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Summary
Neurodegeneration in Parkinson’s disease dementia
(PDD) and dementia with Lewy bodies (DLB) affect cor-

tical and subcortical networks involved in saccade gen-

eration. We therefore expected impairments in saccade

performance in both disorders. In order to improve the

pathophysiological understanding and to investigate the

usefulness of saccades for differential diagnosis, saccades

were tested in age- and education-matched patients with

PDD (n = 20) and DLB (n = 20), Alzheimer’s disease (n =

22) and Parkinson’s disease (n = 24), and controls (n = 24).

Reflexive (gap, overlap) and complex saccades (predic-

tion, decision and antisaccade) were tested with electro-

oculography. PDD and DLB patients had similar

impairment in all tasks (P > 0.05, not significant). Com-

pared with controls, they were impaired in both reflexive

saccade execution (gap and overlap latencies, P < 0.0001;

gains,P < 0.004) and complex saccade performance (target
prediction, P < 0.0001; error decisions, P < 0.003; error

antisaccades: P < 0.0001). Patients with Alzheimer’s dis-

ease were only impaired in complex saccade performance

(Alzheimer’s disease versus controls, target prediction

P < 0.001, error decisions P < 0.0001, error antisaccades
P < 0.0001), but not reflexive saccade execution (for

all, P > 0.05). Patients with Parkinson’s disease had, com-

pared with controls, similar complex saccade perform-

ance (for all, P > 0.05) and only minimal impairment in

reflexive tasks, i.e. hypometric gain in the gap task (P =

0.04). Impaired saccade execution in reflexive tasks

allowed discrimination between DLB versus Alzheimer’s

disease (sensitivity >60%, specificity >77%) and between
PDD versus Parkinson’s disease (sensitivity >60%, spe-

cificity >88%) when 61.5 standard deviations was used

for group discrimination. We conclude that impairments

in reflexive saccades may be helpful for differential dia-

gnosis and are minimal when either cortical (Alzheimer’s

disease) or nigrostriatal neurodegeneration (Parkinson’s

disease) exists solely; however, they become prominent

with combined cortical and subcortical neurodegenera-
tion in PDD and DLB. The similarities in saccade per-

formance in PDD and DLB underline the overlap

between these conditions and underscore differences

from Alzheimer’s disease and Parkinson’s disease.
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Introduction
Patients with Parkinson’s disease are at increased risk of

developing dementia compared with elderly controls

(Aarsland et al., 2003). The symptoms of Parkinson’s disease

dementia (PDD) may show considerable overlap with those

of dementia with Lewy bodies (DLB), apart from a longer

duration of extrapyramidal motor features (Noe et al., 2004).
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Clinical studies comparing PDD and DLB have found

similar fluctuation of attention (Ballard et al., 2002), over-

representation of the postural instability-gait type of

parkinsonism (Burn et al., 2003), similar visuoperceptual

impairment (e.g. Simard et al., 2003; Mosimann et al.,

2004b) and response to cholinergic therapy (McKeith et al.,

2000a; Emre et al., 2004). PDD and DLB have, in contrast to

Alzheimer’s disease, more profound cortical cholinergic loss

(Perry et al., 1994; Tiraboschi et al., 2002; Bohnen et al., 2003)

and reduced dopamine in the basal ganglia (Piggott et al., 1999;

Suzuki et al., 2002). Lewy body disorders are associated with

abundant striatal pathology (Duda et al., 2002) and DLB with

reduced putamen volumes (Cousins et al., 2003).

Saccades are humans’ fastest eye movements, used to

shift the fovea towards visual targets. Since saccade control

requires interplay of cortical and subcortical areas (Hikosaka

et al., 2000; Pierrot-Deseilligny et al., 2003b) and pathology

in PDD and DLB is found in the cortex and the basal ganglia,

we expected impaired saccade performance in both disorders.

However, we are not aware of any published reports which

have quantified saccade performance in these disorders. The

cortex mediates saccadic triggering and inhibition (Hikosaka

et al., 2000; Pierrot-Deseilligny et al., 2003b), and the basal

ganglia allow saccade initiation by removing tonic inhibition

to the superior colliculus (Hikosaka et al., 2000). Neural net-

works involved in saccade generation are task-dependent.

Reflexive saccades are mainly cue-driven, and complex sac-

cades follow an internal goal or intention (Leigh and

Kennard, 2004). We used a combination of reflexive (gap

and overlap) and complex saccade tasks (prediction, decision

and antisaccade) to test the different aspects of saccade per-

formance and the different networks involved.

Studies assessing saccades in Parkinson’s disease and

Alzheimer’s disease have so far revealed contradictory results

(Pirozzolo and Hansch, 1981; Briand et al., 1999; Abel et al.,

2002). Given the clinical and pathological overlap of PDD

and DLB, we expected them to show changes in saccade

performance, which were similar to each other, but different

from Alzheimer’s disease and Parkinson’s disease. We aimed

to determine differences between DLB versus PDD and

Alzheimer’s disease versus DLB and Parkinson’s disease

versus PDD because these differential diagnoses are clinic-

ally particularly challenging.

