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Abstract
The Elmore delay is the metric of choice for performance-
driven design applications due to its simple, explicit form
and ease with which sensitivity information can be
calculated. However, for deep submicron technologies, the
accuracy of the Elmore delay is insufficient. In this paper,
we formulate a delay model using a provably stable two
pole waveform response that provides a unique mapping
between four moments and a specific delay value. Unlike
traditional moment matching, this two-pole model permits
us to precharacterize the delays, and store them in a table,
as a mapped function of three parameters. The model also
provides an explicit expression for the peak noise induced
on a coupled line as a function of the same three moments.
The results indicate runtimes comparable to an Elmore
delay calculation but with the accuracy of an AWE
approximation.

1. Introduction

With decreasing rise times and minimum feature sizes,
Elmore delay [1][2] ceases to be the accurate metric for
interconnect analysis and synthesis. It provides overly pes-
simistic delay measure for RC circuits with general finite-
ramp inputs. Considering that 60% of the path delay in
today’s circuits are attributed to the interconnect [3], such
an error is unacceptable. Also, since interconnect resis-
tance is higher, its shielding effect is more important.
Elmore delay, neglecting the resistance shielding, does not
capture the correct sensitivities, which is very crucial.

Similar to the Elmore delay model for delay approxi-
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mations, the first moment of the coupled node voltage
multiplied with the input voltage slope, is shown to be a
bound for coupling noise in RC networks [4]. However,
this bound is a good approximation only for very slow ris-
ing inputs, and at most times yields very pessimistic
results.

Timing driven physical design tools need accurate
delay and noise metrics for deep submicron. These metrics
should also be very efficient, thereby prohibiting the use of
higher order Krylov space methods. For these reasons, we
return back to AWE [7] with a Partial Padé capability that
produces provably stable two-pole models using the
moments at the driving point and the load end. The rea-
sons are two-fold:

1. AWE with Partial Padé provides the most accurate
stable approximation for low-orders. The entire frequency
range for RC network responses can be captured using a
few poles. The use of Krylov space methods [5][6] makes
difference only for higher orders.

2. Any approximation with more than two poles does
not permit the use of a direct formula for coupling noise
and delay. It is known that the Newton-Raphson or regula-
falsi iterations for the solution of this response is very
costly. To avoid this cost, lookup tables can be used, how-
ever for aq pole formula, a2q+1 dimension lookup table
is needed. On the other hand, the two pole approximation
lookup table can be made 3D with a proper implementa-
tion. In addition, there is an explicit formula for maximum
coupling noise with the two pole model.

In the following sections, we will explain the proposed
model and prove that our model is always stable.

2. S2P Approximation

The stable two pole (S2P) approximation consists of
two stages: 1) Finding the poles from the driving point
admittance moments. 2) Matching the moments at the load
ends to find the residues.



Let Y(s) be an driving point admittance function of a
general RC circuit and consider its representation in terms
of poles and residues:

(1)

whereq is the exact order of the circuit. In terms of the
poles and residues, the moments are given as

(2)

Let us now consider the second order Padé approximation

of  and denote it by :

(3)

In AWE technique, the coefficients , ,  and  are

obtained using a moment matching procedure which is
equivalent to solving the following linear equation system:

(4)

Actually, to find the coefficients of the denominator poly-
nomial we can use any four successive moments. Using
higher order moments give better approximations to the
actual poles and is known as horizontal convergence in the
Padé approximation literature. Therefore, in general we
have

(5)

2.1. Stability and Realness of the Poles

It is proved in [8] that second order Padé approxima-
tions for the driving point admittance function of a RC cir-
cuit is always stable, and the two poles of the
approximation are real. The proofs are based on the mono-
tonicity property of the admittance moment ratios in RC
circuits [8]:

(6)

2.2. The Algorithm

1. Computem1, m2, m3 andm4 for Y(s)

2. Find the two poles at the driving point admittance

(7)

(8)

3. To match the voltage moments at the response nodes,
solve the Vandermonde equations:

(9)

where  and  are the moments at the response

nodes. (Note that  is known as the Elmore delay at the

response node.)
4. The S2P approximation is then expressed as:

(10)

The computation of the additional moments beyond the
first moment comes with very little incremental cost. This
process can be implemented using a vectorized path trac-
ing algorithm like that in RICE [9]. The poles in (10) are
guaranteed to be stable and real, thereby eliminating the
need for using heuristics to get real, stable poles in tradi-
tional moment matching.

