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Résumé

Les concepteurs de systèmes doivent régulièrement analyser le comportement de ce qu’ils cons-

truisent. Une analyse de base est de comprendre le comportement observé, par exemple pourquoi

un système de fichiers se bloque ou corrompt un document donné, ou pourquoi un serveur web est

lent sur un benchmark. Des analyses plus sophistiquées visent à caractériser le comportement futur

dans des circonstances inédites, comme ce que serait la latence maximum et le débit minimum d’un

serveur web une fois déployé sur un site client, ou s’il y a un moyen pour des pirates d’exploiter

des bugs qui ne sont pas encore connus dans l’implémentation d’un système de fichiers.

Cette thèse présente S2E, une plateforme scalable pour l’analyse des propriétés et du comporte-

ment de systèmes logiciels. La force de S2E est sa capacité d’analyser de grands systèmes, comme

une pile Windows complète, à l’aide de deux idées nouvelles : l’exécution symbolique sélective et

les modèles de cohérence d’exécution. La sélectivité limite l’exploration multi-chemin au module

d’intérêt (par exemple une bibliothèque) afin de minimiser la quantité de code exécuté symboli-

quement, ce qui évite une explosion de chemins à l’extérieur de ce module. Les modèles de co-

hérence d’exécution permettent de faire des compromis performance / précision lors de l’analyse.

Par exemple, un modèle de cohérence détendue permet d’explorer dans un module d’intérêt tous

les chemins qui pourraient être suivis par une exécution réelle, sans nécessiter de devoir chercher

de tels chemins à travers l’ensemble du système.

Cette thèse montre également comment S2E permet de concevoir deux nouvelles techniques

d’analyse : un profileur de performances in-vivo multi-chemin (PROFS) et un système semi-

automatique de rétroingénierie de pilotes de périphériques binaires (RevNIC). PROFS permet de

prédire la performance pour certaines catégories d’entrées, à l’aide de mesures telles que le nombre

d’instructions ou d’échecs d’accès à la mémoire tampon. RevNIC analyse les pilotes de périphé-

riques à source fermé afin de synthétiser de nouveaux pilotes plus fiables pour différents systèmes

d’exploitation et architectures.

Nous montrons dans cette thèse comment on peut construire une telle plate-forme. S2E est

une machine virtuelle qui combine exécution symbolique avec des analyseurs de chemin modu-

laires. Le moteur de S2E exécute le code binaire client de façon native dans une VM et passe à

un interpréteur symbolique chaque fois qu’il rencontre une instruction qui accède à des données
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symboliques. En cas de branchements conditionnels, l’interpréteur sépare le chemin d’exécution

en deux de manière efficace en clonant l’état de la VM. L’exécution se divise de manière récur-

sive pour chaque branchement, formant un arbre qui couvre le code qui serait autrement difficile à

exercer manuellement. Sous le capot, S2E étend QEMU avec un backend LLVM qui traduit le code

machine en bitcode approprié pour l’interprétation symbolique, implémente la copie sur écriture

pour splitter les chemins, et instrumente le MMU pour synchroniser les états symboliques et natifs

de la machine.

La plateforme S2E est open source et disponible sur http://s2e.epfl.ch, avec une démo

prête à l’emploi, documentation et tutoriels. Trois ans après son lancement, S2E a acquis une com-

munauté d’utilisateurs en rapide expansion de plus de 200 membres et est activement utilisé par

les chercheurs et les entreprises du monde entier dans le but de tester des réseaux distribués, d’ana-

lyser les systèmes de fichiers, de détecter les données privées leakées par les applis smartphone,

effectuer des analyses de la sécurité, et plus encore.

Mots-clefs : Exécution symbolique sélective, Modèles de cohérence, Analyse multi-chemin, Vir-

tualisation, Pilotes de périphérique, Rétroingénierie, Testing, Vérification, Profilage de perfor-

mance, Analyse dynamique, Analyse statique

http://s2e.epfl.ch


Abstract

System developers routinely need to analyze the behavior of what they build. One basic analysis is

to understand observed behavior, such as why a file system crashes or corrupts a given document,

or why a web server is slow on a given benchmark. More sophisticated analyses aim to characterize

future behavior in previously unseen circumstances, such as what will a web server’s maximum

latency and minimum throughput be, once deployed at a customer site, or whether there will be

ways for attackers to exploit the not-yet-known bugs in the file system implementation.

This thesis introduces S2E, a scalable platform for analyzing the properties and behavior of

software systems. S2E’s strength is the ability to scale to large systems, such as a full Windows

stack, using two new ideas: selective symbolic execution and execution consistency models. Se-

lectivity limits multi-path exploration to the module of interest (e.g., a library) to minimize the

amount of symbolically-executed code, which avoids path explosion outside of that module. Exe-

cution consistency models allow to make principled performance/accuracy trade-offs during anal-

ysis. For example, a relaxed consistency model allows exploring all paths through a module of

interest that would be followed by some concrete execution, without actually incurring the cost of

finding such paths through the entire system.

This thesis also shows how S2E enables two novel analysis techniques: an in-vivo multi-path

performance profiler (PROFS) and a system for semi-automatically reverse engineering binary

device drivers (RevNIC). PROFS allows predicting the performance for certain classes of inputs,

using metrics such as instruction count or cache misses. RevNIC analyzes closed-source device

drivers to synthesize new, safer, and portable drivers for different OSes and architectures.

This thesis shows how one can build such a platform. S2E is a virtual machine augmented with

symbolic execution and modular path analyzers. S2E’s engine runs guest binaries natively in a VM

and switches to a symbolic interpreter whenever an instruction accesses symbolic data. In case of

conditional branches, the interpreter splits the execution path by efficiently cloning the entire VM

state. Execution splits recursively for every branch, forming a tree that covers code otherwise hard

to exercise manually. Under the hood, S2E extends QEMU with an LLVM backend that translates

machine code to bitcode suitable for symbolic interpretation, implements copy-on-write for path

splitting, and instruments the MMU to synchronize symbolic and native machine states.
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The S2E platform is open sourced and available at http://s2e.epfl.ch, with a ready-to-

use demo, documentation, and tutorials. Three years after release, S2E acquired a rapidly growing

user community of more than 200 members and is actively used by researchers and companies

around the world in order to test distributed networks, analyze file systems, detect private data

leaks in smartphone apps, perform security analysis, and more.

Keywords: Selective symbolic execution, Consistency models, Multi-path analysis, Virtualiza-

tion, Device drivers, Reverse engineering, Testing, Verification, Performance profiling, Dynamic

analysis, Static Analysis

http://s2e.epfl.ch
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Chapter 1

Introduction

1.1 Problem Statement

System developers routinely need to analyze the behavior of what they build. One basic analysis is

to understand observed behavior. For example, one might want to know why a given web server

is slow on a given client request in order to be able to fix the problem, perhaps by tweaking the

configuration or modifying the source code. Another example would be to understand why a device

driver crashes in a given environment, and if it turns out to be a security flaw, prioritize the fixing

of the bug. More sophisticated analyses aim to characterize future behavior in previously unseen

circumstances, such as what will a web server’s maximum latency and minimum throughput be,

once deployed at a customer site. This can help with hardware provisioning. Ideally, system

designers would also like to do quick what-if analyses, such as determining whether aligning a

certain data structure on a page boundary will reduce cache misses and thus increase performance

and energy efficiency. For small programs, experienced developers can often reason through some

of these questions based on code alone; the goal of our work is to make it feasible to answer such

questions also for large, complex, real systems.

1.2 Thesis Objectives

We introduce in this thesis a platform that enables easy construction of analysis tools (such as

performance profilers, bug finders, or reverse engineering tools) that simultaneously offer the fol-

lowing three properties. First, they efficiently analyze entire families of execution paths. Second,

they maximize realism by running the analyses within a real software stack. Third, they are able

to directly analyze binaries. We explain these properties below.

First, predictive analyses often must reason about entire families of paths through the target

13



14 CHAPTER 1. INTRODUCTION

system, not just one path. A family of paths is a set of paths that have a specific property. For

example, security analyses must check that there exist no corner cases that could violate a desired

security policy; prior work has employed model checking [94] and symbolic execution [27] to

find bugs in real systems—these are all multi-path analyses. One of our case studies demonstrates

multi-path analysis of performance properties (§6.2): instead of profiling solely one execution

path, we derive performance envelopes that characterize the performance of entire families of

paths. Such analyses can check real-time requirements (e.g., that an interrupt handler will never

exceed a given bound on execution time), or can help with capacity planning (e.g., determine how

many web servers to provision for a web farm). In the end, properties shown to hold for all paths in

a set constitute proofs over the corresponding set of executions; the guarantee provided by a proof

is in essence the ultimate prediction of a system’s behavior.

Second, an accurate estimate of program behavior often requires taking into account the whole

environment surrounding the analyzed program: libraries, kernel, drivers, etc.—in other words, it

requires in-vivo1 analysis. Even small programs interact with their environment (e.g., to read/write

files or send/receive network packets), so understanding program behavior requires understanding

the nature of these interactions. Some tools execute the real environment, but allow calls from

different execution paths to interfere inconsistently with each other [28]. Most approaches abstract

away the environment behind a model [5, 27], but writing models is labor-intensive (taking in some

cases multiple person-years [5]), models are rarely 100% accurate, and they tend to lose accuracy

as the modeled system evolves. It is therefore preferable that target programs interact directly with

their real environment during analysis in a way that keeps multi-path analysis consistent.

Third, real systems are made up of many components from various vendors; access to all

corresponding source code is rarely feasible and, even when source code is available, building the

code exactly as in the shipped software product is difficult [12]. Moreover, even if the source

code is available, compilers can optimize it in many unpredictable ways. A security-conscious

developer might want to put a buffer overflow check such as buf + len < buf only to find

that the compiler removes it because in C, pointer overflow is undefined [125]. Thus, in order to

be practical, analyses ought to operate directly on binaries.

Scalability is the key challenge of performing analyses that are in-vivo, multi-path, and op-

erate on binaries. Going from single-path analysis to multi-path analysis turns a linear problem

into an exponential one, because the number of paths through a program generally increases at

least exponentially in the number of branches—the “path explosion” problem [15]. It is therefore

1In vivo is Latin for “within the living” and refers to experimenting using a whole live system; in vitro

uses a synthetic or partial system. In life sciences, in-vivo testing—animal testing or clinical trials—is often

preferred because, when organisms or tissues are disrupted (as in the case of in-vitro experiments), results

can be substantially less representative. Analogously, in-vivo program analysis captures all interactions of

the analyzed code with its surrounding system, not just with a simplified abstraction of that system.
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not feasible today to execute fully symbolically an entire software stack (programs, libraries, OS

kernel, drivers, etc.) as would be necessary if we wanted consistent in-vivo multi-path analysis.

1.3 One Approach: Program Analysis

We describe in this thesis S2E, a general platform for developing multi-path in-vivo analysis tools

that are practical even for large, complex systems, such as an entire Microsoft Windows or Linux

software stack.

First, S2E simultaneously exercises entire families of execution paths in a scalable manner

by using selective symbolic execution and flexible execution consistency models. Selectivity lim-

its multi-path exploration to the module of interest (e.g., a library) to minimize the amount of

symbolically-executed code, which avoids path explosion outside of that module. Execution con-

sistency models allow to make principled performance/accuracy trade-offs during analysis. For

example, a relaxed consistency model allows exploring all paths through a module of interest that

would be followed by some concrete execution, without actually incurring the cost of finding such

paths through the entire system.

Second, S2E employs virtualization to perform the desired analyses in vivo; this removes the

need for the stubs or abstract models required by most state-of-the-art symbolic execution engines

and model checkers [6, 55, 27, 112, 94].

Third, S2E uses dynamic binary translation (DBT) to transparently instrument code running at

any level of the software stack. The key advantage of DBT is its ability of handling a wide range of

software, including proprietary systems, even if self-modifying or JITed, as well as obfuscated and

packed/encrypted binaries. DBT allows exposing the running code to analysis plugins, which can

both passively observe the state of the system and modify it depending on the needs of the analysis.

A large body of work uses DBT to simulate entire systems [106, 9], implement virtual machine

monitors [23], instrumentation code [82], etc. We give an in-depth presentation of dynamic binary

translation in §3.1.

The abstraction offered by S2E is that of an automated path exploration mechanism with mod-

ular path analyzers. The explorer drives in parallel the target system down all execution paths

of interest, while analyzers check properties of each such path (e.g., to look for bugs) or simply

collect information (e.g., count page faults). An analysis tool built on top of S2E glues together

path selectors with path analyzers. Selectors guide S2E’s path explorer by specifying the paths of

interest: all paths that touch a specific memory object, paths influenced by a specific parameter,

paths inside a target code module, etc. Analyzers can be pieced together from S2E-provided default

analyzers, or can be written from scratch using the S2E API.
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1.4 Key Insights and Contributions

This thesis makes the following contributions:

• Selective symbolic execution, a new technique for automatic bidirectional symbolic–concrete

state conversion that enables execution to seamlessly and correctly weave back and forth be-

tween symbolic and concrete mode;

• Execution consistency models, a framework for advantageously balancing over- and under-

approximation of paths in an analysis-specific way;

• A general platform for performing diverse in-vivo multi-path analyses in a way that scales to

large real systems, demonstrated by building and evaluating several new analysis tools, such

as a multi-path performance profiler, a tool for reverse engineering binary device drivers,

finding bugs in drivers, and many others.

• A technique that uses selective symbolic execution and execution consistency models in

order to semi-automatically reverse engineer device drivers.

• The first use of symbolic execution in performance analysis.

• A wide adoption of the S2E platform among the research community. Researchers at various

institutions have used S2E to build advanced bug finders for systems software [105, 30],

analyze distributed systems [7, 108], test device firmware [133], verify the correctness of

software routers [47], and more (see §6.3).

1.5 Thesis Roadmap

The thesis is organized as follows. Chapter 2 presents the theory behind S2E: selective symbolic

execution and execution consistency models. Chapter 3 explains how we turned the theory into a

platform that can be used to build diverse analysis tools. Chapter 4 shows an overview of the S2E

SDK, including API and interfaces, and describes the various ways in which S2E users can use

them to build custom analysis tools. Chapter 5 shows how to transform the dynamic analysis core

of S2E into a static analysis tool that can operate on binaries. Chapter 6 shows how researchers,

both ourselves and others, used S2E to build powerful high-impact analysis tools. Chapter 7 de-

scribes related work and provides an overview of the analysis tools landscape. Chapters 8 presents

future work ideas, and Chapter 9 concludes the thesis.



Chapter 2

In-Vivo Multi-Path Analysis of Software

Systems

In this chapter, we present selective symbolic execution and execution consistency models, which

allow S2E to scale to large systems by letting developers make principled performance-accuracy

trade-offs. To introduce these techniques, we first explain how one would traditionally analyze

software by using manual testing, then how one can speed up the process by automating test gen-

eration, and finally how to make test generation more efficient.

A straightforward approach to analyze a system is to run one test at a time and observe the

resulting behavior. A system takes certain inputs (e.g., command line arguments or request packets)

and produces an output (e.g, written files or response packets). A test consists of a set of predefined

inputs and one or more test predicates that check that the system produces the desired output after

processing the given inputs. Each test exercises one execution path of the system, producing a

certain level of code coverage. Developers can use this coverage information to write additional

tests for parts of the code that were not exercised so far. Listing 2.1 shows a simple gear switching

function part of a car’s firmware. In order to exercise all its execution paths and achieve full line

coverage, the developer would write three tests, first calling the function with rpm = 0, then calling

it with rpm = 1500, and finally rpm = 3000.

One can further use automated test generation, alleviating the need for manually reasoning

about the program. In the manual approach, developers need to reason about the inputs that would

drive the execution down the paths that exercise the functionality of interest. This can be diffi-

cult for large programs that have many branch conditions. Automated test generation alleviates

this problem by producing inputs that exercise many code paths without requiring large efforts

from the developer. Automated test generation can use a number of techniques, such as random

fuzzing, grammar-based test generation [58], concolic [55] and symbolic execution [69], and vari-

ous heuristics in order to improve the quality of the generated tests.

17
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Program analysis techniques improve path coverage by reducing the number of redundant tests.

Random fuzzing chooses random inputs, yielding low path coverage. In the example of Listing 2.1,

random fuzzing would need to guess distinct values for rpm such that all three paths are exercised.

Assuming rpm is a 32-bit integer, the probability of exercising the second branch is lower than

one chance in a million and most of the tests will only cover the first branch. Grammar-based

fuzzing techniques can reach deeper paths by generating inputs that have a meaningful structure.

For example, if one wanted to test a compiler’s code generator, using random source files would

not reach any code past the parser, because most of the random input would have invalid syntax.

Grammar-based fuzzing would however generate random files with correct syntax (e.g., properly

formed functions but with random arithmetic operations) that would reach the code of interest.

Concolic execution collects branch predicates along each execution path, which it then feeds

into a constraint solver to derive a new set of inputs that will exercise a different execution path.

In the example of Listing 2.1, the branch predicates collected when running the function with

rpm = 0 are rpm ≤ 2500 ∧ rpm < 1000. Concolic execution will attempt to negate rpm ≤ 2500

and rpm < 1000, then use a constraint solver to obtain new values for rpm that would exercise

different paths. In our case, concolic execution will ask the solver to give new inputs that satisfy

rpm ≤ 2500 ∧ rpm ≥ 1000, for which the solver might return 1500 as a satisfying value for rpm.

After than, concolic execution would try rpm > 2500 ∧ rpm ≥ 1000, yielding e.g., rpm = 3000.

Finally, rpm > 2500 ∧ rpm < 1000 is not satisfiable and there are no more combinations to try,

stopping the exploration process after having produced 3 different execution paths.

While concolic execution is an iterative technique that reruns the program with new sets of

inputs to derive additional inputs, symbolic execution builds an execution tree instead. Unlike con-

colic execution, symbolic execution does not rerun the program under analysis from the start, but

from intermediate checkpoints, which are nodes in the execution tree. This makes path exploration

more efficient for systems that have long prefixes (e.g., paths that need to run for a long time before

reaching a location of interest). We will see next how symbolic execution works.

1 void autoShiftGear(unsigned &rpm, unsigned &gear) {

2 if (rpm > 2500) {

3 gear = gear + 1;

4 rpm = rpm * 0.5;

5 } else if (rpm < 1000) {

6 gear = gear - 1;

7 rpm = rpm * 2;

8 }

9 }

Listing 2.1 – A function with two branches and three exe-

cution paths. One can exercise all the three paths by calling

the function with rpm ∈ {0,1500,3000}.
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2.1 Efficient Path Exploration with Symbolic Execution

As we showed previously, a program can be treated as a superposition of possible execution

paths. For example, a program that is all linear code except for one conditional statement if (x>0)

then ... else ... can be viewed as a superposition of two possible paths: one for x>0 and another

one for x≤0. To exercise all paths, it is not necessary to try all possible values of x, but rather just

one value greater than 0 and one value less than 0.

A symbolic execution engine unfurls this superposition of paths into a symbolic execution

tree, in which each possible execution corresponds to a path from the root of the tree to a leaf

corresponding to a terminal state. The mechanics of doing so consist of marking variables as

symbolic at the beginning of the program, i.e., instead of setting a variable x to a concrete value

(say, x=5), it is viewed as a superposition λ of all possible values x could take. Then, any time

a branch instruction is conditioned on a predicate p that depends (directly or indirectly) on x,

execution is split into two executions Ei and E j, two copies of the program’s state are created, and

Ei’s path remembers that the variables involved in p must be constrained to make p true, while

E j’s path remembers that p must be false. In Figure 2.1, rpm is marked as symbolic, i.e., it can

hold any value allowed by a 32-bit integer. When execution reaches the first branch, it is split into

two executions, one of them getting rpm > 2500 as a constraint, the other rpm ≤ 2500.

The process repeats recursively: Ei may further split into Eii and Ei j
, and so on. Every ex-

ecution of a branch statement creates a new set of children, and thus what would normally be a

linear execution (if concrete values were used) now turns into a tree of executions (since symbolic

values are used). A node s in the tree represents a program state (a set of variables with formulae

constraining the variables’ values), and an edge si → s j indicates that s j is si’s successor on any ex-

ecution path satisfying the constraints in s j. Paths in the tree can be pursued simultaneously, as the

tree unfurls; since program state is copied, the paths can be explored independently. Copy-on-write

is typically used to make this process efficient.

void autoShiftGear(unsigned &rpm,

                   unsigned &gear) 

{

  if (rpm > 2500) {

    gear = gear + 1;

    rpm = rpm * 0.5;

  } else if (rpm < 1000) {

    gear = gear - 1;

    rpm = rpm * 2;

  }

}

rpm ∈ [0, +∞)

rpm ∈ (2500, +∞) rpm ∈ [0, 2500]

rpm ∈ [1000, 2500]rpm ∈ [0, 1000)

Pathconstraints

rpm > 2500

rpm < 1000

Figure 2.1 – Symbolic execution creates an execution tree with path constraints.
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Symbolic execution relies on a constraint solver to decide which branches are feasible and to

compute concrete input values that can be used as test cases. In the example of Figure 2.1, when

execution reaches the first branch statement, the symbolic execution engine queries the constraint

solver whether both outcomes are feasible. For this, the engine sends to the solver the set of path

constraints rpm ∈ [0,+∞) as well as the query rpm > 2500. The solver replies that given the

constraints, both outcomes are feasible. The process repeats recursively. When the second branch

is reached, the solver checks that rpm < 1000 is feasible under the constraints rpm ∈ [0,+∞) ∧

rpm ≤ 2500. Finally, when the execution path terminates (e.g., the program exited successfully

or crashed), the solver can compute concrete values for the symbolic inputs. In our example, the

solver could return 0, 1500, and 3000 as solutions to the three execution paths. This can be useful

to reproduce bugs, such as crashes or assertion failures.

While symbolic execution is effective at automated software testing, it suffers from path explo-

sion. For large programs, the number of execution paths is exponential in the number of branches.

It is therefore not possible to use symbolic execution effectively in order to thoroughly analyze

large systems, such as an entire OS stack. In the next section, we present selective symbolic exe-

cution, a new approach that solves this problem.

2.2 Scaling to Large Software Stacks with Selective Symbolic

Execution

Selective symbolic execution is based on the key observation that often only some families of

paths are of interest. For example, one may want to exhaustively explore all paths through a

small program, but not care about all paths through the libraries it uses or the OS kernel. This

means that, when entering that program, selective symbolic execution should split executions to

explore the various paths, but whenever the program calls into some other part of the system, such

as a library, multi-path execution can cease and execution can revert to single-path. Then, when

execution returns to the program, multi-path execution must be resumed.

Multi-path execution corresponds to expanding a family of paths by exploring the various side

branches as they appear, while switching to single-path mode corresponds to corseting the family

of paths. In multi-path mode, the tree grows in width and depth; in single-path mode, the tree only

grows in depth. We therefore say selective symbolic execution’s exploration of program paths is

elastic. Selective symbolic execution turns multi-path mode off (i.e., do not further expand existing

paths) whenever possible, to minimize the size of the execution tree and include only paths that are

of interest to the target analysis.

Elasticity of multi-path exploration is key in enabling selective symbolic execution. Selective



2.2. SCALING TO LARGE SOFTWARE STACKS WITH SELECTIVE SYMBOLIC EXECUTION21

symbolic execution combines virtualization with elasticity to offer the illusion of symbolically ex-

ecuting a full software stack, while executing symbolically only select components. For example,

by concretely (i.e., non-symbolically) executing libraries and the OS kernel, it is possible to allow

a program’s paths to be explored efficiently without having to model its surrounding environment.

Interleaving of symbolic execution phases with concrete phases must be done carefully, to

preserve the meaningfulness of each explored execution. In particular, one must handle constraints

consistently to prevent inaccurate exploration that would cause analyzers to produce false positives.

For example, say we wish to analyze a program P in multi-path (symbolic) mode, but none

of its libraries Li are to be explored symbolically. If P has a symbolic variable n and calls

strncpy(dst,src,n) in Lk, we must convert n to some concrete value and invoke strncpy

with that value. This is straightforward: solve the current path constraints with a constraint solver

and get some legal value for n (say n=5) and call strncpy. But what happens to n after strncpy

returns? Variable dst will contain n=5 bytes, whereas n prior to the call was symbolic—can n still

be treated symbolically? The answer is yes, if done carefully.

When a symbolic value is converted to concrete (n: λ → 5), the family of executions is corseted.

When a concrete value is converted to symbolic (n : 5 → λ ), the execution family is allowed

to expand. The process of doing this back and forth is governed by the rules of an execution

consistency model. For the above example, one might require that n be constrained to value 5 in

all executions following the return from strncpy. However, doing so may exclude a large number

of paths from the analysis. §2.3 describes systematic and safe relaxations of execution consistency.

We now describe the mechanics of switching back and forth between multi-path (symbolic)

and single-path (concrete) execution in a way that executions stay consistent. We know of no

prior symbolic execution engine that has the machinery to efficiently and flexibly cross the sym-

bolic / concrete boundary both back and forth, while still preserving consistency of execution.

Figure 2.2 provides a simplified example of using selective symbolic execution: an application

app uses a library lib on top of an OS kernel. The target analysis requires to symbolically execute

lib, but not app or kernel. Function appFn in the application calls a library function libFn, which

eventually invokes a system call sysFn. Once sysFn returns, libFn does some further processing

and returns to appFn. After the execution crosses into the symbolic domain (shaded) from the

concrete domain (white), the execution tree (right side of Figure 2.2) expands. After the execu-

tion returns again to the concrete domain, the execution tree is corseted and does not add any new

paths, until execution returns to the symbolic domain again. Some paths may terminate earlier than

others, e.g., due to hitting a crash bug in the program.
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app

app

lib

lib

kernel

libFn

sysFn

appFn
oncrerr tet domain

sys
myy

bolic domain

KERNEL

APP

LIB

concrete

concrete

concrete

symbolic

symbolic

Figure 2.2 – Multi-path/single-path execution: three different modules (left) and the resulting exe-

cution tree (right). Shaded areas represent the multi-path (symbolic) execution domain, while the

white areas are single-path.

2.2.1 Symbolic → Concrete Transition

In this section, we explain how selective symbolic execution handles symbolic to concrete transi-

tions. Consider the call libFn→sysFn shown in Figure 2.3. Say libFn was called with an uncon-

strained symbolic value x∈(−∞,+∞). At the first if branch instruction, execution forks into one

path along which x∈(−∞,5) and another path where x∈[5,+∞). These expressions are referred to

as path constraints, as they constrain the values that x can take on a path. Along the then-branch,

a call to sysFn(x) must be made. This requires x to be concretized, since sysFn is in the concrete

domain. Thus, we choose a value, say x=4, that is consistent with the x∈(−∞,5) constraint and

perform the sysFn(4) call. The path constraints in the symbolic domain are updated to reflect that

x=4. Note that a real implementation of selective symbolic execution would actually employ lazy

concretization. As we shall see in §3.5, S2E converts the value of x from symbolic to concrete

on-demand, only when concretely running code is about to branch on the value of x. For the sake

of clarity, in this section we assume eager (non-lazy) concretization.

Once sysFn completes, execution returns to libFn in the symbolic domain. When x was con-

cretized prior to calling sysFn, the x=4 constraint was automatically added to the path constraints—

sysFn’s return value is correct only under this constraint, because all computation in sysFn was

done assuming x=4. Furthermore, sysFn may also have had side effects that are intimately tied to

the x=4 constraint. With this constraint, execution of libFn continues, and correctness is preserved.

The problem, however, is that this constraint corsets the family of future paths that can be
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void libFn(int x) {

  if (x<5) {

    buf=sysFn(x);

    if (x<0)

      ...

  }

}

x<5

x ∈ (−∞, +∞)

x ∈ (−∞, 5) x ∈ [5, +∞)

Path constraints

Figure 2.3 – The top level in libFn’s execution tree.

explored from this point on: x can no longer take on all values in (−∞,5) so, when execution

subsequently gets to the branch if (x<0) ..., the then-branch will no longer be feasible due to the

added x=4 constraint. This is referred to as “overconstraining”: the constraint is not introduced by

features of libFn’s code, but rather as a result of concretizing x to call into the concrete domain. We

think of x=4 as a soft constraint imposed by the symbolic/concrete boundary, while x∈(−∞,5) is

a hard constraint imposed by libFn’s code. Whenever a branch in the symbolic domain is disabled

because of a soft constraint, it is possible to go back in the execution tree and pick an additional

value for concretization, fork another subtree, and repeat the sysFn call in a way that would enable

that branch.

2.2.2 Concrete → Symbolic Transition

When appFn calls libFn, it does so by using concrete arguments; the simplest concrete → symbolic

conversion is to change the concrete arguments into unconstrained symbolic ones, e.g., instead of

libFn(10) call libFn(λ ). One can additionally opt to constrain λ , e.g., libFn( λ ≤ 15 ).

Once this transition occurs, selective symbolic execution runs libFn symbolically using the

(potentially constrained) argument(s) and simultaneously executes libFn with the original concrete

argument(s) as well. Once exploration of libFn completes, it returns to appFn the concrete return

value resulting from the concrete execution, but libFn has been explored symbolically as well. In

this way, the execution of app is consistent, while at the same time path analyzers are exposed to

those paths in lib that are rooted at libFn’s entry point. All paths execute independently, and it is

up to the path analyzers to decide whether, besides observing the concrete path, they also wish to

look at the other paths.

Converting concrete values to symbolic ones must be done carefully. In the next section, we

present execution consistency models, which define how conversions must be done in order to

preserve a meaningful level of accuracy for a given analysis, without sacrificing performance.
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2.3 Execution Consistency Models

The traditional assumption about system execution is that the state at any point in time is consistent,

i.e., there exists a feasible concrete-execution path from the system’s start state to the system’s cur-

rent state. However, there are many analyses for which this assumption is unnecessarily strong, and

the cost of providing such strong consistency during multi-path exploration is often prohibitively

high. For example, when doing unit testing, one typically exercises the unit in ways that are con-

sistent with the unit’s interface, without regard to whether all exercised paths are indeed feasible

in the integrated system. This is both because testing the entire system in a way that exercises all

paths through the unit is too expensive, and because exercising the unit as described above offers

higher confidence in its correctness in the face of future use.

S2E aims to be a general platform for system analyses, so it provides the ability to choose the

level of execution consistency that offers the best trade-offs. In this section, we take a first step

toward systematically defining alternate execution consistency models (§2.3.1), after which we

explain how these different models dictate the symbolic/concrete conversions applied during the

back-and-forth transition between the analyzed code and its environment (§2.3.2). In §2.3.3 we

survey some of the ways in which consistency models appear in existing analysis tools.

