
1

IEEE Copyright Notice
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works

Accepted to be Published in: IEEE Transactions on Audio, Speech and
Language Processing.

ar
X

iv
:2

00
8.

04
65

9v
2 

 [
ee

ss
.A

S]
  1

2 
D

ec
 2

02
1



2

S-vectors and TESA: Speaker Embeddings
and a Speaker Authenticator Based on

Transformer Encoder
N J Metilda Sagaya Mary, S Umesh, Sandesh V Katta

Abstract—One of the most popular speaker embeddings is x-
vectors, which are obtained from an architecture that gradually
builds a larger temporal context with layers. In this paper,
we propose to derive speaker embeddings from Transformer’s
encoder trained for speaker classification. Self-attention, on
which Transformer’s encoder is built, attends to all the fea-
tures over the entire utterance and might be more suitable
in capturing the speaker characteristics in an utterance. We
refer to the speaker embeddings obtained from the proposed
speaker classification model as s-vectors to emphasize that they
are obtained from an architecture that heavily relies on self-
attention. Through experiments, we demonstrate that s-vectors
perform better than x-vectors. In addition to the s-vectors, we
also propose a new architecture based on Transformer’s encoder
for speaker verification as a replacement for speaker verification
based on conventional probabilistic linear discriminant analysis
(PLDA). This architecture is inspired by the next sentence
prediction task of bidirectional encoder representations from
Transformers (BERT), and we feed the s-vectors of two utterances
to verify whether they belong to the same speaker. We name
this architecture the Transformer encoder speaker authenticator
(TESA). Our experiments show that the performance of s-vectors
with TESA is better than s-vectors with conventional PLDA-
based speaker verification.

Index Terms—s-vectors, speaker classification, speaker em-
beddings, speaker verification, TESA, Transformer encoder, x-
vectors.

I. INTRODUCTION

SPEAKER verification uses speech as a biometric to ver-
ify the identity claimed by the speaker. There are two

types of speaker verification systems: text-dependent and text-
independent. Text-independent systems are flexible, as there is
no constraint on the text spoken by the speaker. Most of the
research in this area is focused on obtaining a single fixed-
dimension vector representing an utterance. These vectors are
then scored to verify the speaker’s identity and are termed
speaker embeddings. Any speaker embedding should enhance
interspeaker variability and suppress intraspeaker variability
while scoring.

One of the earliest speaker embeddings is i-vectors [1]
extracted from the universal background model-Gaussian mix-
ture model. With the increase in data available for training,
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speaker embeddings based on deep learning methods have
gained in popularity.

A common approach in all the deep learning methods
addressing the speaker verification task is to perform speaker
classification first [2], [3], [4], [5], [6]. Then, utterance-specific
fixed-dimension embeddings are obtained from the speaker
classification network by different pooling methods. These
embeddings are then fed to a speaker verification system to
validate the identity claimed by the speaker. One such embed-
ding is x-vectors [3] extracted from a speaker classification
architecture based on time-delay neural network (TDNN) [7]
with pooling. Hereafter, the term x-vectors refers to the orig-
inal TDNN-based x-vectors in [3]. The x-vectors along with
speaker verification based on probabilistic linear discriminant
analysis (PLDA) [8] have significantly outperformed i-vectors.

Recently, speaker embeddings extracted from speaker classi-
fication architectures based on residual networks (ResNets) [9]
[4], [5], [6], [10], [11] with pooling, which consider spectro-
gram representations of speech as images, have outperformed
x-vectors. It should be noted that ResNets are pretrained mod-
els and are pretrained with a considerable number of images.
These pretrained models are then retrained with speech data
to perform speaker classification with standard softmax or
additive margin softmax loss [12]. Then, speaker verification
is performed with loss functions such as contrastive [13], [14]
or relation loss [6].

