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Figure 1. Given a single image, our method achieves appealing 3D face reconstruction and estimates a dense detailed face geometry,
spatially varying face reflectance (diffuse and specular albedos) and high frequency scene illumination.

Abstract

We present a novel face reconstruction method capable
of reconstructing detailed face geometry, spatially varying
face reflectance from a single monocular image. We build
our work upon the recent advances of DNN-based auto-
encoders with differentiable ray tracing image formation,
trained in self-supervised manner. While providing the ad-
vantage of learning-based approaches and real-time recon-
struction, the latter methods lacked fidelity. In this work,
we achieve, for the first time, high fidelity face reconstruc-
tion using self-supervised learning only. Our novel coarse-
to-fine deep architecture allows us to solve the challenging
problem of decoupling face reflectance from geometry using
a single image, at high computational speed. Compared to
state-of-the-art methods, our method achieves more visually
appealing reconstruction.

1. Introduction

Fast, robust and high fidelity 3D face reconstruction has
a wide range of applications in many domains such as in-
teractive face editing, video-conferencing, XR, Metaverse
applications, and visual effects for movies post-production.
Several approaches such as [1, 2, 3, 4, 5, 6] achieve high fi-
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delity reconstruction, but require complex hardware setups
(multi-view, lightstage). They are therefore not easily us-
able in most of the aforementioned applications. Signifi-
cant progress was made to achieve high quality reconstruc-
tion from monocular image/video using optimization-based
frameworks. Such methods [7, 8, 9, 10] are generally slow,
of limited robustness and not suitable for interactive sce-
narios. Also, their performances in challenging conditions
(non-uniform lighting, extreme poses) are limited.

Deep-based analysis-by-synthesis approaches have been
investigated to leverage the generalization capabilities of
machine learning. However, these methods [11, 12, 13, 14]
generally sacrifice reconstruction quality. Methods combin-
ing CNNs with differentiable rendering trained in a self-
supervised manner have been introduced by Tewari et al.
[11, 12, 15]. These methods directly regress the parameters
of a statistical morphable model and achieve real-time per-
formance but fall short of the quality and fidelity because
their estimated geometry and reflectance are bound by the
statistical prior space which limits its generalization regard-
ing the real diversity of face geometry and reflectance.

More recently, many works aim to improve the realism
and fidelity of deep-based methods by capturing either de-
tailed geometry or reflectance but not both, which we dis-
cuss next. First, to capture detailed geometry, and because
of the complexity of the problem, several methods rely on
ground truth dataset obtained either from multi-view recon-



struction setup (and/or lightstage) [16, 17, 18, 19], from
synthetic data [20, 21] or from a mixture of both [22, 23].
Feng et al. [24] is the only self-supervised method that
captures detailed geometry. However, this method only
captures medium-scale geometry details and misses high-
frequency geometry variations. Additionally, its estimated
reflectance is restricted to the statistical prior space which
limits its generalization regarding the real diversity in face
geometry and reflectance. Second, and to improve the re-
flectance, Dib et al. [25] combined ray tracing and self-
supervised learning to capture medium-scale reflectance de-
tails. However, this method restricts the estimated geome-
try to a parametric face model preventing high-frequency
facial details (such as wrinkles, folds...) to be captured. To
our knowledge, there is no existing self-supervised methods
that can jointly estimate detailed geometry and reflectance.

The first contribution of this work, is the introduction
of the first self-supervised method that jointly estimate de-
tailed geometry and reflectance. This is accomplished via
our novel coarse-to-fine architecture, with an adapted train-
ing strategy which allows our method to efficiently solve
the ambiguous and complex problem of separating detailed
geometry from reflectance from a single image taken under
uncontrolled lighting conditions.

The second contribution, is the combination, for the first
time, of differentiable ray tracing with vertex-based ren-
derer at training time to overcome the problem of edge dis-
continuities of the ray tracing. This allow our method to
benefit from both renderers. On one hand, ray tracing ac-
curately models self-shadows and on the second hand, the
vertex-based renderer evaluates correctly the whole geom-
etry including boundaries. This leads to a significant im-
provement in the estimated geometry compared to Dib et
al. [25] that uses only ray tracing.

Finally, the aforementioned contributions enable to take
a big leap forward in reconstruction quality for self-
supervised methods and lead to superior face reconstruction
when compared to recent state-of-the art methods. To our
knowledge, this is the first time a self-supervised method
reaches this level of fidelity and realism. Our robust face
attributes estimation (diffuse, specular and normal) leads to
practical applications such as face attribute editing and re-
lighting.

2. Related works
Methods such as [1, 3, 4, 5] deliver high-fidelity face re-

construction from multi-view or light-stage setup, but they
are generally expensive and not applicable for in-the-wild
conditions (many cameras, specific lighting). In this work,
we are interested in face reconstruction/tracking methods
that only use image or video as input and do not require any
external hardware setup beyond the camera. These meth-
ods can be split into two categories: optimization-based and

learning-based approaches.