Methods

Subjects
All subjects were recruited from the Newcastle Lewy body disease

study (Burn et al., 2003). The National Institute of Neurological and

Communicative Disorders and Stroke and Alzheimer’s Disease

and Related Disorders Association (NINCDS-ADRDA) (McKhann

et al., 1984) criteria were used to diagnose Alzheimer’s disease

and the Consensus guidelines to diagnose DLB (McKeith et al.,

1996, 1999). Parkinson’s disease was diagnosed according to the

UK Parkinson’s Disease Society Brain Bank Criteria (Gibb and

Lees, 1988). PDD patients had Parkinson’s disease for more than

12 months, before then developing dementia (McKeith et al., 1996).

Subjects with other cerebral pathology (e.g. strokes or significant

white matter changes) were excluded by cerebral CT or MRI. Dia-

gnosis was determined independently by three experienced clini-

cians using a method with established accuracy as determined by

autopsy confirmation (McKeith et al., 2000b). The control group

consisted of elderly volunteers recruited from relatives and friends of

patients. To be eligible for the study, patients were required to have

an informant/caregiver. All subjects with a known history of macular

degeneration or coexisting medical illness that could interfere with

cognitive or visual testing were excluded. Of 122 subjects intending

to take part, 12 subjects were excluded for the following reasons:

three had poor sitting stability, five did not understand simple

instructions for calibrations and four had a history of glaucoma

or macular degeneration, leaving 110 patients to be studied. Char-

acteristics of the sample are summarized in Table 1. The only anti-

parkinsonian medications allowed were levodopa preparations, and

patients were tested on medication. All patients with Parkinson’s

disease and PDD and 40% of the DLB patients were on levodopa.

Patients stabilized on cholinesterase inhibitors were eligible pro-

vided no dose change had been made during the preceding 3 months.

The percentage of demented patients on long-term cholinesterase

inhibitor treatment did not differ between groups (PDD 60%, DLB

65%, Alzheimer’s disease 73%; x2 test, P > 0.05, not significant).

The local research ethics committee granted ethical approval and all

patients and their caregivers gave written informed consent.

Testing procedure
Global cognitive impairment was assessed with the Cambridge

Cognitive Examination (Roth et al., 1986). The Bristol Activities

of Daily Living Scale (Bucks et al., 1996), the Neuropsychiatric

Inventory (Cummings et al., 1994) and the One Day Fluctuation

Assessment Scale (Walker et al., 2000) were used to assess func-

tional impairment, neuropsychiatric symptoms and fluctuation.

The severity of extrapyramidal motor features was assessed with

the Unified Parkinson’s Disease Rating Scale motor subsection

(Fahn and Elton, 1987). Neuro-ophthalmological screening included

inspection of the eyes, pupil reactions, light reflex (penlight), meas-

urement of best near and far vision (Landolt broken rings, test

distance 40 cm and 5 m), ocular movements (range, vergence,

smooth pursuit, saccades) and estimation of the visual field by

confrontation testing. The ocular fundus was assessed by direct

ophthalmoscopy and colour vision was tested with the 14 plate

Ishihara test (Ishihara, 1997).

Saccade measurement
Eye movements were measured with direct current electro-

oculography in a dedicated testing room at the Institute for Ageing

and Health in Newcastle upon Tyne, UK. Silver/silver–chloride

electrodes were placed at the outer canthi of each eye. To minimize

signal drift, electrodes were attached 30 min before the experiment,

and during this time subjects became dark-adapted for at least 10 min.

Prior to each task, the signal was calibrated for horizontal angles

of 0, 8, 12, 16 and 24� on the right and left (Hess et al., 1986). The

signal was amplified and filtered (bandwidth 0–100 Hz) and the data

sampled at a frequency of 1000 Hz with a data acquisition card. The

digital signal was analysed off-line using a graphical interface and

analysis program, written by one of the authors (J.F.) in Matlab
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(MathWorks, Natick, MA, USA). The calibration was used to con-

trol for signal linearity and to calculate digital equivalent for a

1� angle. The start and end of each saccade was determined manually

for each target presentation. The analysis was done by the same

person (U.P.M.).

Subjects were positioned 80 cm in front of a screen with red/green

light-emitting diodes, with their head positioned comfortably on a

chin–forehead rest. A green stimulus was used for the central stimu-

lus (CS) and the targets, and a red stimulus indicated a non-target.

