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Abstract

We describe the Saarland University submis-

sion to the shared task on Cross-Framework

Meaning Representation Parsing (MRP) at the

2019 Conference on Computational Natural

Language Learning (CoNLL).

1 Introduction

In this paper, we describe the semantic parser sub-

mitted by Saarland University to the MRP shared

task (Oepen et al., 2019)1. This task consists in

learning to accurately map English sentences to

graph-based meaning representations across five

different graphbanks.

There has been substantial previous work on

graph parsing for each of the graphbanks in MRP,

including DM and PSD (Peng et al., 2017; Dozat

and Manning, 2018), EDS (Buys and Blunsom,

2017; Chen et al., 2018), AMR (Flanigan et al.,

2014; Buys and Blunsom, 2017; Lyu and Titov;

Zhang et al., 2019), and UCCA (Hershcovich et al.,

2017, 2018; Jiang et al., 2019). One advantage

of our parser is that it works accurately across all

graphbanks at the same time.

Instead of learning to map directly from sen-

tences to graphs, our parser learns to map sentences

to AM dependency trees. Each AM dependency

tree consists of a graph for the lexical meaning of

each token in the sentence, along with a depen-

dency tree that specifies the words that fill each

semantic role of a given predicate. An AM depen-

dency tree can be deterministically evaluated to a

graph via the AM Algebra (Groschwitz et al., 2017).

Thus, the parser compositionally maps sentences to

graphs, with the AM dependency trees describing

the compositional structure of the meaning repre-

sentation. We will sketch the background on AM

dependency trees in Section 2.

1http://mrp.nlpl.eu

In earlier work, we showed how to accurately

predict AM dependency trees for AMR using a neu-

ral dependency parser and supertagger (Groschwitz

et al., 2018). We extended this parser from AMR

to the DM, PAS, PSD, and EDS graphbanks and

obtained state-of-the-art results across all of these

graphbanks (Lindemann et al., 2019); we will call

this system the ACL-19 parser throughout this pa-

per. Earlier semantic parsers were only available

for one or two families of closely related graph-

banks; our system was the first to parse accurately

across a range of different graphbanks. We took

this parser as the starting point of our MRP sub-

mission; we explain the minor tweaks that were

needed for the MRP flavors of DM, PSD, EDS, and

AMR in Section 3.

The one MRP graphbank which was not di-

rectly supported by the ACL-19 parser is UCCA

(Abend and Rappoport, 2013). We thus imple-

mented heuristics for converting UCCA annota-

tions into AM dependency graphs. Certain design

decisions in UCCA made this more difficult than

for the other graphbanks; we worked around some

of these in preprocessing. We describe the details

in Section 4.

We present detailed evaluation results in Sec-

tion 5. We also describe a few post-deadline im-

provements, which bring our parser up to an MRP

f-score of 71.6 on AMR and 70.1 on UCCA.

2 AM dependency parsing

We start by describing the ACL-19 parser (Linde-

mann et al., 2019). This parser is trained to map

sentences into AM dependency trees, which are

then deterministically evaluated to graphs in the

AM algebra.

2.1 AM Algebra

The Apply-Modify Algebra (AM algebra;

Groschwitz et al. (2017)) builds graphs from graph

{donatelli|jonasg|koller|mlinde|mariom|piaw}@coli.uni-saarland.de
m.fowlie@uu.nl
http://mrp.nlpl.eu
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Figure 1: As-graphs (= supertags) for the words in the

sentence “the tall giraffe wants to eat.”

fragments called annotated s-graphs, or as-graphs.

Figures 1a–1d show as-graphs from which the

AMR in Fig. 3c for the sentence “the tall giraffe

wants to eat” can be built. An as-graph is a labeled,

directed graph, some of whose nodes have been

marked as sources. Every as-graph used in AM

dependency parsing has one special root source

node, indicated with a bold outline. We mark the

other sources with red labels (e.g. S and O); these

are nodes at which the root source node of another

as-graph will be inserted.

The AM algebra defines two operations for com-

bining as-graphs: Apply, which combines a head

with a semantic argument, and Modify, which com-

bines a head with a modifier. Fig. 2a shows a term

using these operations that evaluates to the AMR

in Fig. 3c.

