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Sad faces increase the heartbeat-
associated interoceptive 
information flow within the 
salience network: a MEG study
Jaejoong Kim1,5, Hyeong-Dong Park2, Ko Woon Kim1,3, Dong Woo Shin  1,5, Sanghyun Lim4, 
Hyukchan Kwon4, Min-Young Kim4, Kiwoong Kim4 & Bumseok Jeong  1,5

The somatic marker hypothesis proposes that the cortical representation of visceral signals is a 
crucial component of emotional processing. No previous study has investigated the information 
flow among brain regions that process visceral information during emotional perception. In this 
magnetoencephalography study of 32 healthy subjects of either sex, heartbeat-evoked responses 
(HERs), which reflect the cortical processing of heartbeats, were modulated by the perception of a 
sad face. The modulation effect was localized to the prefrontal cortices, the globus pallidus, and an 
interoceptive network including the right anterior insula (RAI) and dorsal anterior cingulate cortex 
(RdACC). Importantly, our Granger causality analysis provides the first evidence for the increased 
flow of heartbeat information from the RAI to the RdACC during sad face perception. Moreover, using 
a surrogate R-peak analysis, we have shown that this HER modulation effect was time-locked to 
heartbeats. These findings advance the understanding of brain-body interactions during emotional 
processing.

According to the James-Lange theory and the somatic marker hypothesis, emotional feelings are the mental 
experience of bodily states1,2. Various feelings are hypothesized to subsequently emerge from the cortical rep-
resentation of bodily sensation, which is called interoception1. �erefore, it is important to investigate interocep-
tive signal-induced cortical processing during emotional experiences. However, given that signals from internal 
organs cannot be identi�ed without explicit measuring devices, such as electrocardiography (ECG), it is di�-
cult to investigate the brain activity that is directly evoked by interoceptive signals. Heartbeat-evoked responses 
(HERs), which are obtained by averaging electrophysiological signals time-locked to heartbeats, provide one way 
to investigate the cortical processing of interoceptive signals. HERs are known to re�ect the cortical processing 
of heartbeats and have been reported to be associated with heartbeat perception accuracy3, suppressed by pain 
perceptions4, and modulated by empathy feelings5. HER amplitudes are also attenuated in mood-related psychi-
atric disorders, including depression6 and borderline personality disorder7, suggesting a potential link between 
HERs and aberrant emotional processing. Moreover, several recent studies have successfully shown, using HERs, 
that cortical interoceptive processing is modulated by emotional processing. One study reported that HERs were 
modulated by emotional arousal8. Another study reported that HERs in infants were modulated by video clips 
showing fearful and angry facial expressions9. Finally, one study, using high-density electroencephalography 
(EEG) and natural a�ective scenes, localized the source of HERs to a frontal-insular-temporal network including 
the anterior insula (AI) and anterior cingulate cortex (ACC)10. �e AI and ACC both have topological organized 
maps of the body1 and are co-activated in the majority of neuroimaging studies of emotion11. �erefore, these 
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regions are hypothesized to conjointly act during emotional processing, with the AI acting as an input region that 
integrates interoceptive information and the ACC acting as an output region that uses integrated interoceptive 
information to generate emotion-related responses (the responses could be related to an autonomic/cognitive/
behavioural domain)12. However, the modulation of the directional interoceptive information �ows between 
these regions during emotional processing has not yet been investigated. �erefore, in this study, we aimed to 
identify the modulation of the directional interoceptive information �ows during emotional perception using 
HERs. To this end, we used emotional faces and emotional emoticons that conveyed text-based emotions to evoke 
an emotional feeling while measuring the HERs with magnetoencephalography (MEG). We suspected that while 
emotional emoticons and emotional faces convey similar types of emotional information, their interoceptive 
processing could be di�erent, as can be inferred from our previous fMRI study13. In that study, the activation of 
the insula was not found in the text-based emoticon condition, while the other activated regions overlapped with 
brain regions that are typically activated by emotional faces13. To verify the precise source of the HER modulation, 
T1-weighted structural MRI was performed for all subjects. Importantly, we applied Granger causality (GC) anal-
ysis14 to sources to identify information �ows between the sources of HER modulations.

We formulated the following speci�c hypotheses. First, we expected that the HERs would be modulated by 
emotional expressions and that this would be revealed by di�erent spatiotemporal dynamics between presenta-
tions of emotional and neutral stimuli. In particular, we used sad and happy expressions as emotional stimuli to 
observe an HER modulation e�ect a�er visual stimulus presentation because these emotional stimuli, as well 
as neutral faces, are known to be less in�uenced by the timing of the stimulus presentations within the cardiac 
cycle15. Although the emotional expression is not veri�ed by this method, we expected that emoticons with these 
emotions (sad and happy) and neutral emoticons would also be less in�uenced by the timing of the stimulus pres-
entations within the cardiac cycle. Second, we expected that modulation of the HERs by emotional expressions 
would be localized to the convergence regions of interoception and emotion, such as the anterior insula and ante-
rior cingulate cortex16. �ird, we expected that the information �ows between these interoceptive regions would 
be modulated by emotional expression. More precisely, we expected that the bottom-up heartbeat information 
processing starting from the anterior insula, which represents the viscerosensory information from the posterior 
insula, to the anterior cingulate cortex would be enhanced by emotional expressions12. �is pathway is hypoth-
esized to be involved in the processing of the subjective salience of emotions using interoceptive signals12,17,18.