Tasks were presented in a random order. Thirty saccades were tested

in blocks of 10 or 15 saccades per task. The task instruction was read

by the experimenter and was followed by a training block contain-

ing 10 targets prior to each task. During the training, the patients

received verbal feedback from the experimenter. Before starting data

acquisition, patients were asked whether they understood the instruc-

tions. On the rare occasions when patients did not understand the

instruction, the training was repeated. To avoid distraction and

talking, no verbal feedback was given during the subsequent acquisi-

tion of data. Patients determined the resting period between the

blocks, and the overall duration of the experiment was in the

range of 30–45 min. All tasks are summarized in Fig. 1.

Gap task

The aim of the gap task was to test reflexive saccades. In this task,

the CS was presented for 1700–2900 ms then disappeared 200 ms

(gap) before target onset (Saslow, 1967). All targets were presented

for 1500 ms at 16� to the right or left of the CS (direction random-

ized). The instruction to the subject was to look at all green stimuli as

precisely and fast as possible. Two blocks of 15 targets were presen-

ted. Saccade latency in milliseconds and gain [i.e. saccade ampli-

tude (degrees)/target amplitude (degrees)] of correct saccades

were determined.

Overlap task

In the overlap task the CS remained continuously visible during

target presentation, i.e. overlap of CS and target. The aim was to

test reflexive saccades and fixation disengagement. The instruction,

target presentation and the interval between CS and target pre-

sentations were similar to those in the gap task. Two blocks of

15 targets were tested. Outcome variables were latency (ms), gain

of correct saccades and the gap effect. The gap effect is the dif-

ference between latencies in the overlap and gap tasks, i.e. the

difference between internal and external fixation disengagement

(Reuter-Lorenz et al., 1991).

Prediction task

In the prediction task, target direction (left, CS, right, CS, left etc.),

amplitude (16�) and duration of CS and target presentation (1000 ms)

were entirely predictable. The aim was to assess how often subjects

were able to predict the subsequent target position. Since more than

80 ms is required to perceive a visual stimulus, a target was considered

to be predicted when saccade latency was less than 80 ms (Pierrot-

Deseilligny et al., 2003a). Two blocks with 15 targets were tested.

The percentage of predicted saccades was the primary outcome

variable. Saccade latency and accuracy were also determined.

Decision task

This task aimed to assess the subject’s ability to make a spatial

judgement and decision (Lévy-Schoen, 1969). Two green targets

were presented simultaneously at different angles on either side

of the CS (Fig. 1). The subjects were instructed to look at the target

nearest to the CS. Whenever they saw a red light, the instruction was

to go back to CS. The following pairs of targets were presented: 16�

and 12�;16� and 8�;12� and 8�. The nearer target appeared on the left

Table 1 Demographical and clinical characteristics of the groups

Controls Parkinson’s
disease

PDD DLB Alzheimer’s
disease

Between-group
comparison

n 24 24 20 20 22 NS
Age (years) 75.3 6 5.8 76.9 6 5.4 75.3 6 6.6 77.6 6 6.9 78.1 6 6.8 NSy

Education (years) 13.0 6 3.0 13.0 6 0.0 13.0 6 0.0 13.0 6 0.0 13.0 6 0.0 NS�
Estimated dementia duration (years) NA NA 3.9 6 2.1 3.2 6 2.1 5.4 6 1.7 P = 0.002y1

MMSE (max. 30) 28.1 6 1.3 27.3 6 1.9 20.5 6 4.0 18.0 6 4.9 17.9 6 4.7 P < 0.0001y2

CAMCOG (max. 105) 96.5 6 5.1 90.1 6 7.4 69.0 6 14.0 61.9 6 15.9 62.8 6 14.6 P < 0.0001y2

Estimated duration
of EPMS (years)

NA 5.0 6 5.0 6.5 6 5.5 2.5 6 3.3 NA P = 0.04�1

UPDRS motor score (max. 108) 1.6 6 1.9 30.0 6 11.1 35.7 6 12.2 29.2 6 17.3 6.9 6 6.5 P < 0.0001y3

NPI (max. 144) 0.0 6 0.0 4.0 6 4.0 16.0 6 20.3 14.5 6 21.5 5.0 6 14.0 P < 0.0001�2

Fluctuation (max. 21) 0.0 6 0.0 0.0 6 3.0 6.0 6 8.8 3.5 6 4.0 0.0 6 4.0 P < 0.0001�3

Bristol-ADL (max. 60) 0.0 6 0.0 3.3 6 5.7 17.4 6 10.1 21.7 6 11.2 13.6 6 10.1 P < 0.0001y4

