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Full genome sequences of prokaryotic organisms have led to
reconstruction of genome-scale metabolic networks and in silico
computation of their integrated functions. The first genome-scale
metabolic reconstruction for a eukaryotic cell, Saccharomyces cer-
evisiae, consisting of 1,175 metabolic reactions and 733 metabo-
lites, has appeared. A constraint-based in silico analysis procedure
was used to compute properties of the S. cerevisiae metabolic
network. The computed number of ATP molecules produced per
pair of electrons donated to the electron transport system (ETS)
and energy-maintenance requirements were quantitatively in
agreement with experimental results. Computed whole-cell func-
tions of growth and metabolic by-product secretion in aerobic and
anaerobic culture were consistent with experimental data, and
thus mRNA expression profiles during metabolic shifts were com-
puted. The computed consequences of gene knockouts on growth
phenotypes were consistent with experimental observations.
Thus, constraint-based analysis of a genome-scale metabolic net-
work for the eukaryotic S. cerevisiae allows for computation of its
integrated functions, producing in silico results that were consis-
tent with observed phenotypic functions for �70–80% of the
conditions considered.

Systems biology is commonly viewed as a four-step procedure
(1–3): (i) the enumeration of the biological components that

make up the biological process of interest, (ii) the reconstruction
of the network of interactions among these components, (iii) the
in silico simulation of the network function, and (iv) the com-
parison of computed network properties with actual phenotypic
observations. A wealth of available biological data for Saccha-
romyces cerevisiae (4–7) led to the establishment of the first
genome-scale reconstruction of the metabolic network in a
eukaryotic cell (8). The initial completion of the first two steps
of the systems biology procedure for yeast metabolism has been
achieved. Steps iii and iv have not yet been carried out for a
eukaryotic organism.

Integrated functions of reconstructed metabolic networks
can be determined in silico by using a number of analytical
approaches (9–11). The relatively young constraint-based ap-
proach differs fundamentally from the more traditional kinetic
theory-based approaches in that it is not aimed at finding the
solution or behavior of the network under certain conditions but
rather at eliminating solutions (behaviors) that the network
cannot exhibit (Fig. 1). By using this approach, a network of
interactions is successively constrained by defining the stoichi-
ometry of the interacting components, the direction of network
reactions, and the maximum allowable throughput. In this way,
candidate solutions to the network equations are systematically
eliminated by the successive application of the governing con-
straints, i.e., stoichiometry, thermodynamics, and maximal en-
zymatic rates (12). One thus can define the range of capabilities
of the reconstructed network and then, through the use of
optimization procedures, calculate the ‘‘best’’ solution within the
allowable range (13–15). If the network has evolved to produce
this best or optimal function, then an agreement is obtained

between experimentally determined behavior and the in silico
computations (16).

The constraint-based approach provides an appropriate sim-
ulation platform for studying the overall phenotypic behavior for
S. cerevisiae. A tremendous amount of experimental data has
been and continues to be generated for S. cerevisiae (17–19). A
number of databases have been dedicated to store and update
yeast experimental data sets, and several mathematical models
are available that use kinetic information to capture cell behav-
iors (20–23). Limited availability of kinetic information restricts
such models to a subset of the whole cell. The constraint-based
approach is not limited by the availability of the kinetic data and
thus can capture the complex content of the whole cell by using
the existing genomewide knowledge and maximally used high-
throughput data on yeast.

The constraint-based approach (12–15) has been productively
used to study the properties of genome-scale reconstructions of
bacterial metabolic networks including Haemophilus influenzae
(24), Escherichia coli (25), and Helicobacter pylori (26). Here
we apply this approach to the recently reconstructed genome-
scale S. cerevisiae metabolic network (8) to compute the prop-
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Fig. 1. Constraint-based modeling approach. The governing physicochem-
ical constraints, such as stoichiometric, thermodynamics, and reaction-rate
capacity constraints, confine the possible phenotypic outcome of a cellular
network (12). Physiologically feasible cellular states or the ‘‘solution points’’
lie within the constrained solution space and are indicated as ‘‘feasible solu-
tions.’’ Any states excluded by the physicochemical constraints are ‘‘infeasi-
ble’’ and cannot be attained by the cell. Optimization tools such as linear
programming then can be used to determine an optimal solution within the
allowable range of cellular capabilities.
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erties of a eukaryotic cell and compare them to experimental
observations.