Results
Sensor analysis. Six conditions of stimuli consisting of happy face, sad face, neutral face, happy emoticon, 
sad emoticon, neutral emoticon were presented to forty healthy participants while recording magnetoencepha-
lography (MEG) (Fig. 1). �e stimuli were presented 120 times for each condition. Eight participants whose data 
had a magnetic �eld instability or abnormal ECG recording were excluded from further analyses. �e continuous 
MEG data was �ltered with a 1–30 Hz Butterworth �lter. Eye movement and cardiac �eld artefacts (CFAs) were 
removed by independent component analysis (ICA) on the �ltered continuous MEG data19 by the artefact correc-
tion algorithm used in the Human Connectome Project (HCP) MEG preprocessing pipeline20,21 (Fig. 1). Because 
a strong electromagnetic �eld produced by a cardiac activity could in�uence HERs, it is important to correct the 
CFAs8,22. A�er the epoching of the HERs of each condition, we compared the HERs of an emotional condition 
and a neutral condition. Four tests were performed, including a sad face vs. a neutral face, a happy face vs. a neu-
tral face, a sad emoticon vs. a neutral emoticon, and a happy emoticon vs. a neutral emoticon. To address multiple 
comparison problems, we used cluster-based permutation paired t tests (Fig. 1).

Significant difference in HERs between sad face and neutral face perceptions in the sensor analysis  
of HERs. A HER cluster showing a signi�cant di�erence between the perceptions of a sad face and a neutral 
face was found in the right frontocentral sensors within the 494 ms–504 ms time range (Monte-Carlo p = 0.044, 
Fig. 2). No clusters were formed in other conditions, including happy face vs. neutral face, sad emoticon vs. neu-
tral emoticon and happy emoticon vs. neutral emoticon.

Source analysis. Interoceptive and prefrontal regions are the sources of HER modulations to sad faces. Source 
reconstruction was conducted using the MATLAB package Brainstorm23. To estimate the time courses of both the 
cortical and subcortical activities, we used the default settings in the open-source MATLAB toolbox Brainstorm’s 
implementation of the deep brain activity model using the minimum norm estimate (MNE)23,24 (Fig. 1). �e 
source map was averaged over a time window of 494 ms to 504 ms, showing a signi�cant di�erence between a 
sad face and a neutral face at the sensor level (other emotional conditions were not signi�cantly di�erent from 
neutral conditions in cluster-based permutation paired t tests). �en, this averaged spatial map was exported to 
SPM12 so�ware25, and further statistical tests were performed (Fig. 1). Paired t tests were used to identify regions 
that had a di�erent HER time course within the selected time window between sad and neutral faces. With the 
cluster-forming criteria of p-value < 0.01 and 10 adjacent voxels, several clusters of regions that had di�erent 
HER time courses between sad face and neutral face conditions were identi�ed. Six signi�cant clusters appeared 
(Table 1). Brie�y, the �rst cluster included the right dorsal anterior cingulate cortex (Table 1, Fig. 3, p < 0.001, 
cluster-level false discovery rate (FDR)-corrected). �e second cluster included right dorsolateral prefrontal 
regions that consisted of the right superior frontal sulcus and the right middle frontal gyrus (Table 1, Fig. 3, 
p < 0.001, cluster-level FDR-corrected). �e third cluster included the RAI (Table 1, Fig. 3, p = 0.001, cluster-level 
FDR-corrected). Note that previous studies have reported the ACC and AI as sources of HERs10,26,27. Other clus-
ters were a basal ganglia cluster that included the right globus pallidus/right putamen (RGP/RP) cluster (Table 1, 
Fig. 3, p = 0.016, cluster-level FDR-corrected), another RdACC cluster (Table 1, Fig. 3, p = 0.042, cluster-level 
FDR-corrected), and another right dorsolateral prefrontal cortex (RdlPFC) cluster (Table 1, Fig. 3, p = 0.042, 
cluster-level FDR-corrected).
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Increased GCs of HERs between RAI and RdACC induced by sad faces. A�er identifying brain regions that had 
di�erent time courses, we performed a GC analysis14 on two regions of interest, the right anterior insula (RAI) 
and the right dorsal anterior cingulate cortex (RdACC), to determine whether the e�ective connectivity between 
these regions is modulated di�erently by sad faces compared to neutral faces (Fig. 1). �ese regions are known 
to be core regions of interoceptive processing and feelings16,17,28. Moreover, emotional processing in the AI and 
ACC is known to be right-lateralized, especially in the AI11,29. Short time window GC estimation with a sliding 
window was used, which is an appropriate method for an analysis whose temporal precision is important, such 
as an HER modulation e�ect. �e pairwise GC was calculated between the RAI and the RACC from the (170 ms 
230 ms) window to the (507 ms 567 ms) window. �en, we compared GCs of the sad face and neutral face condi-
tions for all time windows using a cluster-based permutation paired t test. �e time courses of these two regions 
were extracted from peak voxels of clusters containing RAI and RdACC, which were found in the source analysis 
of the HER. A pairwise GC analysis showed that only the GC of the HERs from the RAI to the RdACC was sig-
ni�cantly higher in the sad face condition than in the neutral face condition between 406 ms and 507 ms (Fig. 4 
(406 ms 466 ms) window to (447 ms 507 ms) window (shaded area), Monte-Carlo p = 0.027, cluster-corrected for 
2 GCs and 174 time windows). �e GC from the RdACC to the RAI was not signi�cantly di�erent between sad 
and neutral faces (no cluster was formed). �ese results indicate that only the bottom-up information from the 
RAI to the RdACC is increased.