Different strategies called pooling methods are employed in
speaker classification networks to obtain fixed-dimension em-
beddings from variable length utterances, as mentioned before.
These pooling methods can be classified into nontrainable and
trainable approaches. Average [4] and statistics pooling [3]
are nontrainable pooling methods. In average pooling, all the
frames of the given dimension D× 1 are averaged to obtain a
single D×1 dimension vector. In statistics pooling, both mean
and standard deviation vectors are concatenated to obtain a
2D×1 vector. Attentive statistics [15], self-attention [16], [17],
2D self-attention [18], NetVLAD [19], and GhostVLAD [20]
are trainable pooling methods. Not all frames are important in
identifying a speaker. Therefore, attentive statistics and self-
attention pooling aim to assign weights to the frames while
calculating utterance level statistics. 2D self-attention pooling
tries to incorporate an additional self-attention layer to pool
the embeddings from different models. NetVLAD learns a
K × Dk matrix, where K represents the number of clusters
taken and Dk is the dimension of clusters. This matrix is
then flattened and fed for speaker classification after some
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processing. GhostVLAD is similar to NetVLAD, with a few
clusters being dropped.

Recently, different attention mechanisms [21], [22] have
been explored in natural language processing (NLP) and
speech processing areas. A new architecture named Trans-
former [23] has outperformed many existing NLP models.
Transformers have been successfully applied in both automatic
speech recognition and text-to-speech tasks [24], [25], [26],
[27]. A Transformer is built on self-attention across time.
Some architectures for speaker verification have explored
incorporating attention at a model level in frameworks dif-
ferent from Transformer. In [10], attention in both time and
frequency was explored in a ResNet framework. In a TDNN
framework, channelwise attention has shown improvement
in speaker verification performance [28]. In [11], combining
time-frequency attention with channel attention hierarchically
at the model level was explored in a ResNet framework.

A Transformer has two modules: an encoder and a decoder.
These two modules are built on self-attention and interact
through source-attention. In the Transformer’s encoder, in-
formation from all the frames is accounted for by the self-
attention networks in every layer. Self-attention is built on dot
products. As dot products are a kind of similarity measure that
might better capture speaker characteristics in an utterance, we
were motivated to explore embedding extraction from Trans-
former’s encoder trained for the speaker classification task. It
should be noted that this idea is different from attention-based
pooling [15], [16], [17], [18], where attention is employed in
the pooling only. At the time of submission, we also noticed a
work that briefly discusses the extraction of embeddings from
Transformer encoder [29]. [30] also explored the extraction of
speaker embeddings from a Transformer encoder but with the
objective of reducing the parameter count.

Different self-supervised pretrained models based on Trans-
formers have given state-of-the-art performance in various
NLP tasks. One such model is bidirectional encoder repre-
sentations from Transformers (BERT) [31]. BERT is a Trans-
former encoder with some special input tokens and is trained
on two tasks simultaneously: masked language modeling and
next sentence prediction. Reconstruction of masked speech
frames such as the masked words being predicted in the
masked language modeling task of BERT was explored in [32],
and the features extracted from it performed well in speaker
classification as a downstream task. The next sentence predic-
tion task of BERT takes two sentences as input, and the model
is trained to predict whether the second sentence follows the
first sentence. This next sentence prediction task motivated us
to propose Transformer encoder speaker authenticator (TESA)
in place of conventional PLDA.

Other works in speaker verification have been in the area
of using different features. The impact of mel frequency
cepstral coefficients (MFCCs) of different dimensions and
fbank features in the x-vector framework was explored in
[33]. Raw speech with a convolutional neural network-based
speaker embedding extractor has also given the improvement
in [33].

Our main contributions in this paper are as follows:
• A Transformer encoder-based speaker classification archi-

Fig. 1: X-vectors architecture

tecture is proposed, from which we obtain better speaker
embeddings. We call the embeddings obtained from this
architecture s-vectors. We replaced the TDNN part of the
x-vector model’s architecture with Transformer’s encoder
to obtain the s-vector model’s architecture without chang-
ing the input MFCC dimension.

• A Transformer encoder-based architecture for speaker
verification is proposed, where we feed speaker embed-
dings from two utterances together, to verify whether they
belong to the same speaker. We call this architecture
the Transformer encoder speaker authenticator (TESA).
TESA is inspired by the next sentence prediction task of
BERT.

