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Abstract 

Background: Deposition of new genetic sequences in online databases is expanding at an unprecedented rate. As 

a result, sequence identification continues to outpace functional characterization of carbohydrate active enzymes 

(CAZymes). In this paradigm, the discovery of enzymes with novel functions is often hindered by high volumes of 

uncharacterized sequences particularly when the enzyme sequence belongs to a family that exhibits diverse func-

tional specificities (i.e., polyspecificity). Therefore, to direct sequence-based discovery and characterization of new 

enzyme activities we have developed an automated in silico pipeline entitled: Sequence Analysis and Clustering of 

CarboHydrate Active enzymes for Rapid Informed prediction of Specificity (SACCHARIS). This pipeline streamlines 

the selection of uncharacterized sequences for discovery of new CAZyme or CBM specificity from families currently 

maintained on the CAZy website or within user-defined datasets.

Results: SACCHARIS was used to generate a phylogenetic tree of a GH43, a CAZyme family with defined subfamily 

designations. This analysis confirmed that large datasets can be organized into sequence clusters of manageable sizes 

that possess related functions. Seeding this tree with a GH43 sequence from Bacteroides dorei DSM 17855 (BdGH43b, 

revealed it partitioned as a single sequence within the tree. This pattern was consistent with it possessing a unique 

enzyme activity for GH43 as BdGH43b is the first described α-glucanase described for this family. The capacity of SAC-

CHARIS to extract and cluster characterized carbohydrate binding module sequences was demonstrated using family 

6 CBMs (i.e., CBM6s). This CBM family displays a polyspecific ligand binding profile and contains many structurally 

determined members. Using SACCHARIS to identify a cluster of divergent sequences, a CBM6 sequence from a unique 

clade was demonstrated to bind yeast mannan, which represents the first description of an α-mannan binding CBM. 

Additionally, we have performed a CAZome analysis of an in-house sequenced bacterial genome and a comparative 

analysis of B. thetaiotaomicron VPI-5482 and B. thetaiotaomicron 7330, to demonstrate that SACCHARIS can generate 

“CAZome fingerprints”, which differentiate between the saccharolytic potential of two related strains in silico.

Conclusions: Establishing sequence-function and sequence-structure relationships in polyspecific CAZyme fami-

lies are promising approaches for streamlining enzyme discovery. SACCHARIS facilitates this process by embedding 

CAZyme and CBM family trees generated from biochemically to structurally characterized sequences, with protein 

sequences that have unknown functions. In addition, these trees can be integrated with user-defined datasets (e.g., 

genomics, metagenomics, and transcriptomics) to inform experimental characterization of new CAZymes or CBMs 

not currently curated, and for researchers to compare differential sequence patterns between entire CAZomes. In this 
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Background

�e Carbohydrate Active Enzyme (CAZyme) database 

(ca. 1998) is an online repository that curates enzyme 

sequences predicted or known to be involved in the 

metabolism of carbohydrates [1]. CAZymes are classi-

fied into five different enzyme classes, including glycoside 

hydrolases (GHs), polysaccharide lyases (PLs), auxiliary 

activities (AAs), carbohydrate esterases (CEs), and gly-

cosyl transferases (GTs). GHs [2] and PLs [3] cleave gly-

cosidic linkages by a hydrolytic and β-elimination 

mechanism, respectively. AAs are a recently defined class 

of oxidative enzymes that depolymerize crystalline poly-

saccharides, such as cellulose, chitin, starch, and lignin 

[4]. CEs hydrolyze O- and N-linked of carbohydrate 

esters generating alcohol and acid products [5]. GTs cata-

lyze biosynthetic reactions and are involved in the gly-

cosylation of acceptor molecules, such as carbohydrates, 

lipids and proteins [6]. In addition to these five classes of 

enzymes, carbohydrate binding modules (i.e., CBMs) are 

also curated within the CAZy database. CBMs are non-

catalytic sequences that fold into independent functional 

units; CBMs potentiate appended enzyme activity by tar-

geting and/or concentrating effects [7, 8].

�e CAZy database is an indispensable resource for 

guiding the discovery and characterization of CAZymes 

important for diverse aspects of glycobiotechnology, 

including agriculture, human health, and bioconver-

sion of renewable resources for bioproducts and biofuels 

[9–11]. Due to the increased accessibility and afford-

ability of next-generation  sequencing technologies, 

genetic sequence space deposited into online databases 

is expanding at an unprecedented rate and continues to 

outpace the functional characterization of CAZymes. 