Two-group comparisons included the comparisons of controls versus Parkinson’s disease, Parkinson’s disease versus PDD, DLB versus
PDD, DLB versus Alzheimer’s disease and Alzheimer’s disease versus controls. Significant differences are reported: �median and
interquartile range and Kruskal–Wallis and Mann–Whitney U tests: �1PDD versus DLB, P = 0.014; �2Parkinson’s disease versus controls,
P < 0.0001; Parkinson’s disease versus PDD, P < 0.0001; Alzheimer’s disease versus controls, P < 0.0001; �3Parkinson’s disease versus
PDD, P < 0.0001. yMean and SD ANOVA with post hoc Games–Howell test: y1DLB versus Alzheimer’s disease, P = 0.002; y2Parkinson’s
disease versus PDD, P < 0.0001; Alzheimer’s disease versus controls, P < 0.0001; y3Parkinson’s disease versus controls, P < 0.0001; DLB
versus Alzheimer’s disease, P < 0.0001; y4Parkinson’s disease versus PDD, P < 0.0001; DLB versus Alzheimer’s disease, P = 0.034;
Alzheimer’s disease versus controls, P < 0.0001. CAMCOG = Cambridge Cognitive Examination Scale; EPMS = extrapyramidal
motor symptoms; MMSE = Mini-Mental State Examination; UPDRS-III = Unified Parkinson disease rating scale, motor score;
NPI = Neuropsychiatric Inventory; Fluctuation = One Day Fluctuation Assessment Scale; Bristol-ADL = Bristol Activities of Daily
Living scale.
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or right at random. The CS was presented for 1700–2900 ms and

then the two targets were presented for 1500 ms. Thereafter, the

further changed to red, thus indicating an erroneous decision (visual

feedback for 1500 ms). The mean percentage of direction errors

(looking at the further target) was the primary outcome variable.

Mean saccade latency and error correction rate were also calculated.

A direction error was only considered to be corrected if it was

corrected within the 1500 ms of target presentation, i.e. before

the red feedback appeared. Three blocks containing 10 targets

were tested.

Antisaccade task

The antisaccade task assessed subjects’ ability to suppress looking at

a non-target and to direct a saccade in the opposite direction (Hallett,

1978). The task was adapted for cognitively impaired patients: non-

targets were presented in red (at 16� for 1500 ms) and visual

feedback was given by a green stimulus on the side opposite to

the non-target (at 16� for 1500 ms) after its disappearance

(Fig. 1). Subjects were instructed to look opposite to the red stimulus

and to follow all green stimuli. CS was presented for 1700–2900 ms

and the direction of the non-targets was unpredictable. Three blocks

of 10 trials were tested. Saccade latency and the percentage of errors

(misdirected saccades towards the non-target) were calculated. Con-

sistent with the decision task, a direction error was considered to be

corrected if it was corrected within 1500 ms, i.e. before the feedback

stimulus appeared.

To receive general feedback about the tolerability of eye move-

ment testing, we asked participants at the end of the testing altern-

ative choice (yes/no) questions to find out whether they experienced

testing as (i) boring, (ii) tiring or (iii) painful, whether they would

(iv) like to do it again or (v) recommend it to a friend.

Data analysis and statistics
Anticipated saccades were defined as saccades with latencies below

80 ms (Fischer et al., 1993) and delayed saccades as those triggered

after target disappearance. They were both excluded. Direction

errors were saccades directed opposite to a target or towards non-

targets and ignored targets were targets which triggered no saccade

at all. The distribution of data was tested for normality (Shapiro–

Wilk test) within each group. If data were normally distributed, the

mean, standard deviation or 95% confidence interval were calculated

and parametric tests (independent sample t-test, ANOVA with

post hoc Games–Howell test) were applied for within- and

between-group comparisons. If data deviated significantly from nor-

mality, the median and interquartile range were presented and non-

parametric tests (Kruskal–Wallis and Mann–Whitney) were used.

The x2 test was used for the comparison of frequencies and Fisher’s

exact test when the expected frequency of a symptom in either group

was <5. The sensitivity and specificity of delayed latency and/or

hypometric amplitudes in gap and overlap tasks were calculated

using both 61.5 and 62 standard deviations of mean latency and

gain for group discrimination of Alzheimer’s disease versus DLB or

Parkinson’s disease and versus PDD. Positive predictive values were

calculated as the proportions of patients with delayed latencies and/

or hypometric saccades who were correctly allocated to the PDD and

DLB groups; the negative predictive values were the proportions of

patients with normal latency and accuracy who were correctly alloc-

ated to the Parkinson’s disease and Alzheimer’s disease groups. The

likelihood ratio was the probability that delayed latencies and/or

hypometric saccades were found in PDD or DLB rather than

Alzheimer’s disease or Parkinson’s disease. All reported P-values

were two-tailed and a P-value of less than 0.05 was considered

statistically significant.