2.3.1 Model Definitions

The key distinction between the various execution consistency models is which execution paths

each model admits. Choosing an appropriate consistency model is a trade-off between how “realis-

tic” the admitted paths are vs. the cost of enforcing the model during analysis. The appropriateness

of the trade-off is determined by the nature of the analysis, i.e., by the way in which feasibility of

different paths affects completeness and soundness of the analysis 1.

In the rest of the paper, we use the term system to denote the complete software system under

analysis, including the application programs, libraries, and the operating system. We use the term

unit to denote the part of the system that is to be analyzed. A unit could encompass different

parts of multiple programs, libraries, or even parts of the operating system itself. We use the term

environment to denote everything in the system except the unit. Thus, the system is the sum of the

environment and the unit to be analyzed.

When defining a model, we think in terms of which paths it includes vs. excludes. Following

the Venn diagram in Figure 2.4, an execution path can be statically feasible, in that there exists

1Execution consistency models defined here could be compared to memory consistency models in SMP sys-

tems [91]. While the former define the set of admissible execution paths, the latter specify the system’s behavior

in the presence of concurrent memory reads and writes and offer different trade-offs regarding cost of implementation

at the micro-architecture level and programming complexity.
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Figure 2.4 – Paths can be statically feasible, locally feasible, or globally feasible.

a path in the system’s inter-procedural control flow graph (CFG) corresponding to the execution

in question. A subset of the statically feasible paths are locally feasible in the unit, in the sense

that the execution is consistent with both the system’s CFG and with the restrictions on control

flow imposed by the data-related constraints within the unit. Finally, a subset of locally feasible

paths is globally feasible, in the sense that their execution is additionally consistent with control

flow restrictions imposed by data-related constraints in the environment. Observing only the code

executing in the unit, with no knowledge of code in the environment, it is impossible (by definition)

to tell apart locally feasible from globally feasible paths.

We say a model is complete if exploration done under that model discovers eventually every

path through the unit that corresponds to some globally feasible path through the system. A model

is consistent if, for every path through the unit admitted by the model, there exists a corresponding

globally feasible path through the system (i.e., the system can run concretely in that way).

We now define six points that we consider of particular interest in the space of possible execu-

tion consistency models, progressing from strongest to weakest consistency. They are summarized

in Figure 2.5 using a representation corresponding to the Venn diagram above. Their complete-

ness and consistency are summarized in Table 2.1. We invite the reader to follow Figure 2.5 while

reading this section.

2.3.1.1 Strict Consistency (SC)

The strongest form of consistency is one that admits only the globally consistent paths. For exam-

ple, the concrete execution of a program always obeys the strict consistency (SC) model. Moreover,

every path admitted under the SC model can be mapped to a certain concrete execution of the sys-

tem starting with certain concrete inputs. Sound analyses produce no false positives under the SC

model. We define three subcategories of SC based on what information is taken into account when

exploring new paths.
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Figure 2.5 – Different execution consistency models cover different sets of feasible paths. The SC-

CE model corresponds to concrete execution. The SC-UE and SC-SE models are obtained from

the previous ones by using increasingly more information about the system, to explore increas-

ingly bigger sets of concrete paths. The RC-LC, RC-OC and RC-CC models are obtained through

progressive relaxation of constraints.

Strictly Consistent Concrete Execution (SC-CE) Under the SC-CE model, the entire system

is treated as a black box: no knowledge of its internals is used to explore new paths. The only

explored paths are the paths that the system follows when executed with the sample input provided

by the analysis. New paths can only be explored by blindly guessing new inputs. Classic fuzzing

(random input testing) [89] falls under this model.

Strictly Consistent Unit-Level Execution (SC-UE) Under the SC-UE model, an exploration

engine is allowed to gather and use information internal to the unit (e.g., by collecting path con-

straints while executing the unit). The environment is still treated as a black box, i.e., path con-

straints generated by environment code are not tracked. Not every globally feasible path can be

found with such partial information (e.g., paths that are enabled by branches in the environment can

be missed). However, the exploration engine saves time by not having to analyze the environment,

which is typically orders of magnitude larger than the unit.
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This model is widely used by symbolic and concolic execution tools [28, 27, 55]. Such tools

usually instrument only the program but not the OS code (sometimes such tools replace parts of the

OS by models, effectively adding a simplified version of parts of the environment to the program).

Whenever such tools see an OS call, they execute the call uninstrumented, selecting some concrete

arguments for the call. Such “blind” selection of concrete arguments might cause some paths

through the unit to be missed, if they depend on unexplored environment behaviors.

Strictly Consistent System-Level Execution (SC-SE) Under the SC-SE model, an exploration

engine gathers and uses information about all parts of the system, to explore new paths through

the unit. Such exploration is not only sound but also complete, provided that the engine can solve

all constraints it encounters. In other words, every path through the unit that is possible under a

concrete execution of the system will be found eventually by SC-SE exploration, making SC-SE

the only model that is both strict and complete.

However, the implementation of SC-SE is limited by the path explosion problem: the number of

globally feasible paths is roughly exponential in the size of the whole system. As the environment

is typically orders of magnitude larger than the unit, including its code in the analysis (as would be

required under SC-SE) offers an unfavorable trade-off, given today’s technology.

2.3.1.2 Relaxed Consistency (RC)

Under relaxed consistency (RC), all paths through the unit are admitted, even those that are not

allowed by the SC models. The RC model is therefore inconsistent in the general case.

The main advantage of RC is performance: by admitting these additional infeasible paths, one

can avoid having to analyze large parts of the system that are not really targets of the analysis,

thus allowing path exploration to reach the true target code sooner. However, admitting locally

infeasible paths (i.e., allowing the internal state of the unit to become inconsistent) makes most

analyses prone to false positives, because some of the paths these analyses are exposed to cannot

be produced by any concrete run.

This might be acceptable if the analysis is itself unsound anyway, or if the analysis only relies

on a subset of the state that can be easily kept consistent (in some sense, this is like RC-LC, except

that the subset of the state to be kept consistent may not be the unit’s state). Also note that, even

though RC admits more paths, thus producing more analysis work, analyses under RC can abort

early those paths that turn out to be infeasible, or the accuracy of the analysis can be decreased,

thus preserving the performance advantage.

We distinguish three subcategories of the RC model, all of which are useful in practice.
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Local Consistency (RC-LC) The local consistency (RC-LC) model aims to combine the per-

formance advantages of SC-UE with the completeness advantages of SC-SE. The idea is to avoid

exploring all paths through the environment, yet still explore the corresponding path segments

in the unit by replacing the results of (some) calls to the environment with symbolic values that

represent any possible valid result of the execution.

For example, when a unit (such as a user-mode program) invokes the write(fd, buf,

count) system call of a POSIX operating system, the return value can be any integer between

-1 and count, depending on the state of the system. The exploration engine can discard the ac-

tual concrete value returned by the OS and replace it with a symbolic integer between -1 and

count. This allows exploring all paths in the unit that are enabled by different return values of

write, without analyzing the write function and without having to find concrete inputs to the

overall system that would enable those paths. This however introduces global inconsistency—for

instance, according to the specification of the write system call, there exists no concrete execution

in which (non-zero) count bytes are written to the file and write returns 0. However, unless the

unit explicitly checks the file (e.g., by reading its content) this does not matter: the inconsistency

cannot yield locally infeasible paths.

In other words, the RC-LC model allows for inconsistencies in the environment, while keeping

the state of the unit internally consistent. To preserve RC-LC, an exploration engine must track the

propagation of inconsistencies inside the environment and abort an execution path as soon as these

inconsistencies influence the internal state of the unit on that path.

This keeps the state of the unit internally consistent on all explored paths: for each explored

path, there exists some concrete execution of the system that would lead to exactly the same internal

state of the unit along that path—except the engine does not incur the cost of actually finding that

path. Consequently, any sound analysis that takes into account only the internal state of the unit

produces no false positives under the RC-LC model. For this reason, we call the RC-LC model

“locally consistent.”

The set of paths explored under this model corresponds to the set of locally feasible paths,

as defined earlier. However, some paths could be aborted before completion, or even be missed

completely, due to the propagation of inconsistencies outside the unit. This means that the RC-LC

model is not complete. In practice, the less a unit interacts with its environment, the fewer such

paths are aborted or missed.

Using the RC-LC model in practice requires writing annotations for API functions called by

the unit under analysis. An annotation specifies how to turn concrete values into symbolic ones,

like in the case of the write system call described earlier. Writing such annotations is fairly

straightforward, in contrast to writing environment models, where one must specify the complete

behavior of the API function (and this makes both the writing of environment models and the
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ensuring of their correctness and completeness in the face of code evolution hard [5]).

Overapproximate Consistency (RC-OC) In the RC-OC model, path exploration can follow

paths through the unit while completely ignoring the constraints that the environment/unit API con-

tracts impose on return values and side effects. For example, the unit may invoke write(fd,buf,

count), and the RC-OC model would permit the return result to be larger than count, which vi-

olates the specification of the write system call. Under the previous model (local consistency),

such paths would be disallowed. Even though it is not consistent, RC-OC is complete: every envi-

ronment behavior is admitted under RC-OC, so every path in the unit corresponding to some real

environment behavior is admitted too.

The RC-OC model is useful, for example, for reverse engineering. It enables efficient explo-

ration of all behaviors of the unit that are possible in a valid environment, plus some additional

behaviors that are possible only when the environment behaves outside its specification. For in-

stance, when reverse engineering a device driver, the RC-OC model allows symbolic hardware [74]

to return unconstrained values; in this way, the resulting reverse engineered paths include some of

those that correspond to allegedly impossible hardware behaviors. Such overapproximation im-

proves the quality of the reverse engineering, as explained in [33].

CFG Consistency (RC-CC) The RC-CC model admits any execution paths, as long as they

correspond to paths in the unit’s inter-procedural control flow graph. This roughly corresponds

to the consistency provided by static program analyzers that are dataflow-insensitive and analyze

paths that are completely unconstrained. Being strictly weaker than the SC-SE model, though

using the same information to explore new paths, the RC-CC model is complete.

The RC-CC model is useful in disassembling obfuscated and/or encrypted code: after letting

the unit code decrypt itself under an RC-LC model (thus ensuring the correctness of decryption),

a disassembler can switch to the RC-CC model to reach high coverage of the decrypted code and

quickly disassemble as much of it as possible.

To summarize, we presented six consistency models that offer flexible trade-offs between false

positives, false negatives, and performance (Table 2.1). The SC-CE model has zero false positives

but yields many false negatives because it explores a tiny fraction of the paths in the system.

The SC-UE model reduces false negatives and SC-SE eliminates them at the expense of high

exploration cost. Relaxed consistency models alleviate this high cost by allowing inconsistencies.

This allows the RC-LC model to explore paths through the unit that would be followed by some

concrete execution without actually incurring the cost of finding such paths. The RC-OC model

introduces further inconsistencies to guarantee zero false negatives at the expense of introducing

false positives. Finally, RC-CC completely unconstrains execution to speed up path exploration.
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Model Consistency Completeness Use Case

SC-CE consistent

system-

wide

incomplete Single-path profiling/testing of units that have a

limited number of paths

SC-UE consistent

system-

wide

incomplete Analysis of units that generate hard-to-solve con-

straints (e.g., cryptographic code)

SC-SE consistent

system-

wide

complete Sound and complete verification without false posi-

tives or negatives; testing of tightly coupled systems

with fuzzy unit boundaries.

RC-LC locally

consistent

incomplete Testing/profiling while avoiding false positives

from the unit’s perspective

RC-OC inconsistent complete Reverse engineering: extract consistent path seg-

ments

RC-CC inconsistent complete Dynamic disassembly of a potentially obfuscated

binaries

Table 2.1 – S2E consistency models: completeness, consistency, and use cases. Each use case is

assigned to the weakest model it can be accomplished with.

2.3.2 Implementing Consistency Models

We now explain how the consistency models can be implemented by a selective symbolic execution

engine (SSE), by describing the specifics of symbolic ↔ concrete conversion as execution goes

from the unit to the environment and then back again.

We illustrate the implementation details with an example of a kernel-mode device driver (Fig-

ure 2.6). The driver reads/writes from/to hardware I/O ports and calls the write_usb function,

which is implemented in a kernel-mode library, as well as alloc, implemented by the kernel itself.

   int send_packet(buffer, size) {

1.  packet *pkt;

2.  status = alloc(&pkt, size);

3.  if (status==FAIL) {

4.     assert(pkt==NULL);

5.     return;

6.  }

    ...

7.  if (read_port(STATUS)==READY)

8.    if (!write_usb(pkt))

9.       return FAIL;

}

int write_usb(pkt) {

  if (usb_ready())

     return do_send(pkt);

  return 0;

}

Unit

EnvironmentDRIVER

USBLIB

KERNEL

int alloc (*ptr, size) {

  ...

}

Figure 2.6 – Example of a “unit” (device driver) interacting with its “environment” (kernel-mode

library and OS kernel itself). The unit is shaded.
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2.3.2.1 Implementing Strict Consistency (SC)

Strictly Consistent Concrete Execution (SC-CE) For this model, an SSE allows only concrete

input to enter the system. This leads to executing a single path through the unit and the envi-

ronment. The SSE can execute the whole system natively without having to track or solve any

constraints, because there is no symbolic data.

Strictly Consistent Unit-Level Execution (SC-UE) To implement this model, the SSE converts

all symbolic data to concrete values when the unit calls the environment. The conversion is con-

sistent with the current set of path constraints in the unit. No other conversion is performed. The

environment is treated as a black box, and no symbolic data can flow into it.

In the example of Figure 2.6, the SSE concretizes the content of packet pkt consistently with

the path constraints when calling write_usb and, from there on, this soft constraint (see §2.2.1)

is treated as a hard constraint on the content of pkt. The resulting paths through the driver are

globally feasible paths, but exploration is not complete, because treating the constraint as hard can

curtail globally feasible paths during the exploration of the driver (e.g., paths that depend on the

packet type).

Strictly-Consistent System-Level Execution (SC-SE) Under SC-SE, the SSE lets symbolic

data cross the unit/environment boundary, and the entire system is executed symbolically. This

preserves global execution consistency.

Consider the write_usb function. This function gets its external input from the USB host

controller via the usb_ready function. Under strict consistency, the USB host controller (being

“outside the system”) can return a symbolic value, which in turn propagates through the USB

library, eventually causing usb_ready to return a symbolic value as well.

Path explosion due to a large environment can make SC-SE hard to use in practice. The paths

that go through the environment can substantially outnumber those that go through the unit, pos-

sibly delaying the exploration of interest. An SSE can heuristically prioritize the paths to explore,

or employ incremental symbolic execution to execute parts of the environment as much as needed

to discover interesting paths in the unit quicker. We describe this next:

The execution of write_usb proceeds as if it was executed symbolically, but only one glob-

ally feasible path is pursued in a depth-first manner, while all other forked paths are stored in a

wait list. This simulates a concrete, single-path execution through a symbolically executing en-

vironment. After returning to send_packet, the path being executed carries the constraints that

were accumulated in the environment, and symbolic execution continues in send_packet as if

write_usb had executed symbolically. The return value x of write_usb is constrained accord-

ing to the depth-first path pursued in the USB library, and so are the side effects. If, while executing
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send_packet, a branch that depends on x becomes infeasible due to the constraints imposed by

the call to write_usb, the SSE returns to the wait list and resumes execution of a wait-listed path

that, for instance, is deemed to eventually execute line 9.

2.3.2.2 Implementing Relaxed Consistency (RC)

Local Consistency (RC-LC) For RC-LC, an SSE converts, at the unit/environment boundary,

the concrete values generated by the environment into symbolic values that satisfy the constraints

of the environment’s API. This enables multi-path exploration of the unit. Referring to Figure 2.6,

the SSE would turn alloc’s return value v into a symbolic value λret∈{v,FAIL} and pkt into a

symbolic pointer, while ensuring that λret=FAIL⇒ pkt=null, so that the alloc API contract is

satisfied.

If symbolic data is written by the unit to the environment, the SSE must track its propagation.

If a branch in the environment ever depends on this data, the SSE must abort that execution path,

because the unit may have derived that data based on symbolic input from the environment that

subsumed values the environment could not have produced in its state at the time.

From the driver’s perspective, the global state may seem inconsistent, since the driver is explor-

ing a failure path when no failure actually occurred. However, this inconsistency has no effect on

the execution, as long as the OS does not make assumptions about whether or not buffers are still

allocated after the driver’s failure. RC-LC would have been violated had the OS read the symbolic

value of pkt (e.g., if the driver stored it in an OS data structure).

Overapproximate Consistency (RC-OC) In this model, the SSE converts concrete values at the

unit/environment interface boundaries into unconstrained symbolic values that disregard interface

contracts. For example, when returning from alloc, both pkt and status become completely

unconstrained symbolic values.

This model brings completeness at the expense of substantial overapproximation. No feasi-

ble paths are ever excluded from the symbolic execution of send_packet, but since pkt and

status are completely unconstrained, there could be locally infeasible paths when exploring

send_packet after the call to alloc.

As an example, note that alloc promises to set pkt to null whenever it returns FAIL, so

the assert on line 4 should normally never fail. Nevertheless, under RC-OC, both status

on line 3 and pkt on line 4 are unconstrained, so both outcomes of the assert statement are

explored, including the infeasible one. Under stronger models, like RC-LC, pkt must be null if

status==FAIL.
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CFG Consistency (RC-CC) An SSE can implement RC-CC by pursuing all outcomes of every

branch, regardless of path constraints, thus following all edges in the unit’s inter-procedural CFG.

Under RC-CC, exploration is fast, because branch feasibility need not be checked with a constraint

solver. As mentioned earlier, one use case is a dynamic disassembler, where running with stronger

consistency models may leave uncovered (i.e., non-disassembled) code. Implementing RC-CC

may require program-specific knowledge, to avoid exploring non-existing edges, as in the case of

an indirect jump pointing to an unconstrained memory location.

2.3.3 Consistency Models in Existing Tools

Some of these consistency models already appear in existing tools; we survey them here as a way

to further explain S2E’s consistency models.

Most dynamic analysis tools use the SC-CE model. Examples include Valgrind [123] and

Eraser [109]. These tools execute and analyze programs along a single path, generated by user-

specified concrete input values. Being significantly faster than multi-path exploration, analyses

performed by such tools are, for instance, useful to characterize or explain program behavior on

a small set of developer-specified paths (i.e., test cases). However, such tools cannot provide any

confidence that results of the analyses extend beyond the concretely explored paths.

Dynamic test case generation tools usually employ either the SC-UE or the SC-SE models. For

example, DART [55] uses SC-UE: it executes the program concretely, starting with random in-

puts, while collecting path constraints on each execution. DART uses these constraints to produce

new concrete inputs that would drive the program along a different path on the next run. How-

ever, DART does not instrument the environment and hence cannot use information from it when

generating new concrete inputs, thus missing feasible paths, which is characteristic of SC-UE.

As another example, KLEE [27] uses either the SC-SE or a form of the SC-UE model, de-

pending on whether the environment is modeled or not. In the former case, both the unit and the

model of the environment are executed symbolically. In the latter case, whenever the unit calls the

environment, KLEE executes the environment with concrete arguments. However, KLEE does not

track the side effects of executing the environment, allowing them to propagate across otherwise

independent execution paths, thus making the corresponding program states inconsistent. Due to

this limitation, we cannot say KLEE implements precisely SC-UE as defined here.

Static analysis tools usually implement some form of the RC model. For example, SDV [5]

converts a program into a boolean form, which is an over-approximation of the original program.

Consequently, every path that is feasible in the original program would be found by SDV, but the

tool also finds additional infeasible paths.
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2.4 Summary

In this chapter, we have shown how to combine selective symbolic execution with execution con-

sistency models in order to achieve in-vivo analysis. Selectivity limits multi-path exploration to

the module of interest (e.g., a library) to minimize the amount of symbolically-executed code,

which avoids path explosion outside of that module. Execution consistency models allow to make

principled performance/accuracy trade-offs during analysis. In the next chapter, we show how to

actually build an analysis platform that implements selective symbolic execution and execution

consistency models.



Chapter 3

A Platform for Developing Analyses

In this chapter, we show how we implemented selective symbolic execution in the S2E prototype.

This system is meant to be a platform for rapid prototyping of custom system/program analyses

that employ various execution consistency models. S2E offers two key interfaces, one for path se-

lection and one for analysis; we describe these interfaces further in Chapter 4. S2E explores paths

by running the target system in a virtual machine and selectively executing selected parts of it sym-

bolically. Depending on which parts are desired, some of the machine instructions of the system

being analyzed are dynamically translated within the VM into an intermediate representation suit-

able for symbolic execution, while the rest are translated to the host instruction set. Underneath the

covers, S2E transparently converts data back and forth as execution weaves between the symbolic

and concrete domains, so as to offer the illusion that the full system (OS, libraries, applications,

etc.) is executing in multi-path mode.

Figure 3.1 shows the S2E architecture. We reused parts of the QEMU virtual machine [9], the

KLEE symbolic execution engine [27], and the LLVM tool chain [78]. To these, we added 30

KLOC of C++ code written from scratch, not including third party libraries1. We added 1 KLOC

of new code to KLEE and modified 1.5 KLOC; in QEMU, we added 1.5 KLOC of new code and

modified 3.5 KLOC of existing code. S2E currently runs on Mac OS X and Linux, it can execute

any guest OS that runs on x86 or ARM (e.g., Android OS), and can be easily extended to other

CPU architectures, like MIPS or PowerPC.

In the rest of this section, we explain how S2E uses dynamic binary translation (§3.1), how the

execution engine handles concretely and symbolically running code (§3.3), and the details of the

plugin infrastructure (§3.4). Finally, we conclude the section with some of the optimizations that

are key to making the illusion of whole-system symbolic execution feasible (§3.5).

1All reported LOC measurements were obtained with SLOCCount [126].

35



36 CHAPTER 3. A PLATFORM FOR DEVELOPING ANALYSES

VM

Memory

Virtual

Devices

user-defined
analyzers

analyzers
S  E stock2

user-defined
selectors

selectors
S  E stock2

Drivers

Libraries

OS Kernel

Applications
selection
interface

analysis
interface

Intermediate
Representation

Concrete
Execution
Host CPU

Symbolic
Execution

KLEE

Dynamic 
Binary 
Translator

Shared State
Representation

Guest Machine Code

Execution
Engine

Instructions Access
Concrete Data

Instructions Access
Symbolic Data

Disassembly

Host
Machine Code

LLVM
Bitcode

O
n

 a
cc

es
s 

to
sy

m
b

o
lic

 d
a

ta

Virtual

CPU

Emulation Helpers

Figure 3.1 – S2E architecture, centered around a custom VM. The VM dynamically dispatches

guest machine instructions to the host CPU for native execution, or to the symbolic execution

engine for symbolic interpretation, depending on whether the instructions access symbolic data or

not. The system state is shared between the code running natively and the code interpreted in the

symbolic execution engine; this enables S2E to achieve the level of execution consistency desired

by the user.

3.1 Dynamic Binary Translation

In this section, we first discuss the general idea behind dynamic binary translation and how it

enables building a platform such as S2E. We then illustrate it by looking at how S2E leverages the

dynamic binary translator offered by QEMU.

Binary translation in general is a powerful technique for code instrumentation and is therefore

a cornerstone of many tools. Static binary translation has been originally used to run software

compiled for one architecture on another, without recompiling it [116]. Dynamic binary transla-

tion has been used among others to simulate entire systems [106, 9], implement virtual machine

monitors [23], and instrument code [82].
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A dynamic binary translator (DBT) converts at run-time the executable code of one platform to

executable code of another. A DBT works in a loop: it continuously fetches blocks of guest code,

translates them to the host’s instruction set, and passes the resulting translation to the execution

engine. The DBT determines which code to fetch and translate by reading the state of the virtual

CPU and the guest memory (i.e., the current program counter in the CPU and program code stored

in memory). This state is updated as part of the execution of the translated code.

In the context of S2E, a DBT brings several advantages. The DBT allows inserting arbitrary

code in the guest instruction stream in order to create symbolic values, instrument all memory

and register accesses to ensure a consistent synchronization between the symbolic and concrete

domain (§3.3.1), provide symbolic hardware (§3.3.2), and to call plugin code when interesting

guest instructions are executed (§3.4).

First, the DBT translates guest instructions to an intermediate representation consisting of sim-

pler micro-operations. Micro-operations split complex guest instructions into simpler operations

that are easier to emulate. Consider the x86 instruction inc [eax], which increments the value

in the memory location whose address is stored in the eax register. The DBT decomposes this in-

struction into a memory load to a temporary register, an increment of that register, and a subsequent

memory store to the original location.

The DBT packages micro-operations into translation blocks. A translation block contains a

sequence of micro-operations up to and including the first micro-operation that modifies the control

flow, such as a branch, a call, or a return. The translator cannot add to the translation block the

instructions past the control flow change, because the translator cannot always determine statically

at which code location to continue the translation process.

The DBT transforms the micro-operations forming the translation block into machine instruc-

tions of the host instruction set by turning each micro-operation into an equivalent sequence of host

instructions, using a code dictionary that maps micro-operations to host instructions. Most of the

conversions consist of a one-to-one mapping from a micro-operation to the corresponding machine

instruction. For more complex instructions, like those that manipulate the processor’s control state

or that access memory, the DBT emits a micro-operation that calls emulation helpers (which are C

functions that emulate the original guest machine instruction). Some helpers have tens of lines of

code and are used frequently (e.g., for memory accesses), therefore inlining them in the translated

code would be prohibitively expensive in terms of generated code size.

Micro-operations simplify the translation process by abstracting away the guest’s instruction

set. Without such an IR, translation would require a different translator for every pair of guest

and host instruction sets. For example, supporting 8 guest platforms and 4 hosts would require 32

translators. In contrast, the use of an IR requires only 8 front-ends (to transform the guest code to

the IR) and 4 back-ends (to convert the IR to the host’s instruction set).
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S2E uses QEMU for dynamic binary translation. QEMU comes with many front-ends, in-

cluding Alpha, ARM, x86, Microblaze, Motorola 68K, MIPS, PowerPC, and SPARC. Back-ends

include ARM, x86, MIPS, SPARC, PowerPC, and PowerPC 64. QEMU can run x86 Windows on

a MIPS machine by translating the x86 code to the MIPS instruction set.

3.2 Dynamic Binary Translation for Symbolic Execution

In order to enable symbolic execution, one needs to interpret the IR generated by the DBT. For

each micro-operation, the interpreter fetches the value of its operands (that are possibly symbolic),

performs the operation specified by the micro-operation (possibly producing a new symbolic ex-

pression), and storing the result to the appropriate register or memory location.

In order to provide acceptable performance, the IR must be translated to native code as often as

possible, using a native back-end. The native back-end allows running at full speed code that does

not manipulate symbolic data. Native execution is triggered as soon as the CPU’s register state

becomes concrete. The native code must however be instrumented in order to switch execution to

the symbolic interpreter as soon as a memory read returns a symbolic value.

In the rest of this chapter, we show how we modified QEMU’s DBT in order to enable symbolic

execution and switching between symbolic and native mode.

We added the LLVM back-end to QEMU, in order to interface S2E with the KLEE symbolic

execution engine. This back-end translates micro-operations to the LLVM intermediate represen-

tation, which is directly interpretable by KLEE (see §3.3). Neither the guest OS nor KLEE are

aware of the x86-to-LLVM translation: the guest OS sees that its instructions are being executed,

and KLEE only sees LLVM instructions, just as if they were coming from a program entirely com-

piled to LLVM. In this way, the guest thinks the “entire world” is concrete, while KLEE thinks the

“entire world” is symbolic.

The DBT must translate code in a way that allows precise exception handling, given that ex-

ecution could be interrupted at any time by hardware interrupts, page faults, etc. S2E extends the

DBT to enable precise exception handling from LLVM code. When an exception occurs, QEMU

converts the address of the translated instruction that raised the exception to the program counter

of the guest code. Such a conversion is possible because each guest instruction corresponds to

a clearly delimited sequence of host machine instructions. However, there is no such clear cor-

respondence in LLVM code, because LLVM applies more aggressive optimizations within each

translation block. To solve this, we modified the DBT to insert micro-operations that explicitly

update the program counter before each guest instruction is executed. As a result, both the LLVM

code and the native code see a consistent program counter at every point during execution, allowing

precise exception handling.
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3.3 Execution Engine

We now present the extensions to QEMU’s execution engine that enable transparent switching

between concrete and symbolic execution, while preserving the consistency of the execution state.

The execution engine consists of a loop that calls the DBT to translate guest code, then runs

the translated code in native mode or interprets it in the symbolic execution engine. The execution

engine does not know a priori whether to ask the DBT to generate LLVM or native code. It

first instructs the DBT to generate native code and, if the code reads memory locations that contain

symbolic data, it invokes the DBT to retranslate the code to LLVM. The DBT stores the translations

in a cache to avoid needless retranslations, such as when repeatedly executing a loop body.

S2E mediates access to most of the VM state via emulation helpers. While simple instructions

can access the CPU state directly, memory accesses, device I/O, as well as complex manipulations

of the CPU state go through specific helpers, in order to reduce the size of the translated code. For

example, the translated code for the software interrupt instruction triggers during execution the

do_interrupt helper. This helper emulates the instruction’s behavior by checking the current

execution mode and privilege level, saving registers, taking care of potential exceptions, etc.

S2E provides emulation helpers both for concrete (native) execution and symbolic (LLVM)

execution. Native-mode helpers mediate access to the shared state when S2E executes concrete

code on the host CPU, while LLVM helpers are used in symbolic execution mode. The execution

engine runs native-mode helpers on the host CPU and interprets LLVM helpers in the symbolic

execution engine; LLVM helpers must sometimes call native-mode QEMU code, for example to

simulate a virtual device.

LLVM emulation helpers avoid forceful unnecessary concretizations that would arise from

calling native emulation helpers from within KLEE. The emulation helpers, called by the translated

code, are compiled twice: to x86 and to LLVM. When running in symbolic mode, KLEE executes

the LLVM version of the helper in order to let the helper manipulate symbolic data. If that version

was missing, KLEE would be forced to call the native x86 version of the helper, which would then

forcefully concretize the symbolic data. For example, QEMU implements bit-shift operations in

helpers; if the bit-shift helper was available in x86 form only, the data it manipulates would have

to be concretized when called from KLEE.