For example, GH family 43 (GH43), a family known to 

be active on diverse arabinosyl- and xylosyl-configured 

substrates [12–14] abundant within non-cellulosic plant 

cell wall polysaccharides, only had 1.9% of its >  7000 

total entries functionally characterized at the time of this 

analysis. Similarly, GH family 92 (GH92), a family with 

diverse activities on α-mannosyl substrates (e.g., α-1,2; 

α-1,3; α-1,4; and α-1,6 mannosides) [15] found in feed-

stocks generated from distillation residues (e.g., dried 

distillers grains with solubles), only had 1.2% of its > 2400 

sequences characterized. �is pattern also extends to 

CBMs. CBM6 is a polyspecific family with diverse plant 

and algal cell wall carbohydrate binding specificities that 

can possess two distinct binding sites: variable loop site 

(VLS) and concave face site (CFS) [16]. At the time of this 

analysis, 5.1% of 1922 sequences containing a CBM6 were 

associated with a characterized enzyme. �is estimate of 

characterized CBM6 specificity is likely overrepresented, 

however, as known activities of CAZymes associated with 

a CBM6 do not necessarily equate to an accurate repre-

sentation of CBM6 binding specificity [17]. Despite these 

reports, the full pallet of substrate specificity and/or 

modes of action (e.g., exo-acting versus endo-acting; dis-

tributive versus processive) within GH43 and GH92, and 

ligand binding specificities within CBM6 likely remain to 

be discovered. In this light, uncharacterized sequences 

from CAZyme families with polyspecific profiles repre-

sent untapped repositories for enzyme discovery. Recent 

bioprospecting within known families has resulted in the 

discovery of novel activities and the generation of valu-

able biocatalysts [18–21].

Often enzyme discovery within polyspecific fami-

lies is hindered by large sequence volume and inherent 

multimodularity within some CAZyme families, which 

makes alignments difficult. To help streamline the char-

acterization of CAZyme function, several bioinformatic 

approaches have been developed. �ese include subfam-

ily delineation within a defined group of GH families [20, 

22–24]; PULDB (Polysaccharide Utilization Loci Data-

Base; [25]), an online tool associated with the CAZy web-

site which provides comparative predictions of enzyme 

activities within Bacteroides spp. catabolic pathways 

active on defined substrates; dbCAN (database for auto-

mated Carbohydrate-active enzyme ANnotation [26]), 

a web server that identifies potential CAZymes within 

uncharacterized sequences; and ancestral sequence 

reconstruction [27], which calculates the most likely 

progenitor sequence between two related sequences 

and can be used to map the evolution of contemporary 

and ancestral enzyme activities [28] or binding specifici-

ties [29]. Despite these advances, an automated method 

for the rapid identification of uncharacterized CAZyme 

sequence space with capacity to handle large datasets 

and target user-defined CAZyme function is currently 

lacking.

Presented here is a pipeline entitled: Sequence Analy-

sis and Clustering of CarboHydrate Active enzymes for 

Rapid Informed prediction of Specificity (SACCHARIS; 

from the Greek “sákkʰaris” or “sugar”) (Fig. 1). SACCHA-

RIS enables the user to extract entire sequence lists from 

a designated CAZyme family, en bloc trim multimodular 

light, SACCHARIS provides an in silico tool that can be tailored for enzyme bioprospecting in datasets of increasing 

complexity and for diverse applications in glycobiotechnology.

Keywords: Carbohydrate active enzyme, Carbohydrate, Phylogeny, Enzyme discovery, Bioprocessing
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enzymes to their modular boundaries, align the trimmed 

sequences, and display statistically derived phylogenies 

with vector graphics suitable for publication. �e outputs 

from this pipeline provide direct and easy-to-interpret 

insights into new functional space within a CAZyme or 

CBM family. In addition to comprehensive family analy-

ses, extractions can be specified for taxonomic divisions, 

biochemically characterized sequences, or structurally 

characterized sequences. Additionally, by embedding 

experimentally characterized sequences into user-gener-

ated datasets (e.g., genomic, metagenomic, and transcrip-

tomic) this pipeline can streamline enzyme discovery for 

diverse research applications.

In this study, GH43 and CBM6 have been used to gen-

erate sequence-based clades. �is phylogenetic analyses 

led to the discovery of a novel enzyme and binding spec-

ificity, respectively. Firstly, a GH43 from Bacteroides 

dorei DSM 17855 (BdGH43b) was identified as being an 

endo-acting enzyme that cleaves α-glucans, which var-

ies from all other previously described GH43s that are 

reported to act on β-- or α--configured substrates. 

Additionally, a CBM6 from Cellulosimicrobium cellu-

lans (CcCBM6a) was demonstrated to bind yeast man-

nan, which represents the first α-mannan binding CBM 

described in the literature. Importantly, SACCHA-

RIS analysis of individual families can be extended to 

entire genomes. Such analyses, which we refer to here 

as ‘CAZome fingerprinting’, provide in silico metabolic 

snapshots that can be used to predict saccharolytic 

potential with higher resolution. As a proof of princi-

ple, we have characterized the CAZome fingerprints of 

Campylobacter jejuni subsp. jejuni NCTC 11168-GSv, a 

genome previously sequenced by our group [30], and the 

differential CAZome fingerprints of two closely related 

strains of Bacteroides thetaiotaomicron. We antici-

pate that the SACCHARIS pipeline will be of interest 

to the glycobiotechnology community as it can be used 

to generate informative phylogenies for any enzyme or 

CBM family currently maintained on the CAZy website, 

provide differential CAZome analysis of genomes, and 

perhaps most importantly, be harnessed to bioprospect 

enzymes within user-defined meta-datasets.