Fig. 1 Schematic representation of the sequence of stimulus
appearance and direct current electro-oculography signal. A
positive signal indicates a rightward saccade and a negative signal
a leftward saccade. Horizontal saccades were tested using two
reflexive saccade tasks (gap and overlap) and three complex tasks
(prediction, decision and antisaccade tasks). A detailed task
description is given in the Methods section.
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Results
Demographics
Demographic data, summarized in Table 1, show that the

groups were well matched for age and education. Global

cognitive impairment (Cambridge Cognitive Examination

and Mini-Mental State Examination scores) was similar bet-

ween the demented groups and between Parkinson’s disease

and controls. Dementia duration was longer in Alzheimer’s

disease than in DLB, and PDD patients had a longer duration

of parkinsonism than DLB patients. The duration of

parkinsonism was not different between Parkinson’s disease

and PDD patients and the Unified Parkinson’s Disease Rating

Scale motor score was similar in Parkinson’s disease, PDD

and DLB. The Neuropsychiatric Inventory and fluctuation

scores were higher in PDD than in Alzheimer’s disease

group and the DLB group was more impaired in activities

of daily living (Bristol–ADL) than the Alzheimer’s disease

group. Neuro-ophthalmological assessment did not reveal

impairments that could interfere with eye movement testing

and best visual acuity did not differ between the groups

(controls near, 0.58, far, 0.66; Parkinson’s disease near, 0.61,

far, 0.68; DLB near, 0.60, far, 0.59; PDD near, 0.57, far, 0.64;

Alzheimer’s disease near, 0.54, far, 0.49) (ANOVA for near

and far, P > 0.05, not significant).

Eye movements
Reflexive gap and overlap tasks
Saccade latency and gain for correct saccades are summar-

ized in Fig. 2. The gap and overlap tasks revealed significant

group differences in latency (ANOVA for both, P < 0.0001)

and first saccade gain (ANOVA for both, P < 0.0001); the

final eye position, however, was similar in all groups

(ANOVA for both, P > 0.05, not significant). Saccade latency

and gain did not differ between the PDD and DLB groups

( post hoc Games–Howell test for all comparisons, P > 0.05,

not significant). Compared with controls, subjects with PDD

were impaired in gap and overlap saccade execution (gap and

overlap latencies, P < 0.0001 and gains, P < 0.004) and the

same was found in DLB (gap and overlap latencies, P <

0.0001 and gains, P < 0.001). The only difference found

when Parkinson’s disease was compared with controls was

a lower gain of the first saccade in the gap task (post hoc

Games–Howell test, P = 0.033). The comparison of

Alzheimer’s disease and controls did not reveal any signific-

ant differences. Patients with PDD had significantly longer

latencies than patients with Parkinson’s disease in reflexive

saccades ( post hoc Games–Howell test for gap, P = 0.002; for

overlap, P = 0.003) and latencies of DLB patients were longer

than those of Alzheimer’s disease patients ( post hoc Games–

Howell test for gap, P = 0.016; for overlap, P = 0.001). The

gain of the first saccade was lower in DLB compared with

Alzheimer’s disease ( post hoc Games–Howell test, P =

0.007). Gap effect (mean 6 SD) was not different between

the five groups (controls: 94 6 41 ms; Parkinson’s

disease: 106 6 52; PDD: 167 6 107; DLB: 140 6 167

ms; Alzheimer’s disease: 110 6 90 ms) (ANOVA, P =

0.04, post hoc Games–Howell test: not significant).

Table 2 summarizes group discrimination of gap and over-

lap saccades. Overall, optimal sensitivity was achieved using

6 1.5 SD for the group discriminations. Delayed latency and/

or hypometric amplitude was 4.8–5.4 times more likely to

occur in PDD than in Parkinson’s disease and 2.8–4.3 times

more likely in DLB than in Alzheimer’s disease.

Complex saccades
Prediction task. Target prediction was rare in both PDD and

DLB groups (Table 3). Patients with PDD predicted fewer

targets than Parkinson’s disease, and DLB fewer than patients

with Alzheimer’s disease. In Parkinson’s disease saccade

latency of non-predicted saccades was similar to controls.

Latency was longer in PDD than in patients with Parkinson’s

disease and also in DLB patients compared with Alzheimer’s

disease. Mean gain of the first saccade was similar in DLB

(0.78 6 0.15) and PDD (0.84 6 0.16) ( post hoc Games–

Howell test, P > 0.05, not significant) but hypometric com-

pared with Alzheimer’s disease (0.95 6 0.10) ( post hoc

Games–Howell test: DLB versus AD, P = 0.001). No signi-

ficant difference was found between the gain of patients with

Parkinson’s disease (0.93 6 0.12) and controls (0.99 6 0.09)

( post hoc Games–Howell test for both, P > 0.05, not signi-

ficant). The final eye position was not different (gain of con-

trols, 1.0 6 0.05; Parkinson’s disease, 1.0 6 0.08; PDD,

1.02 6 0.06; DLB, 1.0 6 0.06; Alzheimer’s disease,

1.0 6 0.07) (ANOVA, P > 0.05, not significant).