3. Delay and Coupling Noise Metrics

3.1. Delay Metric

If the input is a finite-ramp signal with a transition time
of , the waveform at the response node can be written

as:

(11)

For the 50% delay evaluation, the equation

needs to be solved for . We obtain the S2P delay esti-

mate using . The solution of (11)

requires Newton-Raphson or Regula-Falsi iterations. To
avoid these costly iterations, we build a lookup table with
pre-computed delays for various parameter values.

The table for a two pole model has five parameters
, but it is possible to reduce it to 3-D

by normalizing the system with respect to  and using

the fact that  for RC trees. Then, the parameters

Y s( )
kn

s p– n
-------------- k0+

n 1=

q

∑=

mi

kn

pn
i 1+

------------
n 1=

q

∑–= i 0>

Y s( ) Ŷ s( )
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for our table is ,  and . The delay

value obtained from the table is then divided by for

back-normalization. With this selection of parameters, it is
easier to predict the ranges. For example, it is empirically
known that after , the 50% delay is almost

equal to  (Elmore delay), so the range for  in

the table should be between 0 and 7.

3.2. Noise Metric

To understand the behavior of coupling noise in victim
nodes of RC circuits, we should investigate the exact noise
response for a saturated ramp input. Noticing that there is
no dc coupling between the aggressor and victim line,

therefore . For the victim node, the exact noise

response can be written as:

(12)

Under the “wrong” assumption that  is a very

big negative number for alln, the transient part ofn(t) dies
out beforet < Trise. Therefore, with this assumption, it can

be shown that  appears as an upper found for

n(t). The same argument has been found using a different
way in [4]. However for today’s technologies with fast rise
times, this measure is overly pessimistic, and this moti-
vates the need for a two-pole approximation.

Under the S2P model, there exists an explicit formula
for the maximum coupling noise. We compute , ,

and  for the victim node(s). Writing out formula with

two poles and solving for the time where derivative is

equal to zero, we obtain  when voltage gets maximum.

(13)

From (13),  is always later than , and evaluating

the noise at that time point, we obtain:

(14)

4. Results

In this section, the new metrics that are derived from
S2P models are compared against conventional measures.
We compare the delay estimation performances of S2P
approximation result ,  (Elmore delay),

 and the exact delay values found by SPICE.

The  measure is widely used as a remedy to

reduce the pessimistic behavior of simple Elmore delay. In
fact, it is the 50% delay point for the step response of a
one pole approximation. For the evaluation of our pro-
posed metric for peak noise, S2P models are compared

with  bound and exact peak noise value found

by SPICE
The S2P delay metric is tested on an industrial IC with

over 700 nets and 1200 load points. The relative percent
errors of S2P,  and  metrics with

respect to SPICE results are shown in Figure 1. As seen
clearly, Elmore delay has up to 140% errors, whereas the
new S2P delay metric has less than 5% error in all of the
cases.

To test the noise measure, a coupled circuit extracted
from an IC with 56 outputs is used. The percent errors of

S2P noise and  metrics with respect to SPICE

results are compared in Figure 2. The  measure

is overly pessimistic, sometimes reaching up to 240%
errors, while S2P model predicts the maximum coupling
noise perfectly within 1% percent error.

As another example to show that the exact coupling
waveform also matches perfectly with the S2P waveform,
the two-bit coupled bus problem has been chosen

(Figure 3). As demonstrated in this example,

metric gives a very pessimistic bound for the peak noise,
whereas S2P waveform matches the exact response in the
victim line perfectly.

In these examples, RICE [9] is used to obtain the first
four moments of the circuit. The run time costs are domi-
nated by the circuit compilation time, where the circuit
graph is extracted and compiled. The circuit compilation
in RICE corresponds to LU decomposition on matrix
based moment solvers. Since by the use of lookup tables
in delay evaluation and a simple explicit formula for the
noise measure, the complexities of S2P metrics are very
close to single moment based criteria.

5. Conclusion

In this paper, we have proved that the second order
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AWE approximation of the driving point admittance func-
tions of RC circuits are always stable. Then, transfer func-
tions are approximated using the Partial Padé matching.
This no-heuristic, three-moment based S2P approximation
is observed to have superior accuracy in RC circuits, for
both delay and coupling evaluation. By the use of lookup
tables for delay and explicit formulas for maximum cou-
pling noise, our metrics avoid the costly iterations and
practically achieve the speed of single moment metrics.
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