• Through experiments, we demonstrate that both the s-
vectors and TESA outperform their existing baseline
counterparts x-vectors and PLDA on both VoxCeleb-1
and VoxCeleb-2 data.

II. X-VECTORS

A. Architecture

The architecture of the x-vector model is shown in Fig. 1.
We used 30-dimensional MFCC features instead of the 24-
dimensional MFCC features in [3]. In the first TDNN layer
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(TDNN-1), at any time step t, {t−2, t−1, t, t+1, t+2} frames
are spliced and presented as input. TDNN-2 takes {t−2, t, t+
2}, and TDNN-3 takes {t− 3, t, t+ 3} spliced frames of the
previous layer as input. TDNN-4 and TDNN-5 take just the
tth frame as input. To aggregate the statistics over the entire
utterance, this system uses a statistics pooling layer (stats pool
layer). This layer computes the mean and standard deviation
across each dimension over the entire utterance, resulting in
a single 3,000 × 1 vector. This single vector is representative
of the entire utterance. Then, this vector is passed through
two feedforward neural networks (FFNNs) and then to the
output layer with cross-entropy as the criterion for speaker
classification. All nonlinearities used are rectified linear units
(ReLUs), and batch normalization is performed at every stage.
The embeddings extracted from FFNN-1 before nonlinearity
are termed x-vectors. This model is the baseline with which
we compare our proposed s-vector model.

B. PLDA-based Speaker Verification

The x-vectors method uses PLDA to generate scores for
the trial pairs. If the scores are higher than the set threshold,
utterances in the pair belong to the same speaker and vice
versa. Linear discriminant analysis helps verify seen speakers
and cannot handle the unseen speaker scenario optimally.
Therefore, PLDA attempts to fit a Gaussian mixture model
with a continuous class variable to generalize for unseen
speakers.

Let the probability of generating the data samples x from a
given class y be given by

P (x|y) ∼ N (x|y, φw), (1)

where φw is the within-class covariance matrix and is common
for all classes. To enable efficient handling of unseen classes,
a Gaussian class prior is taken as

P (y) = N (y|m,φb), (2)

where φb is the between-class covariance matrix and m is the
mean of all data samples. φw is positive definite, and φb is
positive semidefinite. A matrix V simultaneously diagonalizes
both φw and φb as given by

V TφbV = ψ

V TφwV = I,
(3)

where ψ is a diagonal matrix and I is the identity matrix. The
class variable v and an example of a class u in the latent space
are given by

v ∼ N (.|0, ψ)
u ∼ N (.|v, I).

(4)

u and v are related to the feature space by

y = m+Av

x = m+Au,
(5)

where A is V −T .
Now, we have to test whether two examples (trial pair)

from unseen classes belong to the same class. In the speaker
verification task, classes are speakers, and examples are the

Fig. 2: S-vectors architecture

embeddings (x-vectors or proposed s-vectors) extracted from
the utterances. To test whether the embeddings u1 and u2 of
the two example utterances belong to the same speaker, the
logarithm of the ratio of the likelihoods P (u1, u2) and P (u1)
P (u2) is computed. This is the PLDA score for the given
trial pair, and if the score is greater than the set threshold,
the utterances are taken to be from the same speaker and vice
versa.

III. PROPOSED S-VECTORS

Existing speaker classification architectures gradually build
temporal context with layers, as mentioned before. To capture
the speaker characteristics better, we used the Transformer
encoder, which is based on self-attention in our architecture. Its
strength is that it is not restricted to finite context and attends
to all frames in each of its layers as opposed to [16], [15],
[17], [18], where attention is employed only during pooling.