Figure 1. Experimental paradigm and overall analysis �ow for MEG. Pictures of six conditions consisting of 
happy, sad, neutral faces and emoticons were presented to participants during MEG recording. Examples of 
emoticons are provided in Supplementary Fig. 1. Preprocessing including an automatic ICA correction of CFA 
and eye components using the Human Connectome Project MEG preprocessing pipeline were applied to a raw 
data. Examples of automatically rejected CFA-related components are provided in Supplementary Fig. 2. �en, 
HERs for each condition were extracted and cluster-based permutation t tests were performed to compare the 
HERs of the emotional and neutral conditions. In the source analysis, the sources of HER modulation found 
in the sensor analysis were localized. Among the sources of the HER modulation, a Granger causality analysis 
of the HER time courses between the right anterior insula (RAI) and right dorsal anterior cingulate cortex 
(RdACC) was performed to determine the change in the e�ective connectivity from an emotional condition 
that showed signi�cant HER modulation in the previous steps. Finally, the HER modulation e�ect was validated 
using the surrogate R-peak analysis, visual-evoked response (VER) analysis, and physiological data analysis. �e 
sad face used in this �gure is di�erent from the one that was used in the experiment (the sad face in this �gure 
was generated by FaceGen Modeller (http://www.facegen.com/)).

http://www.facegen.com/
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Control analysis. ECG time course di�erence between sad face and neutral face. To exclude the possibility 
that our HER modulation e�ect by sad faces was an artefact of the di�erent electrical activities of the heart, we 
performed cluster-based permutation between ECG time courses of sad and neutral faces in the same way that 
we used in the sensor analysis (Fig. 1). �ere was no di�erence in the ECG time courses between sad and neutral 
faces, although they showed signi�cantly di�erent HER time courses (Supplementary Fig. 3a; no clusters were 
formed in the cluster-based permutation t test).

Heartbeat distributions in sad and neutral face conditions. To show that the HER modulation e�ect by sad faces 
was not the result of a biased heartbeat distribution, we divided the original visual epoch between −200 ms and 
700 ms, i.e., the beginning and end of the HER epoching, into 100-ms time windows (a total of nine time bins) 
and counted the number of heartbeats in these time windows (Fig. 1). We completed this procedure for the 
sad and neutral face conditions. �en, the 2*9 two-way repeated-measures ANOVA of two conditions (sad and 
neutral faces) * nine time bins was performed to test whether the occurrence of the heartbeats was the same for 
both conditions and for every time bin. �e results showed that there were no di�erences in the occurrence rate 
of heartbeats between the sad and neutral face conditions (F (1, 31) = 0.026, p = 0. 874, Supplementary Fig. 3b) 
and no di�erences in the occurrence rate of heartbeats between time bins (F (8, 248) = 1.435, p = 0.182, Fig. 5b).

Figure 2. Topographic map (le�) of di�erences in HERs between sad and neutral face conditions. Clusters 
showing signi�cant di�erences are indicated by black dots (Monte-Carlo p = 0.044, cluster-corrected). In a 
single-channel plot of a signi�cant cluster (right), the shaded area represents the cluster time window that 
showed a signi�cantly di�erent time course between conditions. �e channel plotted in the right �gure is 
indicated by a white star in the le� topographic map.