The result of the Apply-O operation

APPO (Gwant, Geat) is shown in Fig. 3a, where

the root of the argument Geat is inserted into the

O-source of the head Gwant. The annotation “[S]”

at this O-source means that the O-argument must

still have an S-source, as is the case for Geat. When

two graphs that share a source name are combined,

the shared sources automatically merge, creating

a re-entrancy. In our example this occurs for the

S-source, creating a shared subject slot for Gwant

and Geat.

Fig. 3b shows the result of the Modify-M oper-

ation MODM

(

Ggiraffe, Gtall

)

. The M-source of the

modifier Gtall is merged with the root of the head

Ggiraffe, which has the effect of adding the modifier

to Ggiraffe; the operation leaves the root of Ggiraffe

where it was. Modify is defined only when it adds

no new sources to the head.

Finally, the APPS operation at the root of the

term combines the two graphs we built so far, plug-

ging the graph for “tall giraffe” into the S source

of the combined want-eat graph. This yields the

full graph in Fig. 3c. From a linguistic perspective,

a term over the AM algebra serves as a composi-

tional derivation (Montague, 1973) of the graph to

which it evaluates.

For this last operation, too, a restriction applies:

if a source has no annotation, like the S-source

in Fig. 3a, the graph inserted there must have no

remaining non-root sources (as is the case here).

Thus, both Apply and Modify have restrictions

on when they can be used. A term over the AM

algebra that satisfies all these restrictions is called

well-typed.

2.2 AM Dependency Parsing

Note that in a term over the AM algebra, such as

in Fig. 2a, the root source of the resulting graph

is always inherited from the left child; i.e. the

left child is always the head. For example, after

APPO (Gwant, Geat), the head is still Gwant. We can

track the heads through the term, as indicated by

the colors in the example term. This allows us to

read terms over the AM algebra as AM dependency

trees in the following manner. Each operation be-

tween two graphs is encoded as a dependency edge

from the head to the argument (or modifier respec-

tively), and the edge is labeled with the relevant

operation. By aligning the graph fragments to the

words in the sentence, we get a dependency tree

over the sentence. As a result, the term in Fig. 2a

can be unambiguously encoded as the dependency

tree in Fig. 2b (Groschwitz et al., 2018).

We can now perform AM dependency parsing

by training models for the following two tasks:

(i) a supertagger to predict the as-graphs for the

individual word tokens (such as Gwant) and (ii) a

dependency parser to predict the dependency tree.

Together, these two components predict an AM

dependency tree, which then evaluates to a graph

in the AM algebra as explained above.

Both of these tasks can be performed by neural

models with high accuracy. We train a BiLSTM

to predict a supertag for each token and use the

dependency parser of Kiperwasser and Goldberg

(2016) to predict dependency trees. To ensure that

we obtain well-typed AM dependency trees, we

use the fixed-tree decoder algorithm of Groschwitz

et al. (2018).

2.3 Decomposition

To train the neural supertagging and dependency

models, we need AM dependency trees for the train-

ing set. However, the available graphbanks contain

only sentences with their graph annotations. Thus

we have to decompose the graphs in each graph-

bank into the corresponding AM dependency trees.

We do this with handwritten heuristics, which we
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Figure 2: Compositional derivation of the example AMR graph in Fig. 3c.
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Figure 4: PSD graph (left) for The tall giraffe wants to eat and its AM dependency tree (right).
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defined for AMR in Groschwitz et al. (2018) and

for DM, PAS, PSD, and EDS in Lindemann et al.

(2019). The decomposition heuristics perform the

following three steps:

1. align graph nodes to words (not necessary

for graphbanks with annotated alignments be-

tween tokens and nodes),

2. group edges with nodes, splitting the graph

into disjoint aligned fragments,

3. assign sources and type annotations to the ar-

gument/modification slots of each graph frag-

ment.

These steps define the supertags, and the depen-

dency edges follow from there. Empirically, given

an assignment of supertags to tokens, there is never

more than one dependency tree which evaluates to

the correct graph.

While the AM algebra was originally designed

for AMR, the ACL-19 parser extends it to DM,

PAS, PSD and EDS as well. In fact, as the AM

algebra adds a layer of abstraction on top of the

original graphs, using the same parser for all graph-

banks becomes easy. Conceptually, we only need a

different set of graph fragment supertags for each

graphbank.