A. Architecture

To derive s-vectors, we replaced the TDNN in the baseline
x-vector model with the encoder of the Transformer [23],
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Fig. 3: Encoder layer architecture

as shown in Fig. 2. Input is the same 30 × T dimension
MFCC features. We used the same training utterances as
used by the x-vector system to ensure a fair comparison.
30 × T-dimensional MFCC features are transformed into the
attention dimension (Adim) × T by FFNN-1 and fed to the
above encoder layers after adding the position embeddings.
Multihead self-attention is performed at every encoder layer.
The encoder layer is explained in detail in the next section. The
resultant Adim × T final encoder layer’s output is then taken to
1,500 × T through FFNN-2. Statistics pooling on these vectors
results in a single 3,000 × 1 vector (1,500 × 1 mean and 1,500
× 1 standard deviation). This 3,000 × 1 vector is then taken
to 512 × 1 and then to 512 × 1 again by two FFNNs. The
resultant vector is then presented to a classification layer. In
all FFNNs except FFNN-2, we used ReLU. We used leaky
ReLU (negative slope = 0.01) in FFNN-2 to stabilize the
gradients flowing through the standard deviation of the stats
pool layer. Speaker embeddings are extracted from the affine
part of FFNN-3. We call the speaker embeddings extracted
from our proposed model s-vectors.

1) Encoder Layer: Each encoder layer is made of a mul-
tihead self-attention network and a positionwise FFNN, as
shown in Fig. 3. Positionwise FFNN is composed of two
FFNNs. The first FFNN converts the input Adim × T to
encoder units × T, and the second FFNN projects the output
of the first FFNN back to Adim × T. Batch normalization is
performed after adding residuals in every stage of the encoder
layer. Batch normalization gave better performance than the
usual layer normalization in the Transformers.

In the multihead self-attention network of the Transformer
encoder, to obtain the output of a head i (Oi), the input (U) is
converted to queries (Qi), keys (Ki) and values (V i) through
the respective W i

Q,W
i
K ,W

i
V matrices as:

U ∈ RT×Adim

W i
Q,W

i
K ∈ RAdim×dk

W i
V ∈ RAdim×dv

Qi = U ×W i
Q (6)

Ki = U ×W i
K

V i = U ×W i
V .

Oi ∈ RT×dv is the weighted average of the frames of V i. The
weights of the frames of V i are obtained by,

Oi =
softmax(QiKiT )√

dk
V i, (7)

where softmax is computed along the row. In the case of
multihead self-attention with P heads, the final resultant
output (O) is given by

O = Concat(O1, O2, ..., Op) ∈ RT×(dv×P ). (8)

The value of dk and dv is set to Adim
P .

B. Datasets

We used two datasets in training our models: VoxCeleb-1
[34] and VoxCeleb-2 [6]. VoxCeleb-1 consists of recordings
from 1,251 speakers and over 0.1 million utterances extracted
from celebrity interview videos on YouTube. VoxCeleb-2 is
approximately ten times larger than VoxCeleb-1. It consists
of recordings from 6,112 speakers and has approximately a
million utterances extracted from celebrity interview videos
on YouTube. The minimum length of utterances in VoxCeleb-
1 and VoxCeleb-2 is 3 seconds, and the maximum length is 20
seconds. The two datasets together amount to approximately
2,000 hours, and the male-female gender ratio is 61%-39%.
The utterances are from speakers around the world belonging
to different professions. Unless specified, all the models in
this paper are trained on the whole of VoxCeleb-2 along
with the Dev set of VoxCeleb-1. This training set is referred
to as VoxCeleb-1+2 in this paper. Models are evaluated on
VoxCeleb-1 Test. The VoxCeleb-1 Test consists of 4,874
utterances from 40 speakers and has 37,720 trial pairs.

C. Training Details

We used Kaldi’s [35] VoxCeleb v2 recipe, which is the
implementation of x-vectors in [3] with 30-dimensional MFCC
features, to obtain our baseline. The same recipe was used to
extract features and prepare data for s-vectors. After feature
extraction, energy-based voice activity detection (VAD) is
performed. The training data are then augmented with rever-
beration and noise in the same way as Snyder et al. for their
x-vector model using VoxCeleb-1+2 data [3]. Reverberation
examples are taken from the RIRS database [36], and noise
examples are taken from the MUSAN database [37]. Cepstral
mean normalization (CMN) is applied to the augmented ut-
terances, and nonspeech frames are removed. They are then
chunked to generate training examples, similar to the baseline
x-vector model.