Cluster

p-value

No. of voxels Region name (Destrieux atlas)
MNI coordinates 
(x, y, z) F-valueFWE-corrected FDR-corrected

Cluster 1 RdACC <0.001 <0.001 391

G&S Cingul-Ant_R 7, 28, 22 19.42

G&S Cingul-Mid_Ant_R 11, 24, 20 18.63

S_Pericallosal_R 5, 10, 22 23.44

G&S Cingul-Mid_Ant_L −3, 22, 28 13.59

Cluster 2 RdlPFC <0.001 <0.001 605

S_Front_Sup_R 21, 26, 38 15.38

G_Front_Middle_R 35, 22, 42 11.04

S_Front_Inf_R 33, 18, 36 12.57

Cluster 3 RAI 0.002 0.001 324

S_Circular_Insula_Sup_R 29, 24, 8 12.87

G_Insular_Short R 33, 22, 6 12.43

Putamen_R 31, 8, 8 12.87

Cluster 4 RGP/RP 0.074 0.016 186
Pallidum 23, −12, 0 12.14

Putamen 25, −8, 0 12.17

Cluster 5 RdlPFC 0.266 0.042 140
G_Front_Middle_R 47, 42, 22 14.07

G_Front_Inf_R 45, 42, 28 11.1

Cluster 6 RdACC 0.238 0.042 144

G&S Cingul-Mid-Ant_R 5, 12, 48 13.32

G&S Cingul-Mid-Ant_L −1, 10, 48 13.14

G_Front_Sup_R 5, 16, 52 12.8

Table 1. Clusters (and their peak voxels) showing signi�cantly di�erent time courses between sad face and 
neutral face conditions in the HER analysis. Voxel size = 1 × 1 × 1 mm; RdACC: right dorsal anterior cingulate 
cortex; RdlPFC: right dorsolateral prefrontal cortex; RAI: right anterior insula; RGP/RP: right basal ganglia; 
Cingul: cingulate; Front: frontal; G: gyrus; S: sulcus; Ant: anterior; Mid; middle; Sup: superior; R: right.
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Surrogate R-peak analysis of the HER modulation e�ect of a sad face. To test whether the HER modulation 
e�ect was time-locked to the heartbeat, we created 100 surrogate R peaks that were independent of the original 
heartbeats26,30 (Fig. 1). �e surrogate R peaks were created by randomly shi�ing the original R peaks (−500 ms 
~ +500 ms) by the same amount in each subject30. �en, we computed the surrogate HERs with the surrogate R 
peaks and performed the same cluster-based permutation t tests between the conditions that showed a signi�cant 
di�erence in the sensor level analyses. Finally, we calculated the distribution of the maximum cluster statistics of 
the surrogate R peaks and the calculated position of our original cluster statistics in this distribution to show that 
the heartbeat-locked e�ect was signi�cantly larger in such a distribution. �e surrogate R-peak analysis showed 

Figure 3. Brain regions showing signi�cant di�erences in HER modulations in the contrast of sad vs. neutral 
face conditions for the mean time courses of HERs from the 25 voxels surrounding the peak voxels. RdACC, 
RAI, RdlPFC and basal ganglia clusters were found. �e white dashed arrow connects the cluster region and its 
corresponding time course plot. �e time windows used in the statistical test of the HER source analysis were 
shaded in the time course plot.
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that the size of the HER modulation e�ect (maximum cluster t statistics) was signi�cant in the maximum cluster t 
statistics distribution of the surrogate R peaks (Monte-Carlo p < 0.03), indicating that our e�ect was highly likely 
to be time-locked to the heartbeat.

Di�erent spatial patterns between visual-evoked response (VER) and HER analyses of sad face perceptions. To test 
whether the HER modulation e�ect was similar to a VER e�ect, we performed the same cluster-based permu-
tation test with visual stimulus-locked responses (Fig. 1). A time window of 0 ms to 1000 ms a�er the stimulus 
onset was used as the test input. We compared the topology of the signi�cant clusters between HERs and VERs at 
the sensor level. �en, we performed source localizations of the VER activity in a signi�cant cluster time window 
(144–204 ms) and exported them to SPM12 to perform statistical tests between emotional and neutral conditions 
with the same methods as used in the HER analysis. Next, we compared the resulting sources with the results 
of the HER analysis. �is VER analysis was not performed for all conditions but instead was performed for the 
conditions that had a signi�cant HER modulation e�ect so that we could compare the signi�cant modulation of 
the HERs with the VER e�ect. In the cluster-based permutation t tests of VERs comparing sad vs. neutral face 
conditions, two signi�cant clusters were found at 144 ms–204 ms (Monte-Carlo p = 0.001) and 151 ms-183 ms 
(Monte-Carlo p = 0.017) a�er the stimulus (Fig. 5). However, their topological distributions were completely 
di�erent from those of the HER e�ect, which had a posterior-temporal distribution of signi�cant clusters. In the 
source analysis of VERs (which was performed using the same method as the HER source analysis), six clusters 
were found at the threshold p < 0.01 with 10 adjacent voxels. In the �rst cluster, which was the largest cluster, most 

Figure 4. GC analysis results. �ere was an increased bottom-up transfer of interoceptive information from 
the RAI to the RdACC during sad face perception (le�). �e time in the �gure represents the centre time of the 
sliding time windows post-R peak, and the shaded areas represent the time windows that showed signi�cant 
di�erences between conditions a�er cluster corrections (Monte-Carlo p = 0.027, cluster-corrected; the densely 
shaded areas represent the centre time points of signi�cant time windows, and the lightly shaded areas include 
the starting time point and the end time of the signi�cant time windows).