Geometry and reflectance modeling Statistical 3D Mor-
phable Models - 3DMM - is the main building block for a
wide range of optimization-based and learning-based meth-
ods [26, 27, 28, 29]. This statistical model adds a lot of
structure and priors to face reconstruction problem from
monocular image or video and makes it tractable. However,
due to the low-dimensional space of 3DMM, subject spe-
cific medium and high frequency geometry and albedo de-
tails cannot be modeled. Additionally, the skin reflectance
model of 3DMM can only model the diffuse albedo and
may bake shadows/specularity in the albedo. [30] proposes
a drop-in replacement for the basic lambertian reflectance
model of 3DMM incorporating a diffuse and specular pri-
ors. In this work, we base our reconstruction on the 3DMM
geometry with the statistical diffuse and specular prior of
[30] and we train a novel multi-stage deep network to cap-
ture fine diffuse and geometry details.

Most of optimization-based methods like [9, 7, 8, 31, 32,
10, 33, 34] rely on the same 3DMM parametrization, they
provide generally precise reconstruction at the expense of a
high computation cost and are sensitive to difficult lighting
conditions.

Among the learning-based methods, deep convolution
neural networks (CNN) are effective at direct face recon-
struction [13, 14, 11, 12, 15, 35, 21, 36, 37, 38, 39, 40,
41]. Tewari et al. [11] proposed the first self-supervised
autoencoder-like method to estimate face attributes based
on 3DMM. The advantage of these self-supervised meth-
ods is that they can be trained on large corpus of unla-
beled images. However they generally fall short of re-
construction precision because of their simplified under-
lying scene parameterization (pure-Lambertian BRDF to
model skin reflectance and low-order spherical harmonics
to model light). Their inability to model self-shadows is
also a possible reason for their instability under challeng-
ing lighting conditions. Dib et al. [25] proposes a self-
supervised method that significantly improves over these
methods and solves many of these limitations. For instance,
it uses a cook-torrance BRDF to model skin reflectance, and
captures personalized albedos outside the statistical prior
space. It also uses a differentiable ray tracing to model
self-shadows. However the reconstructed geometry of their
method is still limited by 3DMM space.

Detailed geometry reconstruction Capturing fine detailed
geometry on top of global face structure is a pre-condition
to achieve high fidelity face reconstruction. However, be-
cause of the complexity of the problem, methods such as
[6] uses specific hardware setup which is not applicable in-
the-wild. Others, such Cao et al. [42] relies on ground truth
dense data [1], or data captured using a lightstage (or multi-
view) such as [19, 43, 44, 16, 17, 18]. However, acquiring



such ground truth data is not always possible.
Optimization based methods like [45, 7, 9] use shape-

from-shading [46] to capture fine geometry details. How-
ever these methods may not generalize well and are compu-
tationally expensive.

Some deep-based methods rely partially on synthetic
data ([20, 47, 22]) or a mix of labeled and unlabeled data
[23] to capture fine detailed geometry. The bias introduced
by these methods may impede the resulting precision due
to the mismatch with real data distribution. They also do
not estimate face reflectance. Sengupta et al. [21] uses
synthetic data to train their network which estimates a nor-
mal map and skin reflectance (limited to pure-lambertian
BRDF) but does not capture high frequency geometry de-
tails. More recently, Feng et al. [24] learns an ’expression-
dependent’ displacement model in-the-wild and is the only
method that relies only on unlabeled images for end-to-
end training. However this method only captures medium-
frequency displacement map and their estimated reflectance
is restricted to the statistical albedo prior space which limits
their reconstruction quality. To our knowledge, our method
is the first self-supervised method that jointly estimates:
geometry at high frequency, spatially varying personalized
skin reflectance with diffuse and specular albedos and high
frequency illumination from a single monocular image.

Differentiable rendering Differentiable rendering is a key
block in the context of analysis-by-rendering and several
implementations exist. Tewari et al. [11] proposed an ef-
ficient vertex-based differentiable rendering that can only
handle pure Lambertian BRDF and cannot capture self-
shadows. Works such as [48] propose a differentiable
shadow computation method for this type of renderer.

Dib et al. [49, 10] introduced a method which uses dif-
ferentiable ray tracing for face reconstruction within a clas-
sic optimization framework. The key advantage of ray trac-
ing over vertex-based renderer is the capacity of ray tracing
to handle self-shadows where a visibility mask is calculated
for each surface point with respect to each light during di-
rect illumination pass. However, differentiable ray tracing
is computationally expensive and memory consuming. Re-
cently, Dib et al. [25] uses differentiable ray tracing in con-
junction with a deep neural architecture for direct face re-
construction. In this scheme, inference does not incur the
speed penalty of ray tracing and delivers near real-time per-
formance with robust reconstruction in challenging lighting
conditions. Regarding the optimization process, a limitation
of ray tracing is the noise on gradients originating at the ob-
jects boundaries as they are sampled by very few points. So-
lutions exist but remain expensive ([50, 51]). In this work,
we combine a vertex-based renderer with a ray tracing ren-
derer together with a deep neural architecture that takes ad-
vantage of both. On one hand, ray tracing accurately mod-
els self-shadows, and on the second hand, the vertex-based

renderer evaluates the whole geometry including the edges.

3. Method
Our goal is to obtain a high fidelity face reconstruc-

tion with faithful separation between reflectance and ge-
ometry attributes. To solve this ill-posed problem, we pro-
pose a novel multi-stage deep architecture, wherein differ-
ent stages progressively refine the reconstruction.