Our s-vector model was trained in ESPnet [38]. After data
augmentation with RIRS and MUSAN, Kaldi’s VoxCeleb v2
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TABLE I: TRAINING DETAILS OF S-VECTOR MODELS
TRAINED ON VOXCELEB-1+2

Parameter VoxCeleb-1+2

Position Encoding Sinusoidal
Encoder Units 2,048

Normalize Before True
Learning Rate 10

Batch Size ≈ 100
Optimizer Noam
Dropout 0.1

Gradient-clip 5
Warm-up Steps 25,000
Normalization Batch Norm

Fig. 4: Extraction of s-vectors by chunking

recipe chunks the data into random lengths with different start
frames to generate training examples and writes it as .ark
files before training. These ark files are not compatible with
ESPnet. Therefore, we obtained chunk information, such as
the start frame and chunk length, and performed chunking in
ESPnet before passing an utterance for training. Therefore, the
s-vector models were trained on the same data as that of the
baseline x-vector model for a fair comparison. Other details
of the s-vector training conducted in ESPnet are presented in
Table I.

IV. RESULTS WITH PLDA AND DISCUSSION

In this section, we discuss the results of the s-vector
model with conventional PLDA scoring. We utilized Kaldi’s
VoxCeleb v2 recipe for PLDA scoring. Before feeding the
utterances for s-vector extraction, CMN was performed, and
nonspeech frames were removed similar to the x-vectors using
an energy-based VAD system. Then, the resultant utterance
frames were chunked, with each chunk being 300 frames, and
the remaining frames were taken as another chunk. There was
no overlap between the chunks. Embeddings were then ex-
tracted for each chunk and then averaged to obtain the s-vector,
as shown in Fig 4. We tried different LDA dimensions and

TABLE II: VOXCELEB-1+2 RESULTS ON VOXCELEB-1
TRIALS

Model % EER DCF (0.01) DCF (0.001)

x-vector baseline 3.05 0.33 0.5
3L-256D-4H-S 3.35 0.34 0.53
6L-256D-4H-S 2.87 0.31 0.51
6L-512D-8H-S 2.67 0.30 0.44
9L-512D-8H-S 2.72 0.29 0.53

Note: 6L-512D-8H-S denotes a 6 encoder layer (L), 512 Adim
(D), and 8 head (H) s-vector (S) model.

Fig. 5: Comparison of DET curves of the 6L-512D-8H-S
model with the baseline x-vector model when trained on

VoxCeleb-1+2 data

found that the optimal dimension was 250 for the VoxCeleb-
1+2 dataset.

A. Evaluation Metrics

The standard equal error rate (EER) and detection cost
function (DCF) were used as the evaluation metrics to compare
the baseline x-vector and our proposed s-vector model. EER
refers to the value at which false alarm and miss error rates
become equal. DCF is a weighted linear combination of false
alarm and miss error rates. For DCF calculation, we assume
Ptarget = 0.01 (or 0.001), while Cmiss = 1 and Cfalse alarm = 1.

B. Finding the Optimal Hyperparameters for the S-vector
Model when Trained on VoxCeleb-1+2 Data

We analyzed the proposed s-vector architecture by varying
the hyperparameters for VoxCeleb-1+2 data. % EER and DCF
for the different numbers of layers and other hyperparameters
taken are presented in Table II. 6L-512D-8H-S in Table II
denotes a 6 encoder layer (L), 512 Adim (D), and 8 head
(H) s-vector (S) model. The detection error tradeoff (DET)
curves for the best performing s-vector and the baseline x-
vector model are presented in Fig. 5. We see that the s-vector
model outperforms the baseline x-vector model in terms of %
EER by 12.5% relative, and DCF values are also better. The
number of parameters in the 6L-512D-8H-S model is 25.3
million, and that of the baseline x-vector model is 4.3 million.
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TABLE III: VOXCELEB-1 RESULTS ON VOXCELEB-1
TRIALS

Model % EER DCF (0.01) DCF (0.001)

x-vector baseline 6.26 0.54 0.64
2L-256D-4H-S 5.80 0.48 0.65
3L-256D-4H-S 5.63 0.46 0.62
4L-256D-4H-S 5.50 0.50 0.64

Note: 3L-256D-4H-S means it is a 3 encoder layer (L), 256
Adim (D), and 4 head (H) s-vector (S) model.