The decomposition heuristics for PSD and EDS

are illustrated in Fig. 4 (PSD) and Fig. 5 (EDS),

both for the same sentence “the tall giraffe wants to

eat” whose AMR analysis we discussed in Fig. 2b.

The examples show that structural differences in

the graphbanks can lead to different AM dependen-

cies: for example, the article “the” is part of the

EDS graph but not of the PSD and AMR graphs.

Overall, however, the AM dependency trees are

much more uniform than the underlying graphs.

In Step 2, we group argument edges with the

relevant head and modifying edges with the modi-

fier. This yields consistent supertags: for example,

“giraffe” can be assigned the same supertag regard-

less of whether and how many times it is modified.

Our heuristics form these groups based only on the

edge labels. For example, in AMR, DM and EDS,

we group all ‘ARGx’ labels with their source node.

In AMR, we group ‘mod’ edges with their target

node (the modifier), and do the same with ‘RSTR’

edges in PSD.

The source names are loosely inspired by (deep)

syntactic relations; for example, we use the source

name S for the endpoints of ‘ARG0’ edges in AMR,

‘ACT-arg’ edges in PSD, and ‘ARG1’ edges in

EDS, because these edge labels all correspond to

“deep subjects”. We also add variants of source

assignments to account for e.g. passive. The source

annotations are obtained by matching certain pat-

terns in the final graph. For example, the [S] an-

notation in Gwant in Figure 3 is added because of

the triangle structure in the final graph. Details of

these heuristics can be found in Lindemann et al.

(2019).

3 Changes to the ACL-19 parser

For the DM, PSD, EDS, and AMR parts of the

shared task, we used the ACL-19 parser with the

following minor modifications.

3.1 Decomposition heuristics

We did not change any edge attachment or source

naming heuristics, but focused on complying with

the rules of the shared task and accommodating

changes in the graphbanks.

EDS While the ACL-19 parser only dealt with

connected EDS graphs, the training corpus of the

shared task also contains disconnected graphs. We

handle this in the same manner as we handle dis-

connected graphs in DM and PSD: by introducing

an additional node that has a child in each of the

disconnected components. This child is chosen as

the node being anchored in the highest node in a

UD dependency analysis. Along with this node,

we introduce a corresponding additional artificial

token to the end of the sentence.

Because our decomposition heuristics require a

full alignment between tokens and nodes, but the

EDS annotations can anchor arbitrary subgraphs

in arbitrary substrings, we have to translate EDS

anchorings into node-token alignments. We refine

our method from the ACL-19 paper in two ways.

First, we align implicit conjunctions to punctua-

tion in their anchoring span, instead of their left-

most child. Second, we include a special treatment

of comparisons in subordinated clauses, where a

subord node is grouped with a comp node, even

though they are not immediately connected. This is

illustrated in Fig. 6. The ACL-19 heuristic would

have tried to group hard a for and subord into

one supertag, which makes it impossible to de-

compose the EDS graph into an AM dependency

tree, because this supertag would have to have

two root sources: hard a for for the modification

with comp too, and subord for the application to
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tell v 1. The revised heuristic instead groups sub-

ord and comp too into one supertag, which then

contains a source node into which hard a for can

be inserted via Apply.

AMR The aligner we developed for the ACL-19

parser makes non-trivial use of WordNet in order

to link tokens to nodes with semantically related

labels. Since WordNet was not on the white list

of allowed resources, we had to replace it by Con-

ceptNet (Speer et al., 2017). We found that this

decreased the dev-set accuracy of our parser by

more than a point, possibly because ConceptNet

does not distinguish between word senses and thus

offers a much larger variety of “hypernyms” than

WordNet does.

3.2 Pre- and postprocessing

Unlike earlier versions of the graphbanks and their

evaluation metrics, the MRP shared task makes a

clear distinction between edges (which link two

nodes) and attributes (which attach an atomic value

to a node). For instance, information such as polar-

ity and the parts of a named entity are represented

as attributes in MRP-style AMR, and parsers are

penalized for confusing edges with attributes.

