has been designed to be used by developers with some basic aware-
ness of temporal logic specifications. Simulink/Stateflow (TM) models are the
de-facto standard amongst developers of control software in many domains such
as automotive control and avionics. S-TaLiRo also supports the easy input of

? This work was partially supported by a grant from the NSF Industry/University
Cooperative Research Center (I/UCRC) on Embedded Systems at Arizona State
University and NSF awards CNS-1017074 and CNS-1016994.

1 S-TaLiRo web-page: https://sites.google.com/a/asu.edu/s-taliro/. The pub-
lic release of the toolbox does not contained the parts of the software that were
developed under I/UCRC funding.
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Fig. 1. The architecture of the S-TaLiRo tool.

At its core, S-TaLiRo integrates robustness computation for traces of hy-
brid systems (TaLiRo) [3] with stochastic simulation [8]. The search results in
simulation traces with smallest robustness values found. In practice, traces with
negative robustness are falsifications of temporal logic properties. Alternatively,
traces with lower robustness values are closest in distance to falsifying traces
using a mathematically well defined notion of distance between trajectories and
temporal logic properties. Such traces may provide valuable insight to the de-
veloper on why a given property holds or how to refocus a failed search for a
counter-example.

S-TaLiRo is based on recent progress in robustness metrics for metric tempo-
ral logic properties of continuous systems [3]. The extension of these metrics for
hybrid traces that combine continuous state evolution with discrete switches [5].
The application of Monte-Carlo techniques that use sampling biased by robust-
ness for falsification is described in our HSCC 2010 paper [5]. We report on our
experience with other optimization techniques including Ant-Colony Optimiza-
tion [1]. S-TaLiRo presents an optimized implementation of the robustness met-
rics along with the ability to plug-in other stochastic optimization algorithms.

2 The S-TaLiRo Tool

Figure 1 shows the overall architecture of our toolbox. The toolbox consists
of a temporal logic robustness analysis engine (TaLiRo) that is coupled with a
stochastic sampler. The sampler suggests input signals to the Simulink/Stateflow
(TM) simulator which returns an execution trace after the simulation. The trace
is then analyzed against the model by the robustness analyzer, whose goal is to
compute a robustness value. The robustness is computed based on the results
of convex optimization problems used to compute signed distances. In turn, the
robustness score computed is used by the stochastic sampler to decide on a next
input to analyze.

Fig. 1. The architecture of the S-TaLiRo tool.

metric temporal logic formulae through an in-built parser. It has been designed
and packaged as a Matlab toolbox with a simple command line interface.

At its core, S-TaLiRo integrates robustness computation for traces of hy-
brid systems (TaLiRo) [3] with stochastic simulation [8]. The search results in
simulation traces with smallest robustness values found. In practice, traces with
negative robustness are falsifications of temporal logic properties. Alternatively,
traces with lower robustness values are closer in distance to falsifying traces us-
ing a mathematically well defined notion of distance between trajectories and
temporal logic properties. Such traces may provide valuable insight to the de-
veloper on why a given property holds or how to refocus a failed search for a
counter-example.

S-TaLiRo is based on recent progress in robustness metrics for metric tem-
poral logic properties of continuous systems [3]. These metrics were extended
in [5] to hybrid traces that combine continuous state evolution with discrete
switches. The application of Monte-Carlo techniques that use sampling biased
by robustness for falsification is described in our HSCC 2010 paper [5]. In [1],
we report on our experience with other optimization techniques including Ant-
Colony Optimization. S-TaLiRo also contains an optimized implementation of
the robustness metrics (TaLiRo) along with the ability to plug-in other stochas-
tic optimization algorithms.

2 The S-TaLiRo Tool

Figure 1 shows the overall architecture of our toolbox. The toolbox consists
of a temporal logic robustness analysis engine (TaLiRo) that is coupled with a
stochastic sampler. The sampler suggests input signals to the Simulink/Stateflow
(TM) simulator which returns an execution trace after the simulation. The trace
is then analyzed by the robustness analyzer which returns a robustness value.
The robustness is computed based on the results of convex optimization problems
used to compute signed distances. In turn, the robustness score computed is used
by the stochastic sampler to decide on a next input to analyze.
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Fig. 2. Room heating benchmark HEAT30 and results obtained from S-TaLiRo run.

If in this process, a falsifying trace is found, it is returned to the user, who can
then proceed to examine it inside the Simulink/Stateflow modeling environment.
If the process times out, then the least robust trace found by the tool is output
for user examination.