Methods
Reconstructed Metabolic Network. The reconstruction procedure
has been described in detail (8). Briefly, genomic, biochemical,
and physiological information was used to construct a metabolic
reaction network for S. cerevisiae. Genomic information was
used to identify the ORFs in the genome and their associated
proteins, biochemical information was used to assign biochem-
ical functions to the identified enzymes, and physiological in-
formation was used to fill in the gaps in metabolic pathways and
formulate the biosynthetic composition of the cell. The recon-
structed network accounts for 708 unique metabolic ORFs,
�16% of the assigned ORFs in the S. cerevisiae genome (7). The
network includes a total of 1,175 biochemical reactions, of which
124 are mitochondrial, 702 are cytosolic, and 349 are transport
reactions across the plasma and mitochondrial membranes. The
metabolic network contains a total of 584 unique metabolites,
which are distributed among different compartments: 559 are in
the cytoplasm, 164 are in the mitochondria, and 121 are extra-
cellular. The complete model is available at www.cpb.dtu.dk�
models�yeastmodel.html and http:��systemsbiology.ucsd.edu�
organisms�yeast.html.

In Silico Computations. The metabolic capabilities of the S. cer-
evisiae network were calculated by using flux balance analysis
and linear optimization (14, 15, 27). For growth simulations,
biomass synthesis (i.e., production of biosynthetic components at
the physiological level) was selected as the objective function to
be maximized, and optimization was done subject to stoichio-
metric, limited thermodynamics, and reaction capacity con-
straints by using established procedures (13–15). Optimization
problems were solved by using the commercially available pack-
age LINDO (Lindo Systems, Chicago).

In Silico Number of ATP Molecules Produced per Pair of Electrons
Donated to the Electron Transport System (ETS) (P�O) Calculation. The
P�O ratio, or ATP yield of respiration, is a measure of the
efficiency of oxidative phosphorylation in energy metabolism.
The P�O ratio is calculated as the relative amount of ATP
molecules produced per pair of electrons donated to the ETS.
The theoretical value of the P�O ratio for S. cerevisiae is 1.5 (28),
i.e., 18 ATP molecules per 12 pairs of electrons transferred via
the ETS. The in silico P�O ratio was calculated by determining
the maximum number of ATP molecules produced through the
ETS per consumed molecule of glucose by using the recon-
structed model (maximizing ATP production in the S. cerevisiae
model grown on one molecule of glucose yields YATP,max � 12.5
ATP molecules that are generated via the ETS). The in silico
P�O ratio thus was calculated as the ratio of the maximum in
silico ATP yield over total electron pairs transferred to the ETS.

Energy Requirement for Biomass Formation. The amount of ATP
required for biomass formation, i.e., growth-associated ATP
requirement, was calculated by summing the ATP needed for the
formation of precursor metabolites [9.89 mmol of ATP�grams
dry weight (gDW)], for polymerization of macromolecules
(23.92 mmol of ATP�gDW), and the model-based ATP require-
ment to meet the biomass yield of 0.51 gDW�g glucose (29) in
an aerobic glucose-limited continuous culture (35.36 mmol of
ATP�gDW).

Chemostat Growth Simulation. In a continuous culture, growth rate
is equivalent to the dilution rate and kept at a constant value.
Calculations of the continuous culture of S. cerevisiae were
performed by fixing the in silico growth rate to the experimen-
tally determined dilution rate and minimizing the glucose uptake

rate. This formulation is equivalent to maximizing biomass
production given a fixed glucose uptake value and was used to
simulate a continuous-culture growth condition.