Our network architecture, depicted in Figure 2, is com-
posed of 3 stages denoted: ’Coarse’, ’Medium’ and ’Fine’.
The ’Coarse’ reconstruction relies on the statistical geome-
try and albedo priors space. This base reconstruction lacks
important geometry and albedo (diffuse and specular) de-
tails because it is restricted by the low dimensional space
of the underlying model. The ’Medium’ stage improves the
previously estimated albedos without the limitations of the
statistical prior. Finally, the ’Fine’ stage adds diffuse albedo
and fine geometry details.

In the next, we introduce the scene attributes used by our
formulation and we describe the network architecture.

3.1. Scene attributes

Face geometry Shape identity is modeled using [26,
34]’s statistical face model, and is given by e = as + Σsα.
e is a vector of face geometry vertices with N vertices. The
identity-shape space is spanned by Σs ∈ R3N×Ks com-
posed of Ks = 80 principal components of this space.
α ∈ RKs weights each coefficient of the 3DMM and
as ∈ R3N is the mean face mesh vertices. We use linear
blendshapes to represent face expressions over the neutral
identity e: v = e+ Σeδ, where v is the final vertex position
displaced from e by blendshape weights vector δ ∈ RKe

and Σe ∈ R3N×Ke composed of Ke = 75 components of
the expression space.
Face reflectance Similar to [25], we use a simplified Cook-
Torrance BRDF [52, 53] with a constant roughness term.
This BRDF model has the advantage of modelling specu-
lar reflections compared to the pure Lambertian BRDF. For
each vertex, we define a diffuse ci ∈ R3 and a specular
si ∈ R3 albedos. The statistical diffuse c ∈ R3N and spec-
ular s ∈ R3N albedos are obtained from statistical prior
of [30], where c = ar + Σrβ and s = ab + Σbβ with
Σr,Σb ∈ R3N×Kr are the PCA for diffuse and specular
reflectance with Kr = 80. ar and ab are the average skin
diffuse and specular reflectance. We use the same coeffi-
cient β to sample the diffuse and specular albedos as in [30].
Illumination Similar to [25], we use nine spherical har-
monics (SH) bands to model light. Dib et al. [10] showed
that this high order SH parameterization provides a better
light and shadows estimation when used with ray tracing
compared to the widely used low-order 3 SH bands. An en-
vironment map of 64 × 64 is derived from SH to use with
ray tracing. We define γ ∈ R9×9×3 the light coefficients.



Figure 2. Our network architecture, trained end-to-end in a self-supervised manner, estimates face attributes (reflectance and detailed
geometry) in a coarse-to-fine fashion (refer to section 3).

Camera We use the pinhole camera model and define ϕ =
{T,R} as the camera parameters with rotation R ∈ SO(3)
and translation T ∈ R3.

3.2. Coarse stage

On Figure 2, the network E projects the input image
I into the latent scene representation followed by a fully
connected layer that predicts the semantic attributes vector
χ = {α, δ, ϕ, γ, β}. Diffuse D and specular S texture rep-
resentations are derived from β. These parameters are fed
to a differentiable ray tracer (DRT) and to a vertex-wise dif-
ferentiable renderer (DR) to generate two images I1

S and
I1
R respectively. The following loss function is minimized

during training:

Ed(χ) + Ep(α, β) + Eb(δ), (1)

where Ed is the data term equal to:

Ed(χ) = ES
ph(χ) + wdrE

R
ph(χ) + wlmEland(χ), (2)

with ES
ph is the pixel-wise photo-consistency loss between

input and ray traced pixels pi, pSi ∈ R3:

ES
ph(χ) =

∑
i

|pSi (χ)− pi|, (3)

where pSi = F(χ), with F , the Monte Carlo estimator of
the rendering equation [54]. ER

ph is the vertex-based photo-
consistency loss between the projected mesh and the corre-
sponding pixels in the input image, defined as follows:

ER
ph(χ) =

N∑
i=1

|B(ni, ci,Ri)− I(Π ◦ C(vi))|, (4)

where N is the number of vertices, C(vi) is the projection of
vertex vi in the real image, equal to: R−1(vi − T). Π is the
perspective camera matrix that projects a 3D vertex to a 2D
pixel. B is the final irradiance equal to the sum of the dif-
fuse and specular terms weighted by the specular intensity
si (details on B in supplementary material section A). Eland

is the landmark loss, which measures the distance between
the L = 68 predicted facial landmarks and the projection of
their corresponding vertex on the input image. These land-
marks are obtained using the landmarks detector of [55].
Ep is the statistical prior that regularizes against implausi-
ble face geometry and reflectance [10]. Eb(δ) is a soft-box
constraint that maintains δ in the range [0, 1].
Edge discontinuities Ray tracing can naturally models self-
shadows by building a visibility mask for each surface point
with respect to each light. However, the major drawback of
differentiable ray tracing is the discontinuities along geom-
etry edges ([50, 51]). In fact, when solving for the rendering
equation via Monte Carlo ray tracing [54], very few points
are sampled on these areas. As a result, back-propagation
fails to handle geometry edges accurately during the opti-
mization. Several solutions have been proposed to over-
come this limitation but they are generally very computa-
tionally expensive ([48, 51]). For instance, [51] explicitly
samples the geometry edges, which extremely penalizes the
training time as it needs to calculate the silhouette edges of
the geometry. While landmarks are mainly used to guide
the training, in the particular case of ray tracing they can
help mitigating the aforementioned limitation. However the
geometry is not as precise as it could be. As an efficient so-
lution, we introduce in this work a new loss term ER

ph (eq. 4)



which relies on a vertex-based differentiable renderer. This
leads to a more accurate reconstruction, by taking advantage
of ray tracing (which can model self-shadows) and vertex-
based rendering (for better gradients on geometry edges)
without significant cost. For instance, it only takes 370 ms
to process (forward-backward) an image using our method
compared to 42 seconds for the method of [51].