3 Usage

S-TaLiRo has been designed to be seamlessly integrated in the model based
design process of Matlab/Simulink (TM). The user designs the model in the
Simulink/Stateflow (TM) environment as before. At present, the only require-
ment is that input signals must be provided to the Simulink model through
input ports. Then S-TaLiRo is executed with the name of the Simulink model
as a parameter along with the set of initial conditions, the constraints on the
input signals (if any) and the MTL specification. Currently, the user may select
one of the two available stochastic optimization algorithms: Monte Carlo or Ant
Colony Optimization. However, the architecture of S-TaLiRo is modular and,
thus, any other stochastic optimization method can be readily implemented.

As a demonstration, we apply S-TaLiRo to the room heating benchmark
from [4] (see Fig. 2). We chose the benchmark instance HEAT30. This is a hy-
brid system with 10 continuous variables (10 rooms) and 3360 discrete locations
((104 )24 where 4 is the number of the heaters). The set of initial conditions is
[17, 18]10 and input signal u can range in [1, 2]. The goal is to verify that no room
temperature drops below [14.50 14.50 13.50 14.00 13.00 14.00 14.00 13.00 13.50



14.00]T . The input signal was parameterized using a piecewise cubic Hermite
interpolating polynomial with 4 control points evenly distributed in the simula-
tion time. S-TaLiRo found a falsifying trace with robustness value of −0.429.
Figure 2 shows the trace and the input signal discovered by S-TaLiRo.

4 Related Work

The problem of testing hybrid systems has been investigated by many others
(see the related research section in [5]). Most of the research focuses on param-
eter estimation [7, 2]. Recently, however, the problem of temporal falsification
for hybrid systems has received a lot of attention [6, 5]. Unfortunately, the pub-
licly available tool support has been fairly low in this space. The only other
publicly available toolbox that supports computation of robustness for tempo-
ral logic formulas with respect to real-valued signals is BREACH [2]. However,
BREACH currently does not support temporal logic falsification for arbitrary
Simulink/Stateflow models. Along the lines of commercial products, Mathworks
provides a number of tools such as SystemTest2 (TM) and Simulink Design Ver-
ifier3 (TM). S-TaLiRo does not attempt to be a comprehensive test tool suite
as the above, but rather to solve a very targeted problem, i.e., the temporal logic
falsification for hybrid systems. In the future, we hope to extend S-TaLiRo and
the theory of robustness to estimate properties such as worst-case timings and
integrate it into the statistical model checking framework.
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4. Ansgar Fehnker and Franjo Ivanĉić. Benchmarks for hybrid systems verification. In
HSCC, volume 2993 of LNCS, pages 326–341. springer, 2004.

5. Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivančić, Aarti
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A S-TaLiRo presentation

The presentation of S-TaLiRo will be divided into three parts which correspond
to the major parts of the S-TaLiRo architecture (see Fig. 1). First, a quick
introduction to the Matlab/Simulink/Stateflow (TM) will be provided for the
members of the audience who might not be familiar with the popular scientific
computing platform. Second, we will introduce TaLiRo, which is a toolbox for
the computation of the robustness of signals with respect to MTL formulas.
Finally, we will present S-TaLiRo through a couple of test cases.

The presentation of S-TaLiRo will be performed using demos and slides.
For the demos, we will require Internet connection in order to get access to a
Matlab license on our laptop.

A.1 Matlab/Simulink/Stateflow (TM)

The presentation of Matlab/Simulink/Stateflow (TM) will be quite brief and
mainly focus on the command interface of Matlab (TM) and on the model based
design of hybrid systems using Simulink/Stateflow (TM). The presentation of
the script language is necessary in order to demonstrate later on the ease of use
of S-TaLiRo.

The concept of model based design and some of the basic building blocks will
be introduced using the simple heating model in Fig. 3. This demo is based on
the heating model of a house that is provided with Simulink. We assume that the
resident may set arbitrarily the thermostat every 6 hours to some temperature in
the range [70, 84]◦F . We also assume that the variation in the ambient temper-
ature can be modeled using Piecewise Cubic Hermite Interpolating Polynomials
with control points in the range [50, 80]◦F and that the initial temperature in
the house is somewhere in the range [20, 40]◦C. The goal is to find a system
behavior where the daily Cost of the heating might exceed 10 or if the difference
between the thermostat setting and the indoor temperature is below −4.5◦F ,
then the temperature difference is raised above −4.5◦F and stays so for 15 min
within 30 min.