Results
The in silico model can be used to assess network properties such
as the P�O ratio and energy maintenance costs and to compute
whole-cell functions. The efficiency of aerobic respiration is
measured by the P�O ratio. Experimental studies of isolated
mitochondria have shown that S. cerevisiae lacks site I proton
translocation (28). Consequently, estimation of the maximum
theoretical or ‘‘mechanistic’’ yield of the ETS alone gives a P�O
ratio of 1.5 for oxidation of NADH in S. cerevisiae grown on
glucose (28). However, based on experimental measurements, it
has been determined that the net in vivo P�O ratio is �0.95 (28).
This difference is generally attributed to the use of the mito-
chondrial transmembrane proton gradient needed to drive me-
tabolite exchange (such as the proton-coupled translocation of
pyruvate) across the inner mitochondrial membrane. In the
reconstructed network, which contains no proton leakage, 12.5
molecules of ATP are generated via the ETS. As complete
oxidation of glucose leads to donation of 12 electron pairs (10
NADH and 2 FADH2) to the electron transport chain, the in
silico P�O ratio is 1.04 for oxidation of NADH and FADH2
during growth on glucose, i.e., 12.5�12 � 1.04, agreeing well
with the measured value without including any proton leakage.
The network-based computation systemically accounts for all
the steps required to import and export compounds from the
mitochondria, computing a net overall P�O ratio.

Cells require energy for both growth- and non-growth-
associated activities (29). The energy requirement for the for-
mation of biomass has been measured experimentally for S.
cerevisiae, and reported values range from 62.5 to 71.4 mmol of
ATP�gDW (29, 30). A network-based calculation procedure of
the growth-associated energy requirement has been developed
(31), and when applied to the reconstructed S. cerevisiae net-
work, a value of 69.2 mmol of ATP�gDW was computed (see
Methods), which falls in the range of experimentally determined
values. Energy required for precursor metabolite formation and
macromolecule polymerization can be calculated from the bio-
synthetic composition of the cell. The model-based ATP re-
quirement is entirely network-dependent and was derived from
the in silico calculations.

The reconstructed metabolic network of S. cerevisiae can be
used to represent whole-cell functions by placing simultaneously
all growth and maintenance demands on the network (14, 15).
These demands include the production of all the biomass
components in the appropriate physiological proportion (8)
while meeting both growth-associated (69.2 mmol of ATP�
gDW) and non-growth-associated (1 mmol of ATP�gDW per h)
energy requirements (30, 32). The in silico representation of all
metabolic demands on the reconstructed map can be used
simultaneously for analyzing, interpreting, and predicting the
phenotypic behavior of S. cerevisiae, such as in anaerobic and
aerobic culture and during metabolic growth shifts.

Optimal growth properties of S. cerevisiae were computed
under anaerobic glucose-limited continuous culture at dilution
rates varying between 0.1 and 0.4 h�1 (see Methods). The
computed by-product secretion rates then were compared with
the experimental data (33). The calculated uptake rates of
glucose and the production of ethanol, glycerol, succinate, and
biomass were in good agreement with the independently ob-
tained experimental data (Fig. 2, and Fig. 5 and Table 2, which
are published as supporting information on the PNAS web site)
and, as for E. coli (34), lie at the edge of the allowable solution
range. The relatively low observed acetate secretion rates were
not predicted by the in silico model. The in silico analysis of the
reconstructed network indicates that the release of acetate does
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not improve the optimal solution of the network, most likely
because of the absence of kinetic and regulatory constraints. It
is possible to constrain the in silico model further to secrete
acetate at the experimental level and recompute an optimal

solution under these additional constraints. This calculation
results in values that are closer to the measured glucose uptake
rates (Fig. 2 A). This procedure is an example of an iterative
data-driven constraint-based modeling approach, by which the
successive incorporation of experimental data is used to improve
the in silico model (12, 35) without the addition of rigorous
analytical tools and complex information. Besides the ability to
describe the overall growth yield, the model allows further
insight into how the metabolism operates at a more detailed
level. From analysis of the metabolic f luxes at anaerobic growth
conditions, the flux through the glucose-6-phosphate dehydro-
genase is found to be 5.32% of the glucose uptake rate at a
dilution rate of 0.1 h�1, which is consistent with the experimen-
tally determined value (6.34%) for this f lux when cells are
operating with fermentative metabolism (33).