3.3. Medium stage

The albedos (diffuse and specular) and geometry esti-
mated by the previous stage are bound by the statistical
prior space and can only capture low frequency compo-
nents of the skin reflectance and geometry. Our goal is to
obtain personalized albedos (outside this space) with de-
tailed geometry. Estimating these parameters jointly in a
self-supervised manner is challenging. For this, we proceed
with a coarse-to-fine strategy and we start by capturing per-
sonalized medium diffuse and specular albedos outside the
statistical prior space. The challenge here is to avoid mixing
diffuse and specular albedos and also to avoid baking unex-
plained shadows in these albedos. For this, we use the same
technique of Dib et al. [25] which estimates personalized
shadow-free albedos. For this, we train two additional de-
coders, Dd and Ds, in a self-supervised way, that estimate
diffuse ∆d and specular ∆s increments to be added on top
of the previously estimated textures, D and S, respectively.
The resultant textures, D̂ and Ŝ, are used to generate a new
image I2

S . We note that the second stage has only access
to latent space of E allows this stage to focus on separat-
ing medium diffuse from specular albedo without worrying
about high frequency geometry details that are discarded
naturally by design. We define χ̂ = {α, δ, ϕ, γ, D̂, Ŝ} and
we minimize the following loss function:

Ed(χ̂) + Esc(Â,A) + wmEm(Â) + wbEb(Â), (5)

where Esc(Â,A) = wsEs(Â) + wcEc(Â,A), and A is ei-
ther D or S. Es and Ec are the symmetry and consistency
regularizers (similar to [25]) used to avoid baking residual
shadows in the personalized albedos. Em is a constraint
term that ensures local smoothness at each vertex, with re-
spect to its first ring neighbors.

3.4. Fine stage

While the previous stage allows to obtain more person-
alized diffuse and specular albedos, these albedos remain
generally blurry and still miss details. Also the geometry is
restricted to the low-dimensional space of 3DMM. For this,
we leverage the U-net based architecture (with skip connec-
tions) which are very efficient at capturing these fine details.
First, using the pose and the geometry produced by the first
stage, we project the input image I in the uv-space. This
projection, denoted as Ip, is passed to two U-net networks,

UG and UD. UG predicts a normal map ∆̂n used to dis-
place the original normal vectors of the coarse mesh. We
denote M̄ the final normal map used for shading, where
each vector m̄i in M̄ equal to: m̄i = Ti

⊗
n̄i, with n̄i sam-

pled from ∆̂n and Ti is a column-wise matrix that stack
the original normal ni, tangent ti and bi-tangent bi vectors
in the camera coordinate system (more on normal mapping
with ray tracing in [56]). UD predicts an increment ∆̂d that
is added to the estimated diffuse albedo D̂ of the previous
stage. We denote D̄ as the resulting texture.

We define χ̄ = {α, δ, ϕ, γ,M̄, D̄} and we train UG and
UD in a self-supervised manner by minimizing the follow-
ing loss function:

Ed(χ̄) + Esc(D̄, D̂) + wf
mEm(Ā) + wf

b Eb(Ā), (6)

where Esc(D̄, D̂) = wf
sEs(D̄) + wf

c Ec(D̄, D̂), and Ā is ei-
ther D̄ or M̄. The regularization terms Es and Ec play an
important role in avoiding baking unexplained shadows in
diffuse texture D̄ in case our lighting model did not recover
the light correctly. Also these regularizers contribute in pro-
ducing a good separation between diffuse and geometry de-
tails. However, they sacrifice some albedo details (please
refer to the ablation section 5). Finally, we note that we ex-
perimented using an additional U-net to capture a specular
increment ∆̂s (similar to the diffuse) but we did not obtain
substantial improvements in the reconstruction quality.

3.5. Training strategy

We proceed with the following training strategy. We first
train E (with the fully-connected layer) for 30 epochs, in a
non-supervised manner, to directly regress χ by minimizing
eq. 1. Next, we train Dd, Ds, and E for 10 epochs while
minimizing the loss in eq. 5. We follow the same training
strategy proposed by [25] to separate diffuse and specular
albedos, which consists in starting with a high regulariza-
tion value of wc for diffuse texture (in eq. 5), and then in
progressively relaxing its value during training to allow for
the diffuse albedo to capture more details. Next, we fix Dd

and Ds, then we train UG,UD and E for 5 epochs, to es-
timate a normal map and an enhanced diffuse map respec-
tively, by minimizing the photo-consistency loss in eq. 6.
To avoid over-fitting one component, and to obtain a plausi-
ble separation between these attributes, we start with a high
weight for wf

c and we progressively relax this constraint to
allow D̄ to capture more albedo details.

Finally, we note that the vertex-based loss in eq. 4 is
used in the whole training process with the goal to assist
and guide the pixel-wise photo-consistency loss of ray trac-
ing (eq. 3) at different stages, so to alleviate the problem of
noisy edge gradients that ray tracing exhibits.
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Figure 3. Results with challenging face details. From left to right: Input image, overlay of our final reconstruction on the input image, final
reconstruction, shading, normal, diffuse and specular.