Fig. 6: Comparison of DET curves of 3L-256D-4H-S model
with the baseline x-vector model when trained on

VoxCeleb-1 data

Even the 6L-256D-4H-S model surpasses the x-vector baseline
except for DCF (0.001) and has 13.8 million parameters.C. Finding the Optimal Hyperparameters for the S-vector
Model when Trained on VoxCeleb-1 Data

In this section, we show that the s-vector model outperforms
the baseline x-vector model even with smaller training data.
Both s-vector and the baseline x-vector models were trained
with VoxCeleb-1 Dev data. These data are almost ten times
smaller than the VoxCeleb-1+2 data. % EER and DCF for the
different numbers of layers taken for the s-vector model are
presented in Table III. We see that all three s-vector models
consistently perform better than the baseline x-vector model
in terms of % EER. The 3L-256D-4H-S model outperforms
the baseline x-vector model trained on the same VoxCeleb-1
Dev data in both % EER and DCF. Therefore, the s-vectors
outperform the x-vectors even in a dataset much smaller than
VoxCeleb-1+2. The DET curves for the x-vector baseline and
the best performing 3L-256D-4H-S model, when trained on
the smaller VoxCeleb-1 Dev data, are presented in Fig. 6.

D. Effect of Chunking

In this section, we analyze the performance for different
chunk lengths. We chose to chunk the utterance and obtain
the embeddings for each utterance because of the position
embeddings in our architecture. We expected that feeding
whole utterances would lead to unseen positions in the input
and result in poor speaker embeddings. Embeddings extracted
for each chunk in an utterance are averaged to obtain the final

TABLE IV: EFFECT OF CHUNKING ON 6-LAYER 512
DIMENSION 8 HEADS S-VECTOR MODEL TRAINED WITH

VOXCELEB-1+2

Method EER DCF (0.01) DCF (0.001)

6L-512D-8H-S-300 2.67 0.30 0.44
6L-512D-8H-S-100 2.96 0.35 0.53
6L-512D-8H-S-500 2.63 0.28 0.49

Note: 6L-512D-8H-S-300 means it is a 6 encoder layer (L),
512 Adim (D), and 8 head (H) s-vector (S) model with chunk
length of 300.

embedding. The performance of the 6L-512D-8H-S model for
different chunk lengths is presented in Table IV. We see that
the performance is better for chunk lengths of 300 and 500.
A chunk length of 300 gives a good DCF (0.001) value, and
we take it as the optimal chunk length.

E. Effect of Different Tapping Positions

We analyzed the effect of deriving embeddings from the
affine part of FFNN-4 instead of FFNN-3. % EER and DCF
for both of these positions of a 6L-512D-8H-S model trained
on VoxCeleb-1+2 are presented in Table V. 6L-512D-8H-S-
F3 means that the embeddings are tapped from the affine part
of FFNN-3 of the 6L-512D-8H-S model. We see that FFNN-
3 gives better embeddings than FFNN-4. Fig. 7 shows the
tapping of embeddings from the affine part of FFNN-3 and
FFNN-4.

TABLE V: EFFECT OF TAPPING LAYER ON 6L-512D-8H-S
MODEL

Layer EER DCF (0.01) DCF (0.001)

6L-512D-8H-S-F3 2.67 0.30 0.44
6L-512D-8H-S-F4 3.12 0.33 0.54

Note: 6L-512D-8H-S-F3 means it is a 6 encoder layer (L),
512 Adim (D), and 8 head (H) s-vector (S) model with
embeddings extracted from FFNN-3 (F3).