Optimal growth properties of S. cerevisiae were computed
under aerobic glucose-limited continuous culture, where the
Crabtree effect plays an important role. The Crabtree effect
refers to alcoholic fermentation under aerobic conditions and
occurs when the dilution rate in sugar-limited chemostat cultures
exceeds a critical value that depends on the strain (29). The
molecular mechanisms underlying the Crabtree effect in S.
cerevisiae are not known. The regulatory features of the Crabtree
effect (36), however, can be included in the in silico model as an
experimentally determined (37) growth-rate-dependent maxi-
mum oxygen uptake rate (38). With this additional constraint,
the in silico model makes quantitative predictions about the
respiratory quotient, glucose uptake, ethanol, CO2, and glycerol
secretion rates under aerobic glucose-limited continuous con-
ditions (Fig. 3, and Fig. 6 and Table 3, which are published as
supporting information on the PNAS web site). In addition, the
capabilities of the reconstructed network to quantitatively pre-
dict experimental observations of growth in S. cerevisiae extends

Fig. 2. Anaerobic glucose-limited continuous culture of S. cerevisiae. (A)
Utilization of glucose at varying dilution rates in anaerobic chemostat culture.
The data point at the dilution rate of 0.0 is extrapolated from the experimen-
tal results. The shaded area (i.e., the infeasible region) contains a set of
stoichiometric constraints that cannot be balanced simultaneously with
growth demands. The model produces the optimal glucose uptake rate for a
given growth rate on the line of optimal solution [Model (optimal)]. The
imposition of additional constraints drives the solution toward a region in
which more glucose is needed (i.e., region of alternative suboptimal solution).
At the optimal solution, the in silico model does not secrete acetate. The
maximum difference between the model and the experimental points is 9%
at the highest dilution rate. When the model is forced to produce acetate at
the experimental level [Model (forced)], the glucose uptake rate is increased
and becomes closer to the experimental values (e.g., the 9% error is reduced
to 1%). (B and C) Secretion rate of anaerobic by-products in chemostat culture.
The highest difference between the model and the experimental data points
is associated with glycerol production at the highest dilution rate for a value
of 28% (Table 2). The ethanol secretion rate differences can be explained by
a partial evaporation of ethanol in the experiments. Exp, experimental;
q, secretion rate; D, dilution rate.

Fig. 3. Aerobic glucose-limited continuous culture of S. cerevisiae. (A)
Biomass yield (YX) and secretion rates of ethanol (Eth) and glycerol (Gly). The
only data point not predicted by the model is the glycerol production at the
highest dilution rate: D � 0.38 h�1. (B) CO2 secretion rate (qCO2) and respira-
tory quotient (R.Q.; qCO2�qO2) of the aerobic glucose-limited continuous
culture of S. cerevisiae. Exp, experimental.
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to metabolic by-product yields, specific growth rate, and specific
substrate uptake rates under both batch culture and chemostat
culture by using various carbon sources (e.g., glucose, galactose,
and ethanol) and oxygenation conditions (i.e., aerobic and
anaerobic conditions) (Tables 4 and 5, which are published as
supporting information on the PNAS web site), demonstrating
the utility of the model in a wide range of conditions.