3.3.1 Sharing State Between Symbolic and Concrete Domains

S2E combines concrete with symbolic execution in a controlled fashion along the same path by

using a representation of machine state that is shared between the VM and the embedded symbolic

execution engine. S2E redirects reads and writes from QEMU and KLEE to the common machine

state, which consists of VM physical memory, virtual CPU state, and virtual device state (see
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Figure 3.2). In this way, S2E can transparently convert data between concrete and symbolic,

according to the desired consistency model, and provide distinct copies of the entire machine state

to distinct paths. S2E reduces the memory footprint of all these system states by several orders of

magnitude through copy-on-write (§3.5).

S2E implements transparent state sharing by using KLEE’s ObjectState data structure for

the CPU and the physical memory. This structure encapsulates an array of concrete bytes and

symbolic expressions. It provides accessors to get and set concrete or symbolic bytes. To execute

native code more efficiently, S2E extends ObjectState to expose a direct pointer to the concrete

array of bytes, bypassing getters and setters. It also exposes a pointer to a bitmap that indicates

which bytes are symbolic and which are concrete.

Sharing the CPU State S2E splits the CPU state into symbolic and concrete regions, each in a

different ObjectState structure. The symbolic region contains the general purpose registers and

the flags registers. These registers can store symbolic values. The concrete region stores the control

state of the system, including segment registers, program counter, control and debug registers, etc.

S2E does not allow this state to become symbolic, because doing so would cause execution to

fork inside the S2E emulation code, thus exercising the emulator and not the target software. For

example, a symbolic protection mode bit in the CR0 register would fork the translator excessively

often, since many instructions behave differently in protected mode vs. in real mode.

S2E concretizes all symbolic data written to the concrete region. For example, S2E concretizes

symbolic addresses when they are written to the (always concrete) program counter. To avoid

reducing the completeness of exploration too much, S2E actually allows execution to fork up to

some predefined number of times, and then concretizes the program counter in each of the states.

This behavior can be customized by the user, via the S2E API. Finally, S2E assigns floating point

registers to the concrete region, because KLEE and the underlying constraint solver2 do not yet

support floating point operations on symbolic data.

The translated code accesses the CPU state directly by dereferencing the pointer to the CPU

state or, in the case of native helpers, indirectly: read accesses to the symbolic CPU state are

prepended with checks for symbolic data.

Sharing the Memory State QEMU emulates a memory management unit (MMU) to handle all

guest memory accesses. The MMU translates virtual memory addresses into physical addresses.

The TLB caches the result of the translation to speed up the translation on repeated accesses to the

same pages. In QEMU, the TLB is a direct-mapped cache where each entry holds an offset that,

2The constraint solver decides whether path constraints associated with each branch outcome are satisfiable and, if

so, allows the symbolic execution engine to continue execution along that outcome.
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Figure 3.2 – Data paths to shared memory and device state.

when added to the virtual address of a memory page, results in the physical address inside QEMU’s

address space where the data for that page is stored. Each TLB entry also contains information

about access permissions and whether the memory page belongs to an emulated device.

S2E extends the TLB with pointers to ObjectState structures in order to support symbolic

memory. ObjectState structures store the actual concrete and/or symbolic data of the memory

pages3. When native code is running, the MMU checks whether memory reads would return

symbolic data by looking at the ObjectState’s bitmap. If yes, the MMU instructs the execution

engine to abort the execution of the current translation block and to re-execute the memory access

in symbolic mode. In symbolic mode, the engine retrieves the ObjectState that corresponds to

the physical address stored in the TLB entry and proceeds with the memory operation.

Sharing the Device State A device performs operations on state and produces output visible

to the machine the device is attached to. In real hardware, the state consists of the contents of

all internal registers (stored in flip-flops) and memory (e.g., DRAM chips). Virtual devices in

QEMU emulate the behavior of the real devices: device state is kept in host memory, and the

device’s functionality is implemented by software running on the host CPU. QEMU supports both

memory-mapped (MMIO) and port I/O-based devices.

3One memory page can be split in multiple ObjectState structures, in order to optimize access times, as

shown in §3.5.
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S2E modifies the QEMU block layer to support consistent disk state. Virtual block devices

(e.g., hard disks and CD drives) provide storage to guests, which is backed by files stored on the

host. Virtual block devices access the host files via the QEMU block layer. S2E modifies the block

layer to redirect to a state-local buffer all writes to the host files. When the guest OS issues a read

request, S2E returns the latest write from the buffer. If there were no writes, S2E forwards the

request to the block layer. This ensures that all execution states see a consistent disk state and do

not clobber each other’s writes by writing to a shared disk file. Failing to provide consistent disk

state quickly leads to file system corruption, resulting in guest OS crashes.

3.3.2 Symbolic Hardware

To support whole-system symbolic execution, S2E extends the virtual hardware with symbolic

devices (e.g., to enable analysis of low-level code such as device drivers) and introduces a per-state

virtual clock, to ensure that the guest sees a coherent time.

Symbolic Devices A symbolic device is a special device that discards all writes, returns a sym-

bolic value on every read, and triggers symbolic interrupts4; in other words, it does not implement

specific functionality. S2E instruments port I/O, MMIO, and physical memory accesses (for DMA-

d memory) in order to determine on which read to return a symbolic value. To support symbolic

reads for port I/O and MMIO, S2E extends QEMU’s emulation helpers. If a given port belongs

to a symbolic device, S2E returns a symbolic value on reads and discards writes. MMIO helpers

are similar: each TLB entry contains a flag that specifies whether the memory page is mapped to

physical memory or to a device, and is directed to the device emulation helpers as needed. These

helpers return symbolic values on reads, exactly like for port I/O. To handle DMA, when the TLB

entry of a memory page involved in a DMA transfer is loaded, S2E modifies the flag in order to

invoke MMIO emulation helpers whenever this memory page is accessed; in these helpers, if the

access indeed falls inside the DMA region, a symbolic value is returned.

Supporting symbolic interrupts does not require any modification to QEMU. Triggering such

interrupts consists of asserting the interrupt pin of the virtual device at the desired moment. This

can be readily done by QEMU, which has different mechanisms to assert interrupts for each class

of devices (e.g., for PCI, ISA, and USB devices). At which point in an execution to trigger the

interrupt is decided by the S2E plugins.

These mechanisms enable selection plugins to implement arbitrary symbolic devices. S2E

comes with a SymbolicHardware plugin that implements symbolic PCI and ISA devices. For ISA

devices, the plugin registers port I/O ranges, MMIO, and DMA regions according to the user’s

4A symbolic interrupt is an interrupt with a symbolic arrival time.
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configuration. For PCI devices, the plugin lets the user specify the device and vendor identifiers, as

well as I/O and MMIO regions, interrupt channels, and all other fields available in a PCI descriptor.

The plugin uses this information to instantiate an “impostor” PCI device that will induce the guest

OS to load the appropriate device driver. Then, whenever the driver accesses the device, S2E

returns symbolic data.

Enabling DMA regions and symbolic interrupts is done with support from analysis plugins:

they monitor the OS kernel, catch invocations of DMA-related APIs (e.g., registration of DMA

regions), and pass address ranges to selector plugins (e.g., SymbolicHardware) that then register

these regions through the S2E API. Likewise, an analysis plugin can help determine when to trigger

symbolic interrupts. For example, DDT+, an automated testing tool for proprietary drivers, triggers

such interrupts on every call to the kernel API in order to maximize the chances of exposing

concurrency bugs. REV+, a reverse engineering tool, triggers symbolic interrupts after exercising

the send entry point of a network card, in order to maximize the coverage of the interrupt handler.

Per-State Virtual Clock QEMU maintains two types of clocks: a host clock and a virtual clock.

The host clock reflects the current time of the host machine. The host clock is used by QEMU’s

virtual real-time clock device in order to provide the guest OS with a time source synchronized

with the host machine. The virtual clock stores the number of ticks elapsed from the start of the

system (i.e., when the VM was turned on). Unlike the host clock, the virtual clock is periodically

incremented but not synchronized with the host machine’s time.

Since S2E splits “reality” into multiple executions, it must correspondingly offer multiple time-

lines. For this reason, S2E maintains a separate virtual clock for each system state and does not rely

on the host clock. S2E increments the virtual clock of the state of the currently running path and

keeps the respective clocks frozen in all other states. This way, the guest OS is given (a sufficiently

good) illusion that the execution of those paths never stopped.

S2E slows down the per-state virtual clock when running in symbolic mode. Interpreting

LLVM instructions in KLEE is slower than running native code, and frequent timer interrupts

make progress even slower. In practice, a new interrupt arrives after every translation block that

runs in the symbolic interpreter. It is therefore not enough to disable timer interrupts and restore

them after S2E finishes interpreting the LLVM code. Instead, S2E applies to the host clock a

time dilation factor that is equal to the slowdown caused by the LLVM interpreter. This delays

the scheduling of the next timer interrupt further enough in time so that execution of the program

under analysis can make sufficient progress.
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3.3.3 Multiplexing Per-Path States

S2E executes one path at a time and switches between paths to allow executions to progress in

parallel. Since each execution path is characterized by its state, S2E switches execution paths by

switching states. The challenge is to save and restore QEMU-specific concrete state (i.e., virtual

devices and concrete CPU state) as well as to properly manage the translation block cache.

S2E explicitly copies the concrete region of the CPU state to/from QEMU’s heap. Before

S2E is initialized, QEMU allocates a CPUState structure on the heap. Although S2E stores the

CPU state in an ObjectState structure, which LLVM helpers and symbolically running code

access transparently, parts of QEMU also directly access the concrete region by dereferencing

CPUState pointers (e.g., from the DBT). Finding and instrumenting all accesses to redirect them

to the ObjectState is error-prone and unmaintainable (e.g., when upgrading QEMU versions).

Therefore, S2E leaves all the accesses unchanged (i.e., lets QEMU access the CPUState on the

heap) and, during state switch, S2E saves the concrete content on the heap in the ObjectState of

the active execution state, fetches the new state, and overwrites the structure on the heap with the

new CPUState data.

S2E relies on QEMU’s snapshot mechanism to automatically save and restore concrete virtual

device data structures. QEMU uses snapshots to suspend and resume the virtual machine: S2E

redirects all writes and reads to/from the snapshot file to a per-path buffer. When S2E is about to

switch states, it calls QEMU to go through the list of all virtual devices and save their internal data

structures. Then, S2E selects the next execution state and restores the state of the virtual devices

by calling vmstate_load.

Users can configure S2E to not preserve the per-path device state upon state switching and let

devices share their state between all execution paths, as done in KLEE. This causes inconsistencies,

but reduces memory usage. For example, disabling state saving for the framebuffer avoids record-

ing a separate ObjectState (multiple MBs) for each state and copying this data between the heap

and the ObjectState. This makes for intriguing visual effects on-screen: multiple erratic mouse

cursors and BSODs blend chaotically, providing free entertainment to the S2E user.

Since different states may execute different code at the same address, stale code might end

up being executed if the translation block cache is not flushed on state switches. However, since

many programs do not change their code at run-time, disabling flushing makes sense, since it

improves emulation speed. We plan to make the translation block cache state-local, in order to

avoid unnecessary flushes.
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3.4 Plugin Infrastructure

The S2E plugin infrastructure connects selector and analyzer plugins via events, as will be de-

scribed in Chapter 4. An S2E plugin is a C++ class that subclasses the Plugin base class, which

in turn registers the plugin with S2E, automatically checks that plugin dependencies are satisfied,

and provides an API to retrieve the instance of other plugins in order to communicate with them.

At initialization, a plugin must subscribe to at least one core event; it can also subscribe to events

exported by other plugins. A plugin can later modify its subscriptions from its event handlers.

We wrote an event library that defines signals (the S2E events) to which it is possible to con-

nect callbacks (the event subscribers). We originally used the libsigc++ [103] library for the

plugin infrastructure, but it incurs an unacceptable performance overhead, because it calls memory

allocation routines during signal invocation. S2E plugins can trigger signals at a high rate (up to

thousands of signal invocations per second). For example, it took 250 seconds to open the Win-

dows control panel while using the FunctionMonitor plugin (12 seconds without the plugin). The

new implementation reduced the overhead to 25% (15 seconds).

S2E instruments translated code to generate run-time events. For each guest instruction that

the DBT translates, S2E invokes the onInstrTranslation event, described in §4. One parameter of

this event is a pointer to a list of callbacks. Subscribers that want to be notified every time that a

guest instruction is executed append their callback to that list. After S2E processes all subscribers

of onInstrTranslation, S2E saves the list of onInstrExecution callbacks in the translation block and

inserts a micro-operation that triggers the invocation of a specific emulation helper every time that

instruction is executed. This emulation helper goes through the list stored in the translation block

and invokes the callbacks.

S2E extends the x86 instruction set with custom instructions that trigger events. S2E uses the

opcode 0x0f 0x3f for custom instructions, which is unused according to the Intel instruction set

manual [61]. In S2E, this opcode is followed by an 8-bytes operand that is freely definable by

the plugins. The DBT translates this opcode into a call to the S2E custom instruction emulation

helper and passes the operand as a parameter. At run-time, the helper invokes all the callbacks

registered by the subscribers of the onCustomInstruction event, the subscribers check the operand

and perform whatever action is appropriate. Note that executing on a normal machine a program

instrumented with S2E opcodes would trigger an invalid instruction exception.

S2E triggers all other events without requiring the translated code to be instrumented. For

example, S2E triggers the onTimer event from QEMU’s timer handler in order to allow plugins

to process periodic events. Likewise, S2E triggers onException, onExecutionFork, and onTlbMiss

from the exception emulation helpers, KLEE, and the MMU, respectively.



46 CHAPTER 3. A PLATFORM FOR DEVELOPING ANALYSES

3.5 Key Optimizations

In this section, we describe five optimizations that have brought the greatest improvement in S2E’s

performance: pervasive use of copy-on-write, lazy concretization, aggressive simplification of

symbolic expressions, optimized handling of symbolic pointers, and multi-core parallelization.

Copy-on-Write Copy-on-write (COW) minimizes memory usage by sharing as much data as

possible between execution states. When a state is copied upon path splitting, the child states share

the data stored in the parent. When a write occurs, S2E copies the data from the parent to the child

that initiated the write. S2E splits the physical memory into multiple ObjectState structures and

then reuses KLEE’s COW mechanisms. For all other devices, S2E does not use COW because

device state is small (a few KBs per state) and in practice, every execution path modifies the state

of virtually every device.

Lazy Concretization S2E employs lazy concretization: it concretizes a symbolic value x on-

demand, only when code that runs in the concrete domain is about to branch on the value of x.

This is an important optimization when doing in-vivo symbolic execution, because a lot of data

can be carried through the layers of the software stack without conversion. For example, when a

program writes a buffer of symbolic data to the filesystem, there are usually no branches in the

kernel or the disk device driver that depend on this data. The buffer can therefore pass through

unconcretized and be written in symbolic form to the virtual disk, from where it will eventually be

read back in its symbolic form.

Expression Simplification Conversion from x86 to LLVM gives rise to complex symbolic ex-

pressions. S2E “sees” a lower level representation of the programs than what would be obtained

by compiling source code to LLVM (as done in KLEE): it actually sees the code that simulates

the execution of the original program on the target CPU architecture. Such code typically contains

many bitfield operations (such as and/or, shift) that manipulate bits in the eflags register.

To optimize these expressions, we built a bitfield expression simplifier that, if parts of a sym-

bolic variable are masked away by bit operations, removes those bits from the corresponding ex-

pressions. First, the simplifier starts from the bottom of the expression’s tree representation and

propagates information about individual bits whose value is known. If all bits in an expression are

known, S2E replaces the expression with the corresponding constant. Second, the simplifier propa-

gates top-down information about bits that are ignored by the upper parts of the expression—when

an operator only modifies bits that upper parts ignore, the simplifier removes that entire operation.

We say a bit in an expression is known to be one (respectively zero), when that bit is not

symbolic and has the value one (respectively zero). For example, if x is a 4-bit symbolic value,
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the expression x | 1000 has its most significant bit (MSb) known to be one, because the result of

an or of a concrete bit set to one and of a symbolic bit is always one. Moreover, this expression

has no bits known to be zero, because the MSb is always one and symbolic bits or-ed with a zero

remain symbolic. Finally, the ignore mask specifies which bits are ignored by the upper part of an

expression. For example, in 1000 & (x | 1010), the ignore mask at the top-level expression is 0111

because the and operator cancels the three lower bits of the entire expression.

To illustrate, consider the 4-bit wide expression 0001 & (x | 0010). The simplifier starts from

the bottom (i.e., x | 0010) and propagates up the expression tree the value k11 = 0010 for the

known-one bits as well as k10 = 0000 for the known-zero bits. This means that the simplifier

knows that bit 1 is set but none of the bits are zero for sure (because x is symbolic). At the top

level, the and operation produces k21 = 0000 for the known-one bits (k11 & 0001) and k20 = 1110

for the known-zero bits (k10 | 1110). The simplifier now knows that only the least significant bit

matters and propagates the ignore mask m = 1110 top down. There, the simplifier notices that

0010 is redundant and removes it, because 1101 | m yields 1111, meaning that all bits are ignored.

The final result is thus 1 & x.

We implemented this simplification in the early stage of expression creation rather than in the

constraint solver. This way, we do not have to re-simplify the same expressions again when they

are sent to the constraint solver several times (for example, as part of path constraints). This is

an example of applying domain-specific logic to reduce constraint solving time; we expect our

simplifier to be directly useful for KLEE as well, when testing programs that use bitfields heavily.

Symbolic Pointers A symbolic pointer is a pointer whose value depends on symbolic inputs,

therefore referring to a range of memory locations (as opposed to a concrete pointer, which refers

to only one particular address). Symbolic pointers commonly occur when indexing arrays, like in

jump tables generated by compilers for switch statements. When a symbolic pointer is derefer-

enced, S2E determines the pages referenced by the pointer and passes their contents to the con-

straint solver. Alas, large page sizes can bottleneck the solver, so S2E splits the default 4KB-sized

pages into smaller pages of configurable size (e.g., 128 bytes), so that the constraint solver need not

reason about large areas of symbolic memory. In §6.4, we show how much this helps in practice.

S2E can also concretize symbolic pointers to further reduce overhead. This is most useful

in the case of switch statements and symbolic writes to the program counter register (which is

always concrete in S2E). S2E uses binary search to determine to which interval the symbolic pointer

belongs, and forks n states, each state having one concrete address that satisfies the path constraints.

n is usually bounded, since the path constraints often limit the interval (e.g., switch statements have

a limited number of cases). n can be user-configurable to avoid path explosion in case the symbolic

pointer references a large memory range.
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Multi-core S2E S2E explores different paths concurrently by running multiple S2E instances in

parallel. Whenever an execution path splits due to a symbolic condition, S2E assigns the explo-

ration of the newly created path to a new S2E instance that runs on a different core. If all cores

are already busy exploring paths, then the S2E instance behaves like in single-instance mode: each

split path is added to the local queue of the instance that split it. An S2E instance terminates when

it has explored all the paths in its queue, leaving the core available for new instances.

The simple parallelization algorithm used by S2E does not address the issues of redundant

exploration (i.e., two cores exploring identical states) and load balancing (i.e., moving a subset

of states from one instance to another). This can be solved by combining S2E with the Cloud9

[21] parallel symbolic execution engine. §6.1.4.5 analyzes the impact of this multi-core design on

S2E’s performance.

S2E uses the fork system call to run instances on multiple processors/cores. This system

call maps naturally to the concept of execution path splitting in symbolic execution. Consider an

execution path p that is explored by an S2E process q. When p splits on a branch that depends on

a symbolic value, S2E creates a path p′ and forks a child process q′, which is an identical copy of

the S2E process q. The child process q′ receives the execution path p′, and the parent process q

continues the execution of p. After the fork system call completes, each instance starts exploring

an independent subtree. A similar approach is used by EXE [28] to implement symbolic execution.

S2E plugins can be kept aware of the various running instances: S2E triggers onInstanceFork

whenever it creates a new instance. For example, the Logger plugin listens to this event to create

a fresh execution trace file each time a new instance is created; this avoids expensive synchroniza-

tion, yet writing traces to separate files does not burden offline processing tools: each file contains

an independent subtree, and recreating the full tree through trace concatenation is straightforward.

3.6 Summary

In this chapter, we showed how S2E combines virtualization, dynamic binary translation, native

execution, and symbolic interpretation to give the illusion of whole-system symbolic execution.

We explained how S2E shares CPU, memory, and device state between native and symbolic exe-

cution, described how to efficiently implement the plugin infrastructure, and presented some of the

key optimizations that make the S2E approach feasible. We describe next how S2E can be used to

write new analysis tools.
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Developing New System Analysis Tools

S2E is a platform for rapid prototyping of custom system analyses. It offers two key interfaces:

the selection interface, used to guide the exploration of execution paths (and thus implement ar-

bitrary consistency models), and the analysis interface, used to collect events or check properties

of execution paths. Both interfaces accept modular selection and analysis plugins. Underneath the

covers, S2E consists of a customized virtual machine, a dynamic binary translator (DBT), and an

embedded symbolic execution engine, as was described in the previous section. The DBT decides

which guest machine instructions to execute concretely vs. which ones to interpret symbolically

using the embedded symbolic execution engine.

S2E provides many plugins out of the box for building custom analysis tools—we describe

these plugins in §4.1. One can also extend S2E with new plugins, using S2E’s developer API

(§4.2). Figure 4.1 shows a snapshot of the S2E plugins that are part of S2E today.

4.1 Developing New Tools From Existing Plugins

In this section, we show how a developer can combine the various S2E plugins in order to construct

custom analysis tools, without writing any additional plugins. For instance, a developer could be

a device driver tester performing quality checks during driver development. The developer would

combine here various path selectors to limit multi-path exploration to the driver under test (§4.1.1)

with path analysis plugins to check the driver for the presence of bugs (§4.1.2).

4.1.1 Path Selection

The first step in using S2E is deciding on a policy for which part of a program to execute in multi-

path (symbolic) mode vs. single-path (concrete) mode; this policy is encoded in a selector. S2E

provides a set of selectors for the most common types of selection, which fall into three categories:

49
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Figure 4.1 – S2E stock plugins. The arrows represent plugin dependencies (e.g., the CodeSelector

plugin uses the functionality provided by ModuleExecutionDetector). To distinguish selectors

from analyzers, we show the former on a shaded background.

Data-based selection provides a way to expand a regular execution into a multi-path one by

introducing symbolic values into the system; then, any time S2E encounters a branch predicate that

depends on symbolic values, execution will fork accordingly. Symbolic data can enter the system

from various sources, and S2E provides a selector for each, ranging from command-line arguments

using the CommandLine plugin to hardware input with the SymbolicHardware plugin.

Often it is useful to introduce a symbolic value at an interface that is internal to the system.

For example, say a server program calls a library function libFn(x) almost always with x=10,

but may call it with x < 10 in strange corner cases that are hard to induce via external workloads.

The developer might therefore be interested in exploring the behavior of libFn for all values

0 ≤ x ≤ 10. For such analyses, S2E provides an Annotations plugin, which allows direct injection

of custom-constrained symbolic values anywhere they are needed.

Code-based selection enables/disables multi-path execution depending on whether the program
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counter is or not within a target code area; e.g., one might focus cache profiling on a web browser’s

SSL code, to see if it is vulnerable to side channel attacks. The CodeSelector plugin takes the name

of the target program (or library, driver, etc.) and a list of program counter ranges. Code within

these ranges should be explored in multi-path mode, while code that is outside should be run in

single-path mode. CodeSelector is typically used together with data-based selectors to constrain

the data-selected multi-path execution to within only code of interest.

Priority-based selection is used to define the order in which paths are explored within the

family of paths defined with data-based and code-based selectors. S2E includes basic policies,

such as Random, DepthFirst, and BreadthFirst, as well as others. The MaxCoverage selector

works in conjunction with coverage analyzers to heuristically select paths that maximize coverage.

The PathKiller selector monitors the executed program and deletes paths that are determined to

no longer be of interest to the analysis. For example, paths can be killed if a fixed sequence of

program counters repeats more than n times; this avoids getting stuck in polling loops.

4.1.2 Path Analysis

Once the family of paths to be analyzed is defined via the choice of selector(s), the developer needs

to choose the analyzer(s) to which S2E will expose the chosen paths.

An analyzer is a piece of logic that checks for properties along execution paths. For example, a

bug finder is an analyzer that may check for various types of crashes or assertion violations along

the executed paths. A performance profiler is also a type of analyzer that checks for properties

such as the number of cache misses along a path or the TLB hit count. S2E has several multi-path

analysis plugins, such as performance profilers, memory checkers, crash detectors, or tracers.

S2E also lets developers take advantage of existing unmodified off-the-shelf single-path analy-

sis tools, such as Valgrind, Oprofile [80], or Microsoft Driver Verifier [87], which can be wrapped

into a plugin that adapts the output of these tools to the S2E API (e.g., such a plugin could terminate

every path reported as faulty by Microsoft’s Driver Verifier).

Reusing Existing Single-Path Analysis Tools We illustrate how S2E can reuse existing tools

with the example of Valgrind and Oprofile. Valgrind instruments programs in order to analyze

their cache behavior, memory safety, execution times, and call graphs. Oprofile is a sampling-

based profiler that can analyze an entire software stack, including the OS kernel.

Both of these tools are single-path and rely on testers to guess the concrete inputs that would

drive a program down a path of interest. In other words, testers have to design test cases that

exhibit the behaviors to be studied, such as bugs or slowdowns. In contrast, S2E automatically

enumerates various execution paths and exposes these tools to them. Off-the-shelf tools are not
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aware of the multi-path exploration: they just operate as usual, without any modification in their

logic, but ultimately yield multi-path results.

However, S2E does not remove the limitations of the existing tools. For example, Valgrind is

still limited to profiling user-mode processes and cannot analyze the kernel, while Oprofile is still

subject to imprecise results because it is based on sampling. Moreover, these tools remain single-

path in nature: they cannot reason about multiple paths at a time. For instance, Valgrind cannot tell

whether the path it has just run has the lowest instruction count. For this, a Valgrind-based plugin

would need to be modified to look at all the paths that were explored so far.

Multi-Path Analyzers When off-the-shelf tools are not enough, users can employ S2E analysis

plugins. Plugins run outside of the guest OS and can observe the entire system state, without

interfering with the software under analysis.

One class of analyzers are bug finders, such as the WinBugCheck and MemoryChecker plug-

ins, which look for Windows kernel crashes and memory errors, and output the execution paths

leading to the encountered bugs. Another class of analyzers are execution tracers, such as Instruc-

tionTracer, which selectively records the instructions executed along a path, or MemoryTracer,

which logs memory accesses and hardware I/O. Tracing can be used for many purposes, like of-

fline coverage measurement or profiling. Finally, the PerformanceProfiler analyzer counts cache

misses, TLB misses, and page faults incurred along each path—this can be used to obtain the per-

formance envelope of an application. We describe it in more detail in the evaluation (chapter 6).

While most plugins are OS-agnostic, S2E also includes a set of analyzers that intercept Windows-

specific events using undocumented interfaces or other hacks. For example, WindowsMonitor

parses and monitors Windows kernel data structures and notifies other plugins when the kernel

loads a driver, a library, or an application. Another example is the CrashDumpGenerator plugin,

which generates a memory dump compatible with Microsoft WinDbg.

Offline Multi-Path Analyzers S2E provides plugins for collecting execution traces and saving

them to a file for offline analysis. This is useful for complex analyses that are hard to do online,

such as reverse engineering of device drivers (§6.1). The core tracing plugin Logger provides an

interface to other plugins that they can use to log arbitrary data. Logger wraps the written data into

a trace item object containing a path identifier, timestamp, size, and the plugin that wrote the item.

This allows offline analysis tools to focus only on trace items of interest.

The collected traces can be parsed by offline analysis tools to reconstruct the execution tree,

walk through all trace items on a given path, and perform analyses on them. For example, a tool

that measures code coverage would look for trace items written by the InstructionTracer plugin to

determine which instructions were executed. That tool would also rely on the module information
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provided in the trace by the ModuleLoadUnloadTracer plugin in order to associate each program

counter with the corresponding module and display relevant debug information.

4.1.3 Configuration Interface

Developers can combine plugins using the S2E configuration interface, which accepts scripts writ-

ten in the Lua language [81]. Scripting offers an easier alternative to writing C++ plugins. For

each selector and analyzer used, there is a section in the script that lets the user control the plu-

gin’s behavior. For instance, users can configure a data selector plugin to write symbolic values to

some memory location after the system executes a particular function (e.g., users may want to fill

a freshly malloc-ed buffer with symbolic values in order to track uses of uninitialized data).

4.2 Developing New Plugins

We now describe the interface that can be used to write new plugins or to extend the default plugins

described above. Both selectors and analyzers use the same interface; the only distinction between

selectors and analyzers is that selectors influence the execution of the program, whereas analyzers

are passive observers of the selected execution paths.

Plugin Interface S2E has a modular architecture, in which plugins communicate via events in a

publish/subscribe fashion. S2E events are generated either by the S2E platform or by other plugins.

To register for a class of events, a plugin invokes regEventX(callbackPtr); the event callback is then

invoked every time EventX occurs, and it is passed parameters specific to the event.

Table 4.1 shows the core events exported by S2E that arise from regular code translation and

execution. We chose these core events because they correspond to execution at the lowest possible

level of abstraction: instruction translation, execution, memory accesses, and state forking.

Execution Path Abstraction For each path being explored, there exists a distinct ExecutionState

object instance; when an execution path splits (or forks), each child execution receives its own

private copy of the parent ExecutionState. The ExecutionState object captures the current state of

the entire virtual machine along a specific individual path. It is the first parameter of every event

callback. ExecutionState enables plugins to toggle multi-path execution on/off and gives them

read/write access to the entire VM state, including the virtual CPU, VM physical memory, and

virtual devices (see Table 4.2 for some of the ExecutionState object methods). A plugin can obtain

the PID of the running process from the page directory base register, can read/write page tables

and physical memory, can change the control flow by modifying the program counter, and so on.
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Event Description

onInstrTranslation The DBT is about to translate a machine instruction. A plugin can use this event

to mark instructions of interests (e.g., calls or returns).

onInstrExecution The VM is about to execute a marked instruction. This event invokes the call-

backs registered via onInstrTranslation.

onExecutionFork S2E is about to split (fork) the current execution path in two. Mainly used by

tracing plugins to embed the execution tree in trace files.

onInstanceFork S2E is about to spawn a new process instance of itself in order to explore the

forked path on a different CPU core (more details in §3.5).

onException The VM interrupt pin has been asserted. Provides a convenient means of inter-

cepting interrupts and exceptions (e.g., fatal double faults).

onMemoryAccess The VM is about to execute a memory access. This event can be used to simulate

a cache hierarchy, record a memory trace for offline analysis, etc.

onPortAccess The VM is about to execute a port I/O operation.

onCustomInstruction The VM is about to execute a custom opcode. Listening plugins parse the custom

instruction’s operands to decode the action to perform.

onPageFault A page fault occurred in the guest code.

onTlbMiss A TLB missed occurred in the memory management unit. Using this event is

faster than checking for misses every time onMemoryAccess fires.

onTimer Timer event to let plugins implement periodic tasks, such as flushing trace files,

periodically terminating uninteresting paths, etc.