Results and discussion

SACCHARIS generates accurate phylogenetic trees

To evaluate the accuracy of SACCHARIS (Fig. 1) a tree 

of characterized GH43s embedded with two uncharac-

terized GH43s from B. dorei (BdGH43a and BdGH43b) 

was constructed (Fig. 2a). GH43 is a polyspecific family 

that is active on non-cellulosic plant cell wall polysac-

charides. �is family has been divided into thirty-seven 

defined subfamilies [20] (i.e., GH43_1 to GH43_37) with 

biochemically determined activities that include α--

arabinofuranosidase (EC 3.2.1.55), β--xylosidase (EC 

3.2.1.37), α-1,5--arabinanase (EC 3.2.1.99), β-1,4--

xylanase (EC 3.2.1.8), and galactan β-1,3--galactosidase 

(EC 3.2.1.145) [1]. Trees generated with ‘characterized’ 

GH43 sequences using SACCHARIS produces twenty 

distinct clades, plus BdGH43a and BdGH43b, which is 

consistent with the twenty subfamilies with characterized 

functions defined in CAZy at the time of this analysis [1, 

20] (Fig. 2a).

�e majority of characterized GH43s have been iden-

tified as α--arabinofuranosidases; these activities are 

distributed into five main clusters in the SACCHARIS 

phylogeny encompassing fourteen identified subfamilies 

(GH43_1, GH43_10–12, GH43_14, GH43_16, GH43_19, 

GH43_21, GH43_26, GH43_27, GH43_29, GH43_33, 

GH43_35, and GH43_36). �e second most abundant 

described activity within GH43 is β-1,4--xylosidase, 

which is found within ten subfamilies (GH43_1, 

GH43_11–12, GH43_14, GH43_16, GH43_22, GH43_27, 

GH43_29, GH43_35, and GH43_36); the major clusters 

are primarily represented by subfamilies GH43_1 and 

GH43_11. �e prevalence of reported activities for ara-

binofuranosidases and xylosidases likely results from the 

availability of small synthetic arabinose and xylose sub-

strates for rapid identification of activity; the characteri-

zation of more complex substrate specificities depend on 

the synthesis or purification of appropriate substrates. 

Arabinofuranosidase and xylosidase activity are not nec-

essarily mutually exclusive. GH43s with dual function are 

distributed amongst seven clades within the phylogeny, 

and GH43_35 is comprised entirely of members with 

dual activity [31–33]. Such cross-specificity may result 

Start CAZy Sequences

Prottest3

dbCAN

RAxML
FigTree

Muscle

FastTree

User Sequences

Fig. 1 Flow diagram of SACCHARIS. The pipeline initiates with 

a query of http://www.cazy.org and outputs protein sequence. 

User-generated protein sequences from sequence datasets can 

be added (white star). dbCAN [26] is utilized for identification of 

modular boundaries. Selected enzyme sequences are extracted and 

boundaries pruned using in-house tools. Alignment is performed via 

MUSCLE [54], and phylogenetic grouping by RAxML [57] or FAstTree 

[56], respectively. ProtTest [55] is used for the selection of the best-fit 

model. Trees are outputted as Newick files for tree plotting in by 

FigTree

http://www.cazy.org
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Fig. 2 Phylogenetic tree using characterized sequences from GH43. a Subfamily assignments defined by http://www.CAZy.org [20] are shown in 

the outer circle, and members of the tree are coloured based on their characterized activity. Green stars indicate the distribution of exo-acting arabi-

nanases. BdGH43b is indicated with a black circle. BdGH43b endo-α-glucosidase activity; b Fluorescent assisted carbohydrate electrophoresis and c 

thin-layer chromatography of products generated by BdGH43b (+) following in vitro digestion of soluble potato starch. Control digestions of starch 

were performed with endo-α-amylase (α), maltose releasing β-amylase (β), and no enzyme (−). Marker (M) containing; glucose (G), maltobiose (M2), 

maltotetrose (M4) as standards are indicated
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from similar stereochemical configuration of C1, C2, and 

C3, in α--arabinofuranose and β--xylopyranose [20].

�e α-1,5--arabinanases are solely distributed among 

two clusters within the phylogenetic tree that span four 

subfamilies (GH43_4–6, and GH43_37). �e majority of 

identified arabinanases are endo-acting; however, three 

exo-α-1,5--arabinanases, ACE84667.1, ADB43999.1, 

and CCO20984.1 have also been described (Fig. 2a). �e 

former two are closely related enzymes that partition into 

GH43_5 [20]. CCO20984.1 was discovered from fungus-

growing Pseudacanthotermes militaris termite gut and 

belongs to subfamily GH43_4 [34]. �e molecular basis 

for exo-activity in this enzyme is unclear as it is closely 

related to the endo-arabinanase AAO75474.1 from 

the intestinal symbiont Bacteroides thetaiotaomicron 

VPI-5482.

Rare activities within GH43 include the galactan β-1,3-

galactosidases, which are limited to a single subfam-

ily (GH43_24), and the β-1,4--xylanases (GH43_11, 

GH43_12, GH43_16, and GH43_29). �e galactan β-1,3-

galactosidases display an altered catalytic triad configu-

ration to other GH43s [35]. In contrast, the xylanases 

from family 43 are more distributed throughout the 

phylogenetic tree, and can be found within three clades. 

�ree of these enzymes (AAD30363.1, CBL17682.1, and 

EDV05059.1) possess both xylanase and arabinofuranosi-

dase activity [1, 36].