Because our parser uses as-graphs internally,

which have node and edge labels but no attributes,

we encode attributes into as-graphs. For most

graphbanks, we encode attribute information in the

node labels and unpack them again in postprocess-

ing. For AMR, we found a considerable amount

of noise in the distinction of edges and attributes

in the data. We therefore chose to read attributes

as edges and restore the distinction heuristically in

postprocessing (see appendix).

EDS Since EDS nodes can be anchored in en-

tire phrases but our parser only provides anchoring

for tokens to subgraphs, we applied our ACL-19

heuristics to restore such non-trivial anchorings.

Where this failed, we marked the node to be an-

chored in the entire sentence. The ACL-19 parser

deleted unanchored subgraphs for evaluation with

EDM (Dridan and Oepen, 2011).

AMR We fixed a postprocessing bug which oc-

casionally resulted in invalid labels in the graph,

originating from our procedure for handling rare

words.

4 UCCA

For the shared task, we extended the AM depen-

dency parser to UCCA. This was harder than ex-

pected. Unlike the other graphbanks, UCCA takes

a phrase-structure-like perspective on semantic

graphs, in which one terminal node can recursively

be the head of several non-terminal nodes (see

Fig. 7a). This introduces two challenges for our

decomposition heuristic.

First, semantic arguments and modifiers can at-

tach to nodes at any level of the “phrase structure”.

The graph in Fig. 7a predicates that “office” is an

(A)rgument of “success”; these nodes only come

together at the root of the UCCA graph. At the

same time, the (F)unction word “a” modifies “suc-

cess” at a lower level of the graph. The obvious

decomposition heuristic, which would put the “suc-

cess” leaf and all the nodes that dominate it into

the same supertag, would fail because both of these

nodes would have to be root sources, which is not

allowed.

Second, under such a decomposition heuristic,

the correct supertag for a given word depends on

the circumstances. The unmodified word “office”

should simply correspond to an as-graph with a

single node labeled “office”. However, in a sen-

tence where “office” is modified, the correct as-

graph consists of “office” with an extra parent node,

which is linked to the “office” leaf node with a

(C)enter edge (see Fig. 7a). Modifier edges can

then attach to this new parent node. This increases

lexical ambiguity for our parser, which now has

to predict the correct supertag for a word from a

larger class of possible supertags.
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We address these issues in preprocessing, which

we explain below. Edge attachment and source

naming heuristics are in the appendix.

4.1 C-edge contraction

We tackle the second problem by contracting C-

edges. Whenever we observe a C-edge in the train-

ing data, we delete the C-edge and replace its origin

node (a nonterminal node) with the node to which

the C-edge points (see Fig. 7b). As an exception,

we do not contract C-edges for the conjuncts of a

coordination, i.e. those C-edges that have a sister

C-edge. This decreases the number of nonterminals

in the UCCA graph, reduces lexical ambiguity, and

increases the proportion of UCCA training graphs

which we can decompose.

At test time, the parser predicts UCCA graphs

with contracted C-edges, as in Fig. 7b. We uncon-

tract these by creating an outgoing C-edge from

all non-leaf nodes that have node labels, changing

these nodes into nonterminal nodes. At uncontrac-

tion time, we keep the outgoing edges attached to

the nonterminal node.

4.2 Edge raising

C-edge contraction is insufficient to completely

solve the first problem. For instance, in Fig. 7b,

the as-graph for “success” still has two nodes at

which other graphs attach: the U and F edge attach

to the “success” node with Modify operations, and

the “was” node attaches to a non-terminal node

with Modify as well. As above, this means that

both “success” and this non-terminal node must be

root-sources, which is not allowed.

In order to ensure that only one root-source node

is required, we flatten the as-graph for “success” by

raising the edges out of the lower node to the upper

node, as illustrated in Fig. 7c. This means that all

modifiers attach to the same node, which becomes

the root-source. We train the semantic parser on

these flattened UCCA graphs, and then lower the

edges again in postprocessing.

Our objective when applying edge lowering on

the graph is to redistribute the edges we had pre-

viously raised as they were before pre-processing.

The initial idea was to make use of the edge labels

and only allow lowering an edge from an upper

to a lower node if they are connected by another

edge with a specific label; however, we found in-

stances where there were multiple outgoing edges

with the same label, which resulted in an ambiguity

regarding along which edge to lower. Thus, when

we raised an edge from the lower node to the upper

node, we also marked the edge that connects them

with “-r” (for “raised”), and then lowered along the

marked edge.