Figure 4. ablation studies (section 5)

4. Results

For training, we use CelebA dataset [57] where images
were cropped to 256 × 256. Output textures of different
networks have the same resolution as the input image. We
implemented our network using PyTorch [58]. Ray tracing
is based on the method of [51]. During training, we use 8
samples per pixels for ray tracing. More implementation
details are in supp. material, section B.

Figure 1, Figure 3 and supp. material (section E) show
successful face reconstruction of more than 100 subjects
with challenging face details, extreme lighting conditions,
challenging head pose/expression and different skin type
(makeup, beards)... For all these subjects, our method suc-
cessfully estimates personalized albedos and captures fine
detailed geometry, which leads to appealing reconstruction
at high fidelity. Even in challenging lighting conditions, our
method successfully estimates shadow-free maps (diffuse,
specular and normal). All this, at very high computational
speed, where at inference, our method takes 131 ms to pro-
cess an image on a Nvidia RTX 2080 Ti. We note that while
ray tracing penalizes our training time, it is not needed at
inference time and our estimated attributes are compatible
with existing rendering engines. Finally, our robust estima-
tion of scene light, face reflectance and geometry provides
explicit controls over the face attributes which leads to prac-
tical applications such as face attribute editing (aging) and
relighting as shown in supp. material (section E). Finally,
in supp. video, we also show reconstruction on video se-
quence.

5. Ablation

Importance of vertex-based renderer In this experi-
ment, we study the importance of the vertex-based renderer
to overcome the problem of noisy edge gradients of the ray
tracer. For this, we trained E by dropping the vertex-based

renderer based loss term (eq 4) from equation 2. We com-
pare the estimated mesh to the one that use the full energy
term (ray tracing + vertex-wise). The results in Figure 4
a) show that the estimated meshes using both the vertex-
based renderer and ray tracer are more accurate than the
ones obtained using ray tracing only (especially around the
mouth edges). Quantitatively, we evaluate both methods
on 100 subjects from Facescape dataset [19] with various
type of facial expressions. We compute the vertex posi-
tion error with respect to ground truth mesh, and we obtain
2.288/1.671 mm (mean error/std deviation) for the ’vertex-
based + ray tracing’ compared to 2.831/1.782 mm for ’ray
tracing only’ which show that combining ray tracing with
the vertex-based renderer improves the reconstructed geom-
etry. We note that reason why the improvement may look
small is that ’vertex-based + ray tracing’ aims to improve
the geometry on very small area around the edges.
Regularization In this experiment, we study the impor-
tance of the symmetry and consistency regularizers (Esc)
used in equation 6 to separate the diffuse and geometric de-
tails faithfully. For this, we trained UG and UD by drop-
ping these two regularizers. For both subjects in Figure 4
b), without these regularizers, some geometric details get
baked in the albedo and leads to sub-optimal separation.
Adding these regularizers produce more convincing sepa-
ration. While these regularizers play an important role in
obtaining a correct separation between diffuse and geome-
try details, they sacrifice some albedo details.
Multi-Stage reconstruction In this experiment we show
the importance of the ’Medium’ and ’Fine’ stages to im-
prove the realism of the ’Coarse’ reconstruction. Figure
4 c) shows the reconstruction obtained from the ’Coarse’
stage with the estimated statistical albedo priors. For the
’Medium’ stage, we show the corresponding reconstruc-
tion and the enhanced diffuse and specular albedos. For
the ’Fine’ stage, we show the final reconstruction with the
final diffuse and normal maps. We note that the diffuse
albedo in ’Medium’ stage is generally blurry and lacks some
details and is significantly enhanced in the ’Fine’ stage.
Also, the detailed geometry captured in the ’Fine’ stage sig-
nificantly improves the realism of the final reconstruction.
Quantitatively, we calculate the SSIM between the recon-
struction of each stage and the original input image. On
1000 images, we obtain an average of 0.89/0.91/0.97 for
the coarse/medium/fine stages respectively (higher is bet-
ter). This shows that the ’Fine’ stage significantly improves
the fidelity of the reconstruction.

6. Comparison

In this section, we compare, qualitatively and quantita-
tively, our method to the state-of-the-art methods.



Figure 5. Comparison against Chen et al. [17], Yang et al. [19] and Feng et al. [24]

Figure 6. Comparisons against Dib et al. [25] (top subject from
[25])

6.1. Qualitative comparison

Figure 5 shows comparison against Chen et al. [17],
Yang et al. [19] and Feng et al. [24]. For [17] and [24],
results are from authors’ open implementation. For [19]
results are generated by the authors. The methods of [17]
and [19] use ground truth (GT) data to train their genera-
tive network while our method and [24] are self-supervised
methods and do not require any GT data. For all subjects,
our method successfully capture most of geometry details
especially for the top subjects that present challenging de-
tails. These details are barely captured or missed by other
methods. Also our method shows better results on the wrin-
kles formed by the zygomaticus muscles (smile wrinkles
around nose and mouth). Our method has a significantly
better shape and expression recovery than all other methods,
especially around the mouth (as highlighted in red rectan-
gles), where the expression is incorrectly captured by other
methods.
Compared to Dib et al. [25] (Figure 6), our method achieves
robustness against challenging lighting conditions similar to
[25] and produces shadow free albedos (first two subjects).
In addition, our method estimates better diffuse map and
captures detailed geometry, while [25] restricts the geome-
try reconstruction to the low-dimensional space of 3DMM.