Decision task. Patients with Alzheimer’s disease made

significantly more errors than controls, and PDD patients

made fewer errors than DLB patients (Table 3). Saccade

latency for correct decisions was longer in PDD and DLB

compared with controls, but was not different within the

demented groups. Median error correction rate of patients

with Alzheimer’s disease (74 6 47%) was lower than in

controls (100 6 13%) (Mann–Whitney test, P = 0.001)

but tended to be higher than in DLB patients (27 6 72%)

(Mann–Whitney test, P > 0.05, not significant). A similar

trend was observed when the percentages of corrected errors

of Parkinson’s disease (89 6 38%) and PDD (406 78%) were

compared (Mann–Whitney test, P > 0.05, not significant).

Antisaccade task. No difference was found when errors

were compared within the demented groups (Table 3).

PDD patients made more errors in the antisaccade task

than patients with Parkinson’s disease and patients with

Alzheimer’s disease made more errors than controls. DLB

patients corrected fewer errors (71 6 32%) than patients

with Alzheimer’s disease (95 6 12%) (Mann–Whitney test,

P = 0.005) and PDD patients (59 6 47%) fewer than patients

with Parkinson’s disease (100 6 0%) (Mann–Whitney test,

P < 0.0001). Error correction rates of controls (100 6 22%)

and Alzheimer’s disease patients (95 6 12%) were similar.

Saccade latency of correct antisaccades was longer in PDD

Saccades in PD dementia and dementia with Lewy bodies 1271
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compared with Parkinson’s disease, and was longer in

patients with Alzheimer’s disease compared with controls,

but not different between DLB and Alzheimer’s disease.

Delayed saccades (1%) and anticipated saccades (4%)

were excluded from analysis and were not predominant in

one group. Ignored targets were observed in PDD (18%) and

DLB patients (17%) but rarely in Alzheimer’s disease

patients (2%) (Mann–Whitney test DLB versus Alzheimer’s

disease P = 0.002). Patients with Parkinson’s disease and

controls did not ignore any targets. Most ignored targets

Fig. 2 Latency and accuracy in reflexive gap and overlap tasks. Error bars show mean and 95% confidence interval. (A and B) Gap and
overlap saccade latency (ms). In both tasks latency was longest in patients with DLB and PDD. No significant difference was found when
controls were compared with patients with Alzheimer’s disease or Parkinson’s disease. (B and C) Accuracy of the first saccades (bold
symbols) and final eye position (open symbols), expressed as gain (saccade amplitude/target amplitude). First saccade gain was hypometric
in DLB and PDD; however, the final eye positions of the five groups were similar.

Table 2 Group discrimination using 61.5 (A) and 62 (B) standard deviations of saccade latencies and gains
for group discrimination

Discrimination of Sensitivity Specificity PPV NPV LR

A B A B A B A B A B

Gap task
PDD and Parkinson’s disease 0.65 0.65 0.88 1.0 0.81 1.0 0.75 0.77 5.4 �
DLB and Alzheimer’s disease 0.60 0.40 0.86 1.0 0.80 1.0 0.70 0.65 4.3 �

Overlap task
PDD and Parkinson’s disease 0.60 0.55 0.88 0.92 0.80 0.85 0.72 0.71 4.8 6.6
DLB and Alzheimer’s disease 0.65 0.40 0.77 1.0 0.72 1.0 0.71 0.65 2.8 �

�Could not be computed since specificity was 1.0 [LR = sensitivity/(1 – specificity)]. PPV = positive predictive value; NPV = negative
predictive value; LR = likelihood ratio.
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were found in the overlap (PDD 22%; DLB 32%) and

decisions tasks (PDD 15%; DLB 11%).

Patients on or off treatment with cholinesterase inhibitors

or levodopa did not perform differently in saccade latency,

gain, direction errors or ignored targets (independent sample

t-test and Mann–Whitney test, respectively; all P > 0.05, not

significant). None of the patients found saccadic eye move-

ment testing painful, 92% would agree for another assessment

or recommend it to a family member or friend, 5% (mainly

controls) considered testing to be boring and 5% (mainly

PDD patients) expressed that the assessment was tiring.

Discussion
We assessed reflexive (gap and overlap tasks) and complex

saccades (prediction, decision and antisaccades) in four

different neurodegenerative disorders and found similar

saccadic eye movement changes in DLB and PDD, quite

different from those seen in Alzheimer’s and Parkinson’s

disease. PDD and DLB patients showed impaired saccade

execution compared with Parkinson’s disease and controls.

Complex saccade performance, i.e. target prediction, spatial

decision-making and saccade suppression, was impaired in all

demented patients groups (Alzheimer’s disease, DLB and

PDD) compared with Parkinson’s disease and controls.

PDD patients corrected fewer direction errors in complex

tasks than patients with Parkinson’s disease and DLB less

than patients with Alzheimer’s disease. A synopsis of the

changes in saccade performance can be found in Table 4.