Table 4.1 – Core events exported by the S2E platform.

Plugins partition their own state into per-path state (e.g., number of cache misses along a path)

and global state (e.g., total number of basic blocks touched). The per-path state is stored in a

PluginState object, which hangs off of the ExecutionState object. PluginState must implement a

clone method, so that it can be cloned by S2E together with ExecutionState whenever execution

forks. Global plugin state can live in the plugin’s own heap.

The dynamic binary translator (DBT) turns blocks of guest code into corresponding host code;

for each block of code this is typically done only once. During the translation process, a plugin may

be interested in instrumenting certain instructions (e.g., function calls) for subsequent notification.

It registers for onInstrTranslation and, when notified, it inspects the ExecutionState object to see

void setForking(bool enable) Turn on/off multi-path execution

void read/writeMemory(uint64_t

addr, Expr *buffer, size_t length)

Read or write contents of memory (symbolic or

concrete) at address addr

Expr readReg(int reg) Read val (symbolic or concrete) from reg

void writeReg(int reg, Expr val) Write val (symbolic or concrete) to reg

TranslationBlock *getTb() Get currently executing code block from DBT

PluginState *getPluginState(Plugin

*plugin)

Get per-path state object for the specified plugin

instance

Table 4.2 – A subset of the ExecutionState object’s interface.
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which instruction is about to be translated; if it is an instruction of interest (say, for example, a

CALL), the plugin instruments it. Whenever the VM executes an instrumented instruction, it raises

the onInstrExecution event, which notifies the corresponding plugin. For example, the CodeSelec-

tor plugin is implemented as a subscriber to onInstrTranslation events; upon receiving an event, it

instruments the instruction depending on whether it is or not an entry/exit point for a code range of

interest. When such an instruction gets subsequently executed, having the onInstrTranslation and

onInstrExecution events separate leverages the fact that each instruction gets translated once, but

may get executed millions of times (e.g., as in the body of a loop). For most analyses, onInstrEx-

ecution ends up being raised so rarely that using it introduces no runtime overhead (e.g., catching

the kernel panic handler requires marking only the first instruction of that handler).

Custom Instructions S2E opcodes are custom guest machine instructions that are directly inter-

preted by S2E. These form an extensible set of opcodes for creating symbolic values (S2SYM), en-

abling/disabling multi-path execution (S2ENA and S2DIS) and logging debug information (S2OUT).

They give developers the finest grain control possible over multi-path execution and analysis; they

can be injected into the target code manually or with the help of binary instrumentation tools like

PIN [82]. In practice, opcodes are the easiest way to mark data symbolic and get started with S2E,

without involving any plugins.

The code fragment in Figure 4.2 shows a C function that writes unconstrained symbolic values

to the buf buffer. Symbolic values can be given a name, e.g., to improve readability when printing

an expression that involves symbolic values. Note that S2E opcodes do not require specialized

compiler or assembler support, since most compilers and assemblers can already emit arbitrary

byte sequences within the generated code.

void s2e_make_symbolic(void* buf, int size, const char* name)

{

__asm__ __volatile__(

/* Binary encoding for S2SYM */

".byte 0x0f, 0x3f\n"

".byte 0x00, 0x03, 0x00, 0x00\n"

".byte 0x00, 0x00, 0x00, 0x00\n"

: : "a" (buf), "b" (size), "c" (name) : "memory"

);

}

Figure 4.2 – Embedding S2E custom instructions in C programs.

The interface presented here was sufficient for all the multi-path analyses we attempted with

S2E. Selectors can enable or disable multi-path execution based on arbitrary criteria and can ma-

nipulate machine state. Analyzers can collect information about low-level hardware events all the

way up to program-level events, they can probe memory to extract any information they need, and

so on. We now provide two examples to illustrate the use of S2E plugins.
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4.2.1 Building the Annotations Plugin

An S2E annotation is a piece of code written by an S2E user in order to observe and manipulate the

execution state. Therefore, annotations may be used for what might be called system-wide aspect-

oriented programming, in which any instruction sequence can be preceded/followed/replaced by

any other sequence of instructions.

Annotations can be used to implement different execution consistency models. Therefore, the

Annotations plugin is a central piece in tools like DDT+ (§6.3.1) and REV+ (§6.1). For example,

annotations can implement the RC-LC consistency by carefully replacing some function parame-

ters and return values with symbolic data.

Appendix A details the steps that an S2E plugin developer would take to develop the Anno-

tations plugin as well as how an S2E user would use such a plugin to perform the analysis of

a Windows network device driver. In particular, we show how to implement Annotations in a

platform-independent manner, making it suitable to analyze any kind of code on arbitrary guest

operating systems. For this, we explain how an S2E plugin developer could break down its func-

tionality into smaller plugins that can be used independently or in combination by an S2E user.

4.2.2 Combining S2E Plugins and In-VM Tools

In this second example, we show an alternate way of implementing annotations with in-VM tools,

using SystemTAP [100]. SystemTAP is a tracing framework for Linux that can intercept any

function call or instruction in the kernel and invoke custom scripts. The scripts have full access to

the system state. They can also leverage debug information to access variables by name.

S2E users can leverage SystemTAP to obtain a flexible way of controlling path exploration.

Users write SystemTAP scripts with embedded calls to S2E opcodes. This allows injecting sym-

bolic values at any place, terminating states based on complex conditions, interacting with S2E

plugins, and more generally developing arbitrary selection schemes directly inside the guest OS.

Suppose we want to analyze the behavior of the Linux network stack when a network packet

is received (e.g., check whether there is a packet that could crash the kernel). One approach is to

replace the content of the incoming packets with symbolic values, in order to explore all the paths

that depend on the packet’s content.

Injecting symbolic packets in the Linux kernel can be done in a few lines of code with Sys-

temTAP [100], as shown in Figure 4.3. We define a SystemTAPprobe that intercepts calls to

netif_receive_skb. Network drivers call this function when they are ready to pass incom-

ing packets to the kernel. Besides the probe, the SystemTAP script also contains a call to the

s2e_make_symbolic function. This function is the same as the one in Figure 4.2, except that it

uses the SystemTAP syntax.
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Note that it is also possible to use the Annotations plugin to perform this analysis, because

the concept of annotation is similar to the SystemTAP probes. S2E gives users the freedom to

choose any method that is the most convenient for them to carry out a given analysis. For example,

users may choose to adapt their existing SystemTAP scripts instead of rewriting them using the

Annotations plugin’s configuration syntax. Likewise, users may employ the Annotations plugin if

the guest OS does not have an equivalent of SystemTAP or if the use of such a tool interferes with

some aspect of the analysis (e.g., performance profiling).

function s2e_make_symbolic(buf: long, size:long, name:string) %{

#SystemTap allows arbitrary C code (including inline assembly)

__asm__ __volatile__(

".byte 0x0f, 0x3f\n"

".byte 0x00, 0x03, 0x00, 0x00\n"

".byte 0x00, 0x00, 0x00, 0x00\n"

: : "a" ((uint32_t)THIS->buf),

"b" ((uint32_t)THIS->size), "c"(THIS->name)

: "memory"

);

%}

#Insert symbolic values on each invocation of netif_receive_skb

probe kernel.function("netif_receive_skb") {

s2e_make_symbolic($skb->data, $skb->len, "symbolic packet");

}

Figure 4.3 – Example of a SystemTAP probe that injects symbolic data into network packets.

4.2.3 Summary

In this chapter, we showed how S2E users can combine various S2E plugins to carry out the desired

analysis tasks and how S2E developers can write custom plugins using the S2E developer API. An

S2E user can combine path selection plugins to limit the multi-path exploration to the modules of

interest with different analysis plugins, such as bug finders, performance profilers, and execution

tracers. We explained how S2E turns existing single-path analysis tools, such as Valgrind and

Microsoft Driver Verifier, into multi-path analyzers without any modification. Finally, we showed

how developers can write modular plugins by taking the example of the Annotations plugin, which

is a central piece of tools like REV+ and DDT+.
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Chapter 5

Decompiling Program Binaries to LLVM

S2E is a platform that lets developers build multi-path dynamic analysis tools by combining path

analyzers and path selectors. S2E exposes each execution path to analysis plugins. The order in

which S2E enumerates execution paths is dictated by path selection plugins (§4.1.1). Path selection

plugins inspect the system state in order to make decisions regarding which paths to explore next.

A purely dynamic approach makes certain types of analysis and path selection algorithms dif-

ficult to implement. The S2E engine uncovers new code and makes it available to analysis plugins

dynamically, i.e., as it translates and executes that code. Plugins can therefore only access and

inspect code that has already been translated by the execution engine. In particular, they do not

have a global view of the control flow graph (CFG). The CFG is often used as a navigation map

by path selectors. Without a full CFG, a heuristic that aims, e.g., to prioritize paths that lead to a

certain function might end up exploring parts of the CFG that never call that function.

We add a static analysis component to S2E in order to allow writing more powerful analysis

and path selection plugins. For example, static analysis can prove that certain program states are

unreachable, thus helping symbolic execution avoid wasting time trying to reach those states. It can

also guide symbolic execution and prioritize path exploration by providing, e.g., a list of potential

bugs or a set of loops that path selectors should exit early.

The static analysis component, called RevGen, takes as input an x86 binary and outputs an

equivalent binary in LLVM format. As we shall see later, using LLVM as an intermediate repre-

sentation allows reusing a wealth of existing LLVM-based analysis tools. RevGen allows reusing

these tools either as is on the translated binary or in combination with S2E, enabling developers to

write more effective path analysis and path selection plugins.

The rest of this chapter is organized as follows. First, we show the usefulness of LLVM as an

intermediate representation for program binaries (§5.1.1). Second, we show examples of use cases

that RevGen enables (§5.1.2). Then we expose the challenges RevGen faces (§5.2), present the

design and implementation (§5.3), expose preliminary results (§5.8), discuss (§5.9), and conclude.

59
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5.1 Motivation

5.1.1 LLVM as Intermediate Representation for Analysis of Binaries

There exist many powerful tools for various types of code analysis. For example, BitBlaze [117]

combines dynamic and static analysis components to extract information from malware. CodeSurfer [4]

can perform program slicing, to allow understanding code behavior. Calysto [3] is a static bug

finder and bddbddb [76] provides a framework for querying programs for buggy code patterns.

Unfortunately, most of these tools require source code. Coverity [12], bddbddb, Saturn [46],

and various methods based on abstract representation [13] require C code. Other tools like Java

PathFinder [102] or CoreDet [10] rely on Java and LLVM compilers to transform the source code

to their analysis format.

The reliance on source code leaves a significant portion of legacy and proprietary software

unanalyzed. Even when the source is partially available, parsing it can be challenging [12] and the

presence of binary libraries or even inline assembly can severely degrade the performance of both

static and dynamic analysis tools. Bug finding and debugging tools like KLEE [27] and ESD [135]

cannot work on such programs.

There also exist tools that directly analyze machine code, but they often use ad-hoc intermediate

representations (IR), making it hard to extend them to other architectures and preventing easy reuse

of analysis components. An IR abstracts the source language (e.g., C or assembly) to facilitate

analysis. For example, CodeSurfer is based on the IR generated by the proprietary IDAPro [60]

disassembler, while Jakstab [68] relies on the frontend of the Boomerang [14] decompiler, and

Vine, the static analysis component of BitBlaze, uses yet another representation.

In recent years, LLVM gained a wide popularity, becoming a platform of choice for developing

new source-based analysis tools, and arguably imposing its IR as a de facto standard for such tools.

Currently, more than 160 LLVM-based projects exist [77], with numerous static analysis tools

targeted at software verification [115, 38, 8, 134, 115], as well as instrumentation tools enforcing

safety properties at run-time, like deterministic execution [10], dynamic bug finders [74, 3], or safe

execution of error recovery code [54]. LLVM is now actively supported by Apple and forms the

basis of several commercial applications, e.g., MacOS and Xcode.

Several powerful analysis frameworks have been built with LLVM. KLEE looks for bugs in

programs using symbolic execution, a method for thorough path exploration. KLEE found deep

bugs in Coreutils that were overlooked for a decade. Parfait [38] is an LLVM-based static anal-

ysis framework that scales to millions of lines of code using demand-driven analysis. Finally,

LLBMC [115] is a tool that applies bounded model checking to LLVM programs.
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5.1.2 Use Cases

In this section, we illustrate how RevGen can be used in practice with existing analysis tools that

are based on LLVM and that implicitly rely on the availability of the source code. We show the

use cases of deterministic program execution, bug finding in kernel-mode binaries using static

analysis, reverse engineering of device drivers for safety and portability, inline assembly removal,

and analysis of embedded software.

Debugging multi-threaded programs Multi-threaded programs are particularly prone to bugs.

Threads share data and use synchronization mechanisms, which can potentially lead to data races

and deadlocks. The difficulty of debugging these problems is compounded by the presence of syn-

chronizations implemented in an ad-hoc way [128]. Tools like CoreDet [10] and SyncFinder [128]

make debugging of concurrency bugs easier. However, they only run on LLVM code.

RevGen allows SyncFinder to annotate blocks of binary code that use ad-hoc synchronization.

SyncFinder locates the loops in the LLVM code, analyzes exit conditions, determines which blocks

of code can run concurrently, and whether the exit condition can be affected by concurrent writes.

If it is the case, SyncFinder reports an ad-hoc synchronization.

Likewise, RevGen enables the use of CoreDet on binary programs. CoreDet is a compiler

and runtime environment that instruments multi-threaded programs in order to make them behave

deterministically. CoreDet ensures that all conflicting concurrent stores are performed in a specific

sequence and that threads are created and scheduled in a fixed order, while introducing as little

serialization as possible.

Analyzing kernel-mode code Proprietary binary drivers are a major source of system crashes

and unreliability. On Linux, error rate in drivers is 3-7 times higher than in the rest of the ker-

nel [35]. Windows drivers are no better, causing 85% of crashes [97]. Since drivers usually run

in kernel mode at the highest privilege level, exploiting their bugs can lead to complete denial of

service and full system compromise.

By converting binary drivers to LLVM, RevGen would enable the use of static analysis tools on

such drivers. LLBMC [115] is a static analysis tool that checks properties like integer overflows,

illegal memory accesses, buffer overflows, or invalid bit shifts. Its abilities make it one of the first

choices to verify device drivers.

RevGen also enables static analysis of low-level OS code. Such code typically uses machine

instructions that have no equivalent in programs written in high-level languages. The challenge is

to accurately emulate these instructions using the LLVM IR in order to make them amenable to

static analysis.
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Reverse engineering safe drivers Static analysis tools are useful to check the quality of drivers

but they cannot fix buggy drivers by themselves. Moreover, such tools are of little help to users

who are often forced to load faulty drivers because there is no better choice. Even if run-time driver

bug containment tools exist [120], they incur overhead and are limited to a few OSes. Ideally, there

should be a tool that automatically fixes buggy drivers.

RevNIC [33] uses reverse engineering to synthesize safer drivers from buggy ones. RevNIC

takes a binary driver and traces its execution to observe all the ways in which the driver inter-

acts with the hardware. The traces contain LLVM instructions complemented with dynamic I/O,

memory, and register data, that RevNIC uses to encode the hardware-interaction state machine.

RevGen can be used to improve the synthesized drivers. RevNIC has low code coverage

on complex device drivers, resulting in incomplete LLVM code and reduced driver functional-

ity, which forces developers to manually write the missing code. RevGen can help automatically

transform the missing code to LLVM, minimizing manual intervention. We will discuss RevNIC

in more details in §6.1.

Helping source-based tools LLVM supports native inline assembly, whose presence prevents

most of the state-of-the-art analysis tools from running properly. To analyze such functions accu-

rately, analysis tools must precisely model the semantics of each machine instruction (i.e., what the

instruction does). Failing to do so may cause both false negatives and false positives. For example,

KLEE [27] aborts execution paths that have inline assembly and static analysis tools either ignore

it or make unsound assumptions about such code [12].

Inline assembly is common in large applications. For instance, network applications use byte-

order conversion routines (e.g., htons) implemented with specific machine instructions, while

multimedia libraries use inline assembly to efficiently implement various algorithms.

While such code can be tedious to transform to C by hand, RevGen can do it automatically.

RevGen scans the LLVM code, extracts inline assembly, identifies input/output parameters, wraps

the assembly into separate LLVM functions, and uses llvm-gcc to turn these functions into binary

code. Finally, RevGen translates the obtained binary code back to pure LLVM, which it uses as a

drop-in replacement of the inline assembly.

Analyzing embedded software While x86 is a common architecture on desktop PCs and servers,

there are many more architectures in the embedded world. For instance, smartphones use MIPS and

ARM processors. RevGen can automatically convert instruction sets of these platforms to LLVM.

This immediately allows the reuse of LLVM-based tools on embedded proprietary software. We

shall see in the next section how RevGen’s design enables the support of different architectures.
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5.2 Challenges

Enabling static analysis of machine code poses two main challenges for static translators like

RevGen: extracting binary code’s semantics and inferring type information.

First, translators must extract the semantics of the machine instructions. For this, they decom-

pose each complex instruction in a sequence of simpler operations (the intermediate representa-

tion). However, virtually all tools ignore the system instructions that manipulate the control state

(e.g., switching execution modes, loading segment registers on x86, etc.). Therefore, such tools

cannot analyze OS kernel code accurately. Finding bugs such as privilege escalation through vir-

tual 8086 mode (affecting all Windows versions from NT 3.1 to Windows 7 [90]) is out of reach

for them. RevGen addresses this challenge.

Second, translators must infer type information to enable accurate analysis. The LLVM IR is

designed to retain most of the type information present in the source code. However, binaries only

manipulate integers and memory addresses. The absence of type information degrades the quality

of some analyses, in particular alias analysis. Analyses that rely on precise alias information have

their rate of false positives and negatives increased.

The challenge for RevGen is to rebuild the type information and other LLVM constructs as if

the resulting LLVM code was obtained by compiling source code. This places RevGen in between

disassemblers and decompilers. While disassemblers stop after generating the IR, decompilers

turn the IR into human-readable high-level code, after reconstructing type information, variables,

control flow, etc. RevGen does not need to reconstruct high-level control flow.

5.3 Solution Overview

RevGen takes as input an x86 binary and outputs an equivalent LLVM module in three steps. The

general architecture is shown in Figure 5.1. First, RevGen looks for all executable blocks of code

and converts them to LLVM translation blocks (§5.5). Second, when there are no more translation

blocks (TB) to cover, RevGen transforms them into basic blocks and rebuilds the control flow graph

(CFG) of the original binary in LLVM format (§5.6). Third, RevGen resolves external function

calls to build the final LLVM module. For dynamic analysis, a last step links the LLVM module

with a run-time library that allows the execution of the LLVM module (§5.7).

5.4 LLVM Background

LLVM is a compiler framework that uses a compact RISC-like, SSA-based instruction set with an

unlimited number of registers. LLVM has about 30 opcodes, only two of which can access memory
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Figure 5.1 – The RevGen Workflow

(load and store), all other instructions operate on virtual registers. LLVM uses the static single

assignment (SSA) code representation. In SSA, each register can be assigned only once. Hence,

SSA also provides a phi instruction that assigns values to variables depending on the direction of

the control flow. This instruction allows modifying the same variable in two different branches.

This makes LLVM programs amenable to complex analyses and transformations. LLVM code

explicitly embeds the program’s data flow and def-use graphs. This enables transformations like

function inlining, constant propagation, or dead store removal, which are a key part of static and

dynamic analysis tools.

A static translator must take into account LLVM specificities. This includes pointer arithmetic,

different stack layouts, accesses to various code and data segments, indirect calls, and runtime

support to be able to execute the generated LLVM programs. Finally, the translated code must be

semantically-equivalent to the original binary.

5.5 Translating Blocks of Binary Code to LLVM

RevGen reuses S2E’s LLVM backend for translation, described in §3.1. Below, we briefly summa-

rize the translation steps from the perspective of RevGen.

The static translator takes as input the binary file and a program counter and transforms all the

machine instructions to LLVM until it encounters a terminator. A terminator is an instruction that

modifies the control flow (e.g., branch, call, return). The translation has two steps: the input is first

disassembled into micro-operations, which are then converted to LLVM instructions.

First, the translator converts machine instructions into an equivalent sequence of micro-operations.

For example, the x86 instruction inc [eax] that increments the memory location pointed to by

the eax register is split into a load to a temporary register, an increment of that register, and a

memory store. The sequence of micro-operations forms a translation block.

Second, the translator maps each micro-operation to LLVM instructions, using a code dic-

tionary. The dictionary associates each micro-operation with a sequence of LLVM instructions



5.6. RECONSTRUCTING THE CONTROL FLOW GRAPH 65

that implement the operation. Most conversions are a one-to-one mapping between the micro-

operations and the LLVM instructions (e.g., arithmetic, shift, load/store operations).

The translator also takes into account instructions that manipulate the system state. Current

tools do not model such instructions to a sufficient precision level. For example, RevGen accurately

translates to LLVM instructions like fsave or mov cr0, eax. The former saves the state of the

floating point unit, while the latter sets the control register (e.g., to enable 32-bit protected mode,

which changes the behavior of many instructions).

For this, the translator uses emulation helpers. An emulation helper is a piece of C code that

emulates complex machine instructions that do not have equivalent micro-operations. RevGen

compiles emulation helpers to LLVM and adds them to the code dictionary, transparently enabling

the support of machine instructions that manipulate system state.

Third, the translator packages the sequence of LLVM instructions into an LLVM function that

is equivalent to the original binary code. More precisely, given the same register and memory

input, the translated code produces the same output as what the original binary does if executed on

a real processor.

The translator stops when all translation blocks have been extracted. This happens when the

translator cannot find new code to disassemble (e.g., by looking at not-yet explored jump and call

target addresses).

5.6 Reconstructing the Control Flow Graph

RevGen primarily reuses existing tools (such as IDAPro [60]) in order to benefit of the many

heuristics they developed over the years, which allows computing the CFG as accurately as pos-

sible. In addition to the binary, RevGen can take as input a set of basic block addresses, a set of

control flow edges, and a set of function entry points generated by existing tools. RevGen uses

this information in order to directly translate the basic blocks to LLVM, stitch them together, and

group them into functions.

In case no advanced disassemblers are available, RevGen can use a few simple heuristics to

reconstruct the CFG. These heuristics work on a variety of binaries produced by standard x86

compilers. However, they would fail on obfuscated or optimized binaries, e.g., if call instructions

are replaced by push/jump instructions, in case of tail calls, etc.

RevGen implements the recursive traversal algorithm to disassemble the binary and rebuild

the CFG [110]. This algorithm starts the disassembly at some known address (e.g., program en-

try point) and follows recursively all branches and function calls in order to discover new code.

RevGen considers basic blocks that are targets of call instructions or that have no incoming edges

to be function entry points.
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After computing the CFG of each function, RevGen transforms it into an LLVM function.

RevGen represents each basic block b of the original binary by an LLVM function fb. RevGen

first inserts an LLVM call instruction to the next basic block at the end of each fb. Then, RevGen

applies an LLVM function inlining pass to merge all the call targets into one large LLVM function.

5.7 Obtaining Analyzable LLVM Programs

The output of the CFG builder is a raw LLVM function that cannot be used by static or dynamic

analyzers as is (e.g., it lacks explicit library calls and contains unresolved pointer arithmetic). We

describe next how to transform the CFG builder output into analyzable code.

RevGen makes several assumptions about the original binary to synthesize analyzable LLVM

code. RevGen requires the binary to provide a symbol table to identify library calls and a relocation

table to identify all constants used as pointers. Relocation tables appear in shared libraries and

are becoming common in program binaries because of ASLR [121] requirements. Moreover, the

binary must not have self-modifying code. Finally, both the source and target architectures must

have the same pointer size, in order to be able to run the translated code.

5.7.1 Enabling Static Analysis

First, RevGen identifies external function calls by scanning the import table of the program binary.

An import table maps a list of function and library names to addresses. The OS loader patches

the table with the actual function addresses so that indirect calls that reference the table can work

properly.

Second, RevGen patches the raw LLVM functions with explicit external calls. Basic blocks

originally encode external calls by an indirect jump to an address read from the import table.

RevGen replaces such jumps by LLVM call instructions using the actual function names, allow-

ing the LLVM linker to later resolve the call targets. This step is required because static analysis

tools look for the use of specific functions. For example, memory checkers would track the calls

to malloc and free.

Third, RevGen encodes the content of the program’s code and data segments as LLVM arrays

and embeds them in the LLVM program. This preserves the assumptions about the data layout in

the original binary and accounts for programs that refer to segments with pointer arithmetic.

RevGen does not need to resolve indirect control flow (ICF). RevGen is not a static analysis

tool, it only translates ICF from x86 to LLVM. Static resolution of ICF is left to the analysis tools.

Such tools can resolve ICF to any precision they need and provide any soundness and completeness

guarantees they wish.
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5.7.2 Enabling Dynamic Analysis

Dynamic tools perform analysis at run-time, which requires executing the program. For this, in

addition to applying the steps described in §5.7.1, RevGen links a specific runtime library that

resolves indirect function calls, deals with memory layouts, and handles multi-threading. This

runtime library does not affect run-time analysis tools, because they have full access to the library’s

LLVM bitcode. They see the runtime as another component of the analyzed program.

Resolving pointer arithmetic RevGen uses relocation tables to identify all pointers in the binary

and adapt them to the LLVM memory model. Relocation tables list all code and data locations that

the OS loader patches if it loads the binary at a different base address than what the compiler

assumed. RevGen uses these tables to translate all hard-coded pointers to LLVM pointers, adapted

to the memory layout seen by LLVM. In particular, RevGen remaps pointers that reference data

segments to the corresponding LLVM arrays. Without relocation tables, RevGen performs this

remapping at run-time, when all pointers are disambiguated.

Resolving indirect calls and branches The code generator embeds a table that maps basic

blocks’ native addresses to the corresponding LLVM basic blocks. It also stores which function

the basic blocks belong to, as well as whether the basic block is the entry point of a function.

Whenever the translated code performs an indirect call or jump to a native address, the runtime

looks for the corresponding LLVM basic block. If the block is not found or if there is a type

mismatch (e.g., calling a block that is not a function entry point), the runtime aborts the program

and notifies the user. This may occur when exploits attempt to violate control flow integrity [71].

Adapting stack pointers The translated code retains all the assumptions of the original binary

about the stack layout. In particular, it assumes that local variables, return addresses, and parame-

ters are located at precise memory addresses when doing stack pointer arithmetic.

The runtime library preserves the original stack layout by using a dual-stack architecture. There

is one native stack used by the LLVM program and one implicit stack, whose pointer is passed as a

parameter to each LLVM function, and which is manipulated by the LLVM functions. The runtime

allocates the implicit stack and sets the implicit stack pointer before calling the main entry point

of the program. It also copies the arguments to the native stack when calling library functions.

Supporting multi-threading Multi-threading consists in allocating an implicit stack for each

thread. For this, the runtime library intercepts thread allocation routines and wraps the thread entry

points into a special function that sets up the implicit stack. The stack is automatically freed when

the thread routine finishes.
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Self-modifying and obfuscated code RevGen does not support self-modifying code. This does

not hurt RevGen because aside from malware, such code is practically restricted to JITed languages

(e.g., C#, Java). In these cases, existing tools run on the bytecode of the respective languages, not

on the final machine code itself. A side effect of this lack of support is that native code injected

at run-time cannot be executed, increasing the safety of translated programs, similar to what other

LLVM-based tools aim at achieving [42]. RevGen does not handle obfuscated code and would rely

on existing deobfuscation techniques [67, 40] to obtain a CFG that can be turned into LLVM.

5.8 Results

In this section, we aim to give a preliminary answer to three questions: Does RevGen enable the

reuse of existing LLVM-based analysis tools on x86 binaries? What completeness can RevGen

achieve on typical binaries? How can one use RevGen in order to enable more effective path se-

lectors in S2E? We evaluate a prototype of RevGen that is based on S2E’s x86-to-LLVM translator

(see §3.1). RevGen takes S2E’s dynamic translator and turns it into a static one.

To answer the first question, we convert an x86 micro-benchmark to LLVM using RevGen and

run the result in CoreDet [10] . The micro-benchmark has several threads that access unprotected

shared variables, whose value is printed at the end of each run. Without CoreDet, the printed output

differs from run to run. With CoreDet, the output stays the same. This shows that RevGen enabled

the reuse of CoreDet to make binary programs deterministic in the presence of race conditions.

Initial results suggest that RevGen’s completeness is comparable to state-of-the-art disassem-

blers on standard non-obfuscated kernel-mode binaries. We disassembled the pcntpci5.sys

Windows network device driver with RevGen and compared the results to IDAPro. IDAPro identi-

fied 78 functions, while RevGen found 77. RevGen failed to find 4 functions and misinterpreted 3

basic blocks as function starts, because of incomplete detection of jump tables. Of course, one can

use IDAPro to produce a CFG and pass it to RevGen should better accuracy be needed (see §5.9).

Finally, we used RevGen to help path selectors in S2E avoid polling loop in device drivers. A

polling loop continuously reads a device register until it returns a certain value. Symbolic execution

makes the register symbolic, causing a fork on each iteration, yielding path explosion. We are

therefore interested in terminating all execution paths that follow the back-edge of the loop.

Avoiding polling loops can be done by combining static and dynamic analysis. LLVM has

an analysis pass that identifies loops in CFGs. By running it on the LLVM bitcode produced by

RevGen, it is possible to identify all the loops in the original driver binary. At runtime, the path

selector checks whether forks occur in a loop header and whether the symbolic expression was

created inside the loop body. If so, the selector marks the loop as a polling loop, terminating all

states that execute its back-edge.
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Combining static with dynamic analysis improves accuracy. Polling loops may follow many

different patterns: they may or may not have a timeout counter, call delay functions, etc. Static

analysis allows easily recognizing such patterns, whereas dynamic analysis would require explor-

ing all the branches of the loop body first in order to have a complete view of the loop. Conversely,

dynamic analysis allows easily checking whether the loop header forked because of a symbolic

value that comes from hardware, which is hard to determine statically. In summary, by carefully

restricting the heuristic to specific loop patterns, our polling loop detection achieved zero false

positives on all 45 Windows network device drivers that we tested.

5.9 Discussion

In this section, we discuss three aspects that we believe will enable RevGen to become a major

enabler for widespread static analysis of binary programs.