A.2 TaLiRo

TaLiRo is a software toolbox for the analysis of the robustness of MTL formulas
with respect to discretized real-valued signals. The theoretical foundations of
TaLiRo are presented in [3].

The current version of TaLiRo can be downloaded from

https://sites.google.com/a/asu.edu/s-taliro/



Thermal Model of a House

Copyright 1990-2008 The MathWorks, Inc.

Note: Time given in units of hours

3
TempDiff

2
Cost

1
TempIndoor

Thermostat Pulse
Generator

1
s

House

On/Of f

Troom

HeatFlow

Heater
F2C

Fahrenheit
to Celsius 

F2C

Fahrenheit
to Celsius

cost

Cost 
Calculator

C2F

Celsius to
Fahrenheit

2
In2

1
In1

blower
cmdTerr

Toutdoors

Tindoors

HeatCost

Fig. 3. A simple heating model for a house. This example is a slightly modified Simulink
demo.

Version 1.0 is now available as a Matlab toolbox and it can handle multi-
dimensional real-valued signals. Furthermore, we have improved the computation
of MTL robustness by implementing a dynamic programming based algorithm
as opposed to the previous version which was based on formula rewriting tech-
niques. Now the computation time for the robustness is linear in the length of
the simulation trace and the size of the formula.

¬ ∨ ∧ → ↔
! \/ /\ -> <->

© ∼© � ♦ U R
X W [] <> U R

Table 1. Correspondence between logical operators and ASCII symbols.

The presentation of TaLiRo will start by giving the basic definitions of
the temporal logic operators and the theoretical background on temporal logic
robustness. Then, we will present the syntax of the logic (Table 1) and how we
can define MTL formulas within the Matlab environment.

Figure 4 presents a script for defining an MTL formula, the mapping of the
predicates and, finally, calling TaLiRo. In lines 01-08, we define the mappings
of the atomic propositions to subsets of the continuous observation space. Es-
sentially, we have the mapping of C and DT to the sets R × (∞, 10] × R and
R2 × [−4.5,+∞). The atomic propositions can be mapped to arbitrary poly-
hedral sets of the form {x | Ax ≤ b}. In line 10, we define the MTL formula
�(C ∧ (¬DT → ♦[0,0.5]�[0.25]DT )), which states that the daily Cost should be
always less then 10 and that if the difference between the thermostat setting
and the indoor temperature drops below −4.5◦F , then it should be raised above
−4.5◦F within 30 min and stays so for 15 min. In line 12, we call TaLiRo on
a multi-dimensional signal x and a sequence of time stamps t. TaLiRo returns
the Boolean satisfiability value of the formula with respect to the signal along
with the corresponding robustness.



The output of TaLiRo on a typical ambient temperature - thermostat setting
scenario displayed in Fig. 5 is [1,0.068333]. That is, the output signals satisfy
the specification with robustness 0.068333.

01. % Cost

02. pred(1).str=’C’;

03. pred(1).A = [0 1 0];

04. pred(1).b = 10;

05. % Temperature

06. pred(2).str=’T’;

07. pred(2).A = [0 0 -1];

08. pred(2).b = -4.5;

09. % MTL formula

10. phi=’[](C /\ (!T -> <> [0,0.5] [] [0,0.25]T))’;

11. % Calling TaLiRo

12. [B,R] = taliro(phi,pred,x,t);

Fig. 4. A Matlab script for calling TaLiRo on state trajectory x with time stamps t.
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Fig. 5. The output of the model of Fig. 3 on a typical weather - thermostat setting
scenario. The x-axis represents hours.

A.3 S-TaLiRo

Next, we will present how S-TaLiRo can be applied to Simulink models. The
specifications can be defined either over the state space of the model or over



the output space. This is an explicit option provided to S-TaLiRo. If the model
does not have external inputs, then the search for a falsifying trajectory can only
be performed over the set of initial conditions. If on the other hand, we would
like to verify the MTL property over a Simulink model with external inputs,
then these inputs must be defined as input ports to the model (see Fig. 3).

No matter what is the type of the model we provide to S-TaLiRo, we need
to also specify the set of initial conditions as well as the constraints to the inputs.
In the current version, both must be provided as hypercubes. Note that if we
do not want to search for a falsifying trajectory over the set of initial conditions
or the system does not have any inputs, then we can set either variable as
an empty array. If the system does accept input signals, then in this case we
need to parameterize the input function space using a finite set of points in
time. For that reason, the user provides two more parameters: the type of the
interpolating function and the number of control points in time for each input
signal. Currently, S-TaLiRo supports all the interpolating functions provided in
Matlab using the interp1 function as well as well as piecewise constant signals.