A whole-genome in silico representation of an organism has
the capability to predict the phenotypic consequences of gene
deletions from the genome (25, 26). The impact of single-gene
deletions on growth was analyzed by simulating growth on a
synthetic complete medium containing glucose, amino acids, and
purines and pyrimidines, where the reaction corresponding to
the deleted gene was removed. The in silico results were com-
pared with experimental results as supplied by the Saccharomy-
ces Genome Database (5). For central metabolism, growth was
predicted under various experimental conditions (Table 1), and
81.5% (93 of 114 cases) of the in silico predictions were in
agreement with in vivo phenotypes. In all cases the disagree-
ments could be explained by known regulatory mechanisms,
illustrating that deviations of the model predictions from exper-
imental data will generally point to the existence of specific
regulatory structures. In a more detailed study (39), in 87.8% of
all considered cases (526 of 599), the in silico prediction was in
qualitative agreement with experimental results.

The in silico model was used to simulate the outcome of
expression-profiling experiments during metabolic shifts. The
computed changes in the flux maps then were compared on a
qualitative basis (i.e., up or down) with experimentally deter-
mined mRNA expression profiles. Two metabolic shifts were
considered: (i) aerobic-to-anaerobic glucose-limited continuous
cultures (40) and (ii) a shift from respiro-fermentative growth on
glucose to aerobic growth on ethanol (41), referred to as diauxic
shift. The qualitative changes in calculated flux levels and
experimentally determined transcription levels of the corre-
sponding genes correlated in �58% for the central metabolic
reactions (26 of 45; Table 6, which is published as supporting
information on the PNAS web site) and 49% of all cases (215 of

Table 1. Impact of gene deletions on growth in S. cerevisiae

Gene

Defined
complete Glc

Defined
minimal

Glc

Defined
minimal

Ace

Defined
minimal

Eth
Refs.

(for minimal
media)

(in silico�
in vivo)

(in silico�
in vivo)

(in silico�
in vivo)

(in silico�
in vivo)

ACO1 (���) (���) 44
CDC19* (���) (���) 45
CIT1 (���) (���) 46
CIT2 (���) (���) 46
CIT3 (���)
DAL7 (���) (���) (���) (���) 47
ENO1 (���)
ENO2† (���) (���)
FBA1‡ (���) (���)
FBP1 (���) (���) (���) 48, 49
FUM1 (���)
GLK1 (���)
GND1§ (���) (���)
GND2 (���)
GPM1¶ (���) (���)
GPM2 (���)
GPM3 (���)
HXK1 (���)
HXK2 (���)
ICL1 (���) (���) 50
IDH1 (���) (���) 51
IDH2 (���) (���) 51
IDP1 (���) (���) 52
IDP2 (���) (���) 52
IDP3 (���)
KGD1 (���) (���) 53
KGD2 (���) (���) 53
LPD1 (���)
LSC1 (���) (���) (���) 54
LSC2 (���) (���) (���) 54
MAE1 (���) (���) (���) 45
MDH1 (���) (���) (���) 55
MDH2 (���) (���) (���) 55
MDH3 (���)
MLS1 (���) (���) (���) (���) 47
OSM1 (���)
PCK1 (���)
PDC1 (���) (���) 56
PDC5 (���) (���) 56
PDC6 (���) (���) 56
PFK1 (���) (���) 57
PFK2 (���) (���) 57
PGI1‡� (���) (���) 58
PGK1‡ (���) (���)
PGM1 (���) (���) 59
PGM2 (���) (���) 59
PYC1 (���) (���) (���) (���) 60
PYC2 (���)
PYK2 (���) (���) (���) 45, 55
RKI1 (���)
RPE1 (���)
SOL1 (���)
SOL2 (���)
SOL3 (���)
SOL4 (���)
TAL1 (���) (���) 61
TDH1 (���)
TDH2 (���)
TDH3 (���)
TKL1 (���) (���) 61

Table 1. Continued

Gene

Defined
complete Glc

Defined
minimal

Glc

Defined
minimal

Ace

Defined
minimal

Eth
Refs. (for
minimal
media)

(in silico�
in vivo)

(in silico�
in vivo)

(in silico�
in vivo)

(in silico�
in vivo)

TKL2 (���)
TPI1‡** (���)
ZWF1 (���) (���) 61

Growth on different media was considered, including defined complete
medium with glucose (Glc) as the carbon source, and minimal medium with
Glc, ethanol (Eth), or acetate (Ace) as the carbon source.
���, growth�no growth.
*The isoenyzme Pyk2p is glucose repressed and cannot sustain growth on
glucose.