To investigate the ability of SACCHARIS to streamline 

enzyme discovery, we have investigated the sequence-

function relationship of BdGH43b (WP_007831524.1b). 

BdGH43b was selected for embedding into the GH43 

tree because it had an unusual bimodal architec-

ture with tandem GH43s (BdGH43a and BdGH43b) 

that are classified into subfamily 18 and 34, respec-

tively. Additionally, BdGH43b diverges early from 

the GH43_33 subfamily, which contains a single entry 

from Halothermothrix orenii H 168 that is classified as 

an α--arabinofuranosidase (HoGH43; ACL70803.1). 

�e structure of HoGH43 has been determined, and 

was noted to have a structurally unique active site 

[37]. To explore the activity of BdGH43b, reactions 

against common GH43 substrates were performed. 

BdGH43b did not display bona fide activity on PNP-α-

-arabinopyranoside, PNP-β--xylopyranoside, PNP-

β--glucopyranoside, PNP-α--arabinofuranoside and 

PNP-β--galactopyranoside. Additionally, there was no 

activity detected on α--arabinan or β--xylan. Follow-

ing this BdGH43b was screened against a panel of other 

substrates, including galactans, pectins, and α-glucans, 

which revealed that it released maltooligosaccha-

rides  from starch (Fig.  2b, c). �is represents a unique 

activity for GH43 and the first enzyme from this family 

active on α-linked -glucans.

Delineation of structurally and functionally characterized 

CBMs using SACCHARIS

�e coverage of functionally or structurally character-

ized proteins within a CAZyme or CBM family is often 

difficult to ascertain without performing a complete 

phylogenetic tree. Although subfamily delineation helps 

in this regard, subfamilies have only been defined for 

a limited number of CAZyme families [1, 20, 22–24]. 

Within families (and clans) structural folds are con-

served, but without detailed knowledge of CAZyme 

or CBM specificities these structures will likely not be 

informative for revealing function of uncharacterized 

members as subtle changes in primary structure can lead 

to diverse specificities [17, 38, 39]. For example, CBM6 

is a polyspecific CBM family that has been described to 

interact with diverse ligands, including: β-1,4-xylosyl-; 

β-1,3- and β-1,4-glucosyl-configured oligosaccharides; 

and the algal polysaccharides laminarin and agarose [17, 

40–43]. CBM6s have two potential locations for binding 

sites (VLS and CFS; [16, 44]) and they can bind ligands 

through different mechanisms: endo-like CBMs (Type B) 

and exo-like CBMs (Type C) [7, 8]. �erefore, to explore 

the capacity of SACCHARIS to generate informative 

trees using structural and functional information from an 

established polyspecific CBM family, we have performed 

a SACCHARIS analysis using entries for “character-

ized” CBM6s [45] (Fig. 3). Ninety CBM6 sequences were 

extracted and plotted, and their distribution agrees with 

previous phylogenetic analysis [17, 46]. �is family clus-

ters into four main clades that reflect the specificity of 

their appended catalytic fragment. �ese include hemi-

cellulose, xylan, β-glucans with a variety of linkages, and 

agarose.

Advances in the structural analysis of CBM6s have pro-

vided further insight into the evolution of function and 

the bi-functional binding sites. �e majority of charac-

terised CBM6s have been confirmed as VLS binders, 

and correspondingly, VLS CBM6s are widely distributed 

throughout the tree. CBM6 from Bacillus subtilis (PDB: 

3C7H; [47]) is the sole exception as this CBM does not 

have a known binding function. �e two characterized 

structures with both VLS and CFS binding sites from 

Zobellia galactanivorans and Cellvibrio mixtus [43, 48] 

cluster together, (PDB IDs: 5FUI and 1UYY, respectively). 

�ese two CBM6s display structural conservation of 

their binding sites and both interact with chemically sim-

ilar, mixed-linkage glucans. �e emergence of the func-

tional CFS appears to have occurred following divergence 

from the xylanase associated clade and also contains the 

CBM6 Ruminiclostridium thermocellum ATCC 27405 

(PDB ID: 5LA2; [49]). �e neoagarooligosaccharide bind-

ing CBM6 from Saccharophagus degradans 2–40 (PDB 

ID: 2CDP; [40]) forms the founding member of a clade 
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Fig. 3 Distribution of CBM6 structures within a tree of CBM6s associated with characterized CAZymes. a Phylogenetic tree of characterized CBM6s 

(n = 90) were plotted with SACCHARIS. CBM6s with known three-dimensional structures where then mapped onto the tree and are indicated by 

their PDB ID. Rendered surface models with their bound ligands shown as yellow sticks are shown. For each structure the residues comprising the 

VLS are displayed in cyan and those of the CFS in magenta. Schematic representations of the sugar and stereochemical linkage recognized by each 

CBM are also displayed (blue circle = glucose, orange star = xylose, yellow circle = galactose, hatched yellow circle = 3,6-anhydro-L-galactose). 