The interface of S-TaLiRo is as follows

[rob,rtime,nIter,samples] =

s taliro(model,icond,irange,cparray,phi,pred,tt,opt);

The inputs are:

– model: a string with the name of the Simulink model, a pointer function or
an object of the hybrid automata class

– icond: a hypercube defining the set of initial conditions

– irange: a hypercube defining the set of constraints on the inputs

– cparray: the number of control points for each input signal

– phi: a string with the MTL formula

– pred: a structure with the atomic proposition mapping

– tt: the total simulation time

– opt: various S-TaLiRo options

and the outputs are

– rob: the minimum robustness value found at each run of the falsification
algorithm

– rtime: the total running time until a falsifying trajectory is found or the
total number of stochastic tests is reached

– nIter: the total number of iterations until a falsifying trajectory is found or
the total number of stochastic tests is reached

– samples: the initial state vector and input control points that produced the
falsifying trajectory

The following Matlab script presents how easy is to call S-TaLiRo on the
model in Fig. 3.



Example 1 (Using S-TaLiRo on the house heating example). The MTL formula
and the atomic propositions are defined as in Fig. 4. The following script calls
S-TaLiRo with the default options. Namely, the parameterization of the input
space is performed using Piecewise Cubic Hermite Interpolating Polynomials
and optimization algorithm is ACO [1].
% The name of the Simulink model

model = ’househeat01’;

% Total simulation time in hours

tt = 48;

% Initial Indoor Temperature and Cost ranges

icond = [20 40; 0 0];

% Control points for Ambient Temp and Thermostat value ranges

irange = [50 80; 70 84];

% Number of control points for each input signal

cparray = [4 8];

[rob,rtime,nIter,samples] =

s taliro(model,icond,irange,cparray,phi,pred,tt);

If we need to change some of the parameters of S-TaLiRo, then we can
use the options class staliro options. For example, if we would like to use
the Monte Carlo solver and to have the thermostat input defined as piece-wise
constant function, then we simple type
opt = set(staliro options,’optimization solver’,’MonteCarlo’, ...

’interpolationtype’, {’pchip’;’pconst’});
[rob,rtime,nIter,samples] =

s taliro(model,icond,irange,cparray,phi,pred,tt,opt);

The falsifying trajectories can be reproduced and plotted as follows:
[T,XT,YT,IT] = SimSimulinkMdl(model,[size(icond,1) cparray],...

samples(2,:),tt,{’pchip’;’pconst’});
subplot(1,2,1)

plot(T2,YT2(:,1),IT2(:,1),IT2(:,2),’r’,IT2(:,1),IT2(:,3),’g’)

legend(’Interior Temp’,’Ambient’,’Thermostat’)

subplot(1,2,2)

plot(T2,YT2(:,2))

title(’Daily Cost’)

The above script produces the graphs in Fig. 6 which present the falsifying
scenario.

Time permitting, we will present the use of TaLiRo on models defined by
m-functions in Matlab. Here is an example of a model for aircraft dynamics
written as a M-Function.

Example 2 (Aircraft ODE model).
function [ret]=aircraftODE(T,X,u)

B0 = 0.07351;

B1 = -1.5E-3;
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Fig. 6. A falsifying scenario found by S-TaLiRo with robustness −7.156.

B2 = 6.1E-4;

C0 = 0.1667;

C1 = 0.109;

m = 74E+3;

g = 9.81;

S = 158;

rho = 0.3804;

mat1 = [(-S*rho*B0*X(1,1)*X(1,1))/(2*m)-g*sin(pi*X(2,1)/180 );

(S*rho*C0*X(1,1))/(2*m)-g*cos(pi*X(2,1)/180)/X(1,1);

X(1,1)*sin(pi*X(2,1)/180)];

mat2 = [u(1,1)/m; 0; 0];

mat3 = [(-S*rho*X(1,1)*X(1,1))/(2*m)*(B1*u(2,1)+B2*u(2,1)*u(2,1));

(S*rho*C1)/(2*m)*X(1,1)*u(2,1);

0];

ret = mat1+mat2+mat3;

end

Hybrid automata can also be defined using a class for hybrid automata that
we provide. However, this is not going to be part of the presentation.