This leads to a superior and high fidelity reconstruction of
our method compared to [25] (highlighted in red rectangle).
Finally, for third subject, our method that combine ray trac-
ing and vertex-based rendering has a better expression re-
covery around the mouth than [25] that uses only ray trac-
ing, which also confirms our earlier ablation study (high-
lighted in green rectangle).

Figure 7 show comparaison against the method of Abre-
vaya et al. [23] on subjects with challenging facial details.
The method of Abrevaya et al. [23] uses a combination
of labeled and unlabeled data to train the network that pre-
dicts normal map of the face. It also produces a complete
normal map for the entire head (including eyes and moth
interior) while our method restricts the reconstruction to
the frontal region of the face (without eyes and mouth in-
terior). However, our method captures more facial details
(especially arround the eyes) than [23]. Finally we note that
[23] only predicts a normal map (in camera space and not in
uv space), and other face attributes are not estimated. Our
method, estimates rich face attributes maps in uv space (nor-
mal, diffuse and specular), face geometry and scene light.
More comparisons against other recent methods can be
found in supp. material, section C.

6.2. Quantitative comparison

Geometric evaluation We first compare our estimated
geometry to the state-of-the-art methods of Chen et al. [17],
Feng et al. [24], and Dib et al. [25] on the Superfaces
dataset [59] composed of 20 high resolution 3D ground
truth (GT) face meshes (Table 1 and Figure 8). Table 1 re-
ports, for each method, on all subjects, the average error µ
and standard deviation σ for vertex position error. As shown
in Figure 8, the same mask is used for all methods. Feng et
al.[24] achieves slightly better results than our method on
average error while ours has a smaller standard deviation.
Our method achieves better score than Chen et al. [17] and
Dib et al. [25]. As depicted in Figure 8, our approach mea-
sures lowest error around the mouth. Finally, we note that
our method, which combines ray tracing with vertex-based
renderer, has lower error than Dib et al.[25] that only uses



Figure 7. Comparison against Abrevaya et al. [23]

Table 1. Position error (mean/stdev) on Superfaces dataset [59]
Chen et al. [17] Feng et al. [24] Dib et al. [25] Ours

Mean err µ (mm) 1.847 1.234 1.379 1.287
Stdev σ (mm) 1.512 1.206 1.159 1.025

Figure 8. Vertex position error compared to GT mesh of Super-
faces dataset [59].

Table 2. Position error (median/mean/stdev) on Now dataset [60]
Feng et al. [24] Dib et al. [25] Ours

Median err (mm) 1.09 1.26 1.24
Mean err (mm) 1.38 1.57 1.54
Stdev (mm) 1.18 1.31 1.29

ray tracing, which again confirms our earlier ablation study
(Section 5).

We also evaluate our method on the NoW dataset [60],
which is composed of 80 subjects with a total of 1702 im-
ages. Results are reported in Table 2. We note that this
dataset only evaluates mesh in neutral pose, so expres-
sion accuracy is not evaluated. Nevertheless, our method
achieves competitive results and a better score than Dib et
al. [25]. Feng et al. [24] achieves the top score (more scores
against other methods are on NoW website). We note that
for both datasets, for our method, the mesh used for compar-
ison is the base 3DMM geometry estimated by the ”coarse”
stage as our method only estimates a normal map to model
the finer details.

Normal evaluation We also compare our estimated normal
map to Chen et al. [17] and Feng et al. [24] on Emily
[61] and on realistic 3D head model [62] which we call
’Male014’ in the next. Results are reported in Figure 9
and Table 3. Since each method uses a different UV map
parametrization, the comparison was done on the rendered
image and not on the unwrapped texture using the same
mask (as shown in Figure 9). For ’Male014’, our method

Table 3. Mean angular error (degrees) and percentage of errors be-
low 20◦, 25◦ and 30◦. (Top-row: Male014; Bottom-row: Emily)

Name Mean±Std < 20◦ < 25◦ < 30◦

Ours 22.9±15.3 51.6% 67.0% 77.1%
Feng et al. [24] 24.2±14.5 43.8% 59.7% 72.4%
Chen et al. [17] 26.2±15.6 39.4% 55.8% 68.5%

Ours 16.8± 9.9 71.2% 84.7% 92.8%
Feng et al. [24] 15.2±12.2 77.2% 84.5% 89.4%
Chen et al. [17] 17.0±13.9 72.4% 82.7% 88.2%

has the lowest mean error. For Emily, [24] has a better
average error but our method has a lower standard devia-
tion. Our method scores the best in error percentage under
20◦, 25◦ and 30◦ for both subjects except for Emily 20◦. We
note that the method of Chen et al. [17] does not correctly
recover the mouth expression of both subjects (Figure 9).
Finally, the last column in Figure 9 shows the final recon-
struction of our method overlaid on the input image.