Members of the tree are coloured based on the substrate that the appended catalytic module is active on. The black and white circles represent the 

CBM6s synthesized and tested for binding: BbCBM6 (grey circle), CcCBM6a (white circle), CcCBM6b (hatched circle), and CcCBM6c (black circle). b 

Affinity gel of various constructs of BbCBM6 and CcCBM6a–c. BSA controls are indicated with a dash. Equal amounts of CBM6s were run in acryla-

mide gels in absence (Native) and presence of 1% yeast mannan (YM)
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that is entirely populated by CBMs associated with aga-

rases. In contrast, the binding of xylo- and cellulo-con-

figured ligands is distributed throughout the CBM6 tree, 

suggesting it may represent the ancestral binding speci-

ficity for this family. Similar to what is described above 

for CAZyme specificities, the integration of structural 

and functional information into more inclusive trees built 

with biochemically characterized or uncharacterized 

sequence datasets helps to improve the accuracy of iden-

tifying novel CBM binding specificities in polyspecific 

families.

To test the accuracy of SACCHARIS to identify novel 

CBM functions, two genes with CBM6s attached to cat-

alytic modules predicted to digest yeast mannan were 

targeted for functional characterization. Yeast mannan 

is an extracellular cell wall polysaccharide found on sur-

face of Saccharomyces cerevisiae [19]. It is a mannose rich 

polysaccharide that contains an extensive α-1,6-mannan 

backbone decorated by side-chains displaying species-

specificity in the linkage chemistry and carbohydrate 

composition [50]. Deconstruction of a highly complex 

polysaccharide, such as S. cerevisiae mannan, requires 

the combinatorial action of many different enzymes, 

including α-mannanases, α-mannosidases, and sugar 

phosphatases [19]. Although many GH families have 

been reported to be involved in yeast mannan decon-

struction including GH76s and GH92s [19], there are 

currently no CBMs known to bind this class of polysac-

charide. CBM6s associated with a GH76 (BAA75632.1) 

from Bacillus circulans TN31 (BcCBM6) and a GH92 

(AFK83609.1) from Cellulosimicrobium cellulans were 

identified and selected for biochemical characterization 

(Fig.  3a). Interestingly, although BAA75632.1 is a sin-

gle module, AFK83609.1 contains three tandem CBM6 

modules (CcCBM6a, CcCBM6b, and CcCBM6c) that 

partition together in the CBM6 tree. When analyzed by 

affinity gel electrophoresis (AGE), BcCBM6, CcCBM6b, 

or CcCBM6bc did not display any noticeable retarda-

tion in the gel, suggesting there is no interaction with 

intact yeast mannan. However, CcCBM6a on its own or 

tethered to other CBM6s (CcCBM6ab and CcCBM6abc) 

displayed a marked change in mobility (Fig.  3b). �is 

represents the first report for a yeast mannan binding 

CBM. In this regard, SACCHARIS can be performed on 

other CBMs families associated with polyspecific parent 

enzymes to identify other unique binding specificities for 

CBMs.

Analysis of an entire CAZome

To determine if SACCHARIS can be applied to entire 

CAZomes, we have performed an analysis of the C. jejuni 

subsp. jejuni NCTC 11168-GSv genome. �is micro-

organism was previously sequenced by our group [30] 

and possesses three GHs, twenty-five GTs, and one CE 

and CBM (Fig.  4). Automated extractions were aligned 

with characterized sequences from each GT family (2, 

4, 9, 19, 28, 30, 32, 42, 51, 66, and 82), GH23, GH73, 

CE11 and CBM50, resulting in the generation of fifteen 

total phylogenetic trees (Fig. 4). Mapping of the C. jejuni 

subsp. jejuni NCTC 11168-GSv enzyme sequences were 

then performed to indicate relatedness to sequences 

with previously characterized members. �is approach, 

referred to here as ‘CAZome fingerprinting’, differenti-

ates between the metabolic signatures present within the 

genomes of individual organisms and identifies uniquely 

partitioning CAZymes for further analysis.

To demonstrate that CAZome fingerprinting can be 

performed on multiple genomes simultaneously to rap-

idly compare CAZyme and CBM specificities between 

related organisms, we have generated CAZome fin-

gerprints for B. thetaiotaomicron VPI-5482 (n  =  269) 

and B. thetaiotaomicron 7330 (n =  265), and integrated 

with characterized sequences  (Fig.  5). �is setup ena-

bles the rapid, visual inspection of every CAZyme and 

CBM from both strains by providing distance matrixes 

for sequence relatedness and characterized sequences. 

In total 86 trees were generated, which include 80 fami-

lies that are populated by sequences from both strains, 

and 6 families that contain entries from only one of two 

strains (e.g., B. thetaiotaomicron 7330 has exclusive 

GH24, GH26, and GH63 sequences; B. thetaiotaomi-

cron VPI-5482 has exclusive GH53, GH67, and GH116 

sequences). �e absence or presence of unique CAZymes 

in a genome suggests that there are differential relation-

ships between enzyme activities, and potentially, sac-

charification of unique substrates. Sequences that do 

not have orthologs in both genomes (indicated by green 

ellipses) also make promising candidates for enzyme dis-

covery, and may inform functional specificity that exists 

between two organisms. Tree density is affected by the 

number of characterized enzymes within the database, 

and the number of sequences within the genomes of each 

strain. �is also provides a rapid comparison for families 

that are underpopulated with characterized sequences, 

which may make candidate families for deeper explora-

tion. Potentially CAZome fingerprinting can be further 

extended to communities and meta-datasets, which 

could be informative for forecasting ecosystem responses 

to different substrates.