However, we encountered examples where edge

lowering was still ambiguous. We found this to

occur when edges were raised from multiple lower

nodes to the same upper node, resulting in multiple

outgoing edges of that upper node bearing the -r

mark. Consequently, we had no way of determining

which raised edge belonged to which lower node.

To remedy this problem, we added a subindex on

each of the raised edges indicating the edge over

which we had raised the node (see Figure 7c for

the subindices). This means for post-processing

only lower a given edge to a node through another

edge if the label of the former edge matched the

subindex of the latter edge. For example, in Fig. 7c,

we can only lower the edges with the labels U p and

F p through another edge with the label P, which

in this case implies that we can only lower these

edges to the node “success”. This procedure results

in unambiguous lowering in most cases.

The edge raising and lowering procedure was

not part of the submitted system. However, it is

part of the improved system.

4.3 H-edge removal

An H-edge represents a scene evoked by a Process

or State. These edges are normally outgoing edges
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of the top node in UCCA. If an H-edge appears in a

given graph, it is either unique or accompanied by

other H-edges representing multiple parallel scenes

and an L-edge to link these scenes, i.e. from the

top node there is a single outgoing H-edge in the

former case and multiple outgoing H-edges as well

as one or more L-edges in the latter. In order to

simplify our decomposition heuristics, we remove

the H-edge in former case and add it again in post-

processing, and only include heuristics for the latter

case, rather than distinguish between the two cases.

4.4 Remote edges

We found that removing remote edges drastically

helps decomposability. Since this gives us more

training data, we decided to remove them and

thereby improved decomposability from 34% to

47% in the submitted system.

4.5 Node-token alignments

The UCCA annotation aligns the leaf nodes of the

UCCA graph with the tokens in the string; our

parser requires an alignment of all nodes with their

corresponding tokens. We project the aligned to-

kens upwards from the leaf nodes using a simple set

of head percolation rules (see appendix for details).

4.6 Tops

We mark nodes with no incoming edges as top

nodes. In an improved version, when more than

one top is found, rather than include all of them,

we select an arbitrary one.

5 Evaluation

5.1 Experimental setup

We trained one single-task model per graphbank

and made use of a concatenation of BERT (Devlin

et al., 2019) and Elmo (Peters et al., 2018) embed-

dings, without any finetuning. We tweaked some

hyperparameters of the neural network compared

to the ACL-19 parser (see appendix for details).

For DM, PSD and EDS, we use the usual

train/dev split. We take a random sample of 3% of

all graphs as development data for AMR and 20%

for UCCA since there is much less training data.

During parsing, we use the fixed-tree decoder

described in Groschwitz et al. (2018) with the six

highest-scoring supertags per token. Because the

search for a well-typed AM dependency tree is

NP-complete, we set a timeout for each graphbank;

when the parsing time for a single sentence exceeds

a certain limit, we back off to a smaller number of

supertags per token and restart parsing. We used

a timeout of 30 minutes for DM, PSD and EDS, a

timeout of 5 minutes for UCCA and 15 minutes for

AMR. We ensured that every sentence was parsed

using at least the highest scoring supertag.

In the ACL-19 parser, we used named entity

tags as additional input to the neural network for

all graphbanks. Here, we only do so for AMR,

whose graphs contain very detailed named entity

information. We use the Illinois Named Entity

Tagger (Ratinov and Roth, 2009). We make use

of the tokenization, POS tags and lemmas pro-

vided in the MRP companion data. Our code is

publicly available at https://github.com/

coli-saar/am-parser.

5.2 Results

Table 1 (“submitted”) shows the official results of

our parser in the shared task. Our parser achieved

the highest accuracy on PSD and did very well on

DM and EDS. It did much worse on AMR than we

expected based on earlier results (Lindemann et al.,

2019).

Table 2 shows a more detailed evaluation of

the system on the development sets. First, we ob-

serve that not all graphs in the development sets

can be decomposed by the heuristics described

above. This is especially striking for EDS (which

frequently requires graphs with multiple sources,

see the discussion in Lindemann et al. (2019)) and

UCCA, where the edge contraction and raising

heuristics were still insufficient to decompose all

graphs. The distinction between decomposable and

non-decomposable graphs also has a clear effect

on development f-score: the f-scores on the decom-

posable subset of each devset are noticeably higher

than on the full devset.