RevGen can effortlessly leverage existing disassemblers, should better accuracy be required.

RevGen’s translator only requires a list of program counters and an accurate list of function entry

points in order to convert the binary to LLVM. Both can be directly obtained from disassemblers

like IDAPro or state-of-the-art static analyzers such as Jakstab.

Extending RevGen to support other architectures than x86 is simple and requires limited efforts.

The LLVM backend that translates micro-operations to LLVM need not be modified. In case no

existing disassemblers are available, the only need is to modify the frontend (e.g., the ARM or

MIPS frontend) with annotations specifying the types of basic blocks (e.g., branch, call, return,

etc.) to allow the CFG builder to merge the basic blocks and reconstruct the functions.

We argue that RevGen enables analysis tools to check binary programs as well as their inter-

action with the processor. Analysis tools typically check programs that interact with libraries. In

the context of RevGen, the program is the machine code translated to LLVM and the library is the

collection of emulation helpers in LLVM format. For example, checking that the invocation of a

software interrupt does not cause a general protection fault is reduced to verifying that the library

does not invoke the corresponding program’s entry point.

This can potentially open up all sorts of analyses on low level system code. We envision

RevGen to enable analysis tools to answer questions like: Can the user-mode code issue a system

call in such a way that would cause arbitrary code execution? Are there any bugs in the emulation

helpers (and thus in QEMU) that would cause the application to malfunction? Since RevGen

produces plain LLVM bitcode, we expect existing tools to answer such questions out of the box.
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5.10 Summary

This chapter presented RevGen, a tool that automatically converts existing binary programs to

the LLVM intermediate representation. RevGen can potentially enable a large number of static

and dynamic analysis frameworks, as well as run-time instrumentation tools to work on legacy

software. Preliminary results show that RevGen can successfully translate large Windows drivers,

run existing dynamic analysis tools on binary programs, and let developers write more efficient

path selectors for S2E.



Chapter 6

Evaluation: Real Tools Built with S2E

S2E’s main goal is to enable rapid prototyping of useful, deep system analysis tools. To evaluate

this, we show in this chapter how we used S2E to build a tool for reverse engineering of binary

device drivers (§6.1) and performing multi-path performance analysis (§6.2). We also show the im-

pact of S2E in general by presenting several tools built by the research community (§6.3). Finally,

we show that tools built with S2E can achieve reasonable performance (§6.4) and explain the mea-

sured trade-offs involved in choosing different execution consistency models on both kernel-mode

and user-mode binaries (§6.5).

Table 6.1 summarizes the productivity advantage we experienced by using S2E to build our

tools, compared to writing them from scratch. For these use cases, S2E engendered two orders of

magnitude improvement in both development time and resulting code volume. This justifies our

efforts to create general abstractions for multi-path in-vivo analyses, and to centralize them into

one platform.

Use Case

Development Time Tool Complexity

[ person-hours ] [ lines of code ]

from scratch with S2E from scratch with S2E

Testing of proprietary
2,400 38 47,000 720

device drivers

Reverse engineering of
3,000 40 57,000 580

closed-source drivers

Multi-path in-vivo
n/a 20 n/a 767

performance profiling

Table 6.1 – Comparative productivity when building analysis tools from scratch (i.e., without S2E)

vs. using S2E. Reported LOC include only new code written or modified; any code that was

reused from QEMU, KLEE, or other sources is not included. For reverse engineering, 10 KLOC

of offline analysis code is reused in the new version. For performance profiling, we do not know

of any equivalent non-S2E tool, hence the lack of comparison.

71
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6.1 Reverse Engineering of Closed-Source Drivers

The ability to use a hardware device with an operating system requires that a corresponding device

driver be available, i.e., a program that knows how to mediate the communication between the OS

kernel and that specific device. The driver may be supplied by either the hardware vendor or the

developer of the operating system.

Hardware vendors typically provide drivers for the one or two most popular OSes. It appears

that supporting many other platforms is not profitable, because the high cost of development and

technical support can be amortized only over comparatively fewer customers. As a result, drivers

are rarely available for every OS/device combination. This issue is common to various device

classes, including network drivers. Alas, for an operating system to be viable and widely adopted,

it must support a wide range of hardware.

Even when drivers are available, they are often closed-source and proprietary. Despite this mak-

ing them less trustworthy, proprietary drivers are still permitted to run at the highest level of priv-

ilege in an operating system. Not surprisingly, buggy drivers are a leading cause of crashes [119].

They can also be a security threat, as was the case of a driver shipped with all versions of Windows

XP that was found to contain a zero-day privilege escalation vulnerability [85].

Writing a driver for an OS that is not supported by the device vendor is challenging, because

the device specification is often not available. While the interface exposed by an OS to the driver

is well known, the specification of the interface between the hardware and the driver is often not

public. The classic approach is to manually reverse engineer the original driver, but that involves

a lot of work. When the device is too complex to be reverse engineered, developers resort to

emulating the source OS using wrappers (e.g., NDISwrapper [95] allows running Windows NIC

drivers on Linux). However, this adds performance overhead, can only use drivers from one source

OS, and requires changing the wrapper each time the source OS driver interface changes.

Even when the hardware specification is available, writing the driver still requires substantial

effort. That is why, for example, it took many years for Linux to support widely used wireless and

wired NIC devices. Vendor-provided specifications can miss hardware quirks, rendering drivers

based on these specifications incomplete (e.g., the RTL8139 NIC driver on Linux is replete with

workarounds for such quirks).

Our proposed approach overcomes unavailability of specifications and costly development with

a combination of automated reverse engineering and driver code generation. We observe that

a device specification is not truly necessary as long as there exists one driver for one platform:

that one driver is a (somewhat obscure) encoding of the corresponding device protocol. Even if

they are not a perfect representation of the protocol, proprietary drivers incorporate handling of

hardware quirks that may not be documented in official specification sheets. We also observe that
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writing drivers involves a large amount of boilerplate code that can be easily provided by the OS

developer. In fact, an entire category of drivers can use the same boilerplate; driver writers plug

into this boilerplate the code specific to their hardware device.

We implemented our approach in RevNIC, a tool for automating the reverse engineering of

network drivers. This tool can be used by hardware vendors to cheaply support their devices on

multiple platforms, by OS developers to offer broader device support in their OS, or by users who

are skeptical of the quality and security of vendor-provided closed-source proprietary drivers.

When it originally appeared in [33], RevNIC made three main contributions. First, it introduced

a technique for tracing the driver/hardware interaction and turning it into a driver state machine.

Second, it demonstrated the use of binary symbolic execution to achieve high-coverage reverse

engineering of drivers. Third, it showed how symbolic hardware can be used to reverse engineer

drivers without access to the actual physical device.

RevNIC was the precursor of S2E. RevNIC was originally a standalone, monolithic tool. Then,

we factored out its path exploration engine, which turned out to be useful for many use cases.

We describe these later in this chapter (§6.3). We then moved RevNIC-specific functionality into

standalone plugins. Finally, RevNIC’s offline trace generation tool gave birth to RevGen.

In this section, we show how to rebuild RevNIC using S2E. We call REV+ the re-implementation

of RevNIC using S2E. After providing an overview of RevNIC (§6.1.1), we describe how RevNIC

“wiretaps” drivers (§6.1.2) and synthesizes new driver code (§6.1.3), we evaluate RevNIC (§6.1.4),

discuss limitations (§6.1.5) and how RevNIC influenced S2E (§6.1.6), survey related work (§6.1.7),

and summarize (§6.1.8).

6.1.1 System Overview

To reverse engineer a driver, RevNIC observes the driver-hardware interaction, i.e., the mani-

festation of the device-specific protocol, encoded in the driver’s binary. RevNIC synthesizes an

executable representation of this protocol, which the developer can then use to produce a driver for

the same or a different OS.

RevNIC employs a mix of concrete and symbolic execution to exercise the driver and to wiretap

hardware I/O operations, executed instructions, and memory accesses. When rebuilding RevNIC,

we leveraged S2E’s symbolic execution engine and tracing plugins (wiretap), as shown in Fig-

ure 6.1. The output of the wiretap is fed into a code synthesizer, which analyzes the trace infor-

mation and generates snippets of C code that, taken together, implement the functionality of the

device driver. The developer then pastes the code snippets into a driver template to assemble a new

driver that behaves like the original one in terms of hardware I/O.
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Figure 6.1 – High-level architecture of RevNIC.

Exercising the driver. It is difficult to exercise every relevant code path in the driver using

just regular workloads. Many paths correspond to boundary conditions and error states that are

hard to induce. For example, a NIC driver could take different paths depending on the packet type

transmitted by the network stack (ARP, VLAN, etc.) or depending on how the hardware responds.

In order to induce the device driver to perform its operations, RevNIC guides the execution

with a mix of concrete and symbolic workload. The concrete workload initiates driver execution by

triggering the invocation of the driver’s entry points. RevNIC selectively converts the parameters

of kernel-to-driver calls into symbolic values (i.e., values that are not constrained yet to be any

specific, concrete value) and also treats the responses from the hardware side as symbolic. This

drives the execution down many feasible paths through the driver, as well as exercises all code that

depends on hardware input/returns.

By using symbolic values, RevNIC is completely independent of the physical hardware device.

Unconstrained symbolic values provide the driver a representation of all the responses from the

hardware that the driver thinks could ever be received.

Recording driver activity. REV+ uses S2E’s tracing plugins to record the driver’s hardware

I/O, along with the driver’s memory accesses and an intermediate representation of the instructions

it executes (§6.1.2). Such detailed tracing imposes performance overheads, but the overheads are

irrelevant to reverse engineering.

Synthesizing driver code. RevNIC infers from the collected activity traces the state machine

of the binary driver and produces C code that implements this state machine. RevNIC automat-

ically merges multiple traces to reconstruct the control flow graph (CFG) of the original driver.
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Since the generated CFG is equivalent to that of the original driver, covering most of the basic

blocks is sufficient to reverse engineer the driver—complete path coverage is not necessary.

RevNIC uses virtualization and symbolic execution instead of mere decompilation for four

main reasons. First, static decompilers face undecidable problems (e.g., disambiguating code from

data) and can produce inaccurate results [110]. Second, while some decompilers can record dy-

namic execution traces [60] to improve accuracy, RevNIC explores multiple paths in parallel and

covers unexplored code faster using symbolic execution. Third, since the VM catches all hardware

accesses, RevNIC can distinguish accesses to a memory-mapped device from regular memory ac-

cesses, which is notoriously difficult to do statically on architectures like x86. Identifying such

instructions is crucial to preserving memory access ordering in the generated code (e.g., write bar-

riers). Finally, RevNIC must recognize DMA-allocated regions assigned by the OS to the driver

(by recording the address values returned by the OS API); doing this in a decompiler requires

complex inter-procedural data flow analysis.

Writing a driver template. The template contains all OS-specific boilerplate for interfacing

with the kernel (e.g., NDIS API on Windows, network API on Linux). Templates can be arranged

in a class hierarchy with an abstract template implementing the basic boilerplate, and derived

templates implementing additional functionalities. For example, a base template may target a

generic PCI-based, wired NIC, while a derived template further adds DMA capabilities. This

modularity allows accommodating all common types of network devices. Depending on the OS,

templates can be derived from examples in driver development kits (e.g., the Windows Driver

Kit [86]) or automatically generated, with tools like WinDriver [65].

Besides mandatory boilerplate, a template also contains placeholders for the actual hardware

interaction. Since devices in a given class (e.g., NICs) tend to operate in the same manner (e.g.,

initializing, sending, receiving, computing checksums using well-defined standards), the functional

differences between drivers are at the level of code implementing this hardware I/O.

Producing the synthetic driver. The developer pastes synthesized code snippets into the tem-

plate’s placeholders in order to specialize the template for the device of interest. The result is then

compiled into a driver. In order to paste code snippets correctly, the developer has to know how to

write drivers both for the source and for the target OS.

We use RevNIC to port drivers from/to various OSes: Linux, Windows, the µC/OS-II real-time

embedded OS for FPGA systems, and our own experimental KitOS. The following sections detail

how RevNIC traces driver activity and processes activity traces to produce the synthetic driver.
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6.1.2 Tracing and Exercising the Original Driver

We now describe what information RevNIC records along each execution path in order to generate

a working driver for the target OS, how it uses symbolic execution and symbolic hardware to

exercise the driver, and how it ensures that symbolic execution achieves high coverage.

6.1.2.1 Wiretapping the Driver

Along each execution path, RevNIC records several pieces of information that the offline process-

ing tool will use to synthesize the new driver.

First, the wiretap saves the instructions executed by the driver in an intermediate representation.

This serves as a basis for C code generation during the synthesis phase (§6.1.3). Second, the

wiretap records whether the instructions access device-mapped memory or regular memory, along

with the value of the corresponding pointer and the transferred data. This simplifies the data

flow analysis during reverse engineering (§6.1.3.1), by disambiguating aliased pointers. Third, the

wiretap records the type of executed basic blocks (conditional vs. direct/indirect jumps vs. function

calls) and the contents of the processor’s registers at the entry and exit of each basic block. This

helps reconstruct the control flow during synthesis.

REV+ leverages two additional plugins that come with S2E in order to re-implement the wire-

tapping capabilities of RevNIC:

• The InstructionTracer plugin allows recording the instructions executed by the driver as well

as the content of the CPU registers.

• The MemoryTracer plugin records all memory and MMIO accesses performed by the driver.

6.1.2.2 Mechanic of Exercising the Driver

In order to expose the driver wiretap to as many behaviors as possible, RevNIC exercises the

driver using symbolic execution. Whereas RevNIC used an ad-hoc implementation of symbolic

execution, REV+ uses S2E and combines several plugins in order to re-implement RevNIC’s high-

coverage path exploration:

• The CodeSelector plugin restricts multi-path exploration to the target driver. This prevents

path explosion outside of the driver being reverse engineered.

• The SymbolicHardware plugin enables exploring paths that depend on hardware input. Con-

sider, for example, the NIC interrupt handler: since a read of the status register returns a sym-

bolic value, all conditional branches that depend on that value are automatically explored,

without requiring a cleverly crafted workload that would induce a real NIC into producing

all possible return values (which may be impossible to do solely using a workload).
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As I/O to and from the hardware is symbolic thanks to the SymbolicHardware plugin, the actual

device is never needed. This allows developers using RevNIC to reverse engineer drivers for rare

or expensive devices they do not (yet) have access to.

6.1.2.3 Achieving High Coverage

RevNIC attempts to maximize the basic block coverage of the driver, in order to maximally capture

its behavior. RevNIC first determines the entry points of the driver and makes the OS invoke them,

in order to initiate their symbolic execution. Then, RevNIC guides symbolic execution using

heuristics whose goal is to maximize coverage while reducing the time spent exercising the driver.

RevNIC’s requirements. To exercise the driver, RevNIC must know the semantics of the OS

interface. This requires that the OS driver interface and all API functions used by the driver be

documented. The documentation must include the name of the API functions, the parameter de-

scriptions, along with information about data structures (type and layout) used by these functions.

RevNIC internally encodes this information in order to correctly determine and exercise the entry

points provided by the driver.

Discovering driver entry points. RevNIC monitors OS-specific entry point registration calls.

In the case of Windows, drivers usually export one function, which is called by the kernel to

load the driver. This function registers the driver’s entry points with the OS by passing a data

structure to a specific OS function (NdisMRegisterMiniport). At run-time, the driver can

register other entry points, like timers (via NdisInitializeTimer). RevNIC monitors calls

to such OS APIs to record the contents of the data structures and function pointers. Since these

structures contain actual function pointers and have documented member variables, RevNIC knows

which entry points need to be exercised and the developer is aware of the functionality each entry

point is responsible for. RevNIC includes a default set of NDIS function descriptions and allows

users to specify what additional functions to monitor.

RevNIC invokes each entry point of the driver via a user-mode script or program that runs

in the guest OS. The script first loads the driver so as to exercise its initialization routine, then

invokes various standard IOCTLs, performs a send, exercises the reception, and ends with a driver

unload. Interrupt handlers are triggered by the VM, as we shall see shortly. Once an entry point

is called, its code is executed symbolically until no more new code blocks are discovered within

some predefined amount of time.

Initiating symbolic execution. RevNIC intercepts entry point invocations, then fills with sym-

bolic data the user buffers and the integer parameters passed in, while keeping the other parameters,

like pointers, concrete. For example, to exercise sending, RevNIC runs a program that sends pack-

ets of various sizes. RevNIC catches the invocation of the send entry point, then replaces the

concrete data within the packet and the packet length with symbolic values. This exercises the
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paths corresponding to the various packet types and sizes.

Injecting symbolic values from the OS side, however, may cause execution to reach an impos-

sible error state (e.g., wrongly crash the driver) if the symbolic values subsume concrete values the

kernel would never pass to the driver. When any error state is reached, RevNIC terminates the exe-

cution path and resumes a different one. Reaching these infeasible error states does not perturb the

reverse engineering process, since RevNIC merely aims to touch as many basic blocks as possible

and cause them to manifest in the traces. RevNIC’s goal is not to expose the driver to a realisti-

cally functioning device or OS, but rather to reverse engineer the state machine implemented by

the driver.

In S2E’s terminology, RevNIC uses overapproximate consistency. The goal of the tracer is

to see each basic block execute, in order to extract its logic—full path consistency is not neces-

sary. The offline trace analyzer only needs fragments of paths in order to reconstruct the original

CFG. By using overapproximate consistency, RevNIC sacrifices strict consistency in exchange for

obtaining coverage fast.

Guiding driver exploration with heuristics. Symbolic execution generates a large number

of paths, with execution having progressed to various depths down each path. RevNIC executes

one path at a time, but frequently switches between them. The choice of which path to execute

next is driven by a strategy that, in RevNIC, relies on several heuristics. RevNIC’s heuristics aim

to choose the paths most likely to lead to previously unexplored code. Discarding early on paths

that are unlikely to discover any new code helps cope with the large number of paths. Note that

RevNIC allows these heuristics to be modularly replaced, when and if better ones are discovered.

The first heuristic explicitly selects paths most likely to discover new code. Every time RevNIC

completes executing one basic block of the driver, it decides whether to continue that same exe-

cution path (by executing the next basic block) or to switch to a basic block in another execution

path. We refer to a <path,block> tuple as “state,” as it directly determines program state. RevNIC

associates with each basic block a counter that is incremented after that block is executed. The

next state to execute is the one corresponding to the basic block with the lowest count. A good side

effect of this strategy is that it does not get “stuck” in loops, since it decreases the priority of states

that merely re-execute a previously explored loop. We found this heuristic to speed up exploration,

compared to depth-first search (which can get stuck in polling loops) or breadth-first search (which

can take a long time to complete a complex entry point).

In contrast to RevNIC, REV+ uses a simple random path heuristic. RevNIC’s heuristic was

designed to discover new basic blocks as quickly as possible while forking the least number states,

because of various limitations (§6.1.6). REV+ can explore a much larger number of states much

quicker and has multi-core support. In this case, we found that the random path strategy was giving

better results (§6.1.4.5).
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A separate heuristic selects paths to discard in polling loops and large entry points. Symbolic

execution forks virtually identical states at a high rate in case of polling loops. To avoid memory

exhaustion, RevNIC keeps the paths that step out of the polling loops and kills those that go on

to the next iteration. A large number of states can also get RevNIC stuck in one entry point,

preventing subsequent entry points from ever being reached. To cope with this, whenever an entry

point completes with a successful error code a given number of times, RevNIC discards all paths

except one successful one chosen at random. The execution then proceeds to the next entry point,

controlled by the script.

REV+ combines the EdgeDetector and EdgeKiller plugins in order to implement this heuristic.

EdgeDetector triggers an event when it detects that execution goes through a specified edge in the

CFG. EdgeKiller listens for events generated by EdgeDetector and kills the state whenever the

event corresponds to the back-edge of a polling loop.

A third heuristic guides RevNIC in injecting interrupts at specific points in the execution, to

exercise interrupt handlers. For NIC drivers, triggering interrupts after returning from a driver

entry point (e.g., send) works well, since that is the moment when the device either triggers a

completion interrupt, a receive interrupt, or some other type of interrupt (error, buffer overflow,

etc.). This strategy results in virtually complete coverage of the interrupt handlers. In general,

however, the code paths depend on previous execution histories. For example, the initialization

phase may expect an interrupt after writing to some register. If the interrupt does not occur, the

initialization fails, preventing the rest of the driver from running. The heuristic must therefore be

able to detect such cases, e.g., by analyzing writes to shared variables. We are exploring ways

to use data dependency information to optimally and automatically choose the moments to inject

such asynchronous events.

A final heuristic helps RevNIC skip over unnecessary function calls. First, device drivers often

call functions irrelevant to the hardware protocol, such as writing debug/log information (via calls

like NdisWriteErrorLogEntry). Such (OS-specific) functions can be indicated in RevNIC’s

configuration file, and RevNIC will skip them. Second, some hardware-related functions can be

replaced with annotations, to speed up execution. For example, a common pattern is to construct

an integer by reading it bit by bit from a register. This is commonly done in a loop that has 16, 32,

or 64 iterations depending on the size of the integer. Each iteration may branch on the value of the

bit, causing an exponential path explosion. RevNIC can report on the first run the functions that

fork the most, in order to let the developer specify which ones should be replaced with annotations

on subsequent runs. Such annotations have a few lines of code and are easy to write: they just

need to set the program counter appropriately to skip the call, and return a symbolic value. This

may yield orders-of-magnitude reduction of the state space, e.g., in case the annotated function is

a complex register read, or computes a checksum.



80 CHAPTER 6. EVALUATION: REAL TOOLS BUILT WITH S2E

REV+ leverages the Annotations plugin in order to implement many of the heuristics. Annota-

tions can be combined with FunctionMonitor in order to detect functions called by the driver and

perform function-specific actions, such as manipulating the virtual machine state in order to skip

them. It can also be used to inject interrupts, by calling from the annotation the corresponding

API exposed by the SymbolicHardware plugin. Discovering driver’s entry points and initiating

symbolic execution can also be done via the Annotations plugin.

6.1.3 Synthesizing A New Equivalent Driver

RevNIC exercises the driver and outputs a trace consisting of translated LLVM blocks, along with

their sequencing and all memory and I/O information. Now we describe how this information is

processed and used to synthesize C code for a new driver that behaves like the original.

6.1.3.1 From Trace to a C-encoded State Machine

Generating C code from the traces consists of rebuilding the control flow graph of the driver’s

functions and converting the corresponding basic blocks from LLVM to C.

Rebuilding the CFG. The driver wiretap produces raw execution traces that contain explicit

paths through the driver’s execution tree (§6.1.2.2). Each such path, from the root to a leaf, cor-

responds to an execution of the driver, exercising a different subset of the code. The trace does

not contain OS code, because RevNIC stops recording when execution leaves the driver. A traced

path ends when it is terminated by RevNIC (e.g., due to being stuck in a polling loop), when driver

initialization fails, or when the unload routine of the driver completes (and thus there is nothing

more left to execute). The traces also contain interspersed snippets of asynchronous execution, like

interrupt and timer handlers.

RevNIC merges the execution paths from traces in order to rebuild the state machine (i.e.,

control flow graph) of the original driver. A CFG contains all the paths that a driver could traverse

during its execution. To build a CFG equivalent to that of the original driver, it is sufficient to

execute at least once each basic block of the driver. Building is done in two steps: First, RevNIC

identifies function boundaries by looking for call-return instruction pairs. Second, the translation

blocks between call-return pairs are chained together to reproduce the original CFG of the function.

RevNIC splits translation blocks into basic blocks in the process.

Execution paths can contain manifestations of asynchronous events that disrupt the normal

execution flow. RevNIC detects these events by checking for register value changes between two

consecutively executed translation blocks. The register values are saved in the trace before and

after the execution of each block. RevNIC builds the CFG of each such event just like for normal

functions.
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From CFG to C code. The output of the CFG builder is a set of functions in LLVM format.

The last phase turns these functions into C code, reconstructs the driver’s state, and determines

the function parameters, the return values, and the local variables. Listing 6.1 shows a sample of

generated code. The control flow is encoded using direct jumps (goto) and all function calls are

preserved.

void function_12606(uint32_t GlobalState)

{

uint32_t Vars4[4]; //Local variables

Vars4[3] = 0x0;

//Driver’s state is accessed using pointer arithmetic

Vars4[2] = *(uint32_t*)(GlobalState + 0x10);

write_port32(Vars4[2] + 0x84, Vars4[3]);

//Remainder omitted...

}

Listing 6.1 – Generated code sample (annotated).

RevNIC preserves the local and global state layout of the original driver (Listing 6.1). Drivers

usually keep global state on the heap, a pointer to which is passed to the driver upon each entry

point invocation. To access their global state, they use offsets from that pointer. Binary drivers

access local variables similarly, by adding an offset to the stack frame pointer. The synthesized

code preserves this mechanism by keeping the pointer arithmetic of the original driver.

RevNIC determines the number of function parameters and return values using standard def-

use analysis [37] on the collected memory traces. Since the traces contain the actual memory

access locations and data, it is possible to trace back the definition of the parameters and the use of

the possible return values. To determine whether a function f has a return value, RevNIC checks

whether there exists an execution path where the register storing the return value1 is used without

being redefined after f returns. The number of parameters is determined by looking for memory

accesses whose addresses are computed by adding an offset to the stack frame pointer, resulting in

an access to the stack frame of the parent function.

The generated code may be incomplete if the driver is not fully covered (i.e., the code has an

incomplete CFG). Incompleteness manifests in the generated source by branches to unexercised

code. RevNIC flags such branches to warn the developer. Missing basic blocks happen for driver

functions containing API calls whose error recovery code is not usually exercised. It does not

affect the synthesized driver, since error recovery code is part of the template (§6.1.3.2). However,

in the case when code for hardware I/O is missing, the developer can request QEMU’s DBT to

generate the missing translation blocks by forcing the program counter to take the address of the

unexplored block. Since RevNIC does not execute such blocks, they do not appear in the execution

trace: the developer must insert the code for these blocks manually, which slows down the reverse

engineering process.

1This is specific to the Windows stdcall calling convention; other conventions can be implemented as well.
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6.1.3.2 From State Machine to Complete Drivers

Producing a new driver consists of pasting the synthesized C code into a driver template. A tem-

plate is written once and can be reused as long as the OS/driver interface does not change. The

template contains all the boilerplate to communicate with the OS (e.g., memory allocation, timer

management, and error recovery). Depending on the OS, more or less boilerplate code may be

required (e.g., a driver for an embedded OS typically has less boilerplate than an NDIS driver).

The boilerplate can also vary depending on the OS version. For example, a template could use

the newer NAPI network model on Linux, or the older API. This only affects the organization

of the template. Besides the boilerplate, the template also contains placeholders where the actual

hardware I/O code is to be pasted. Listing 6.2 shows a fragment of the init function from the

Linux NIC template, which we use as a running example. RevNIC includes a NIC template for

each supported target OS.

Drivers typically have four types of functions. The first type corresponds to functions that

only call hardware I/O routines (e.g., write_port32 in Listing 6.1) or other hardware functions:

register read-modify-write, disable interrupts on a NIC, read the MAC address, etc. The second

type consists of OS-dependent functions that assemble hardware-dependent routines to perform

a high-level functionality. For example, a send would call a function that sets the ring buffer

index, then call the OS to get the packet descriptor, after which it would invoke another hardware-

specific routine, passing a pointer and a size to transmit the packet. The third type is similar to

the second, except that it mixes hardware accesses with calls to the OS. This happens, e.g., when

the driver inlines hardware functions. Finally, the fourth type includes functions that implement

OS-independent algorithms, such as checksum computation.

Given a NIC driver template, a developer inserts the calls to OS-independent functions gen-

erated by RevNIC into the template. The amount of effort required to build a working driver is

usually minimal: look at the context in which the functions were called in the original driver (in

an interrupt, a send packet routine, a timer entry point, etc.) and paste them in the corresponding

places in the template. The developer also has to adapt various OS-specific data structures to the

target OS, e.g., to convert the Windows NDIS_PACKET structure to the equivalent sk _buffLinux

structure. This is the most time-consuming part of reverse engineering, but could be simplified by

annotating the generated code with type information (e.g., based on the source OS’s header files).

The developer also needs to match OS-specific API calls to those of the target OS. In Windows,

such APIs and structures are public and documented.

Filling in a template is straightforward when only functions of types 1, 2, and 4 occur in the

traces. However, when hardware I/O is mixed with OS-specific code (type 3), more effort is

required. Without RevNIC, the developer would have to look at the disassembly or the decompiled

code to understand what the driver does. This requires distinguishing regular from device-mapped
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memory accesses, understanding complex control flow, and grasping the interaction with the OS.

Instead, RevNIC provides the developer with execution traces annotated with hardware I/O, which

can be used to retrace the execution instruction by instruction. This makes it easier to understand

the interaction between the driver’s components and eases integration into the template.

NIC driver templates follow common patterns, which we found to be similar across different

OSes. For example, the init entry point implemented by the Linux, Windows and µC/OS-II

templates first allocates device resources, calls a hardware-specific function that checks for the

presence of the hardware, registers the device, and brings it to its initial state. Likewise, an inter-

rupt handler in these three OSes first calls a hardware routine to check that the device has indeed

triggered the interrupt, before handling it.

Common template patterns facilitate driver synthesis for multiple platforms. For example,

each template contains one lock to serialize the entry points (this ensures correct operation but

may affect performance). The developer strips all OS-specific locks that might be present in the

original driver, because they are not needed anymore. Then, the developer pastes that code in the

same places across all templates, without worrying about target OS-specific synchronization.

Ideally, the merging of the synthesized driver code with the template would be fully auto-

mated. However, the process of translating from one OS to another requires refactoring the origi-

nal driver’s OS-specific functions and translating API calls to fit them in the generic template for

the target OS. While human developers can guess quite easily how to translate these, an automated

translator would need to correctly reconstruct the driver binary’s missing type information to un-

derstand how the driver manipulates the data structures (e.g., lists) in order to adapt them to the

target OS.
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int revnic_pci_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)

{

/* Variable declarations omitted */

// The template first allocates PCI device resources

if (pci_enable_device (pdev)) {

// OS-specific error handling provided by template

}

ioaddr = pci_resource_start (pdev, 0);

irq = pdev->irq;

if (request_region(ioaddr, ADDR_RANGE, DRV_NAME)) {

// OS-specific error handling provided by template

}

// Then the template allocates persistent state. A pointer to this state

// is passed to each reverse engineered entry point.

dev = alloc_netdev(/*..*/, /*..*/, ethdev_setup);

if (dev) {

// OS-specific error handling provided by template

}

memset(netdev_priv(dev), 0, /*..*/);

SET_NETDEV_DEV(dev, &pdev->dev);

revnic = REVNICDEVICE(dev);

// The synthesized functions may expect specific state (e.g., the I/O address)

// to be initialized. Here, the I/O address is stored at offset IOADDR_OFFSET.

revnic->Private.u4[IOADDR_OFFSET] = ioaddr;

//******************************************************************************

// Developers paste calls to RevNIC-synthesized hardware-related functions here.