Figure 5. Topographic map (le� �gure) of di�erences in VERs between sad and neutral face conditions. 
Clusters showing signi�cant di�erences between sad and neutral faces are indicated by black dots (le� positive 
(red) cluster - Monte-Carlo p = 0.017, cluster-corrected, right negative (blue) cluster - Monte-Carlo p = 0.001, 
cluster-corrected). Representative time courses of the �rst cluster (negative cluster, 144 ms~204 ms post-
stimulus, indicated by the white diamond in the topographic plot) and the second cluster (positive cluster, 
151 ms~183 ms, indicated by the white star in the topographic plot) are plotted. �e shaded areas represent 
the time points of clusters that showed signi�cantly di�erent time courses between conditions. �e channels 
plotted in the middle and right �gures are indicated by a white diamond and white star in the topographic maps, 
respectively.
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of the peak voxels were included in the right orbitofrontal cortices (ROFC, p < 0.001, cluster-level FDR-corrected, 
Table 2). �is cluster also extended to the RAI and the right inferior frontal cortex (RIFC, Fig. 6), which was close 
to the RAI cluster found in the source analysis of the HERs (Supplementary Fig. 4). �e second-largest cluster 
included regions of the right visual cortices (Table 2, Fig. 6). Other clusters were a le� praecuneus/posterior cin-
gulate cortex (LPC/LPCC) cluster, right temporal pole (RTP) cluster, le� paracentral area cluster, and le� precen-
tral area cluster (Table 2, Fig. 6). Additionally, we tested whether there was overlap between the sources of HERs 
and VERs. We found that two voxels (1 × 1 × 1 mm in size) in the RAI overlapped with the source localization 
result of the HERs. Detailed information about the VER source analysis, including a list of peak voxels within 
each cluster, is provided in Table 2.

Discussion
Our �ndings provide the �rst evidence that the perception of a sad face modulates bottom-up interoceptive infor-
mation processing from the RAI to the RdACC.

Cluster

p-value

No. of voxels Region name (Destrieux atlas)
MNI coordinates 
(x, y, z) F-valueFWE-corrected FDR-corrected