Conclusions

Due to the dynamic nature of genome annotation and 

deposition, rapid and flexible bioinformatic tools are 

required to respond to datasets that are increasing in size 

and complexity. In this regard, SACCHARIS is an auto-

mated bioinformatics pipeline tailored for generating 
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phylogenetic trees from CAZyme families. Such analy-

ses have utility for informing function within sequence 

datasets and streamlining biochemical characterization 

of targets, such as the first described α-glucanase activ-

ity for GH43 presented here. SACCHARIS is also able to 

generate phylogenies using characterized and structur-

ally defined CBM sequences to streamline the discovery 

of new binding specificities. For example, we were able 

to identify the first CBM known to bind yeast mannan. 

We also demonstrate that SACCHARIS can be applied 

to entire genomes, creating ‘CAZome fingerprints’ that 

are useful for differentiating between the saccharolytic 

specificity of related organisms. �erefore, we believe 

that SACCHARIS is an in silico tool that will help guide 

CAZyme and CBM discovery from sequence datasets 

(Fig. 5).

�e modular nature of the SACCHARIS pipeline makes 

it adaptable for enzyme discovery in protein classes other 

than CAZymes, such as kinases (e.g., kinase.com; [51]), 

peptidases (e.g., MEROPS; [52]), and transporters (e.g., 

Transporter Classification Database; [53]). Inclusion of 

these databases would require the integration of  new 

HMM (hidden Markov model) profiles with hmmscan to 

identify catalytic or associated domains in enzyme fami-

lies based on Pfam or other similar profile  annotations. 

In this regard SACCHARIS represents a useful platform 

that can be expanded to facilitate enzyme discovery and 

functional protein characterization in a variety of scien-

tific fields.

Methods

SACCHARIS incorporates a modularized, tiered 

approach to extract, identify, prune, align and plot 

sequences into functional groups. �e pipeline design 

incorporates in-house software and currently available 

online bioinformatics tools. Local installation of tools 

such as dbCAN [26], MUltiple Sequence Comparison by 

Log-Expectation (MUSCLE) [54], ProtTest [55], FastTree 
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[56], and Randomized Axelerated Maximum Likelihood 

(RAxML) [57] are required for proper functionality. SAC-

CHARIS has been installed and run on an Intel-i7 laptop 

with 32  GB of RAM and a 48-core server with 1  TB of 

RAM, both running Debian Linux (http://www.debian.

org/). Modularity has been built into the pipeline to facil-

itate simplified exchange of bioinformatic tools, such as 

using FastTree in place of RAxML, thereby diversifying 

its utility. �is design requires the creation of transition 

scripts for input and output files to enable seamless flow 

between modules. �e open-source nature of this archi-

tecture also affords the user the freedom to tailor data 

analysis for project-specific applications and enables the 

pipeline to be integrated with large-scale bioinformatic 

work-flow environments.

Sequence retrieval

CAZy sequences from selected families are extracted 

with an in-house program. User input of family, fam-

ily number and grouping are used to extract acces-

sion numbers remotely from the CAZy database. For 

GH43: 144 characterized sequences and 7136 unchar-

acterized sequences were extracted, and 6 and 443 

entries were removed, respectively, to account for 

duplications and fragments. For CBM6: ninety-nine 

sequences were extracted and ninety sequences were 

used.

Examples of user input include:

‘–f GH43 –g “all,characterized”’

Or

‘–f CBM6 –g characterized’,

where the ‘GH’ glycoside hydrolase or ‘CBM’ carbohy-

drate binding module are the family, and ‘43’ or ‘6’ are the 

family number and, ‘all’ and ‘characterized’ the grouping. 

By selecting and sorting with accession numbers, NCBI 

[58] can be accessed for retrieval of protein sequence data.

�e retrieval code is tailored for the current design of 

the CAZy website. Alterations may be required if there 

are future modifications to its structure and/or design. 

CAZy currently lacks an application program inter-

face (API). As such code developed to extract data from 

CAZy relies on the ability to download and parse HTML 

source. Additional features have been built into the code 

to address functional errors that were discovered during 

extraction of some family datasets. Examples include; 

eliminating duplicate sequences resulting from the pres-

ence of multiple accession numbers, removing sequence 

annotated in CAZy as fragments, linking sequences 

from multiple webpages (i.e., currently a maximum of 

1000 entries from a CAZy family are displayed per page), 

retrieving sequence data for samples with no accession 

number, and deciphering actual accession numbers from 

accession-like numbers in the description field.

Accession numbers extracted from CAZy are used to 

create a URL submission to NCBI through the e-search 

function of the Entrez API.

Results of entrez e-search are then used to create a sec-

ond URL e-fetch submission.

http://www.debian.org/
http://www.debian.org/
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�e return of the e-fetch submission is protein 

sequence data in FASTA format. �e Entrez API utility 

within NCBI is limited to 500 requests per submission so 

larger families need to be split into a linked series by cre-

ating temporary FASTA files that are merged upon com-

pletion of the code.