// A driver may want to check the hardware first...

if (ne2k_check_device_presence(&revnic->Private) < 0) {

// Error recovery provided by the template (e.g., unload the driver)

}

// ...before initializing it

if (ne2k_init(&revnic->Private) < 0) {

//Device-specific recovery synthesized by RevNIC...

ne2k_shutdown(&revnic->Private);

// ...followed by template-provided recovery code (e.g., unload the driver)

}

//******************************************************************************

// More OS-specific initialization goes here.

// Initialize IRQ, I/O addresses, entry points, etc.

// ...

// Template adapts the driver’s data structures to the target OS.

// Here, it copies the MAC address from driver’s memory to the Linux

// data structure. Adaptation is done by the driver developer.

for (i=0; i<MAC_ADDR_LEN; i++) {

dev->dev_addr[i] = revnic->Private.u1[0x14b + i];

}

register_netdev(dev);

return 0;

}

Listing 6.2 – Example init() routine of the Linux NIC template (edited for brevity).
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6.1.4 Evaluation

In this section, we address several important questions: Do RevNIC-generated drivers have func-

tionality (§6.1.4.1) and performance (§6.1.4.2) equivalent to the original drivers? How much effort

does the reverse engineering process entail (§6.1.4.3)? How far can RevNIC scale (§6.1.4.4)?

To answer these questions, we use RevNIC to port four closed-source proprietary Windows NIC

drivers to three other operating systems as well as back to Windows, producing a total of 11 driver

binaries. At no time in this process did we have access to the drivers’ source code.

Experimental Setup

We first present the evaluated drivers, describe the three target operating systems, and give details

on the hardware used for measurements.

Evaluated Drivers. We used RevNIC to reverse engineer the Windows drivers of four widely

used NICs (Table 6.2). Three of the four ship as part of Windows, attesting to their popularity.

The drivers range in size from 18KB to 35KB, which is typical for NIC drivers in general (e.g.,

80% of network drivers in Linux 2.6.26 are smaller than 35KB). The number of functions the

drivers implement ranges from 48 to 78 and the number of used OS API functions ranges from

37 to 51. The Windows driver files for AMD PCNet, RTL8139, SMSC 91C111, and RTL8029

are pcntpci5.sys, rtl8139.sys, lan9000.sys, and rtl8029.sys, respectively. Linux

has equivalent drivers for the same chipsets: pcnet32.c (2300 LOC), 8139too.c (1900 LOC),

smc91x.c (1300 LOC), and ne2k-pci.c / 8390.c (1200 LOC).

Reverse Engineered

Windows Driver

RevNIC Ported from

Windows to ...

Driver

Size

Code

Segment

Size

Imported

Windows

Functions

Functions Imple-

mented by the

Original Driver

AMD PCNet Windows, Linux, KitOS 35KB 28 KB 51 78

Realtek RTL8139 Windows, Linux, KitOS 20KB 18 KB 43 91

SMSC 91C111 µC/OS-II, KitOS 9KB 10 KB 28 40

Realtek RTL8029

(NE2000)

Windows, Linux, KitOS 8KB 14 KB 37 48

Table 6.2 – Characteristics of the proprietary, closed-source Windows network drivers used to

evaluate RevNIC.

Target Platforms. We use RevNIC to port the PCNet, RTL8139, and RTL8029 drivers to Linux

2.6.26, and 91C111 to µC/OS-II. This shows RevNIC’s ability to port drivers between systems

with different APIs of varying complexity. It also enables a comparison of the performance of

synthesized drivers to that of the native drivers on the target OS.
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We used RevNIC to port all drivers to our custom operating system, called KitOS, running

on “bare” hardware. This OS initializes the CPU into protected mode and lets the driver use the

hardware directly, without any OS-related overhead (no multitasking, no memory management,

etc.). This experiment evaluates the performance of the synthesized drivers in the absence of

OS interference. Bare hardware is the mode in which RevNIC would be used during the initial

development of new drivers (KitOS boots instantly and starts executing immediately the driver,

thus shortening the compile/reboot cycle, allowing developers to fix driver bugs quicker). Once

the driver works properly, the developers can “transplant” the driver to the target OS.

We also ported the PCNet, RTL8139, and RTL8029 drivers back to Windows XP SP3. Porting

to the same OS enables quantifying the overhead of the generated code with respect to the original

Windows driver. In practice, porting to the same OS is useful when the binary driver exists for one

version but not the other (e.g., 32-bit vs. 64-bit Windows), or when the original driver causes the

OS to crash or freeze.

Test Hardware. We evaluate the performance of the synthesized drivers by running them on an

x86 PC, an FPGA-based platform, and two virtual machines. This allows us to measure perfor-

mance of generated drivers in a wide range of conditions. The PC and VMs run fresh installations

of Windows XP SP3, Debian Linux 2.6.26, and KitOS. The FPGA system runs the µC/OS-II

priority-based preemptive real time multitasking OS kernel for embedded systems.

We measure the performance of the RTL8139 driver on a PC based on an Intel Core 2 Duo 2.4

GHz CPU with 4 GB of RAM. The physical NIC is based on a Realtek RTL8139C chip, widely

used in commodity desktop systems during the Windows XP era.

We evaluate the 91C111 driver on the FPGA4U [104] development board. It is based on an

Altera Cyclone II FPGA with a Nios II processor, 32 MB of SDRAM, and an SMSC 91C111

network chip. The FPGA and the SDRAM run at 75 MHz, while the 91C111 chip runs at its native

frequency of 25 MHz. This allows quantifying the overhead on a severely resource-constrained

system.

Finally, we evaluate the RTL8029 driver on QEMU and the PCNet driver on VMWare. Virtu-

alization is seeing increasing use in networked computing infrastructures, so performance in such

an environment is important. The virtual machines are QEMU 0.9.1 and VMWare Server 1.0.10.

The host OS is Windows XP x64 edition SP2 in both cases, running on a dual quad-core Intel Xeon

CPU at 2 GHz, with 20 GB of RAM. QEMU uses a TAP interface for networking, while VMWare

runs a NAT interface. VMs allow us to better zoom in on driver bottlenecks, which can be harder

to observe on a real machine. For example, VMs disregard the rated speed of the NIC, so one can

send data at even 1 Gbps using a driver for a 100 Mbps NIC (since there is no physical cable, the

virtual NIC can confirm transmission immediately after the driver has given it all the data).
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6.1.4.1 Effectiveness

RevNIC can extract all essential functionality from network device drivers. Table 6.3 shows the

capabilities of the original NIC drivers compared to those of the reverse engineered drivers. A

check mark indicates functionality available both in the original and the synthesized driver.

We identify the functionality implemented in the original driver by looking at the Query-

Information status codes supported by Windows, checking the configuration parameters in the

registry that reveal additional functionality, and looking at the datasheets. For RTL8029 and PC-

Net, given that the virtual hardware does not have LEDs and does not support Wake-on-LAN, we

could not directly test these functions. However, the corresponding code was exercised and reverse

engineered. The RTL8029 and the 91C111 chips support neither DMA nor Wake-on-LAN.

Functionality A
M

D
P
C

N
et

R
T

L
81

39

S
M

S
C

91
C

11
1

R
T

L
80

29

Init/Shutdown X X X X

Send/Receive X X X X

Multicast X X X X

Get/Set MAC X X X X

Promiscuous Mode X X X X

Full Duplex X X X X

DMA X X N/A N/A

Wake-on-LAN N/T X N/A N/A

LED Status Display N/T X X N/T

Table 6.3 – Functionality coverage of reverse engineered drivers (N/A=Not available, N/T=Cannot

be tested).

We manually checked the correctness of the reverse engineered functionality by comparing

hardware I/O operations. For this, we ran the original driver on real hardware and recorded its I/O

interaction with the device. Then, we ran the reverse engineered driver and compared the resulting

I/O traces with that of the original driver. We exercised each function using a workload specific to

the functionality in question. For example, to check send and receive, we transmitted several files

via FTP. Checking the packet filter (i.e., promiscuous mode) involved issuing standard IOCTLs.

Finally, we manually checked that the original driver is a correct encoding of the hardware pro-

tocol specification. For this, we compared I/O interaction traces with the I/O sequence prescribed

by the hardware specification. We focused on the send/receive functionality, since it is crucial for

a network driver. We did not find meaningful discrepancies between the collected sample traces

and the specifications. The original drivers did not have proprietary IOCTLs.
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6.1.4.2 Performance

We evaluate the performance of the reverse engineered drivers by measuring throughput and CPU

utilization. We first compare the original Windows driver to the synthesized Windows driver, in

order to quantify the overhead of the code generated by RevNIC. Then we show the performance

of drivers ported to a different operating system. We wrote a benchmark that sends UDP packets

of increasing size, up to the maximum length of an Ethernet frame. In the case of KitOS, the

benchmark transmits hand-crafted raw UDP packets, since KitOS has no TCP/IP stack. The reverse

engineered drivers turn out to have negligible overhead on all platforms.

Figure 6.2 shows throughput and Figure 6.3 shows CPU utilization for the RTL8139 drivers.

Synthesized drivers incur practically no overhead. The driver for KitOS is the fastest, since there is

no TCP/IP stack overhead. For unknown reasons, the original Windows driver’s performance drops

for UDP packets over 1 KB; the reverse engineered driver does not have this problem. We also

observe that the synthesized Windows driver has a slightly higher CPU utilization than the original,

while both the native Linux and the ported Linux driver have a similar one for most packet sizes.
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Figure 6.2 – RTL8139 driver throughput on x86.

Turning our attention to embedded systems, we note that synthesizing a driver for severely

resource-constrained environments is one of the toughest performance challenges for RevNIC.

Original drivers are typically hand-optimized, whereas RevNIC’s drivers are not. In Figure 6.4, we

show the performance of the 91C111 driver ported to the FPGA platform. Throughput is within

10% of the original driver, and we suspect this difference is mainly due to its cache footprint:

the RevNIC-generated binary has 87KB, compared to 59KB for the native driver. With further

optimizations on the generated code, we expect this 10% gap to be narrowed. CPU time spent in

the synthesized 91C111 driver is comparable to that of the original (Figure 6.5), ranging roughly

from 20% to 30% for both drivers. The overall CPU usage is 100%, since DMA is not available.

The maximum achievable throughput is limited by the FPGA’s system bus, shared between the

NIC, the SDRAM, and other components.
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Figure 6.3 – CPU utilization for RTL8139 drivers on x86.
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Figure 6.4 – 91C111 driver ported from Windows to an FPGA.

Finally, Figure 6.6 and Figure 6.7 show performance in virtualized environments. For QEMU,

we show the RTL8029 driver, since QEMU provides an RTL8029-based virtual NIC. CPU utiliza-

tion is close to 100% in all cases, since RTL8029 does not support DMA. The driver ported from

Windows to Linux is on par with the native Linux driver. The lean KitOS driver again has the

highest throughput. The difference between Linux and Windows is due to different behavior of

TCP/IP stack implementations in the VM.

For VMware, which provides an AMD PCNet virtual NIC, we get similar results. Even though

DMA is used, CPU utilization is still 100% in all cases, because the virtual hardware sends packets

at maximum speed, generating a higher interrupt rate than that of real hardware. Performance on

KitOS is lower, but same as that of the original Windows driver, most likely due to interactions

with VM quirks.
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Figure 6.5 – CPU fraction spent inside the 91C111 driver.
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Figure 6.6 – RTL8029 throughput (QEMU).
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Figure 6.7 – AMD PCNet throughput (VMWare).
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6.1.4.3 Automation

RevNIC exercises drivers and generates code in less than an hour. Template instantiation, though

manual, takes orders of magnitudes less time than writing new drivers from scratch and does not

require obtaining, reading, and understanding hardware specifications.

Obtaining portable C code. Obtaining the code for OS-independent and hardware-specific func-

tionality is fully automated and fast. In Figure 6.8, we show how driver coverage varies with

RevNIC running time—most tested drivers reach over 80% basic block coverage in less than

twenty minutes, due to our use of symbolic execution. RevNIC stops either when all hardware-

related functions get close to 100% coverage, or when a specified timeout expires (§6.1.2.3). The

tests were run using the original RevNIC prototype [33] on a dual quad-core Intel Xeon CPU at

2 GHz, with 20 GB of RAM.

The running time and memory usage of the RevNIC code synthesizer is directly proportional

to the total length of the traces it processes. RevNIC can process a little over 100 MB/minute. For

the drivers we tested, code synthesis took from a few seconds to a few minutes.
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Figure 6.8 – Basic block coverage.

Writing a driver template. Producing NIC driver templates for the four OSes took a few days

(Table 6.4). Writing a template is done manually, but it is a one-time effort, considerably simplified

by using existing driver samples shipped with SDKs.

We first wrote one generic template for all NIC devices, and then extended it to provide DMA

functionality for RTL8029 and 91C111. KitOS’s network interface is limited to an initialization

and send entry point, and a receive callback. The driver can directly talk to the hardware, without
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Target OS Person-Days

Windows 5

Linux 3

µC/OS-II 1

KitOS 0

Table 6.4 – Time to write a template for NIC drivers.

interacting with the OS. The template for µC/OS-II is slightly more complex than the one for

KitOS, because it requires implementing more entry points and the use of APIs (e.g., memory

management). It took one day to write it.

Integrating Hardware Interaction Code in the Template. A large portion of drivers’ code is

hardware-specific. In Figure 6.9, we show what fraction of the driver is fully reverse-engineered

by RevNIC. hardware-related function to be completely reverse-engineered when execution engine

did not exercise them). Overall, about 70% of the functions are fully synthesized. The other

functions contain mostly OS-related code and correspond to high-level functions of the device

drivers, like send and receive. They also include functions that mix OS and hardware calls (~10%–

15% per driver). These functions are only partly exercised, and the corresponding traces serve as

hints to the developer for the template integration.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

RTL8029

SMSC 91C111

RTL8139

AMD PCNet

A
u

to
m

a
ti
c
a

lly
 R

e
c
o

v
e

re
d

 F
u

n
c
ti
o

n
s
 (

%
) Automated

Manual

Figure 6.9 – Breakdown of OS-specific vs. hardware-specific functions (% of recovered functions).
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Writing drivers, even from specifications, is hard. Table 6.5 attempts to give a rough estimation

of how much effort it took to write and/or debug Linux open source drivers. We looked at how

many developers were acknowledged in the headers of the source files and at the reported time

span for development. The numbers also include adaptations to newer versions of Linux. Even

when assuming that developers do not work full-time on a driver, but on a best-effort basis (like in

the open source community), it still takes a considerable effort. The change logs of the RTL8139

driver suggest that most time went into coding workarounds for undocumented hardware quirks.

In contrast, RevNIC uses the original proprietary driver, which has all the hardware details

for all supported devices readily available. When using RevNIC, most developer time goes into

instantiating the driver template. This is roughly proportional to the size of the driver and the

number of hardware functions it implements. Table 6.5 also includes the time to debug RevNIC,

since porting the drivers and debugging our prototype were done together. Debugging required

manually checking the synthesized C code against the original driver’s binary; this took 1-3 days,

depending on driver size.

Device
Manual (Linux) RevNIC

Persons Span Persons Span

RTL8139 18 4 years 1 1 week

SMSC 91C111 8 4 years 1 4 days

RTL8029 5 2 years 1 5 days

AMD PCNet 3 4 years 1 1 week

Table 6.5 – Amount of developer effort. RevNIC numbers include time to debug the RevNIC

prototype itself.

6.1.4.4 Scalability

We have shown that our approach works for drivers from 18KB to 35KB. While most network

device drivers fall into this size range, modern drivers for Ethernet and Wifi are often two orders

of magnitude larger, exceeding 100,000 basic blocks.

Scalability is limited by the performance of symbolic execution. Symbolic execution is subject

to exponential state growth and memory consumption [28, 27, 102, 112], both of which affect

RevNIC. We improved scalability in REV+ by using several new features offered by S2E, such as

parallel symbolic execution, that we evaluate next. Further improvements in the field of symbolic

execution will automatically benefit to RevNIC. We discuss these limitations and how we plan to

address them in Chapter 8.
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6.1.4.5 RevNIC vs. REV+

In this section, we compare the performance of RevNIC with REV+, an S2E-based implementation

of RevNIC. In order to evaluate the impact of the number of cores on exploration speed, we run

the tests on a 48-core, 2.0 GHz AMD Opteron machine with 512 GB of RAM.

We ran REV+ on the same drivers as for RevNIC, and REV+ reverse engineers them with

better coverage than RevNIC in the same amount of time (see Table 6.6). Manual inspection of the

reverse engineered code blocks reveals that the resulting drivers are equivalent to those generated

by RevNIC, and thus to the originals too [33]. Figure 6.10 shows how coverage evolves over

time during reverse engineering both for single-core S2E [34] and multi-core S2E. The single-

core prototype completes the exploration of each driver in 30-90 minutes, whereas multi-core S2E

completes in a few minutes.

RevNIC
REV+ REV+

(S2E) (Multi-Core S2E)

Coverage Coverage Increase Coverage Increase

PCnet 59% 66% +7% 74% +15%

91C111 84% 87% +3% 89% +5%

RTL8139 84% 86% +2% 89% +5%

Table 6.6 – Basic-block coverage obtained by RevNIC, REV+, and REV+ using 48-core S2E. We

also show the coverage increase over RevNIC.
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Figure 6.10 – Basic-block coverage over time for REV+ and REV+ on multi-core S2E. The graph

for REV+ on multi-core S2E shows data for 91C111, RTL8139, and PCnet on 48 cores.

Table 6.7 shows that more cores allow REV+ to explore many more paths and achieve higher

basic block coverage. The exploration time increases with the number of cores because REV+

invokes each driver entry point sequentially, and when it does not discover any new basic block

within some time interval, it kills all paths except one and invokes the next entry point. Since

multiple cores can explore more paths in parallel and have thus a higher likelihood of discovering
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PCnet RTL8139 91C111

# of cores Time Cov
# Paths

Time Cov
# Paths

Time Cov
# Paths

used by S2E (min) (%) (min) (%) (min) (%)

1 9 64 4,551 5 76 4,274 6 85 2,185

2 10 66 8,466 7 86 13,841 7 84 2,287

4 14 67 18,631 17 83 27,266 6 85 5,853

8 17 69 38,919 32 84 61,743 7 87 15,322

16 19 71 126,590 17 88 164,426 10 89 31,625

32 21 74 257,813 27 87 398,895 12 89 100,977

48 26 70 539,037 22 89 554,458 21 89 145,498

Table 6.7 – Impact of additional cores on exploration time, basic-block coverage, and number of

explored paths for REV+ on multi-core S2E using the overapproximate consistency model.

more basic blocks, REV+ resets the timeout more frequently, thus increasing the average explo-

ration time. We used a timeout of 5 to 10 seconds for multi-core S2E and up to 1200 seconds for

the single-core S2E prototype combined with a random-path search heuristic [27]. Given these

settings, 32 cores are enough to get 74% to 89% basic-block coverage in less than 25 minutes.

Although more cores allow exploring more paths, this does not necessarily yield higher basic-

block coverage. First, S2E does not ensure that different cores do not perform redundant work. It

may happen that all the cores explore one particular part of a driver (e.g., one function) instead

of covering different parts. In future work, we plan to focus on achieving disjunction of explored

paths, as in Cloud9 [21], in order to minimize the amount of redundant work. Second, we believe

that more cores influence the path selection heuristics that S2E uses; we plan to investigate this

phenomenon in future work.

In general, it is hard to test device drivers with pure symbolic hardware. Symbolic hardware

returns unconstrained register values on every read, which forks execution on every branch that

depends on such a value. The path selection heuristic does not know which branch outcome would

have been chosen had the driver been running on real hardware. We are currently exploring ways

of combining real and symbolic hardware in order to guide symbolic execution. Real hardware

provides the concrete input that drives symbolic execution in a depth-first manner, preventing path

exploration from getting stuck in various parts of the driver. On each branch that depends on

symbolic hardware input, the path selection heuristic evaluates the branch condition by plugging

the concrete values from the real hardware. The result indicates which path the heuristic should

follow first. This path would have been taken had the driver been run on a real machine with

concrete inputs.
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6.1.5 Discussion and Limitations

RevNIC cannot produce a driver that is “more correct” than the original binary with regards to

hardware interaction. It is hard to fix buggy hardware interaction, when there are no specifications.

However, certain classes of bugs, like unchecked use of array indexes coming from hardware or

buffer overflows are eliminated by reverse engineering, resulting in a safer driver.

Reverse engineering of proprietary IOCTLs is similar to that of standard entry points. IOCTLs

encode functions that were not foreseen by the OS driver interface designers. Instead of triggering

proprietary behavior using standard OS APIs, RevNIC must use the vendor-supplied configuration

tools for doing so. For the standard interface, the semantics of the behavior are provided by the OS

interface; for the proprietary one, the semantics are derived from the tool’s documentation.

RevNIC-generated code is not as readable as the original source, because it does not reconstruct

high-level C statements, like loops. The generated code relies on goto for control flow. We believe

that existing transformation techniques [37] can make generated code more readable. However, the

produced code is substantially more accessible than disassembly. The generated code is easier to

understand and adapt, because it uses familiar C operators, instead of x86 instructions. Moreover,

C code can be easily compiled to any OS or processor architecture, unlike assembly.

Of course, RevNIC can be rerun easily every time there is an update to the original binary

driver. The resulting source code can be compared to the initially reverse engineered code and

the differences merged into the reverse engineered driver, like in a version control system. One

could also use binary diffing methods [18] to update the synthesized driver every time there is a

new patch for the proprietary driver that fixes hardware-related bugs. Thus, we expect RevNIC-

generated code to require minimal maintenance.

Although porting between two OSes by instantiating a driver template requires substantial code

refactoring, one could automate it to a certain extent. For example, Coccinelle [98] automatically

translates device drivers between two versions of the same OS. RevNIC could treat two different

OSes as an evolution from one to the other. Another possibility is to synthesize a specification

from the binary and use existing tools, like Termite [107], to automatically generate a driver for

any target OS, solving once and for all the safety and portability problems of device drivers.

RevNIC currently supports NIC drivers, but it is in theory possible to extend it to any class of

device drivers. Exercising the driver and generating the code is device-agnostic: all RevNIC needs

is OS and hardware input. The developer has to write a device driver template for the new class of

devices, and this requires a general understanding of what the device class is supposed to do and

how it interfaces with the OS (e.g., that a sound card is supposed to play sound by copying a buffer

to some memory, very much like a NIC sends a packet after it is copied to some buffer).

Finally, RevNIC is not meant for reverse engineering the internals of a device, only its interac-

tion with the driver. For instance, devices like graphics cards can compile and run code internally
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(such as vertex shaders). Reverse engineering firmware or the particular programming language

of a chip is beyond the scope of RevNIC. What a tool like RevNIC could do for a graphics driver

is to extract the initialization steps and set up a frame buffer, possibly extracting 2D acceleration,

if it only involves I/O. It could also make a synthesized driver replay hardware interactions (e.g.,

upload firmware to the card) the same way the original driver would.

6.1.6 How RevNIC’s Limitations Influenced S2E’s Design

The original tracer combined QEMU and KLEE, but in a way that had several limitations that we

later overcame in S2E. There were three main limitations: RevNIC was a 32-bit tool limited to

4GB of RAM, did not support symbolic memory addresses, and did not have a consistent state

sharing between concrete and symbolic domains.

Symbolically executing drivers can generate tens of thousands of states. Even though RevNIC

was compiled to use the full 4GB of virtual address space, RevNIC required more memory. We

implemented swapping in order to move unused KLEE memory objects to disk and free the address

space in order to explore more states. However, RevNIC was still running out of address space

because of the overhead of the additional bookkeeping. When later building S2E, we made it 64-

bit right from the start, rendering unnecessary the explicit swapping mechanism. The host OS

performs the swapping by itself, if necessary.

RevNIC avoided the complexity of dealing with symbolic pointers by concretizing them. Rea-

soning about all possible addresses for each memory access that uses a symbolic location is ex-

pensive. Symbolic pointers occur when symbolic input is used to reference memory, e.g., when

a symbolic IOCTL number is used as an index in a table. Since there are typically only a few

concrete values, RevNIC generated all of them and forked the execution for each such value. S2E

can behave in the same way, or instead keep the address symbolic and pass it as is to the solver.

The latter ensures no false negatives, but at the expense of increased solving complexity.

Finally, RevNIC did not have a consistent state sharing between symbolic and concrete do-

mains. In the way RevNIC was implemented, symbolic data could not flow outside of the driver.

RevNIC ran the whole driver in KLEE and executed the rest of the system concretely. The sym-

bolic state was not shared with the concrete domain (memory or CPU registers). If the system

accessed a memory location or a CPU register that contained a symbolic value, RevNIC would

return the concrete value that was previously there. Similarly, a concrete write outside of the driver

would not discard the symbolic value stored there. This happened to work for the drivers that we

considered for RevNIC, because they did not leak symbolic data into the system, but became a

major problem later that we solved in S2E, in order to enable testing multiple components that

interact with each other.
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6.1.7 Related Tools

Building portable drivers has been a goal of several previous projects, such as UDI [101], Devil [84],

and HAIL [118]. Recent work, like Termite [107], proposes a formal development process in which

a tool generates drivers from state machine specifications. These approaches require vendors to

provide formal specifications of the hardware protocols. RevNIC complements these efforts by

extracting the encoding of the protocol from existing device drivers, making the task of reverse

engineering existing drivers more productive. In some sense, RevNIC can help tools like Termite

become practical. VM-based approaches [79] can reuse existing binary drivers, but are generally

heavyweight. Approaches like NDISwrapper [95] can directly reuse existing drivers by emulat-

ing the source OS. However, wrappers may be prone to bugs, add overhead, and work only on

the OS for which they were developed. In contrast, RevNIC makes the reverse engineered driver

independent from the source OS and even the source computer architecture.

Most of the existing techniques for improving device driver safety rely on source code [120,

124, 127]. Since RevNIC can obtain a source code representation of a driver binary, it can enable

the use of these tools on closed-source, proprietary device drivers, to improve their reliability. For

example, some binary drivers do not have proper timeouts in polling loops; this would be straight-

forward to fix using [66]. OS-related safety properties could be checked prior to compilation [5],

or the driver could be split to enhance reliability [51]. Furthermore, if the driver generation fol-

lows a formal development approach (as in [49] or [107]), it is possible to guarantee that a reverse

engineered driver will not crash the system, hang, and introduce security vulnerabilities.

In using VMs to observe system activity, we build upon a rich set of prior work, including tools

such as Aftersight [36] and Antfarm [64]. Reverse debugging [70] used VMs to debug systems, in-

cluding device drivers. Symbolic execution has also been used for program testing [28, 27, 55, 112]

and malware analysis [92, 41, 131]. We extended these approaches to provide kernel-mode instru-

mentation. In RevNIC, we combine VM-based wiretapping with symbolic execution to exercise

control on the analyzed system. Reverse engineering often uses static decompilation [14]; this,

however, faces a number of challenges (e.g., disambiguating code from data), so we minimized

RevNIC’s reliance on static decompilation.

Recent work has been aimed at automatically reverse engineering message formats in network

protocols [43] as well as files [44], based on traces containing these messages. Our reliance on

driver activity traces is similar but, due to the specifics of device drivers, RevNIC manages to also

reverse engineer the relationship between hardware registers, not just the format. RevNIC extracts

the semantics of driver code dynamically, using traces of memory accesses.
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6.1.8 Summary

We presented a new approach and tool built on top of S2E for reverse engineering binary device

drivers. One can use this approach to either port drivers to other OSes or to produce safer drivers

for the same OS.

The tool, called RevNIC, does not require access to any device documentation or driver source

code—it relies on collecting hardware interaction traces and synthesizing, based on these, a new,

portable device driver. We showed how RevNIC reverse engineered several closed-source Win-

dows NIC drivers and ported them to different OSes and architectures. RevNIC produces drivers

that run natively with performance that is on par with that of the target OS’s native drivers.

6.2 Deriving Performance Envelopes with Multi-Path Profiling

To further illustrate S2E’s generality, we used it to develop PROFS, a multi-path in-vivo perfor-

mance profiler and debugger. To our knowledge, such a tool did not exist previously, and we

believe this use case is the first in the literature to employ symbolic execution for performance

analysis. In this section, we show through several examples how PROFS can be used to predict

performance for certain classes of inputs. To obtain realistic profiles, performance analysis can be

done under local consistency or any stricter consistency model.

PROFS allows users to measure instruction count, cache misses, TLB misses, and page faults

for arbitrary memory hierarchies, with flexibility to combine any number of cache levels, size,

associativity, line sizes, etc. This is a superset of the cache profiling functionality found in Val-

grind [123], which can only simulate L1 and L2 caches, and can only measure cache misses.

For PROFS, we developed the PerformanceProfiler plugin. It counts the number of instruc-

tions along each path and, for memory reads/writes, it simulates the behavior of a desired cache

hierarchy and counts hits and misses. For our measurements, we configured PROFS with 64-KB I1

and D1 caches with 64-byte cache lines and associativity 2, plus a 1-MB L2 cache that has 64-byte

cache lines and associativity 4. The path exploration in PROFS is tunable, allowing the user to

choose any execution consistency model.

The first PROFS experiment analyzes the distribution of instruction counts and cache misses for

Apache’s URL parser. In particular, we were interested to see whether there are opportunities for

a denial-of-service attack on the Apache web server via a carefully constructed URL. The analysis

ran on PROFS using 48 cores under local consistency for 1 hour and explored 51,530 different

execution paths. The analysis spent 44% of the running time in the constraint solver.

We found each path involved in parsing a URL to take on the order of 4.3×106 instructions,

with one interesting feature: for every additional “/” character present in the URL, there are 10
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extra instructions being executed. We found no upper bound on the execution of URL parsing: a

URL containing n+ k “/” characters will take 10× k more instructions to parse than a URL with

n “/” characters. The total number of cache misses on each path was predictable at 13,315±65.

These are examples of behavioral insights one can obtain with a multi-path performance profiler.

Such insights can help developers fine-tune their code or make it more secure (e.g., by ensuring

that password processing time does not depend on its content, to avoid side channel attacks).