7. Limitations, Future works and Conclusion

Limitations and Future works First, separating light
color from skin color using a single image is not solved
in this work and remains an open challenge, therefore, our
method may sometimes bake some albedo color in the esti-
mated light, that is why our shading may look reddish some-
times. Second, since we do not use symmetry and consis-
tency regularizers for the normal map, some shadows may
get baked in the normal map when the method fails to re-
cover to correct light of the scene. Our experiments show
that adding these regularizers can mitigate this but sacrifices
important geometry details. Third, regularizers used in eq. 6
allow our method to obtain a correct separation between dif-
fuse albedo and geometry details but this is at the expense
of some albedo details (cf. section 5). Finally, our method
cannot handle occlusions, so face props (such as glasses) get
baked in the estimated maps. Work such [63] is important
to tackle this. As future work, our method does not connect
expression to the geometry details as in [24] which is impor-
tant to obtain realistic animated rigs. Such a function could



leverage the rich representation produced by our pipeline.
Finally, our method estimates view and light dependent face
attributes and can be extended to video/multi-view based re-
construction which can significantly improve the estimated
facial attributes and alleviate a lot of ambiguity introduced
by using a single image only. Some limitations are shown
in supp. material, section D.

Figure 9. Estimated normal map compared to GT normal.

Conclusion In this work, we push to a new level the princi-
ple of analysis-by-rendering within self-supervised learning
framework by refining the modelling, the training as well
as the rendering stages. First, by combining, for the first
time, ray tracing with the vertex-based renderer at training
time, to solve the problem of edge-discontinuities of ray
tracing which significantly improves the overall geometry
and suggests an improvement on the original ray tracing al-
gorithm. Second, by introducing a coarse-to-fine deep ar-
chitecture, with adapted training strategy, that solve, for the
first time, the highly challenging problem of separating de-
tailed face attributes (reflectance and geometry) from a sin-
gle image, within a self-supervised setup, and under uncon-
trolled lighting conditions. Compared to recent state-of-the
art, our method achieves superior reconstruction quality and
produces more visually appealing results and define a new
baseline for self-supervised monocular face reconstruction
methods ’in-the-wild’.
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A. Vertex-based implementation
Here we provide the implementation details for the final

irradiance B used by the vertex-based renderer (please refer
to eq. 4 in main document).

The final irradiance B is equal to the sum of the diffuse
and specular terms weighted by the specular intensity si ∈
R:

B(ni, ci,Ri) = (1− si) · Bd(ni, ci) + si · Bs(Ri) (7)

The diffuse irradiance Bd, is obtained by multiplying the
SH coefficients, Blm of the light with SH coefficients (Al)
of the half-cosine function ([64]):

Bd(ni, ci) = ci ·
8∑

l=0

l∑
m=−l

Al ·Blm · Ylm(ni) (8)

with ci ∈ R3 and ni ∈ R3 are the diffuse albedo and normal
vector for each vertex respectively.

Similarly, The specular irradiance is obtained using a
spatial convolution of the SH light coefficients with the
BRDF kernel of the roughness, which is constant in our
simplified Cook-Torrance BRDF model:

Bs(Ri) =

8∑
l=0

l∑
m=−l

Sl ·Blm · Ylm(Ri), (9)

with Ri is the reflection direction of the viewing vector Wi

with respect to the surface normal, and Sl are the SH coef-
ficients of the BRDF function [64].

B. Implementation details
We use PyTorch [58] with Cuda-enabled backend gpu.

Two GPUs were used for training with a total of 24GB of
memory. We used Adam optimizer with default parame-
ters. Celeba dataset [57] is used for training with 3K im-
ages kept for validation. Images are aligned and cropped
to a 256x256 resolution. Because ray tracing is generally
slow, it takes 10 hours to do a single epoch. However, our
method does not need ray tracing at test time and achieves
fast inference (131 ms to process an image). We use 8 sam-
ples per pixel for ray tracing and a batch size of 8. For E,
we use a pre-trained ResNet-152. The architecture for Dd

and Ds is given in Table 4. For UG and UD, we use a
U-net with skip connections with a pre-trained vgg16 back-
bone from here1. The last layer of UD, UG, Dd and Ds is
initialized to output zero increment at the beginning of the
training. Landmarks weight wlm = 0.1, vertex-based ren-
derer weight wdr = 0.5. For the ’Medium’ stage, smooth-
ness regularizer wm = 0.0001 for diffuse and specular albe-
dos. The symmetry regularizer ws = 20 for medium diffuse

1https://github.com/mkisantal/backboned-unet

Layer Architecture
1 ct(256, 160, 3),bn=ELU,c2d(160, 256, 1),bn,ELU
2 ct(256, 256, 3),bn,ELU=c2d(256, 128, 3),bn,ELU,c2d(128, 192, 3),bn,ELU
3 ct(192, 192, 3),bn,ELU,c2d(192, 96, 3),bn,ELU,c2d(96, 128, 3),bn,ELU
4 ct(128, 128, 3),bn,ELU,c2d(128, 64, 3),bn,ELU,c2d(64, 64, 3),bn,ELU
5 ct(64, 64, 3),bn,ELU,c2d(64, 32, 3),bn,ELU,c2d(32, 42, 3),bn,ELU
6 ct(42, 42, 3),bn,ELU,c2d(42, 21, 3),bn,ELU,c2d(21, 3, 3),Tanh

Table 4. Architecture for Dd and Ds (ct: ConvTranspose2d, c2d:
Conv2D, bn:BatchNorm2d (pytorch).