†ENO1 plays central role in gluconeogenesis whereas ENO2 is used in glycolysis
(66).

‡Model predicts single deletion mutant to be (highly) growth retarded.
§Gnd1p accounts for 80% of the enzyme activity. A mutant deleted in GND1
accumulates gluconate-6-phosphate, which is toxic to the cell (62).

¶The isoenzymes Gpm2p and Gpm3p cannot sustain growth on glucose. They
show residual in vivo activity only when they are expressed from a foreign
promoter (65).

�Different hypotheses exist for why Pgilp-deficient mutants do not grow on
glucose, e.g., the pentose phosphate pathway in S. cerevisiae is insufficient to
support growth and cannot supply the EMP pathway with sufficient amounts
of fructose-6-phosphate and glyceraldehydes-3-phosphate (64).
**Growth of single deletion mutant is inhibited by glucose (63).
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436; Table 7, which is published as supporting information on the
PNAS web site), including all the internal and transport reactions
in anaerobic�aerobic glucose-limited continuous study. For the
diauxic shift, the qualitative comparison between transcription
and flux levels agreed in 61% of the central metabolic reactions
(27 of 44 cases) (Table 8, which is published as supporting
information on the PNAS web site).

By using the mRNA expression changes as additional biolog-
ical constraints, f lux changes during metabolic shifts were reex-
amined. Constraining the internal f luxes in both metabolic shifts

improved the correlation between expression levels and flux
changes to 78% for the central metabolic reactions (35 of 45
cases; Fig. 4 and Table 9, which is published as supporting
information on the PNAS web site) and 63% for all cases (275
of 436; Table 10, which is published as supporting information
on the PNAS web site) in anaerobic�aerobic glucose-limited
continuous study and 84% (37 of 44 cases; Fig. 7 and Table 11,
which are published as supporting information on the PNAS web
site) in the diauxic shift study.

Discussion
Taken together, the results show that it is possible to compute
whole-cell functions for eukaryotic cells based on genome-scale
reconstruction of the underlying biochemical reaction networks.
The constraint-based procedure used to evaluate the functions of
the genome-scale yeast metabolic map gives a number of accu-
rate predictions of cellular functions. However, there are also
false predictions. These failure modes are of great interest
because they point out incomplete parts of the reconstruction,
and, as experience has shown, they guide us in focusing the
iterative model-building process (12, 35). Furthermore, because
of the absence of regulatory and kinetic constraints, many
equivalent alternative optimal solutions are often available that
contain the same objective value but differ in the internal f lux
values. Such alternative optimal solutions can be determined by
using mixed-integer linear programming (42). Gene expression
profiles can allow the best solution set to be identified among all
possible equivalent sets that mixed-integer linear programming
enumerates by providing transcriptional regulatory constraints.
Imposing transcriptional regulatory constrains reduces the so-
lution space and eliminates the physiologically infeasible flux
distributions.

Unlike genome-sequencing projects that have a well defined
endpoint, the in silico model-building procedure at the genome
scale is an iterative and ongoing process during which the content
of a model grows, and thus the scope of properties that can be
computed widens. The 13-year history of building models for E.
coli demonstrates this iterative model-building process (43).
Importantly, the in silico model-building procedure in this way
provides a framework for the integration of an expanding
number of heterogeneous data types. The in silico computation
of cellular functions from reconstructed networks allows for
study of the relationship between environmental and genetic
factors and how they come together to produce cellular pheno-
types. These capabilities will be important in our quest to
mathematically model and computer-simulate complex biolog-
ical functions, which represents a fundamental goal of in silico
biology.
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