We also set out to measure the page fault rate experienced by the Microsoft IIS web server

inside its SSL modules while serving a static page workload over HTTPS. Our goal was to check

the distribution of page faults in the cryptographic algorithms, to see if there are opportunities for

side channel attacks. We found no page faults in the SSL code along any of the paths, and only a

constant number of them in gzip.dll. This suggests that counting page faults should not be the

attack of first choice if trying to break IIS’s SSL encryption.

Next, we aimed to establish a performance envelope in terms of instructions executed, cache

misses, and page faults for the ubiquitous ping program (1.3 KLOC). The performance analysis

ran under local consistency, focusing exploration on the IP packet options parser. S2E explored 907

different paths in 1 hour using 48 cores. Around 30% of the time was spent in the constraint solver.

Note that, in [34], we focused the analysis on the entire packet-parsing code but with additional

constraints on the packet content to prevent path explosion; we now analyze the part of the parser

that focuses on packet options but include all possible paths through it. This makes the results

easier to interpret because, now, all the obtained paths go through the packet options parser.

The analysis does not find a bound on execution time, and it points to a path that could enter

an infinite loop. This happens when the reply packet to ping’s initial packet has the record route

(RR) flag set and the option length is 3 bytes, leaving no room to store the IP address list. While

parsing the header, ping finds that the list of addresses is empty and, instead of break-ing out

of the loop, it does continue without updating the loop counter. This is an example where

performance analysis can identify a dual performance and security bug: malicious hosts could hang

ping clients. Once ping is patched, the performance envelope becomes 2,581 to 2,728 executed

instructions. With the bug, the maximum during analysis had reached 1.1× 106 instructions and

kept growing.

PROFS can find “best case performance” inputs without having to enumerate the input space.

For this, we modify slightly the PerformanceProfiler plugin to track, for all paths being explored,

the common lower bound on instructions, page faults, etc. Any time a path exceeds this minimum,

the plugin automatically abandons exploration of that path, using the PathKiller selector described

in chapter 4. This type of functionality can be used to efficiently and automatically determine

workloads that make a system perform at its best. This use case is another example of performance

profiling that can only be done using multi-path analysis.
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To conclude, we used S2E to build a thorough multi-path in-vivo performance profiler that

improves upon classic profilers. Valgrind [123] is thorough, but only single-path and not in-vivo.

Unlike Valgrind-type tools, PROFS performs its analyses along multiple paths at a time, not just

one, and can measure the effects of the OS kernel on the program’s cache behavior and vice versa,

not just the program in isolation. Although tools like Oprofile [80] perform in-vivo measurements,

but not multi-path, they are based on sampling, so they lack the accuracy of PROFS—it is not

feasible, for instance, to count the exact number of cache misses in an execution. Figure 6.11

summarizes the capabilities of Valgrind, Oprofile, and PROFS. Such improvements over state-of-

the-art tools come relatively easily when using S2E to build new tools.

Kernel space

User space
Oprofile

Valgrind

PROFS

Figure 6.11 – The path coverage of classic profilers vs. the coverage level enabled by S2E: PROFS

is a thorough multi-path in-vivo analyzer; Oprofile is in-vivo, but only single-path and sampling-

based; Valgrind is thorough, but only single-path and not in-vivo.

6.3 Other Tools

We believe S2E can be used for pretty much any type of system-wide analysis. We give here several

additional examples, including use cases from other researchers.

6.3.1 Automated Testing of Proprietary Device Drivers

We used S2E to build DDT+, a tool for testing closed-source Windows device drivers. This is a

reimplementation of DDT [74], an ad-hoc combination of changes to QEMU and KLEE, along

with hand-written interface annotations: 35 KLOC added to QEMU and 7 KLOC modified, 3

KLOC added to KLEE and 2 KLOC modified. By contrast, DDT+ has 720 LOC of C++ code,

which combine several exploration and analysis plugins, and provides the necessary kernel API

annotations to implement RC-LC.

DDT+ combines several plugins: the CodeSelector plugin restricts multi-path exploration to

the target driver, while the MemoryChecker, DataRaceDetector, and WinBugCheck analyzers look
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for bugs. To collect additional information about the quality of testing (e.g., coverage), we use the

InstructionTracer analyzer plugin. Additional checkers can be easily added. DDT+ implements

local consistency (RC-LC) via interface annotations that specify where to inject symbolic values

while respecting local consistency—examples of annotations appear in [74]. None of the bugs

reported by DDT+ are false positives, indicating the appropriateness of local consistency for bug

finding. In the absence of annotations, DDT+ reverts to strict consistency (SC-SE), where the only

symbolic input comes from hardware.

We ran DDT+ on two Windows network drivers, RTL8029 and AMD PCnet; DDT+ finds the

same 7 bugs reported in [74], including memory leaks, segmentation faults, race conditions, and

memory corruption. Of these bugs, 2 can be found when operating under SC-SE consistency;

relaxation to local consistency (via annotations) helps find 5 additional bugs. DDT+ achieves 42

% basic-block coverage of the PCnet driver in 30 minutes, exploring more than 164,000 paths. For

the RTL8029 driver, DDT covers 76% and 380,000 paths in less than 15 minutes.

For each bug found, DDT+ outputs a crash dump, an instruction trace, a memory trace, a set

of concrete inputs (e.g., registry values and input from hardware devices) and values that were

injected according to the RC-LC model that trigger the buggy execution path.

While it is always possible to produce concrete inputs that would lead the system to the de-

sired local state of the unit (i.e., the state in which the bug is reproduced) along a globally feasible

path, the exploration engine does not actually do that while operating under RC-LC. Consequently,

replaying execution traces provided by DDT+ usually requires replaying the symbolic values in-

jected into the system during testing. Such replaying can be done in S2E itself. Despite being only

locally consistent, the replay is still effective for debugging: the execution of the driver during

replay is valid and appears consistent, and injected values correspond to the values that the kernel

could have passed to the driver under real, feasible (but not exercised) conditions.

S2E generates crash dumps readable by Microsoft WinDbg [88]. Developers can thus inspect

the crashes using their existing tools, scripts, and extensions for WinDbg. They can also compare

crash dumps from different execution paths to better understand the bugs.

6.3.2 Finding Bugs in Linux Device Drivers with SymDrive

SymDrive [105] is a tool that brings static analysis to S2E in order to test Linux and FreeBSD de-

vice drivers more effectively. SymDrive combines static analysis with source code instrumentation

and dynamic analysis in order to make path exploration more efficient. Its static analysis com-

ponent analyzes drivers for loops and forwards loop information to the path selection heuristic,

which favors paths that exit loops early (loop elision). It also favors paths that exercise the “good“

behavior of the driver rather than the error recovery paths.
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SymDrive also simplifies driver testing by letting developers write annotations and checkers

directly in kernel code. Like in DDT, these annotations inject symbolic values into the driver in

order to enable multi-path exploration. Checkers verify various properties, e.g., that the driver calls

the kernel API correctly, and if not, flag an error.

SymDrive found 39 distinct bugs in 26 device drivers. SymDrive can detect API misuse, races,

allocation/deallocation mismatches, memory leaks, bad pointers, and various hardware-dependent

bugs. SymDrive achieves better scalability than DDT thanks to its static analysis component.

It is a challenge for DDT to find execution paths that successfully exercise most of the driver’s

entry points because its search heuristics get stuck early on inside the driver’s error recovery code.

SymDrive can however deprioritize such paths thanks to its global view of the driver’s code.

6.3.3 Scalable Testing of File System Checkers with SWIFT

SWIFT [30] is a tool that systematically explores the recovery code of file system checkers. It tests

that in case the checker reports a successful recovery, the file system is not in a corrupted state.

Moreover, if the checker reports an error, SWIFT verifies that the disk state is consistent with the

reported error. SWIFT also tests that the checker recovers as much information as possible from

the corrupted disk.

SWIFT uses S2E to inject faults into a healthy file system and then symbolically execute the

file system checker. SWIFT invokes the checker twice on each execution path in order to test the

checker’s consistency. If the first invocation fixed the errors, the second invocation should not find

more errors. To check for completeness of the recovery, SWIFT runs multiple checkers in parallel

for possibly different file systems. Semantically identical faults (e.g., similarly corrupted inode)

should normally produce similar behavior and recovery regardless of the file system.

SWIFT adds selective concretization to S2E in order to scale to larger constraints. Analyzing

file system checkers frequently produces large constraints that are difficult to solve. A straightfor-

ward solution would be to concretize all the variables involved in the difficult constraints. How-

ever, this severely limits the state space, introducing false negative. To mitigate this, SWIFT allows

users to define a concretization policy. Such a policy can, for example, concretize only a subset of

variables. The subset could include variables that are most frequently used or those that appear in

complex arithmetic expressions.

SWIFT found 5 bugs in e2fsck, 2 bugs in reiserfsck, and 3 bugs in fsck.minix. Bug

types include segmentation faults in the checkers, infinite loops, data loss, and various incorrect

recoveries. It took SWIFT from 9.5 to 37 hours to explore up to 163,000 paths in these file system

checkers.
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6.3.4 Prototyping Symbolic Execution Engines for Interpreted Languages

with CHEF

CHEF is a recipe and tool that transforms vanilla interpreters (such as Python or Lua) into sound

and complete symbolic execution engines. CHEF runs the interpreter inside S2E and uses a path

exploration heuristic in order to focus testing the high-level code (e.g., Python program or library)

rather than the low-level implementation of the interpreter.

The insight behind CHEF is that one high-level path through an interpreted program can ac-

tually correspond to many low-level paths in the interpreter. For example, a simple assignment in

Python translates to many checks in the interpreter, which in case of a symbolic operand would fork

several paths. CHEF uses a heuristic that groups together paths that forked at the same high-level

instruction, then selects one group, and finally picks one path in the group. This prevents imbalance

issues in case one high-level instruction forks many more paths than the other instructions.

Conceptually, CHEF relies on S2E’s selectivity and path selection mechanisms in order to

match S2E’s low level of abstraction to that of higher-level languages. S2E operates natively at

the machine code level, which is well suited for analyzing low level code, such as C/C++ pro-

grams. While S2E can run programs written in interpreted languages, the gap between the levels

of abstraction makes it hard for analyzers to reason about such programs. CHEF bridges this gap.

CHEF allowed building a symbolic execution engine for Lua in 3 person-days and one for

Python in 5 person-days. The path exploration heuristics implemented by CHEF yielded up to

1,000 × speedup compared to running an interpreter on vanilla S2E. CHEF also found bugs in

existing symbolic execution engines.

6.3.5 Finding Trojan Message Vulnerabilities in Distributed Systems with

Achilles

Achilles is a tool that that searches for trojan messages in distributed systems [7]. Trojan mes-

sages are messages that look correct but cannot actually be generated by any correct sender. Such

messages can be a major source of vulnerability because they are often not tested by developers.

Achilles analyzes the senders and receivers in order to extract the message grammar that the for-

mer generate and the latter accept. Achilles then computes the trojan messages as the difference

between the two grammars.

Achilles uses S2E to symbolically explore the distributed system and find trojan messages. On

the receiver side, Achilles makes the input packets symbolic and explores the paths that handle ac-

cepted messages. The disjunction of path constraints over such paths form the receiver’s grammar.

On the sender side, Achilles makes all local inputs symbolic (e.g., syscall return values) in order
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to explore different paths through the sender, generating different types of symbolic packets and

forming the sender’s grammar. The set of trojan messages are the messages that satisfy the path

constraints of the receiver, but not those of the sender.

Achilles found several bugs in FSP, a UDP-based file transfer protocol, and PBFT, a Byzantine-

fault-tolerant replication system. Achilles discovered that FSP clients do not allow filenames that

contain wildcard characters. However, FSP servers accept them. It is thus possible for a malicious

client to create files on the server that cannot be directly manipulated by valid clients. In the

case of PBFT, Achilles found that the replica servers accept client requests without checking their

authentication code. Replicas that later receive an incorrect code force the system to enter an

expensive recovery mechanism.

6.3.6 Scalable Testing of Distributed Systems with SymNet

Testing distributed systems poses several scalability challenges. One approach to test such sys-

tems would be to run each node of a system as a separate process in a guest OS running in S2E

and let these nodes communicate via a virtual network. First, this does not scale to many nodes

because a fork in one node would fork the state of the entire system. Second, symbolic execution

is orders of magnitudes slower than native execution, causing time drifts and synchronization is-

sues when nodes run at a difference pace. Third, this approach makes it difficult to test different

implementations of the same protocol running on different types of hardware.

SymNet [108] solves these challenges by running each node of the distributed system in a

separate S2E instance and having a coordinator to keep the nodes synchronized. When a node

sends a symbolic packet, it serializes the associated constraints and concretizes the packet. The

receiving S2E instance turns the packet back symbolic according to the deserialized constraints.

The coordinator ensures that the packets are received in the context of the right execution state on

the target node and makes sure that each node has a consistent view of the virtual time by enforcing

round-based communication.

SymNet expands the limits of the environment that S2E can handle. S2E cannot control the

environment outside of its virtual machine. First, S2E must concretize all the symbolic data that

leaves it. Second, S2E cannot track constraints in the outside world. Therefore, any incoming data

can clobber any execution state that happens to be running, making the system inconsistent. This

is similar to the state clobbering problem encountered by KLEE [27] whenever it invokes a system

call. SymNet alleviates these problems, making S2E aware of the world outside of its boundaries.

SymNet found several assertion failures in the Linux implementation of the Host Identity Pro-

tocol (HIP). Marking the version and the reserved field of the header symbolic uncovered paths in

which these header fields cause sanity check to fail incorrectly.
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6.3.7 Security Analysis of Embedded Systems’ Firmware with AVATAR

Traditional analysis tools need to emulate the entire embedded system or provide models of various

hardware components in order to be able to run and test the firmware. The problem is that there are

many types of devices, each having its own unique set of hardware peripherals. Combined with a

lack of documentation, this makes modeling or emulation impractical.

AVATAR is a platform for analysis of embedded systems’ firmware that combines multi-path

analysis with real hardware [133]. It alleviates the need of emulating the hardware. AVATAR

executes ARM firmware in S2E while forwarding hardware I/O to the real device. The device

provides a concrete skeleton execution path through the firmware and S2E fuzzes around that main

path in order to find corner-case vulnerabilities deep in the code, without getting stuck at the start of

the program. AVATAR can also selectively execute timing-sensitive parts of the firmware natively

on the device itself (at full speed), or symbolically in S2E. This solves the challenge of the slow

communication speed between the device and the emulator (a few kilobits per second over JTAG

or serial ports), which prevents heavy data transfers necessary for state synchronization.

AVATAR leverages and extends the selectivity provided by S2E and its ability to communicate

with hardware. S2E allows selecting which portion of code to run symbolically and which to run

concretely, by defining symbolic and concrete domains. AVATAR adds a native domain, which

lets users run code concretely inside the physical device, bypassing emulation overhead while

preserving execution consistency.

AVATAR was used to detect backdoors in a harddisk’s firmware, analyze a ZigBee sensor

for vulnerabilities, and reverse engineer a GSM feature phone. The hard disk has a text-based

configuration interface. AVATAR verified that the interface did not have any hidden commands

but found that some of them were more permissive than the specification. In the wireless sensor,

AVATAR found a manually-injected vulnerability. Finally, AVATAR found portions of the phone’s

SMS parsing code that manipulates pointers derived from user input. The pointers turned out to be

overly constrained in order to be exploitable.

6.3.8 Verifying Dataplanes in Software Switches and Routers

Although S2E is mostly used to test software, it can also verify it. In testing, one tries to exercise

as many paths as possible while checking for properties along each of them, hoping to find one or

more paths with a violation. Enumerating paths can show the presence of bugs, but does not prove

their absence. Proving that certain properties hold for a program implies enumerating all possible

execution paths. Even though this is often impossible for large programs, it can be feasible for

small units. Once a property is verified for all individual units, it may be possible to show that the

composition of the units still satisfies that property.
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Dobrescu et al. have built a tool that uses S2E in order to verify properties of software router

pipelines [47]. In their work, they break down the pipeline into separate smaller elements that

can be verified individually by exhaustively exploring all their execution paths. For example, if a

pipeline has an IP option parsing module followed by a module that handles NAT, showing that the

pipeline cannot crash reduces to showing that each element taken in isolation (and explored with

arbitrary inputs) cannot crash.

This tool defines a programming model that dictates how the elements of the pipeline can

manipulate the state in order to allow proof composability. The model defines three types of states

that the packet processing elements can manipulate: packet state, private state, and static state. The

packet state is owned by the element currently processing the packet. When processing completes,

ownership is transferred to the next pipeline element. Private state of an element cannot be accessed

by any other element and static state can only be read by all elements (it is immutable).

The tool adds further restrictions on loops and data structures to improve scalability. Loop

iterations are viewed as “mini-pipelines“ that can be symbolically executed separately. As such,

loops can only access the packet state. State that is shared across iterations must therefore be part

of the packet state. Finally, data structures need to follow a key/value-store interface and their

implementation is verified separately.

The tool successfully verified crash freedom and bounded execution time of an edge router,

a core router, and a network gateway within minutes. It also found bugs in several Click [73]

elements, such as incorrect processing of IP options when fragmenting packets or an assertion in

the NAT element that can be triggered by incoming packets.

6.4 Performance of the S2E Prototype

S2E introduces approximately 3× runtime overhead over vanilla QEMU when running in concrete

mode, and 78× in symbolic mode. Concrete-mode overhead is mainly due to checks for accesses

to symbolic memory, while symbolic-mode overhead is due to LLVM interpretation and constraint

solving. S2E incurs these overheads along each execution path both in single and multi-core mode.

The overhead of symbolic execution is mitigated in practice by the fact that the symbolic do-

main is much smaller than the concrete domain. For instance, in the ping experiments (§6.2),

S2E executed 30,000× more x86 instructions concretely than it did symbolically. All the OS code

(e.g., page fault handler, timer interrupt, system calls) that is called frequently, as well as all the

software that is running on top (e.g., services and daemons) run in concrete mode. Moreover, S2E

distinguishes inside the symbolic domain instructions that can execute concretely (e.g., that do not

touch symbolic data) and runs them natively. ping’s four orders of magnitude difference between

the number of concretely vs. symbolically running instructions is a lower bound on the amount
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of savings that selective symbolic execution brings over classic symbolic execution: by execut-

ing concretely those paths that would otherwise run symbolically, S2E also saves the overhead of

further forking paths that are ultimately not of interest (e.g., on branches in the concrete domain).

Another source of overhead are symbolic pointers. We compared the performance of symbol-

ically executing the unlink UNIX utility’s x86 binary in S2E on a single core vs. symbolically

executing its LLVM version in KLEE. Since KLEE recognizes all memory allocations done by the

program, it can pass to the constraint solver memory arrays of exactly the right size; in contrast,

S2E must pass entire memory pages. In 1 hour, using one core, with a 256-byte page size, S2E

explored 7,082 paths, compared to 7,886 paths in KLEE. Average solving time was 0.06 sec for

both. With 4 KB pages, though, S2E explored only 2,000 paths, averaging 0.15 sec per constraint.

We plan to reduce the overhead in concrete and symbolic modes in several ways, which are

further described in chapter 8.

6.5 Trade-Offs in Using Execution Consistency Models

Having seen the ability of S2E to serve as a platform for building powerful analysis tools, we

now experimentally evaluate the trade-offs involved in the use of different execution consistency

models. In particular, we measure how total running time, memory usage, and path coverage

efficiency are influenced by the choice of models. We illustrate the trade-offs using both kernel-

mode binaries (the SMSC 91C111 and AMD PCnet network drivers) and a user-mode binary (the

interpreter for the Lua embedded scripting language [81]). The 91C111 closed-source driver binary

has 19 KB, PCnet has 35 KB; the symbolic domain consists of the driver, and the concrete domain

is everything else. Lua has 12.7 KLOC; the concrete domain consists of the lexer and parser (2

KLOC) and the environment, while the symbolic domain is the remaining code of the interpreter.

Parsers are the bane of symbolic execution engines, because they have many possible execution

paths, of which only a small fraction are paths that pass the parsing/lexing stage [59]. The ease

of separating the Lua interpreter from its parser and lexer in S2E without touching the Lua source

code illustrates the benefit of selective symbolic execution.

We use a script in the guest OS to call the entry points of the drivers. Execution proceeds until

all paths have reached the driver’s unload method. We configure a selector plugin to exercise the

entry points one by one. If S2E has not discovered any new basic block for some time, this plugin

kills all paths but one. The plugin chooses the remaining path such that execution can proceed to

the driver’s next entry point. We use the same settings as in §6.1 and vary the consistency model.

Without path killing, drivers could get stuck in the early initialization phase, because of path

explosion (e.g., the tree rooted at the initialization entry point may have several thousand paths

when its exploration completes). The selector plugin also kills redundant subtrees when entry
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points return, because calling the next entry point in the context of each of these execution states

(subtree leaves) would mostly exercise the same paths over again.

For Lua, we provide a symbolic string as the program input, under SC-SE consistency. In SC-

UE mode, the input is symbolic like in SC-SE, but all symbolic data is concretized when accessed

by code outside of the symbolic domain (i.e., outside of the Lua execution engine). Under local

consistency, the input is concrete, and we insert suitably constrained symbolic Lua opcodes after

the parser stage. Finally, in RC-OC mode, we make the Lua opcodes completely unconstrained.

In this section, we run S2E in single-core mode and average results over 10 runs for each

consistency model. Running S2E in multi-core mode would introduce additional randomness to

the results, making it difficult to compare different data points—since the state selection is local to

each S2E process, some of the processes may end up executing states that would never be selected

if the state selection was global. Whether this happens or not depends on the initial distribution of

the states between S2E processes, which is difficult to predict.

Generally speaking, weaker (more relaxed) consistency models help achieve higher basic-block

coverage in a given amount of time—Figure 6.12 shows results for the running times from Ta-

ble 6.8. For PCnet, coverage varies between 14% and 65%, while 91C111 ranges from 10% to

84%. The stricter the model, the fewer sources of symbolic values, hence the fewer explorable

paths and discoverable basic blocks in a given amount of time. For the Windows drivers, system-

level strict consistency (SC-SE) keeps all registry inputs concrete, which prevents several configuration-

dependent blocks from being explored. In SC-UE, concretizing symbolic inputs to arbitrary values

prevents the driver from loading and prevents Lua from executing a meaningful command, thus

yielding poor coverage and short running time.

Consistency 91C111 Driver PCnet Driver Lua

RC-OC 6 min 9 min 32 min

RC-LC 10 min 13 min 31 min

SC-SE 5 min 9 min 33 min

SC-UE <1 min <1 min <1 min

Table 6.8 – Time to complete exploration of two device drivers and the Lua interpreter under

different consistency models.

In the case of Lua, the local consistency model allows bypassing the lexer component, which

is especially difficult to symbolically execute due to its loops and complex string manipulations.

RC-OC exceptionally yielded less coverage because execution got stuck in complex crash paths

reached due to incorrect Lua opcodes and their operands (such opcodes could never reach the

parser during normal execution, hence the parser does not check for them but instead continues

erroneous execution for some time, leading to multiple forks before it finally crashes).
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Figure 6.13 – Effects of memory consistency models on memory usage

Path selection together with adequate consistency models reduce memory usage (Figure 6.13).

Stricter models generate fewer execution paths to explore, which in principle should reduce mem-

ory consumption. However, in practice memory usage is more strongly correlated with running

time. For example, in RC-OC and SC, it takes roughly 6 minutes to complete the execution of

the 91C111 driver, taking 1.5 GB of memory for 1,950 and 620 paths respectively. RC-LC takes

longer, using 2 GB of memory for 955 paths. The reason is that, the longer the paths run, the bigger

the corresponding program states grow, due to copy-on-write effects: various OS components have

more time to write into more memory pages, yielding higher per-state memory consumption.

Finally, consistency models affect constraint solving time (Figures 6.14 and 6.15). The rela-

tionship between consistency model and constraint solving time often depends on the structure of

the system being analyzed—at a first level of approximation, the deeper a path, the more complex
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the corresponding path constraints. The fraction of execution time spent in the constraint solver

decreases with stricter execution consistency models, because stricter models restrict the amount

of symbolic data, generating fewer queries. Note that analyzing Lua under RC-OC exception-

ally yielded a low fraction of time spent in the constraint solver for the same reason it got poor

coverage: execution could not reach the more complex parts of the interpreter.

We observe that, except for SC-UE, the average time spent to solve a query remains roughly

constant across consistency models. This is in contrast to our earlier results [34], where S2E used

an older version of STP (revision #943 vs. #1432 in this thesis). That older version took more time

to solve queries generated by weaker consistency models. We plan to investigate this behavior in

future work. SC-UE concretizes symbolic values early, which strongly reduces the number and

complexity of solver queries and makes them quicker to solve on average.
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Figure 6.14 – Impact of consistency models on the time spent in the constraint solver.

We attempted to run Lua in KLEE in order to compare the results for different execution con-

sistency models with those obtained in S2E. We expected that the Lua interpreter, being completely

in user-mode and not having any complex interactions with the environment, could be handled by

KLEE. However, KLEE does not model some of its operations. For example, the Lua interpreter

makes use of setjmp and longjmp instructions, which turn into libc calls that manipulate the

program counter and other registers in a way that confuses KLEE. Unlike S2E, other analysis en-

gines do not have a unified representation of the hardware, so all these details must be explicitly

coded for (in KLEE’s case, detect that setjmp / longjmp is used and ensure the execution state

is appropriately adjusted). In S2E, this comes “for free” because the CPU registers, memory, and

I/O devices are shared between the concrete and symbolic domain.
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Figure 6.15 – Impact of consistency models on the average time to solve a query.

6.6 Summary

Our evaluation shows that S2E is a general platform that can be used to write diverse and interesting

system analyses—we illustrated this by building, with little effort, tools for bug finding, reverse

engineering, and comprehensive performance profiling. Consistency models offer flexible trade-

offs between the performance, completeness, and soundness of analysis. By employing selective

symbolic execution and relaxed execution consistency models, S2E is able to scale these analyses

to large systems, such as an entire Windows stack. Analyzing real-world programs like Apache

httpd, Microsoft IIS, and ping takes a few minutes up to a few hours, in which S2E explores

hundreds of thousands of paths through the binaries.



Chapter 7

Related Work

In this chapter, we categorize the existing analysis techniques and tools in terms of the trade-offs

they make. Analysis tools can be classified in terms of their accuracy and performance, whether

they operate on source code or binaries, and at which level of software stack they operate. We

explore the benefits and drawbacks of each design choice, and the challenges involved. Finally,

we show how S2E differs from existing methods by allowing flexible choices of performance,

accuracy, and software stack level for building new analysis tools.

7.1 Accuracy vs. Performance in Analysis Tools

In general, analysis tools must make trade-offs between accuracy and performance. A tool is 100%

accurate when it does not have false positives or false negatives, i.e., every defect that it reports

actually exists and it does not miss any defect. Performance denotes the scalability of the tool,

measured by the number of execution paths the tool can analyze and the size of the system it can

handle (e.g., an isolated program or an entire software stack).

Certain types of simpler analysis allow for accurate and scalable tools. For example, a compiler

can be seen as a tool that checks that the input program is syntactically valid. If the compiler is

correct, it is both accurate and scalable. An inaccurate compiler would emit an error for syntac-

tically correct files (false positives) or miss syntax errors (false negatives), and would take a very

long time on large programs if it did not scale.

Verification tools are accurate but typically do not scale to large software. Such tools must

prove that the programs they analyze have given properties, possibly subject to assumptions. Is-

abelle [62] is an interactive theorem prover that provided the proof of functional correctness of

the seL4 [72] kernel, which consists of ~10 KLOC of C code. The proof consisted of 200 KLOC

of Isabelle script and it took 20 person-years to develop the machinery to generate and verify it. It

was restricted to a subset of C99 and a simple machine model, omitted small portions written in

113
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assembly code, and assumed a correct C compiler. Other techniques based on state exploration,

such as symbolic execution [69] or model checking [11], can also be used to prove properties, but

suffer from path explosion and/or require significant manual help.

Static analysis tools can trade accuracy for scalability. Coverity analyzes millions of lines of

codes in minutes [12], at the expense of false negatives and false positives. A high rate of false

positives can overwhelm users with many false bugs. Saturn [46] and bddbddb [76] prove the

presence or absence of bugs using a path-sensitive analysis engine to decrease the number of false

positives. Saturn uses function summaries to scale to larger programs.

Dynamic analysis tools can analyze large systems without false positives but suffer from false

negatives in practice because of the path explosion problem. For example, Valgrind [123], Ad-

dressSanitizer [113], SAGE [59], DART [55], or BitBlaze [117] have no false positives and can

analyze large software, up to an entire VM for BitBlaze. However, they cannot report all the bugs

they are designed to find, because they can only explore a tiny fraction of the program state space

in a finite amount of time. Tools based on symbolic execution can explore a larger state space in

the same amount of time than those based on random test generation, but are still limited by the

exponential nature of the state space. State merging techniques allow to exponentially reduce the

state space by combining together similar states. This considerably reduces false negatives because

a much larger state space can be explored in the same amount of time. State merging allows tools

like Cloud9 [75] to achieve a speed up of up to 11 orders of magnitude. A related approach to cope

with path explosion is compositional symbolic execution [57]. The results of a frequently-called

function can be summarized in a formula that can be used next time the program calls the function,

avoiding the cost of re-executing that function.

Another way to tackle the path explosion problem and improve accuracy is to use environ-

ment models. Programs interact with their environment, which consists of all the elements that

the program needs in order to run (e.g., file system, network stack, other processes, etc.). The

environment is often considerably larger than the program itself (e.g., the file system in case of

programs that access files). A model of the environment abstracts away the complex implementa-

tion details of the actual environment, while preserving sufficient functionality to allow analyzing

the program. File system models have allowed KLEE to test UNIX utilities without involving the

real filesystem [27]. However, based on our own experience, writing models is a labor-intensive

and error-prone undertaking. Other researchers report that writing a model for the kernel/driver

interface of a modern OS took several person-years [5]. Of course, the advantage of using models

is generally faster analyses.

Another approach is to relax execution consistency. A consistent execution is one in which

there exists a feasible execution path from the system’s start state to the system’s current state

(see §2.3). For example, fault injection tools [83] relax the consistency by replacing the original
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function calls (e.g., malloc) with a realistic error value (e.g., NULL). On the one hand, execution

becomes inconsistent because there may not exist a path in the real system where the functions

would be replaced in this way. On the other hand, this speeds up the analysis by avoiding exploring

all the paths through the system hoping to find one that really fails (e.g., a path where malloc

returns NULL due to memory shortage), without necessarily decreasing the accuracy of the analysis

(e.g., programs most likely do not check why malloc actually failed).