Cluster 1 ROFC <0.001 <0.001 6273

G_orbital_R 47 24 −21 31.32

G_front_inf-Orbital_R 33 12 2 21.86

S_orbital_med-olfact_R 11 26 −21 21.36

G_and_S_cingul-Ant_R 9 26 −10 27.5

G_subcallosal_R 6 14 −15 24.04

G_oc_temp_med_Parahip_R 27 4 −13 23.35

Cluster 2 RVC <0.001 <0.001 2074

G_oc-temp_med-Lingual_R 13 −60 −2 25.76

S_oc-temp_med-Lingual_R 23 −75 −4 19.27

G_oc-temp_lat-fusifor_R 23 −85 −13 22.86

Pole_occipital_R 17 −87 −8 26.29

Pole_occipital_L −9 −101 −11 20.11

S_calcarine_R 13 −56 12 22.16

S_oc_sup_and_transversal_R 29 −75 24 25.14

S_collat_transv_post_R 27 −83 −11 20.33

Cerebellum_R 5 −62 0 23.09

Cluster 3 LPC/LPCC 0.006 0.002 280

S_cingul_Marginalis_L −15 −42 56 21.56

G_and_S_cingul_Mid_Post_L −21 −28 44 14.23

S_subparietal_L −15 −40 46 15.55

S_postcentral_L −19 −40 48 17.74

Cluster 4 RTP 0.023 0.004 226 Pole_temporal_R 33 14 −43 34.26

Cluster 5 Le� paracentral area 0.012 0.012 251

G&S_paracentral_L −11 −46 76 18.98

S_central_L −13 −34 66 12.33

S_cingul_Marginalis_L −13 −34 60 11.88

Cluster 6 Le� precentral area 0.022 0.022 229

S_precentral-sup-part_L −26 −10 60 18.71

G_Precentral_L −13 −14 60 9.92

S_precentral-inf-part_L −34 −6 64 8.41

G_front_sup_L −28 −6 64 12.97

G&S_cingul_Mid_Post_L −13 −10 58 10.81

Cluster 7 RPCC 0.28 0.038 137

G_cingul-post-dorsal_L −5, −46, 36 21.86

G_cingul-post-dorsal_R 3, −30, 30 14.24

S_pericallosal_L −7, −44, 30 12.84

S_subparietal_R 3, −36, 40 9.8

S_subparietal_L −5, −50, 40 8.67

Cluster 8 LPPC 0.185 0.027 152

G_pariet_inf-Angular_L −38, −50, 56 19.06

S_intralpariet_and_P_trans_L −38, −46, 54 17.9

G_parietal_sup_L −38, −52, 60 16.57

Cluster 9 LPC 0.132 0.022 164
G_precuneus_L −3, −58, 54 13.58

G_precuneus_R 1, −64, 54 13.46

Table 2. Clusters (and their peak voxels) showing signi�cantly di�erent time courses between sad face and 
neutral face conditions in the VER analysis. Voxel size = 1 × 1 × 1 mm; ROFC: right orbitofrontal cortex; RVC: 
right visual cortex; LPC: le� praecuneus; LPCC: le� posterior cingulate cortex; RTP: right temporal pole; RPCC: 
right posterior cingulate cortex; LPPC: le� posterior parietal cortex; Cingul: cingulate; Front: frontal; Oc: 
occipital; Temp: temporal; G: gyrus; S: sulcus; Ant: anterior; Mid; middle; Sup: superior; R: right; L: le�.
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First, we showed that cortical heartbeat processing a�er the presentation of a sad face had signi�cantly di�er-
ent spatiotemporal dynamics from that of a neutral face and that these di�erences were localized to the intero-
ceptive network (AI, dACC), prefrontal areas (dlPFC) and basal ganglia (GP, putamen). Importantly, the results 
of the GC analysis of these regions showed that bottom-up heartbeat information processing from the RAI to 
the RdACC was increased in the sad face condition. Visual-locked activity was localized to the ROFC, RVC and 
LPC/LPCC. Interestingly, the source of the VERs also included the RAI and was located in the neighbourhood 
of the source of the HERs. Finally, a surrogate R-peak analysis provided evidence that the HER modulation was 

Figure 6. Regions showing signi�cantly di�erent VERs for a sad face compared to a neutral face (p < 0.01, 
cluster-level FDR-corrected, 144 ms~204 ms) and the mean time courses of VERs from the 25 voxels 
surrounding the peak voxels. Regions including the ROFC, RVC, and LPC/LPCC were found. �e white 
dashed arrow connects the cluster region and its corresponding time course plot. �e time windows used in the 
statistical test of the VER source analysis were shaded in the time course plots.
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time-locked to the heartbeat, which means that our results were a consequence of the cortical heartbeat process-
ing modulation. Additionally, an analysis of the physiological data and CFA removal using ICA ruled out the 
possibility of other physiological e�ects on the cortical signal.

Our results extend previous studies of interoception and emotion in several aspects.
In the sensor analysis result, a sad face modulated HERs in the right frontocentral sensors at 494~504 ms 

post-R peak. One study showed that emotional arousal modulated HERs8. �at study showed HER modulation 
by emotional arousal in the le� parietal clusters 305 to 360 ms a�er the R peak and in a right temporoparietal clus-
ter 380 to 460 ms a�er the R peak8. Another interesting recent study showed that HERs were modulated even in 
infants by emotional stimuli including fear and angry facial expressions, while no signi�cant clusters were found 
in happy facial expressions9. Consistent with this study, the sad face, which is also a negative facial expression, 
modulated HERs in our study, while the happy face did not. �erefore, as Maister et al. argued in their paper, 
HERs are likely to be more sensitive to negative emotional processing9. However, the spatiotemporal patterns of 
the HER modulation were slightly di�erent, in that video clips of an angry or fearful facial expression increased 
the HERs only 150 to 300 ms a�er the R peak in a frontal cluster9. It is hard to directly determine a di�erence in 
the spatiotemporal pattern of the HER modulation between that study and our study; however, it is notable that 
our results also showed an HER modulation e�ect in adults by the less-arousing emotional stimuli of sad faces. In 
particular, the fear and anger used in Maister et al. are both high-arousal emotions, while sadness is a low-arousal 
emotion31. It is likely that the interoceptive processing of the two types of negative emotion (high arousal vs. low 
arousal) might be di�erent. For example, a recent study reported that the perception of fearful expressions was 
in�uenced by the timing of the cardiac cycle, while the perception of a sad face stimulus was not a�ected15; this 
�nding indicates that there are di�erent interaction patterns of interoception and emotional processing between 
fearful and sad faces, which might cause di�erent HER patterns. Future studies of HERs using both types of neg-
ative emotional stimuli, with high and low arousal, could clarify these di�erences.