Fig. 7: Embedding tapping location in an FFNN

F. S-vector and X-vector Ensemble

As the s-vector and x-vector models are completely different
in their fundamental architecture, we expected that the ensem-
ble of these two models might improve the results. There-
fore, the s-vectors of 6L-512D-8H-S and x-vectors from the
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Fig. 8: S-vector and x-vector ensemble by concatenation

TABLE VI: PERFORMANCE OF S-VECTOR AND X-VECTOR
ENSEMBLE

Method EER DCF (0.01) DCF (0.001)

x-vector baseline 3.05 0.33 0.5
6L-512D-8H-S 2.67 0.30 0.44

Ensemble 2.35 0.26 0.36

baseline model were concatenated to obtain 1024-dimensional
ensemble vectors. These vectors were then downprojected to
300 dimensions and then presented to PLDA for scoring, as
shown in Fig. 8. As expected, the ensemble gives a significant
improvement, as shown in Table VI.

V. PROPOSED TRANSFORMER ENCODER SPEAKER
AUTHENTICATOR (TESA)

In PLDA, given a pair of enrollment and test embeddings,
a log-likelihood score is computed to verify any identity
claim. We propose a new speaker verification architecture, as
a replacement for PLDA, in this section. This architecture is
inspired by BERT.

A. TESA Architecture

BERT’s next sentence prediction task is the inspiration for
the Transformer encoder speaker authenticator (TESA). As
mentioned before, the next sentence prediction task predicts
whether the second text sentence in the sentence pair follows
the first sentence. Therefore, we hypothesized that an archi-
tecture similar to BERT can be trained with embeddings from
pairs of speech utterances to predict whether it is from the
same speaker. In this case, the input is s-vector embeddings.

The data preparation for TESA is similar to the data
preparation for BERT. However, we do not perform any
masking because we are only interested in finding whether
both utterances belong to the same speaker. It should also be
noted that TESA operates on embeddings corresponding to a
pair of spoken utterances and BERT operates on pairs of text
sentences.

To train TESA, CMN was performed, and nonspeech frames
were removed from every utterance. Then, s-vectors were
extracted for every nonoverlapping 300 frame chunk of an
utterance. Therefore, each utterance results in a set of embed-
dings, and every trial pair results in two sets of embeddings:

Fig. 9: Transformer Encoder Speaker Authenticator (TESA)

Utterance-1 s-vectors of dimension 512 × L and Utterance-2
s-vectors with dimension 512 × M, where L and M are the
number of chunks in the respective utterances.

Similar to BERT’s data preparation, classifier (CLS) and
separator (SEP) tokens are taken, as shown in Fig 9. Unlike
BERT, SEP demarcates the boundary between the two utter-
ances instead of sentences. The resultant has the dimension
512 × K, where K = L+M + 3.

The s-vectors are then added with learnable utterance em-
beddings (U1, U2) to indicate that the two sets of s-vectors
belong to two different utterances. This is similar to adding
sentence embeddings in BERT. We do not add position em-
beddings to TESA because the prediction should not depend
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Fig. 10: Same-speaker dataset creation

on the order of the s-vector embeddings. The resultant is then
fed to FFNN-1, which takes it to 250 × K. This is now fed
to the Transformer encoder.

At the end of the Transformer encoder layers, E1 corre-
sponding to the input CLS token is tapped and fed to the next
layers for classification, as shown in Fig. 9. Other outputs
of the encoder (E2, E3, ..., EK) are not considered. FFNN-2
takes the 250 × 1 vector to the 1,000 × 1 vector, and then
FFNN-3 takes this 1,000 × 1 vector to another 1,000 × 1
vector. The linear layer projects the resultant vector to 2 × 1.
Then, softmax is applied, and the model is trained on binary
cross-entropy loss to predict whether the embeddings belong
to the same speaker. We obtained the score for a given trial pair
by subtracting the logits corresponding to the different-speaker
classes from the same speaker class. All the nonlinearities used
are ReLUs. We have performed batch normalization instead of
layer normalization, similar to the s-vectors architecture.