Figure 10. Comparison against Sela et al. [20]. Subjects from
authors’ manuscript.

and specular albedos. Consistency regularizer for specular
albedo wc = 0.01. For diffuse albedo, we start with a value
of 0.2 and we relax it by a factor of 2 at each epoch. For the
fine layer, the smoothness regularizer wf

m = 0.0001 for dif-
fuse and normal maps. The symmetry regularizer wsf = 10
for the final diffuse. The consistency regularizer, we start
with wf

c = 1.0 and we relax it by a factor of two at each
epoch.

C. More qualitative comparison
In this section, we show more qualitative comparison

against state-of-the art methods.
Figure 10 and Figure 11 show comparison results against

the method of Sela et al. [20] and Richardson et al. [47].
Subjects are taken from authors’ manuscript. We note that
these two methods only estimate detailed geometry while
our method estimates geometry, reflectance and scene light.

Figure 11. Comparison against Richardson et al. [47]. Subjects
from authors’ manuscript.

D. Limitations example
Figure 12 shows some limitations of our method. The

description of the examples are as follows:



Figure 12. Limitations of our method.

• Subject a): Under external (foreign) shadows, our
method fails to recover the light and leads to shad-
ows baking in the estimated normal map. Tackling for-
eign shadows is a challenging problem, and the method
such as Zhang et al. [65] described about the diffi-
culties of handling this issue. We also note that our
spherical harmonics based lighting model has its own
limitations because it can only model infinite lights.

• Subject b): Separating light color from skin color us-
ing a single image remains challenging and our method
does not solve for this. As a result, some skin color can
get baked in the estimated light (represented here as an
environment map).

• Subject c) and d): Occlusions and face props can get
baked in the estimated maps. In case of severe occlu-
sions (subject d), our method may fail to correctly es-
timate the geometry (highlighted in red box).

E. Results and relighting/aging applications
• Figure 3 and Figure 13 show reconstruction for sub-

jects with challenging details on the face.

• Figure 14 show reconstruction for subjects under chal-
lenging lighting conditions.

• Figure 15 and Figure 16 show reconstruction for sub-
jects with make-up, beards and face props.

• Figures 17, 18, 19 and 20 show reconstruction for var-
ious subjects with different ethnicity, skin color, diffi-
cult expression, challenging head pose.

For all these subjects, our method generalizes very well
and achieves appealing 3D reconstruction with high fidelity

compared to the input image (first column vs second col-
umn). It also successfully estimates meaningful face at-
tributes with faithful separation between reflectance and de-
tailed geometry. Even under challenging lighting condi-
tions, our method estimates plausible face reconstruction
and produces shadow-free maps. In the supp. video, we
show animated reconstruction with relighting and also re-
construction from video sequence.
Figure 21 shows relighting of different subjects under novel
lighting conditions (second and third column). Because
our method can successfully estimates shadow-free face at-
tributes, and faithfully separates reflectance from detailed
geometry, all this allow our method to perform relighting
even for subjects under challenging light (last two subjects
in Figure 21). The last three columns in Figure 21 show the
estimated detailed geometry by our method rendered with
OpenGL under different viewing angles.

Another practical applications for our method are face at-
tribute(s) editing, attribute(s) transfer, aging and de-aging...
We show in Figure 22 an ’Aging’ application that con-
sists simply on transferring the estimated normal map from
source (A) to target (B).
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Figure 13. Results with challenging face details. From left to right: Input image, overlay of our final reconstruction on the input image,
final reconstruction, shading, normal, diffuse and specular.
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Figure 14. Results with challenging lighting conditions. From left to right: Input image, overlay of our final reconstruction on the input
image, final reconstruction, shading, normal, diffuse and specular.



Input Overlay Final Shading Normal Diffuse Specular

Figure 15. Results for subjects with make-up, beards and face props. From left to right: Input image, overlay of our final reconstruction on
the input image, final reconstruction, shading, normal, diffuse and specular.
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Figure 16. Results for subjects with make-up, beards and face props. From left to right: Input image, overlay of our final reconstruction on
the input image, final reconstruction, shading, normal, diffuse and specular.
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Figure 17. Results for subjects with different ethnicity, skin color, difficult expression and challenging head pose. From left to right: Input
image, overlay of our final reconstruction on the input image, final reconstruction, shading, normal, diffuse and specular.
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Figure 18. Results for subjects with different ethnicity, skin color, difficult expression and challenging head pose. From left to right: Input
image, overlay of our final reconstruction on the input image, final reconstruction, shading, normal, diffuse and specular.
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Figure 19. Results for subjects with different ethnicity, skin color, difficult expression and challenging head pose. From left to right: Input
image, overlay of our final reconstruction on the input image, final reconstruction, shading, normal, diffuse and specular.
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Figure 20. Results for subjects with different ethnicity, skin color, difficult expression and challenging head pose. From left to right: Input
image, overlay of our final reconstruction on the input image, final reconstruction, shading, normal, diffuse and specular.



Figure 21. Our robust face attributes estimation gives explicit control over these attributes and allow for relighting even for subjects under
challenging lighting conditions (last two subjects). The last three columns show the estimated geometry by our method for each subject
rendered with OpenGL under different viewing angles.



Figure 22. Face attributes edition: Our robust face attributes estimation allow for practical applications such as normal transfer from source
(A) to target (B) which leads to aging/de-aging (here we show aging). Please note the wrinkles/folds that appears on the aged face.