In the source analysis of HER and VER modulation by sad face perception, we found that there was both 
cardiac information processing and visual information processing in the neighbourhood of the RAI. For cardiac 
information processing, brain regions that re�ect HER modulations during sensor analysis were found in the 
RdACC and the RAI, which were previously reported as sources of HERs10,26,27,32. In particular, HERs in the 
RdACC and RAI were found to be modulated by negative emotional stimuli in a previous study10. �ese regions 
were also identi�ed in a recent meta-analysis as overlapping regions of emotion, interoception and social cogni-
tion processing16. In particular, the RdACC, which is one of the most important regions in the central autonomic 
network that regulates autonomic functions, was found to be a source of HERs induced by sad faces but not a 
source of VERs33. �is region is known to be involved in negative emotion and pain processing34 and emotional 
awareness17. From these previous studies, it is likely that the RdACC is speci�cally involved in the interoceptive 
processing of negative emotional stimuli. In contrast to the RdACC, sources of both HERs and VERs were found 
in the RAI, and they were close to each other. �e anterior insula is known for multimodal integration process-
ing18. It is suggested that the RAI integrates autonomic signals with conscious thought processing18. Consistent 
with these studies, our results suggest the possibility that the RAI is involved in the integration of visual emo-
tional information processing and cardiac interoceptive processing. Moreover, a GC analysis revealed that the 
cardiac information �ow from the RAI to the RdACC increased during sad face perception. �e RAI and RdACC 
are known to act conjointly in many situations, including the production of subjective feelings12 and are the 
main components of the salience network (SN)18. �e processing of (emotionally) salient stimuli is in�uenced 
by ascending interoceptive and visceromotor signals that converge in the dorsal posterior insula (dPIC) and the 
mid-insula18. �e SN integrates these ascending signals to coordinate large-scale networks in the cortex, such as 
switching between the default mode network (DMN) and central executive network (CEN)18. Moreover, within 
the SN, there was proven by GC analysis using fMRI to be an information �ow from the RAI to the RdACC, while 
the reverse directional connectivity was weak35. Considering these studies, our results of increased GCs of HERs 
between the RAI and RdACC might re�ect increased negative emotion-related saliency processing induced by 
sad faces, which includes the integration of interoceptive information and visual information. However, whether 
this processing is speci�c to sad emotions or relevant to subjective feelings cannot be determined from our results. 
Further GC studies of HERs using other emotional stimuli would clarify this point.

Although this is quite speculative, our result could be interpreted within the interoceptive predictive coding 
framework36,37. In this framework, emotion can be understood as an interoceptive inference, which means that 
an agent infers the likely cause of an interoceptive signal under an emotional context by updating an internal 
generative model. �is process involves an interoceptive prediction (IP, corresponds to an emotional context) and 
the interoceptive prediction error (IPE) induced by the di�erence between the IP and the interoceptive signal. 
Interestingly, this process is hypothesized to involve the SN, especially in a way that a path from the AI to ACC 
processes the IPE36,38. By linking our result to this theory, an increased GC from the RAI to RdACC might re�ect 
an IPE signal induced by emotional stimuli. However, because our experimental paradigms are not optimized to 
test hypotheses based on interoceptive predictive coding, further studies using a task with an appropriate design22 
or an experiment that could control the interoceptive input signal such as vagus nerve stimulation (VNS), which 
was mentioned in a recent study39, should be performed.

In the source analysis of VERs, ROFC and RVC were seen, which is consistent with previous EEG/MEG stud-
ies of sad faces40,41. Most of these regions did not overlap with the source of the HERs (with the exception of one 
partial overlap of 2 voxels within the RAI).

An unexpected �nding in the present study was that HERs were also modulated in the basal ganglia and 
dlPFC. �e GP is known to send inputs to the prefrontal cortex via the thalamus. �is pathway is involved in 
initiating motor actions. In particular, the ventral pallidum (VP) is closely involved in regulating emotion and 
initiating motor actions in response to emotional stimuli42. Moreover, a case has been reported of a patient with 
damage to the GP, including the VP, who reported an inability to feel emotions43. Based on this evidence, we 
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suggest that cardiac information is relayed to the GP (including the VP) and �nally the dlPFC, which plays a role 
in initiating emotion-related behaviours, such as facial expressions or the generation of feelings triggered by car-
diac information processing; this processing is consistent with the somatic marker hypothesis.

One notable �nding is that the HER modulation e�ect existed only for sad faces but not sad emoticons. An 
emoticon perception is context-dependent. One study reported that the addition of emoticons to messages 
increased arousal44. However, whether an emoticon itself without context would increase arousal is not known. 
�e perception of emoticons without context would be in�uenced by many factors, such as personal emotional 
experience, considering that it is not an innate stimulus such as facial expressions. Consistent with this expla-
nation, the mean variance of emotionality scores for sad emoticons across subjects was much larger than the 
variance of emotionality scores for sad faces both in the standardization cohort and MEG subjects, which might 
have caused varying degrees of emotional processing (and interoceptive processing) across the same category of 
stimuli. �erefore, further research controlling for this variance and the in�uence of the context using negative 
emoticons is necessary.

Additionally, our results showing the HER modulation e�ect only in the sad face condition could be due 
to selective attention to or preparation for negative stimuli. For example, most of the subjects had a strategy to 
look for sad faces during the discrimination task. In this case, the HER modulation may be found in the dACC 
or dlPFC, which are known to be related to task preparation or attention processes45,46. However, additional GG 
analyses did not show any signi�cant HER modulation between the RdlPFC and RdACC or between the RdlPFC 
and RAI (supplementary materials). Furthermore, there was no di�erence in the accuracy of the discrimination 
task between emotional conditions. �erefore, it is unlikely that the attention or task preparation in�uenced our 
HER modulation results. Note that both additional GC analyses could indicate whether there was a ‘general’ 
increase or ‘speci�c’ increase in the GC between the RAI and RdACC from a sad face.