Accession numbers are not included in the ‘structure’ 

grouping on CAZy, therefore, the ability to extract pro-

tein sequence data is performed via a focus shift. When 

the grouping of ‘structure’ is detected by the code the 

extraction application switches from accession number 

detection to protein data bank (PDB) identifier detec-

tion. Protein sequence data is extracted from the PDB 

website ([59]; http://www.rcsb.org/pdb/home/home.do) 

using the list of PDB identifiers. �e PDB website, unlike 

NCBI does not have an e-search function for sequence 

retrieval; therefore, the PDB identifier was used create a 

URL and through the use of a HTTP get protocol extract 

the matching protein sequence data in FASTA format.

Pruning of full length sequences to CAZyme modules

Extracted datasets can be augmented with additional 

sequences prior to CAZyme module identification by 

SACCHARIS; sequences must be entered in FASTA for-

mat. All sequences are jointly run through dbCAN [26] 

to identify modular boundaries. Outputs from dbCAN 

are scanned to retrieve sequence identifiers and start and 

stop locations of the sequences with hits matching the 

user family selection.

Sequence identifiers are then used by the program to 

extract only those sequences from the combined CAZy-

User dataset and the sequence data is pruned at both 

the N-terminus and C-terminus of the proteins. Provi-

sions are built into the program for special cases when a 

sequence is multimodular (i.e., contains more than one 

copy of the enzyme or CBM module). Modules from mul-

timodular proteins are treated individually, and exported 

with the delineation ‘_#”, where ‘#’ equals the sequential 

position of the tandem module in alphabetical order (e.g., 

_A, _B, etc.). �e subsequent pruned FASTA file is col-

lated and used for entry into the alignment module.

Aligning of sequences

MUSCLE identifies each sequence through the first 10 

characters of the sequence identifier of the inputted 

FASTA file which will hamper downstream processing if 

there are identical alignment identifiers [54]. �erefore, a 

script that runs prior to the incorporation of user-gener-

ated sequences was developed to create a unique 10 char-

acter identifier for each sequence. �is identifier is placed 

at the beginning of each sequence. At present it is recom-

mended a unique 10 character identifier starting with ‘U’ 

and followed by nine digits be added to additional user 

sequences prior to being added to the dataset.

Plotting of aligned sequences

For RAxML or FastTree to generate optimal trees it is 

recommended a best-fit model be selected. Best-fit model 

selection is performed using ProtTest [55]. ProtTest out-

put is redirected to a file which is then parsed utilizing 

code built into SACCHARIS. �e output file writes to an 

array. �e best model is selected based upon the results 

of the ProtTest scoring matrix for each of the tests run by 

ProtTest and a best-fit model is selected. �e final step of 

the code uses the model selection to create either a Fast-

Tree or RAxML input string for the model depending 

on which plotting program was selected by the user. For 

example, if ProtTest identified JTT-IG the subsequent 

input for RAxML would be PROTGAMMAIJTT and for 

FastTree would be gamma-jtt.

Notably, ProtTest is limited to 4000 sequences (i.e., 

taxa); therefore, for datasets exceeding 4000 sequences 

SACCHARIS performs a randomized selection of 1500 

sequences for the muscle alignment to approximate 

http://www.rcsb.org/pdb/home/home.do
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phylogenetic distances. Randomized selection is per-

formed using fasta_subsample.pl script [60] against 

extracted CAZy sequences. �e randomized subsample 

is run through dbCAN, pruned and aligned using MUS-

CLE. Alignment outputs are analyzed by ProtTest to 

select the best-fit model for tree building. During devel-

opment, the accuracy of randomized selection was dem-

onstrated by performing repeated random analysis of the 

same GH43 dataset (n = 6), which resulted in the selec-

tion of the same model with an accuracy of 0.83.

Phylogenetic analysis proceeds using best-fit MUS-

CLE aligned data with the user selection of FastTree or 

RAxML. When selecting a default program, it is impor-

tant to consider efficiency. Calculation of bootstrap val-

ues is computationally intensive and thorough. �erefore, 

when you have a large alignment file (>  1000 taxa) cal-

culating bootstrap values can take a significant amount 

of time. FastTree uses a pseudo-bootstrap (local support 

values) calculation with the Shimodaira–Hasegawa test 

[61], thereby eliminating the computationally intensive 

part and producing a result very quickly. With RAxML, 

users may define the number of bootstrapping iterations 

or allow RAxML to determine the optimal number of 

iterations. For SACCHARIS we have instituted a thresh-

old of 100 bootstrap iterations when RAxML is selected. 

Total bootstrap iterations well below a 100 can take hours 

and iterations over 100, days to weeks, depending on the 

system. Time to complete is dependent on number of 

aligned sequences and CPU architecture.

Removing duplicate copies of entries helps to generate 

optimal runs and prevent run crashes. In the case that 

RAxML identifies identical sequences with unique identi-

fiers a reduced alignment file with the identical sequences 

removed will be created. �e end output is a Newick for-

mat file for phylogenetic trees. FigTree (http://tree.bio.

ed.ac.uk) was used to generate trees, and sequences of 

interest were manually highlighted.

For CAZome extractions, SACCHARIS can be run 

sequentially or in parallel via user made scripts so as to 

extract each CAZy family identified. Genome sequences 

identified as part of the CAZome can be added to each 

call by SACCHARIS thereby creating CAZyme family 

‘fingerprints’.