Second, we report the accuracy of the two com-

ponent parts of our parser: dependency parsing

(reported as UAS and LAS) and supertagging (re-

ported as 1-best and 6-best supertagging accu-

racy). It is noticeable that the errors in some graph-

banks (e.g. PSD) are dominated by the supertagger,

whereas others are hard for the dependency parser

(e.g. UCCA). For most graphbanks, low supertag-

ging accuracy goes together with a large supertag

set, and low dependency accuracy with a large set

of edge labels. For UCCA, accuracy is low across

the board, which may be because the decomposable

part of the UCCA training set is so small (47%).

https://github.com/coli-saar/am-parser
https://github.com/coli-saar/am-parser
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DM PSD EDS UCCA AMR Average

Submitted 94.7 91.3 89.1 67.6 66.7 81.9

Improved 94.7 91.3 89.1 70.1 71.0 83.2

Improved + WordNet/Stanford 94.7 91.3 89.1 70.1 71.6 83.4

Table 1: Results of a single run on official test set (MRP cross-framework f-score).

DM PSD EDS UCCA AMR Average

F-score, complete 96.6 92.7 91.1 65.6 72.0 83.6

F-score, decomposable 96.9 92.8 92.0 74.6 73.5 86.0

Decomposability 93.2 97.2 82.0 48.6 91.3 82.5

UAS 95.4 95.7 94.6 74.7 75.2 87.1

LAS 94.6 91.8 93.4 68.1 69.2 83.4

Supertagging Accuracy (1-best) 96.6 88.6 93.9 74.5 75.2 85.8

Supertagging Accuracy (6-best) 99.8 98.8 99.2 94.2 94.2 97.2

Number supertags 424 1566 2739 298 4705 1946.4

Number edge labels 32 42 34 22 48 35.6

Table 2: Detailed dev set results of the submitted system. All rows except the first and third are based on the

decomposable subsets. The last section contains statistics about the decomposed training set.

5.3 Improvements

After the shared task submission deadline, we im-

plemented some further improvements.

AMR We fixed a bug in the post-processing of

named entities, which improved the MRP f-score

by 0.5 points on the dev set and by 4.3 points on

the test set (“improved” in table 1).

We also analyzed the impact of switching out

WordNet and the Stanford NER tagger for their

whitelisted replacements, ConceptNet and the Illi-

nois NER tagger. As Table 3 shows, the use of the

whitelisted resources decreased the AMR devset

accuracy by almost 1.5 points. This illustrates the

impact of these low-level resources on the evalu-

ation results. Interestingly, this translates only to

an improvement of 0.6 points on the test set (“Im-

proved + WordNet/Stanford” in table 1).

We leave an investigation why the magnitude of

these improvements differs so much between dev

set and test set for future work.

UCCA In contrast to the submitted version, we

employed edge raising and lowering and used the

improved version of the top handling (see 4.6).

We also fixed a bug in the node-token alignments.

Overall, this resulted in 85% of the training set

being decomposable as opposed to 47% in the sub-

mitted system. The results are reported in row two

Lexical database

WordNet ConceptNet

NER tool
Stanford 73.9 72.7

Illinois 73.7 72.5

Table 3: Comparison of MRP f-scores on our AMR de-

velopment set for different NE recognizers and lexical

databases, includes bugfix.

of table 1.

6 Conclusion

In this paper, we have described the Saarland Uni-

versity submission to the MRP shared task. Our

system is mostly based on our compositional neural

graph parser, which had already worked very well

across all MRP graphbanks except for UCCA.

We found that extending the parser to UCCA

was a challenge due to the radically different graph

structures that UCCA uses. We aim to improve the

accuracy of our parser on UCCA in future work.

One challenge our system faces is that nontrivial

quantities of training data cannot be decomposed

by the heuristics we used. It therefore wastes a

lot of training data, especially for UCCA. In fu-

ture work, we will look into better decomposition

heuristics, and also into variants of the AM algebra

which support multiple root-sources per as-graph.
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