Knowledge about the networks controlling saccadic eye

movements may be helpful to determine the pattern of

brain pathology involved. Models of cortical and subcortical

saccade control (Hikosaka et al., 2000; Pierrot-Deseilligny

et al., 2003b; Leigh and Kennard, 2004) suggest that reflexive

saccades are triggered by the parietal eye field and complex

saccades by the frontal eye field, both having excitatory con-

nections with the superior colliculus and striatum, and receiv-

ing feedback from the basal ganglia via thalamocortical

tracts. Hikosaka and colleagues (Hikosaka et al., 2000)

suggested the presence of tonic inhibition of the superior

colliculus by the basal ganglia output nuclei, globus pallidus

pars interna and substantia nigra pars reticulata which may be

removed by phasic inhibitory signals from the striatum.

Removal of inhibition of superior colliculus is a precondition

for the triggering of a saccade.

Such widespread and complex networks involving exten-

ded cortical and subcortical structures and their connections

are vulnerable to multiple disruptions and it would be difficult

Table 3 Predicted saccades, direction errors and correct saccade latency in complex saccade tasks

Controls Parkinson’s
disease

PDD DLB Alzheimer’s
disease

Between-group
comparison

Prediction task
Predicted (%) 53 6 35 43 6 39 7 6 18 8 6 21 23 6 32 P < 0.0001�1

Latency (ms) 235 6 62 259 6 59 346 6 65 401 6 109 304 6 81 P = 0.0001y1

Decision task
Errors (%) 13 6 17 17 6 19 27 6 15 40 6 24 40 6 34 P < 0.0001�2

Latency (ms) 437 6 90 505 6 133 583 6 142 554 6 125 500 6 130 P = 0.002y2

Antisaccade task
Errors (%) 25 6 38 21 6 35 64 6 35 63 6 26 80 6 42 P < 0.0001�3

Latency (ms) 431 6 195 520 6 147 660 6 207 740 6 184 596 6 202 P < 0.0001y3

yMean and SD and ANOVA with post hoc Games–Howell test; �median and interquartile range and Kruskal–Wallis and Mann–Whitney
U tests. Two-group comparison included the comparisons of controls versus Parkinson’s disease, Parkinson’s disease versus PDD, DLB
versus PDD, DLB versus Alzheimer’s disease and Alzheimer’s disease versus controls. Significant differences are reported: �1Parkinson’s
disease versus PDD,P < 0.0001; DLB versus Alzheimer’s disease, P = 0.034; Alzheimer’s disease versus controls, P = 0.001; �2Alzheimer’s
disease versus controls, P < 0.0001; �3Parkinson’s disease versus PDD, P < 0.0001; Alzheimer’s disease versus controls,
P < 0.0001; y1Parkinson’s disease versus PDD, P < 0.0001; DLB versus Alzheimer’s disease, P = 0.022; Alzheimer’s disease
versus controls, P = 0.019; y2PDD and DLB were different from controls (P < 0.01), otherwise no differences; y3DLB versus controls,
P < 0.0001; PDD versus controls, P = 0.008.

Table 4 Synopsis of changes in saccade performance

Parkinson’s disease
versus controls

Alzheimer’s disease
versus controls

Parkinson’s disease
versus PDD

DLB versus
Alzheimer’s disease

DLB versus
PDD

Saccade execution $1 $ ### ### $
Target prediction $ ### ### # $
Saccade suppression $ ### ### $ $
Spatial decision $ ### $ $ $

Non-demented controls: Parkinson’s disease and controls; demented groups: PDD, DLB, Alzheimer’s disease. The comparison PDD
versus Alzheimer’s disease is not included, since clinically less relevant. $ = No significant difference; # = impairment (P < 0.05);
## = impairment (P < 0.01); ### = impairment (P < 0.001); 1Except gap saccade accuracy.

Saccades in PD dementia and dementia with Lewy bodies 1273

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/128/6/1267/432014 by guest on 20 August 2022



to postulate a single locus as the reason for saccadic eye

movement changes in PDD and DLB. Similar gap effects

(a measure to compare external and internal fixation disen-

gagement) did not suggest an isolated fixation disengagement

deficit in PDD and DLB. The combination of impaired sac-

cade execution and impairments in volitional saccade control

suggests disrupted processing within subcortical structures,

e.g. impaired removal of tonic inhibition of the superior col-

liculus, or between cortex and subcortex, e.g. disruption of

excitatory connections from the frontal eye field to the

superior colliculus or inhibitory connections of the dorsolat-

eral prefrontal cortex to the superior colliculus. The a-

synuclein positive pathology in the striatum (Duda et al.,

2002) and the reduced putamen volumes (Cousins et al.,

2003) in PDD and DLB may reflect anatomical changes

for such disruptions. Combined dopaminergic (Piggott

et al., 1999; Walker et al., 1999; O’Brien et al., 2004) and

cholinergic (Perry et al., 1994; Tiraboschi et al., 2002) defi-

cits in PDD and DLB, which exceed those of Alzheimer’s and

Parkinson’s diseases, are likely to additionally contribute to

impaired saccade execution, since the lack of these transmit-

ters can both be associated with impaired saccade triggering

and inaccurate amplitudes in healthy controls (Oliva et al.,

1993; Kato et al., 1995).