Purification and characterization of CBM6 modules

Codon optimized gene sequences corresponding to 

amino acid residues 385–525 of B. circulans TN31 

Aman6 (GenBank Accession Number: BAA75632.1) 

and residues 970–1440 of C. cellulans Man5 (Gen-

Bank Accession Number: AFK83609.1) were synthe-

sized (BioBasic) and subcloned into pET28a to create 

the pET28-BcCBM6 and pET28-CcCBM6abc plasmids, 

respectively. Nucleotide sequence corresponding to 

residues 976–1280, 1127–1427, 976–1120, 1127–1280, 

and 1281–1427 were subcloned into the NdeI and XhoI 

sites of pET28a to generate pET28-CcCBM6ab, pET28-

CcCBM6bc, pET28-CcCBM6a, pET28-CcCBM6b, and 

pET28-CcCBM6c. Constructs were transformed into 

E. coli BL21 Star (DE3) cells and grown at 37  °C to an 

OD 600  nm of 0.8 in LB broth containing kanamycin 

(50 µg ml−1). Gene expression was induced with 0.22 mM 

IPTG at 16  °C overnight. Cells were harvested by cen-

trifugation and lysed in 20  mM Tris pH 8.0, 500  mM 

NaCl by sonication. Lysates were cleared by centrifuga-

tion and loaded onto Ni–NTA resin for purification by 

immobilized metal affinity chromatography. Recombi-

nant BcCBM6, CcCBM6a, CcCBM6b, CcCBM6ab, and 

CcCBM6abc were eluted in a linear gradient of imida-

zole and fractions containing significant amounts of 

pure protein as judged by SDS-PAGE were pooled and 

buffer exchanged into 20 mM Tris pH 8.0. Protein con-

centrations were determined using the Beer-Lambert 

law with estimated extinction coefficients of 19,940, 

99,350, 62,910, 64,400, 33,460, and 29,450  M−1  cm−1 

for BcCBM6, CcCBM6abc, CcCBM6ab, CcCBM6bc, 

CcCBM6a, and CcCBM6b, respectively [62].

AGE was performed as described previously [63], with 

the following modifications. Native polyacrylamide gels 

(10% acrylamide, 25  mM Tris pH 8.8, 250  mM glycine) 

were prepared with and without the addition of 1% yeast 

mannan (Sigma #M3640). 3  µg of Bovine Serum Albu-

min, BcCBM6, CcCBM6a, CcCBM6ab, CcCBM6bc, and 

CcCBM6abc were loaded on gels and separated in native 

running buffer (25 mM Tris pH 8.3, 193 mM glycine) at 

110 V for 3 h at 4 °C. Protein migration was visualized by 

staining with Coomassie blue.

Purification and characterization of BdGH43b

Codon optimized gene sequences GH43b (BdGH43b) 

corresponding to amino acid residues 317–624 of 

WP_007831524.1 was synthesized (BioBasic) and sub-

cloned into pET28a to generate a C-terminal poly-his-

tidine tagged fusion of the protein. Constructs were 

transformed into E. coli BL21 Star (DE3) cells. Positive 

transformants were grown at 23  °C to an OD 600  nm 

of 0.5 and induced with 0.05  mM IPTG for 4  h. Inclu-

sion bodies containing the recombinant protein were 

prepared as described [64] and further purified by cen-

trifugation in 2  M sucrose. Harvests were extracted for 

10  min in 25 mM Tris (pH 8), 200  mM NaCl, and 8 M 

urea with shaking at 30  °C. �is extraction protocol 

leaves much of the irreversibly modified proteins in the 

inclusion bodies, which are pelleted after centrifugation 

at 12,000g for 10  min. Solubilized proteins were frac-

tionated by adsorption on a nickel column in 8 M urea, 

0.5  M NaCl. To refold, bound proteins were washed 

http://tree.bio.ed.ac.uk
http://tree.bio.ed.ac.uk
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step wise in 4 column volumes of 6, 4, 2 M urea at a flow 

rate of <  0.1  ml  min−1 and eluted in a 2  M urea buffer 

containing 300  mM imidazole. Eluates were dialyzed 

overnight in 25  mM Tris (pH 8), 200  mM NaCl, 5  mM 

β-mercaptoethanol. Protein fractionation and determi-

nation of pure protein was performed by SDS-PAGE. 

Concentration was calculated using an estimated extinc-

tion coefficient of 74,260 M−1 [62]. Enzymatic activity of 

purified BdGH43b (2 μM) was assayed using 0.5 mg ml−1 

water soluble starch (Sigma-Aldrich S9765) in 30  mM 

potassium phosphate buffer (pH 5.8) at 37 °C overnight. 

When indicated, reactions were terminated by heating 

at 100  °C, supplemented with 10 U of α or β-amylase 

(Sigma-Aldrich A3403, A7130), and incubated at 37  °C 

for an additional 30  min. After heat inactivation, reac-

tions were spun at 14,000g for 2 min, resolved by TLC on 

silica gel matrix (EMD Millipore 105553), and visualized 

using orcinol staining, or by fluorophore-assisted carbo-

hydrate electrophoresis as described in [65].
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