B. Training Details

We used the same data PLDA uses for baseline x-vectors
and extracted the s-vectors for chunks, as discussed in the
previous subsection. The data have approximately 1.2 million
utterances. After performing CMN and nonspeech frame re-
moval, we created two sets of paired data: same-speaker and
different-speaker. To create the same-speaker dataset, every
utterance in the original dataset was paired with all possible
same-speaker utterances, as shown in Fig 10. This resulted in

Fig. 11: Different-speaker dataset creation for one speaker

TABLE VII: TRAINING DETAILS OF TESA

Hyperparameters Details

Encoder Layers 9
Position Encoding No

Encoder Units 1,024
Normalize Before True

Learning Rate 10
Batch Size 2,000
Optimizer Noam
Dropout 0.1

Gradient-clip 5
Warm-up Steps 25,000
Normalization Batch Norm

Adim 250

approximately 360 million pairs. To obtain 360 million pairs
for the different-speaker dataset, every utterance of a particular
speaker was paired with X randomly chosen different-speaker
utterances, where X is the number of same-speaker utterances
available, as shown in Fig 11. As the number of pairs was
too high for the experiment, we randomly chose 2,000 pairs
per speaker from both sets. This ensured the balance between
the two classes. Some speakers resulted in fewer than 2,000
pairs due to fewer utterances pertaining to that speaker in
the VoxCeleb dataset. For such speakers, all the available
pairings were taken. These two datasets were then combined
and shuffled to create the training dataset for TESA. All
the experiments for TESA were performed in ESPnet. The
hyperparameters are presented in Table VII.

VI. RESULTS WITH THE PROPOSED TESA AND
DISCUSSION

All the results in section IV were obtained by PLDA scor-
ing. In this section, we analyze the results of the Transformer
encoder speaker authenticator (TESA) proposed in this paper.
Table VIII shows the results obtained with the 9-layer TESA
model. The number of parameters in TESA is 8.3 million.
In Table VIII, it can be seen that TESA outperforms the
conventional PLDA by a significant margin. We obtain a
relative improvement of 11% in EER, and the DCF values
are also better than those of conventional PLDA. DET curves
for s-vectors with TESA, s-vectors with conventional PLDA
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Fig. 12: Comparison of DET curves of s-vectors with TESA,
s-vectors with PLDA and the baseline x-vector with PLDA

TABLE VIII: COMPARISON OF TESA AND PLDA FOR
S-VECTORS FROM 6L-512D-8H-S

Encoder Layers EER DCF (0.01) DCF (0.001)

s-vectors + PLDA 2.67 0.30 0.44
s-vectors + TESA 2.37 0.28 0.39

and the baseline x-vectors with conventional PLDA are shown
in Fig. 12.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we proposed deriving speaker embeddings
from a speaker classification architecture based on Trans-
former’s encoder. We call these embeddings s-vectors. The
s-vectors obtained from our model trained on VoxCeleb-
1+2 datasets outperformed the % EER of the baseline x-
vector system trained on the same data, and gave a relative
improvement of 12.5%. When trained only on the smaller
VoxCeleb-1 dataset, the s-vectors again outperformed the %
EER of the baseline x-vector system trained on the same
data, and resulted in a relative improvement of 10%. Our
model is also better in terms of DCF. In addition to s-vectors,
we also proposed replacing conventional PLDA-based speaker
verification with a new architecture named the Transformer
encoder speaker authenticator (TESA). TESA outperformed
the %EER of PLDA trained on the same dataset by 11%
relative and has better DCF values. TESA with s-vectors
jointly gives a relative improvement of 22.3% over the baseline
x-vectors with PLDA on VoxCeleb-1 trials when trained on
VoxCeleb-1+2 data. In the future, we would like to explore
different pretraining methods and loss functions to improve
the performance of the proposed architectures. We would also
like to explore the capabilities of TESA trained in an end-
to-end manner by feeding utterance pairs directly for speaker
verification.
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