Our results suggest that nigrostriatal dopaminergic loss in

Parkinson’s disease without dementia is associated with min-

imal hypometria in reflexive gap tasks, when compared with

age-matched controls. This is consistent with previous stud-

ies, where changes in reflexive saccades were minimal in

Parkinson’s disease (Crawford et al., 1989b; Vidailhet

et al., 1994; Roll et al., 1996; Rottach et al., 1996; Briand

et al., 1999). The lack of impaired complex saccades (normal

saccade suppression, prediction and decisions) is consistent

with some (Crawford et al., 1989a; Lueck et al., 1990;

Fukushima et al., 1994; Vidailhet et al., 1999) but not all

(Bronstein and Kennard, 1985; Kitagawa et al., 1994; Crevits

and De Ridder, 1997; Briand et al., 1999) previous reports.

These inconsistencies between studies may be explained by

the inclusion of some patients with Parkinson’s disease and

cognitive impairment or by the assessment of PD patients in

the off condition (Vidailhet et al., 1994).

Complex saccade performance was impaired whenever

dementia was present. Since the prefrontal cortex is involved

in the triggering of predictive saccades (Pierrot-Deseilligny

et al., 2003a) and the suppression of erroneous antisaccades

(Guitton et al., 1985; Pierrot-Deseilligny et al., 2003a) and

the posterior parietal cortex may be needed for spatial

decisions (Tootell et al., 1998), impaired performance in

complex tasks may reflect the profound cortical neuro-

degenerative changes commonly found in these areas in

Alzheimer’s disease (Mirra et al., 1991) and PDD and

DLB (McKeith et al., 1996). In Alzheimer’s disease,

reflexive saccade control was normal, but complex saccade

performance was impaired relative to controls; more errors in

the antisaccade task have been found in previous studies

(Fletcher and Sharpe, 1986; Currie et al., 1991; Abel et al.,

2002; Shafiq-Antonacci et al., 2003). Small sample sizes and

diagnostic heterogeneity probably explain contradictory

reports as to whether reflexive saccade execution is

impaired in Alzheimer’s disease (Pirozzolo and Hansch,

1981; Fletcher and Sharpe, 1986; Moser et al., 1998;

Abel et al., 2002; Shafiq-Antonacci et al., 2003; Mosimann

et al., 2004a).

Taken together, our results suggest that impairments in

reflexive saccade execution were minimal when either cor-

tical (e.g. Alzheimer’s disease) or nigrostriatal neurodegen-

eration (e.g. Parkinson’s disease) was present solely, but

became prominent in PDD and DLB when cortical and sub-

cortical neurodegeneration coexisted (Emre, 2003; McKeith

et al., 2004). Cortical neurodegeneration was associated with

impaired complex saccade performance, such as saccade sup-

pression, target prediction and spatial decisions, supporting

the assumption that the contribution of the cortex in the

generation of complex saccades is higher (Pierrot-Deseilligny

et al., 2003b). The results also underpin the importance of

using different tasks and testing numerous saccades (here 150

per subject) in a standardized environment to quantify sac-

cade performance in dementia. During confrontation testing

we were not able to detect impaired saccade execution in

PDD and DLB patients. Such clinical testing, however,

involves the assessment of very few saccades (e.g. four to

six) and does not allow reliable quantification of subtle

impairments in saccade execution. This may explain why

eye movement disturbances in PDD and DLB have not

been reported previously. Reflexive saccades assessed by

electro-oculography may be useful to assist clinical differen-

tial diagnosis; this would allow separation of Parkinson’s

disease versus PDD or Alzheimer’s disease versus DLB in

about 80% of PDD and DLB patients respectively.

Saccade testing may provide a well-tolerated clinical

method contributing to the differential diagnosis of these

common neurodegenerative disorders. Instructions for reflex-

ive tasks are simple. Correct final eye position in reflexive

saccade tasks, high error correction rate in antisaccades and

less than 50% errors in decision tasks suggest that subjects

understood the task instructions, and high compliance and

positive feedback from patients indicate that eye movement

testing was well tolerated. Optimal group separation in this

study was better than that reported for absence of medial

temporal lobe atrophy on MRI for the distinction Alzheimer’s

disease versus DLB (Barber et al., 1999), but poorer than the

sensitivity and specificity found when dopaminergic func-

tional imaging was used for making the same distinction

(O’Brien et al., 2004). Our findings highlight differences

in saccadic eye movement control between different

neurodegenerative disorders.
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