Other approaches can include the environment directly in symbolic analysis by executing the

environment concretely, with various levels of consistency that were appropriate for the specific

analysis in question, most commonly bug finding. For instance, CUTE [112] can run environment

code consistently without modeling, but it is limited to strict consistency and code-based selection.

SJPF [102] can switch from concrete to symbolic execution, but does not track constraints when

switching back, so it cannot preserve consistency in the general case. Non VM-based approaches,

in general, cannot control the environment outside the analyzed program. For instance, both KLEE

and EXE allow a symbolically executing program to call into the concrete domain (e.g., perform a

system call), but they cannot fork the global system state. As a result, different paths clobber each

other’s concrete domain, with unpredictable consequences. Concolic execution [55, 111] runs

everything concretely and scales to full systems (and is not affected by state clobbering), but may

result in lost paths when execution crosses program boundaries. CUTE, KLEE, and other similar

tools cannot track the branch conditions following calls into concrete code (unlike S2E), and thus

cannot determine how to redo calls in order to enable overconstrained but feasible paths.

7.2 Source Code vs. Binary Analysis

Concrete implementations of analysis techniques operate either on source code or program bi-

naries. In this section, we explore the trade-offs involved in choosing between source code and

binary form as well as implementation challenges that the analysis techniques face when they need

to operate on either of these two representations.

7.2.1 Source Code Analysis

Symbolic execution can be directly applied to source code. EXE [28], DART [55], and CUTE [112]

use CIL [96], a source-to-source C compiler. The source-to-source compiler takes the source code

and annotates all assignments in order to track the propagation of the symbolic values through the

program. CIL also annotates branches, in order to determine which outcome to follow in case of

symbolic predicates. The output is a rewritten C program that can be compiled and run natively.

KLEE [27] is another symbolic execution tool that operates on the LLVM representation of the
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source code. Unlike CIL-based approaches, KLEE implements symbolic execution by interpreting

LLVM instructions. Java PathFinder [63] uses a similar approach on Java byte code.

Model checkers transform the source code into a large boolean formula in order to verify

different properties. This formula encodes the program and the desired properties. A theorem

prover [52] can be used to ensure the formula is valid for all inputs, thus proving the property

holds. In case of recursive functions or loops, the formulas can be large or even unbounded.

Bounded model checkers such as CALYSTO [3] or LLBMC [115] transform the source to LLVM

and use custom LLVM analysis passes that unroll loops and recursive functions up to a certain

depth in order to produce bounded formulas that can be handled by the theorem prover.

In addition to intermediate representations such as LLVM, static analysis tools can also operate

on the source code’s abstract syntax trees (AST). The AST captures all information present in

the source code such as variable names and types, line numbers, etc. This information can be

lost in lower-level representations. Compilers like clang [39] or gcc analyze the AST to warn

developers about potential errors, unsafe coding styles, etc.

Source-based approaches face several challenges. They must be able to read the source code,

it is difficult for them to handle inline assembly, they cannot analyze third-party components for

which there is no source code, and implementing source-based tools is often an ad-hoc, labor-

intensive effort. These challenges affect the accuracy and scalability of source-based tools.

Reading the source code requires a parser that can handle many flavors of the language. For

example, Coverity [12] has to deal with dozens of variants of C. Inline assembly is usually skipped,

potentially missing errors or reporting false alarms [12, 27]. Third-party components must be

abstracted away or modeled [27, 21, 2, 13, 3, 46]. Generic analysis algorithms like symbolic

execution are usually rewritten from scratch for every language [27, 29]. Overall, source-based

tools require a large error-prone engineering effort in order to be applied at scale and to produce

acceptable results.

7.2.2 Binary Analysis

Unlike source-based tools, binary analysis tools only require the machine code in order to run,

which has several advantages. First, it allows analyzing the actual code that runs on the hardware,

which may uncover problems missed by source-based tools. A source code analysis tool may de-

clare a program safe, but compile-time optimizations may introduce subtle bugs [125]. Second,

binary analysis helps when the program is built from different modules written in different lan-

guages (e.g, a program in C++ calling optimized library routines written in assembly). Third, no

reliance on source code allows analyzing third-party proprietary software, which can be useful for

security audits.
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Binary analysis tools use a wide range of instrumentation techniques in order to observe and

possibly modify the behavior of the program under analysis. Common techniques include system

and library call interception (e.g, DTrace [48]), shim libraries (e.g., LD_PRELOAD), disassembly,

and binary translation.

Tools that need to reason about binary code first disassemble it and optionally transform it to

an intermediate representation (IR), depending on the needs of the analysis. Simple disassembly

may be enough to extract an approximate control flow graph [60], while more advanced binary

translation techniques may be used for more sophisticated static and dynamic analysis.

Dynamic binary translation (DBT) is suitable for run-time analysis. A dynamic binary transla-

tor continuously fetches blocks of binary code, disassembles and translates them to IR, instruments

the IR, and compiles them back to native code. Many tools use this instrumentation capability to

find memory errors, resource leaks, do performance profiling, taint analysis, symbolic execution,

etc. DBT offers flexible instrumentation capabilities: tools can limit instrumentation to fragments

of code of interest to reduce overhead, passively observe the execution to gather information (e.g.,

count instructions or cache misses) or actively modify program or system state. Pin [82] and

PinOS [24] are two examples of such analysis platforms that expose DBT to tools built on top

of them. Other tools, such as Mayem [31] or BitBlaze [117] use DBT to implement symbolic

execution at the program and system level.

Static translators are suitable for static analyses that need to operate on the entire binary at

once. They take as input a binary in machine code and output a different binary in an IR form,

with varying accuracy. Accuracy is dictated by the disassembly technique they use. Linear sweep

(e.g., used by BAP [17]) disassembles the binary sequentially and is oblivious to code mixed

with data. Recursive disassembly analyzes call and jump targets to discover new code. It is more

accurate because it is better at avoiding disassembling data. To improve accuracy further, different

heuristics can be used [60], as well as more sophisticated and expensive analysis, such as abstract

interpretation [68]. As we shall see next, accuracy has various impacts on the analysis tools.

Both static and dynamic translation have limitations. Static translators (and disassemblers in

general) need to distinguish code from data, handle variable instruction sizes, indirect control flow,

position-independent code, obfuscated binaries, the absence of high-level data types and variable

information, etc. Dynamic disassemblers are not affected by most of these problems, because

they execute the translated code, resolving all the ambiguities encountered by static translators.

However, this comes at the cost of a limited view of the RC-CC exposed to the analysis tools.

These limitations can decrease the accuracy of the tools built on top of binary translators.

Incorrect lifting of machine code to IR can cause otherwise sound and complete analysis techniques

to miss bugs (false negatives), or report erroneous faults (false positives). The partial view of the

code provided by DBT usually leads to false negatives.



118 CHAPTER 7. RELATED WORK

7.3 Choosing the Software Stack Level

Analysis tools can operate at various levels of the software stack. They can handle user space

software and libraries [123, 113, 114], interpreted [29] or compiled programs [27, 82, 123, 24],

work on kernel-mode drivers [5], interact with hardware [132], or even handle the entire software

stack [117]. The level at which tools operate in the software stack and the assumptions they make

about the analyzed program affect their accuracy and scalability.

Choosing one particular level of the stack forces the analysis tools to make assumptions about

the environment of the program. Verification tools usually assume a bug-free runtime or compiler,

which may potentially render correctness proofs irrelevant should this assumption be violated. It is

hard for symbolic execution tools for user-space programs to track the side effects of system calls,

compromising accuracy [28, 27, 102]. They cope with this be modeling the environment, hoping

that the model is accurate enough for the analyzed program, or by using VM-based approaches.

VM-based approaches [117] have a complete view of the system, but cannot control the outside

environment (e.g., interaction with external network nodes or hardware devices).

A particular level in the stack may also force particular analysis and instrumentation techniques

on the tool. For example, an analysis tool that requires kernel instrumentation might be constrained

to use a kernel-mode DBT engine [50], whose implementation is very different from that of a user-

mode DBT [82]. Tools for taint analysis of malware typically need to operate at the VM level,

because tainted data can flow across the entire system [117].

7.4 S2E in the Analysis Tools Design Space

S2E is a platform that enables multi-path analysis of binary software stacks with flexible accura-

cy/performance trade-offs. S2E operates on binaries using VM-based dynamic binary translation.

This allows S2E users to build tools that can operate at any level of the software stack, eliminates

most of the problems faced by source-based analysis tools, and does not restrict the type of anal-

yses that can be performed. S2E enables flexible accuracy/performance trade-offs by introducing

several execution consistency models. In this section, we compare S2E to existing platforms.

BitBlaze [117] is the closest dynamic analysis framework to S2E. It combines virtualization

and symbolic execution for malware analysis and offers a form of local consistency to introduce

symbolic values into API calls. In contrast, S2E has several additional consistency models and

various generic path selectors that trade accuracy for exponentially improved performance in more

flexible ways. To our knowledge, S2E is the first to handle all aspects of hardware communication,

which consists of I/O, MMIO, DMA, and interrupts. This enables symbolic execution across the

entire software stack, down to hardware, resulting in richer analyses.
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S2E can add multi-path analysis abilities to any single-path dynamic tool, while not limiting

the types of analysis. PTLsim [132] is a VM-based cycle-accurate x86 simulator that selectively

limits profiling to user-specified code ranges to improve scalability. Valgrind [123] is a framework

best known for cache profilers, memory leak detectors, and call graph generators. PinOS [25] can

instrument OSes and unify user/kernel-mode tracers. PinOS relies on Xen and a paravirtualized

guest OS, unlike S2E. SimOS [106] is a machine simulator that provides interchangeable simula-

tion models, allowing flexible simulation speed and simulation details trade-offs. PTLsim, PinOS,

and Valgrind implement cache simulators that model multi-level data and code cache hierarchies.

S2E allowed us to implement an equivalent multi-path simulator with little effort (see §6.2).

S2E complements classic single-path, non VM-based profiling and tracing tools. DTrace [48]

is a framework for troubleshooting kernels and applications on production systems in real time.

DTrace and other techniques for efficient profiling, such as continuous profiling [1], sampling-

based profiling [26], and data type profiling [99], trade accuracy for low overhead. They are useful

in settings where the overhead of precise instrumentation is prohibitive. Other projects have also

leveraged virtualization to achieve goals that were previously prohibitively expensive. These tools

could be improved with S2E by allowing the analyses to be exposed to multi-path executions.

S2E uses mixed-mode execution as an optimization to increase efficiency. Mixed mode inter-

prets only instructions that touch symbolic data, while running the rest natively. This idea first ap-

peared in DART [55], CUTE [112], and EXE [28], and later in Bitscope [16]. However, automatic

bidirectional data conversions across the symbolic-concrete boundary did not exist previously, and

they are key to S2E’s scalability (see §2.2).

In-situ model checkers [56, 63, 130, 94, 129] can directly check programs written in a com-

mon programming language, usually with some simplifications, like data-range reduction, without

requiring a model. Since S2E directly executes the target binary, one could say it is an in-situ tool.

S2E goes further and provides a consistent separation between the environment (whose sym-

bolic execution is not necessary) and the target code to be tested (which is typically orders of

magnitude smaller than the rest). This is what we call “in vivo” in S2E: analyzing the target code

in-situ, while facilitating its consistent interaction with that code’s unmodified, real environment.

Note that other researchers have used the term “in vivo” in similar contexts as well, but with a

different meaning from S2E’s—e.g., [93] propose a technique for testing where “in vivo” stands

for executing tests in production environments.

To summarize, S2E embodies numerous ideas that were fully or partially explored in earlier

work. What is unique in S2E is its generality for writing various analyses, the availability of multi-

ple user-selectable (as well as definable) consistency models, automatic bidirectional conversion of

data between the symbolic and concrete domains, and its ability to operate without any modeling

or modification of the (concretely running) environment.
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Chapter 8

Limitations and Future Work

In this chapter, we summarize the limitations that emerged while using S2E in practice and present

several future directions in which researchers can improve S2E in order to make it more practical

and easier to use. This is important in order to enable a wider adoption.

8.1 Limitations

Despite its strengths, S2E has three main limitations: path explosion, complexity of execution

consistency models, and ease of use of the platform.

S2E still suffers from path explosion occurring inside the modules of interest. For example,

testing a moderately-sized network service with full-sized symbolic packets can still lead to a

prohibitive number of paths. This makes it hard for existing heuristics to pick an execution path

that would lead execution to deep parts of the program. S2E also adds a high constant execution

overhead for each path, both for concrete execution (10-20× compared to native execution) and

symbolic execution (about two orders of magnitude), limiting the paths that can be explored in

a given time budget. Finally, path explosion creates deep paths with complex constraints, which

bottlenecks the constraint solver embedded in any symbolic execution engine.

While S2E allows relaxing execution consistency models in order to alleviate path explosion,

doing so may be complex in practice. In section 2.3.2, we explained how a platform developer

would implement support for execution consistency models. However, we do not show a system-

atic way in which a user could use them. In practice, users often need to reason about the unit-

environment interface in order to derive annotations that relax the model in the desired way. For

example, in order to perform fault injection to test the error recovery code in device drivers [74],

users need to understand what error values a kernel API function may return in order to relax

the model without introducing false positives. However, it is not clear how to relax the models

automatically without any knowledge of the interface. We leave this investigation for future work.
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This complexity is compounded by the semantic gap [32] between the low level nature of

the APIs offered by the S2E engine and how users reason about code. Users typically reason in

terms of programs, libraries, modules, functions, and source code. However, S2E exposes program

counters, translation blocks, CPU registers, and memory accesses. Although S2E has an extensive

plugin library that provides high level abstractions in order to attempt to bridge the semantic gap,

it requires complex introspection of the guest OS [53]. In practice, a developer who wants to

write an annotation (e.g., in order to relax a consistency model), needs to use a complex API in

order to access guest data structures. Because of this, users often resort to writing instrumentation

directly in the guest rather than via S2E plugins [105, 20]. More research is needed in order to find

approaches that offer the right trade-offs between ease of use and flexibility.

8.2 Future Work

In this section, we present several ideas to improve the issue of path explosion that we raised earlier.

Our goal is to combine all these ideas into one platform in order to increase by at least an order

of magnitude the execution speed and the number of paths that can be explored in a given amount

of time and resource constraints (memory and CPU). This performance increase must be achieved

without sacrificing accuracy. We believe that raw speed will let S2E users perform more complex

analysis while decreasing the need for aggressively relaxed execution consistency models, thereby

improving the ease of use.

Path explosion can be mitigated with several new elements: dynamic state merging, parallel

symbolic execution, incremental constraint solving service, combining S2E with static analysis,

fast symbolic interpreter, and hardware virtualization.

Dynamic state merging has been shown to yield up to 11 orders of magnitude improvement

over traditional symbolic execution [75]. It exponentially reduces the state space by merging

similar states at run-time. It also applies a static analysis on the program’s source code in order

to determine if the merge will excessively impact the constraint solver. Adapting dynamic state

merging to S2E would require performing the same static analysis on binaries and finding efficient

ways of merging paths that contain the state of an entire system.

Parallel symbolic execution helps cope with path explosion by parallelizing symbolic execution

in a way that scales well on large clusters of cheap commodity hardware. Existing techniques [21]

scale linearly with the number of nodes in the system, thus enabling us to “throw hardware at the

problem”. We plan to apply these same principles to a parallel version of S2E that can efficiently

combine the resources of large clusters.

Incremental constraint solving will reduce the fraction of the time S2E spends in the con-

straint solver. S2E currently uses the STP solver [52]. On each invocation, STP considers all the
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constraints accumulated so far to produce a result, instead of leveraging previous results and ex-

ploiting the incremental nature of additional queries to speed up solving. We plan to extend S2E to

use in parallel several incremental solvers, such as Z3 [45] and Boolector [19]. Different solvers

can be faster or slower for a given constraint, and the portfolio approach can take the results that

arrive the soonest, thus operating at the speed of the fastest solver (at the cost of extra hardware).

This portfolio of solvers could be further decoupled from S2E and exposed as a service, in order

for S2E to benefit more easily from advances in the constraint solving field. We present in our

recent work [22] an early prototype that efficiently implements incremental constraint solving in

the context of multi-path exploration.

Bringing static analysis to S2E would enable more effective heuristics. It could, for example,

determine the location of all loops and help heuristics to pick paths that exit them early [105].

Building RevGen (Chapter 5) was the first step towards achieving this goal.

A fast symbolic interpreter would reduce time spent interpreting machine instructions in sym-

bolic mode. S2E currently translates machine code to LLVM in order to run it in the KLEE in-

terpreter. The LLVM translation phase is not only ~40× slower compared to translating code

to QEMU’s native targets, but the resulting LLVM code is also unnecessarily verbose and slow

to interpret. We envision replacing the LLVM translator with QEMU’s built-in TCI back-end, a

light-weight backend that is optimized for quick interpretation of machine code. Of course LLVM

would still be available for tools that require deeper analysis of the guest code.

Finally, hardware virtualization [122] would bring hardware speeds to symbolic execution.

S2E relies on a DBT to instrument guest code and transform it into a format suitable for symbolic

interpretation. However, most of the system not only runs in concrete mode, but is also never

instrumented. It is therefore possible to let it run natively, cutting the dynamic binary translation

phase. A major challenge will be to efficiently switch back and forth between hardware virtualiza-

tion, DBT mode, and symbolic interpretation.
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Chapter 9

Conclusion

This thesis presented S2E, a new platform for in-vivo multi-path analysis of systems, which scales

to large, proprietary, real-world software stacks, like Microsoft Windows. It is the first time vir-

tualization, dynamic binary translation, and symbolic execution are combined for the purpose of

generic behavior analysis. S2E simultaneously analyzes entire families of paths, operates directly

on binaries, and operates in vivo, i.e., includes in its analyses the entire software stack: user

programs, libraries, kernel, drivers, and hardware. S2E uses automatic bidirectional symbolic–

concrete data conversions and relaxed execution consistency models to achieve scalability.

S2E’s scales to large systems using two new ideas: selective symbolic execution and execu-

tion consistency models. Selectivity limits multi-path exploration to the module of interest (e.g., a

library) to minimize the amount of symbolically-executed code, which avoids path explosion out-

side of that module. Execution consistency models allow making principled performance/accuracy

trade-offs during analysis.

This thesis showed that S2E enables rapid prototyping of a variety of system behavior anal-

ysis tools with little effort. We built an in-vivo multi-path performance profiler (PROFS) and a

system for semi-automatically reverse engineering binary device drivers (RevNIC). PROFS allows

predicting the performance for certain classes of inputs, using metrics such as instruction count or

cache misses. RevNIC analyzes closed-source device drivers to synthesize new, safer, and portable

drivers for different OSes and architectures.

The S2E platform is open sourced and available at http://s2e.epfl.ch, with a ready-to-

use demo, documentation, and tutorials. Three years after release, S2E acquired a rapidly growing

user community of more than 150 members and is actively used by researchers and companies

around the world in order to test distributed networks, analyze file systems, detect private data

leaks in smartphone apps, perform security analysis, and more.
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Appendix A

Tutorial: Using the S2E API to Build the

Annotations Plugin

In section 4.2.1, we gave an overview of how to build the Annotations plugin. An S2E annotation

is a piece of code written by an S2E user in order to observe and manipulate execution states.

The Annotations plugin can be used to implement different execution consistency models and is a

central piece in tools like DDT+ (§6.3.1) and REV+ (§6.1).

Given its wide use, the Annotations plugin must be generic and work on any piece of code, no

matter what guest OS is running. Annotations implements only the mechanisms that let users spec-

ify the desired annotations and relies on other plugins for unrelated tasks, such as OS monitoring.

We show here in detail how to build a plugin that monitors the guest OS and notifies other

plugins when programs, drivers, libraries, or any kind of modules are loaded (§A.1), how to use

the information about loaded modules to detect the execution of a specific module (§A.2), how to

track function calls in those modules (§A.3), and finally, how to let users annotate the desired code

and make sure the annotations are executed at the right moment (§A.4). Figure A.1 summarizes

the relationship between these plugins and Figure A.2 shows the corresponding S2E configuration

file that we use throughout the remainder of this section as a running example. This example shows

how users can configure the Annotations plugin in order to insert symbolic data in network packets

during the analysis of the rtl8029.sys network device driver, that is part of Windows XP.

A.1 Monitoring Module Loads

S2E requires a specific monitoring plugin for each OS in order to track OS-level events, such

as module loads and unloads. Tracking these events in a system may be difficult and platform-

specific. For example, getting the process identifier of the currently executing process requires
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OSMonitor Interface

WindowsMonitor LinuxMonitor

ModuleExecutionDetector
Detects when execution enters and leaves a module

Implements Implements

Annotations
User-provided code snippets

executed on specific events

FunctionMonitor
Tracks all function calls and returns

Defines generic onModuleLoad, onModuleUnload, 

and onProcessUnload events

Figure A.1 – Dependencies of the Annotations plugin. Annotations requires ModuleExecutionDe-

tector, FunctionMonitor, and a plugin that implements the OSMonitor interface (such as Windows-

Monitor or LinuxMonitor). This is a more detailed view of Figure 4.1.

parsing OS-specific data structures in the guest’s kernel heap. Moreover, the exact layout of these

structures varies for different versions of the same operating system. Such implementation details

must be hidden behind a generic interface.

S2E plugins that monitor OS-level events must implement a generic interface in order to be

used interchangeably by client plugins. For example, a plugin such as Annotations (§A.4) does

not care about whether the guest is running on Microsoft Windows or Linux. Such a plugin only

needs to know when the OS loads a specified module in order to activate annotations. For this,

Annotations relies on the generic interface exposed by the underlying OS monitoring plugin (e.g.,

WindowsMonitor or LinuxMonitor).

S2E provides the OSMonitor interface, which OS monitoring plugins implement. OSMoni-

tor defines the onModuleLoad, onModuleUnload, and onProcessUnload events. An OS mon-

itoring plugin triggers onModuleLoad (respectively onModuleUnload) when a module is loaded

(respectively unloaded) and passes the name, size, load address, and address space identifier to

the callback functions. The plugin triggers onProcessUnload when the OS frees the address space

of a process. There is no corresponding onProcessLoad event, because the first onModuleLoad

implicitly defines the new address space.

Consider WindowsMonitor, a plugin that implements the OSMonitor interface for Microsoft

Windows. Detecting driver loads on Windows XP SP3 involves catching the execution of the

instruction located at address 0x805A399A in kernel space. When execution reaches this address,



A.1. MONITORING MODULE LOADS 131

pluginsConfig.WindowsMonitor = {

version="XPSP3",

userMode=false,

kernelMode=true

}

pluginsConfig.ModuleExecutionDetector = {

rtl8029_sys_1 = {

moduleName = "rtl8029.sys",

kernelMode = true

}

}

pluginsConfig.FunctionMonitor = { }

pluginsConfig.Annotation = {

my_annotation = {

module="rtl8029_sys_1",

address=0x1233a,

paramcount=4,

callAnnotation="rtl8029_copyup_packet"

}

}

function rtl8029_copyup_packet(state, pluginState)

buffer = state:readParameter(1);

length = state:readParameter(3);

for i = 0, length - 1, 1 do

state:writeMemorySymb("copyup_buffer", buffer + i, 1);

end

state:writeRegister("eax", 1);

pluginState:setSkip(true);

end

Figure A.2 – Combining S2E plugins to inject symbolic network packets in the rtl8029.sys

driver. This S2E configuration file is written in the Lua scripting language.

WindowsMonitor parses the driver descriptor located on the stack, extracts the name, load address,

and size of the driver, then triggers the onModuleLoad event. Subscribers are notified of the driver

load and can perform actions accordingly, e.g., detect when execution enters a particular module

(see §A.2).

Say the S2E user wants to analyze the rtl8029.sys driver running on Windows XP SP3.

Since device drivers run in kernel mode, WindowsMonitor must be configured to instrument kernel

module loads and unloads. This requires five lines of configuration, as shown in Figure A.3.

pluginsConfig.WindowsMonitor = {

version="XPSP3",

userMode=false,

kernelMode=true

}

Figure A.3 – Configuring WindowsMonitor to track driver load/unload events on Microsoft Win-

dows.
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A.2 Tracking Module Execution with ModuleExecutionDetec-

tor

The ModuleExecutionDetector plugin publishes two main events: onModuleInstrTranslation and

onModuleTransition. onModuleInstrTranslation forwards all the onInstrTranslation core events

that are triggered inside the modules of interest. onModuleTransition notifies its clients whenever

execution enters or leaves modules of interest.

Subscribers can use these two events in several ways. For example, CodeSelector subscribes to

onModuleTransition to be notified of when execution enters or leaves a module of interest in order

to toggle symbolic execution. onModuleInstrTranslation is used by InstructionCounter, which

relies on this event to register a callback that S2E will call for each instruction executed by the

module. The callback increments an instruction counter and periodically writes its value to a log

file.

ModuleExecutionDetector relies on a plugin that implements the OSMonitor interface. When

S2E starts, ModuleExecutionDetector automatically looks for a plugin that implements the OS-

Monitor interface. It subscribes to the onModuleLoad, onModuleUnload, and onProcessUnload to

maintain the current memory map of the system. This map allows efficiently finding the module

that owns a particular address and trigger the onModuleInstrTranslation as well as onModuleTran-

sition when appropriate.

To enable ModuleExecutionDetector, the S2E user adds the appropriate section in the S2E

configuration script as shown in Figure A.4. This section can go right below the one for Windows-

Monitor that we have seen previously. ModuleExecutionDetector’s configuration section accepts

one section per module to be tracked. Each module to track is identified by its name and whether

it is a kernel module or not. sections can be named (e.g., rtl8029_sys_1) to allow other plugins

to refer to them, as we will illustrate later.

pluginsConfig.ModuleExecutionDetector = {

rtl8029_sys_1 = {

moduleName = "rtl8029.sys",

kernelMode = true

}

}

Figure A.4 – Configuring ModuleExecutionDetector to track the execution of the rtl8029.sys

driver.



A.3. MONITORING FUNCTION CALLS WITH FUNCTIONMONITOR 133

A.3 Monitoring Function Calls with FunctionMonitor

The FunctionMonitor plugin notifies its subscribers of function calls and returns. When subscrib-

ing, a client plugin passes to FunctionMonitor the address of the function to monitor, the identifier

of the address space to which the function belongs, and an event callback. FunctionMonitor in-

vokes the registered callback whenever a function call or return occurs. The address space identifier

allows distinguishing functions at the same virtual address but in different processes.

FunctionMonitor tracks pairs of call and return machine instructions. When a call occurs,

besides invoking the registered callback, FunctionMonitor also stores in a map the association

between the current stack pointer, the address space, and the event callback that corresponds to

the called function. When a return instruction is about to be executed, FunctionMonitor looks

up the current stack pointer and address space identifier in the map and invokes the associated

callback. Such tracking is required because return instructions do not carry any information about

the function to which they belong.

FunctionMonitor subscribes to the onInstrTranslation core event in order to mark and intercept

all call and return machine instructions. Whenever these marked instructions are executed, S2E

triggers the onInstrExecution event which invokes the callbacks previously registered by Func-

tionMonitor when processing the onInstrTranslation events. These callbacks check whether there

are clients of FunctionMonitor that registered for the specific function call or return that is being

executed and, if yes, invoke the corresponding client’s event callback.

FunctionMonitor assumes that the processor’s instruction set has explicit call and return in-

structions, which is the case e.g., of x86 or MIPS. MIPS uses the jal (jump and link) instruction

for function calls. This instruction jumps to the specified address while saving in the $ra register

the program counter of the instruction that follows the jump. Since $ra holds the current return

address by convention, it can be used to detect jumps that use this register to return to the caller.

FunctionMonitor does not have any user-configurable option. Thus, it is enough to write an

empty configuration section as shown in Figure A.2.

A.4 Annotating Code with the Annotations plugin

The Annotations plugin combines FunctionMonitor and ModuleExecutionDetector to let users an-

notate not only function calls but also arbitrary machine instructions. The user writes the annota-

tion directly inside the S2E configuration file, using the Lua language.

The Annotations plugin has four configurable parameters: the module name (module), the

address of the function to intercept (address), the number of its parameters (paramcount), as

well as the name of the Lua annotation to invoke (callAnnotation). It is also possible to use
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instructionAnnotation to annotate arbitrary instructions.

In our example, we configure the Annotations plugin to annotate the function that copies a data

packet from the network card to a buffer allocated by the driver. This function has four parameters

and is located at address 0x1233a relative to the start of the rtl8029.sys driver (Figure A.5).

pluginsConfig.Annotation = {

my_annotation = {

module="rtl8029_sys_1",

address=0x1233a,

paramcount=4,

callAnnotation="rtl8029_copyup_packet"

}

}

Figure A.5 – Configuring the Annotations plugin to inject symbolic network packets in the

rtl8029.sys driver.

The annotation is contained in the rtl8029 _copyup_packet Lua function (Figure A.6).

All annotations have two parameters: the current execution state and the current plugin state. The

execution state object can be manipulated using the ExecutionState object’s methods. Similarly,

the plugin state parameter exposes the API of the Annotations plugin, which allows annotations to

change the plugin’s configuration at run-time.

function rtl8029_copyup_packet(state, pluginState)

buffer = state:readParameter(1);

length = state:readParameter(3);

for i = 0, length - 1, 1 do

state:writeMemorySymb("copyup_buffer", buffer + i, 1);

end

state:writeRegister("eax", 1);

pluginState:setSkip(true);

end

Figure A.6 – Example of an annotation written in the Lua language.
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[102] Corina Păsăreanu, Peter Mehlitz, David Bushnell, Karen Gundy-Burlet, Michael Lowry,

Suzette Person, and Mark Pape. Combining unit-level symbolic execution and system-

level concrete execution for testing NASA software. In Intl. Symp. on Software Testing and

Analysis, 2008.



BIBLIOGRAPHY 143

[103] Tero Pulkkinen, Karl Nelson, Esa Pulkkinen, Murray Cumming, and Martin Schulze.

libsigc++ — The Typesafe Callback Framework for C++. http://libsigc.

sourceforge.net/, 2011.

[104] R. Beuchat, P. Ienne et al. FPGA4U. http://fpga4u.epfl.ch/.

[105] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. Symdrive: Testing drivers

without devices. In Symp. on Operating Sys. Design and Implem., 2012.

[106] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A. Herrod. Using the

SimOS machine simulator to study complex computer systems. In ACM Transactions on

Modeling and Computer Simulation, volume 7, January 1997.

[107] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot Heiser. Automatic

device driver synthesis with Termite. In Symp. on Operating Systems Principles, 2009.

[108] Raimondas Sasnauskas, Philipp Kaiser, Russ Lucas Jukić, and Klaus Wehrle. Integration
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