To the best of our knowledge, this work is the �rst to demonstrate that the processing of sad faces induces 
increased bottom-up processing of the HERs from the RAI to the RdACC. Moreover, both interoceptive infor-
mation processing and visual processing, which are re�ected by the HERs and VERs, were induced by sad faces. 
Additionally, we found that cardiac signals were processed di�erently in the basal ganglia and dlPFC during sad 
face processing, which might re�ect the initiation of emotion-related behaviours.

Methods
Participants. Forty healthy participants (21 males and 19 females, mean age of 24.03 ± 3.28 years) volun-
teered for this experiment. �e expected e�ect sizes were not known in advance, so we chose a sample size of 
approximately 40 participants, which was approximately two times the samples sizes of previous MEG and EEG 
studies of HERs5,26,47.

MEG recordings consisting of 4 runs were completed in one visit, and high-resolution T1-weighted MRI scans 
were acquired at another visit. In this MRI session, all subjects underwent both functional MRI experiments, 
consisting of emotional discrimination (unpublished data) and/or decision tasks (unpublished data), and other 
structural MRI scans, such as di�usion tensor imaging (unpublished data). We failed to acquire MEG data for 
�ve of the forty subjects due to magnetic �eld instability. Another three subjects were excluded during the anal-
ysis because their ECG data were too noisy or absent. �erefore, thirty-two subjects were included in the further 
analysis.

A structured interview was conducted using the Korean version of the Diagnostic Interview for Genetic 
Studies48. None of the subjects had current neurological or psychological diseases. All participants provided writ-
ten informed consent to participate in the experiment. �e study was approved by the Korean Advanced Institute 
of Science and Technology Institutional Review Boards in accordance with the Declaration of Helsinki.

Standardization of emotional stimuli. �e stimuli consisted of forty-�ve emotional faces and forty-�ve 
text-based emotional emoticons. Forty-�ve faces expressing happy, sad, and neutral emotions were selected 
from the Korean Facial Expressions of Emotions (KOFEE) database49. Text-based happy and sad emoticons 
were searched for on the world-wide web. �en, we created scrambled emoticons that did not have con�gurable 
information and used these scrambled emoticons as neutral condition emoticons (Figs 1,1). Ninety emotional 
expressions, including faces and text-based emoticons, were standardized in independent samples consisting 
of forty-seven healthy volunteers (21 females and 26 males, mean age of 28.43 ± 4.31 years). �ese participants 
were asked to rate the intensity of the feeling they felt towards the emotional expressions of 90 stimuli (45 faces 
and 45 facial emoticons with happy, neutral, and sad emotions) on an 11-point Likert scale (−5 to +5) using 
the instruction “Rate the intensity of feeling you felt about this picture”. We compared the mean absolute values 
of the four emotional expressions and two neutral expressions, which we called ‘feeling intensity’ or ‘emotion-
ality’50. A repeated-measures analysis of variance (repeated-measures ANOVA) with a 2 stimulus (face, emoti-
con) by 3 valence (happy, sad, neutral) design was performed on the means and variances of the emotionality 
score independently. In the repeated-measures ANOVA of the means, there was a signi�cant main e�ect of the 
valence (F (1.744, 80.228) = 272.618, p < 0.001, Greenhouse-Geisser-corrected), while there were no di�erences 
between emoticons and faces (F (1, 46) = 0.011, p = 0.919) and no interaction between those two main e�ects 
(F (1.685, 77.488) = 0.285, p = 0.818, Greenhouse-Geisser-corrected). In addition, a post hoc t test revealed that 
there was no di�erence between the sad and happy conditions (p = 0.082), but there was a signi�cant di�er-
ence between the emotional and neutral conditions (p < 0.001 for both sad and happy compared with neutral). 
In the repeated-measures ANOVA of the variance, the variance for the emoticons was signi�cantly larger than 
the variance for the faces (F (1, 46) = 16.108, p < 0.001), while there was no di�erence in the variance between 
emotions (F (1.268, 58.342) = 2.608, p = 0.079, Greenhouse-Geisser-corrected) and no signi�cant interaction 
(F (1.347, 61.963) = 4.831, p = 0.066, Greenhouse-Geisser-corrected). �e participants from the main experi-
ments also performed the above rating procedure before the MEG recordings, and we performed the additional 
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repeated-measures ANOVA on this rating data in a same way as above. In the repeated-measures ANOVA 
of the means, there was a signi�cant main e�ect of the valence (F (2, 30) = 256.615, p < 0.001, no di�erence 
between happy and sad in the post hoc t test with p = 0.822), signi�cant main e�ect of emoticons and faces (F 
(1, 31) = 0.038, p = 0.038) and no interaction (F (2, 30) = 2.363, p = 0.111). Note that the emotionality scores 
of the emoticons were larger than those of the faces in the MEG subjects (t (31) = 2.164, p = 0.038, in post hoc 
t test). In the repeated-measures ANOVA of the variances, there was a signi�cant main e�ect of the valence (F 
(2, 30) = 28.447, p < 0.001), a signi�cant main e�ect of emoticons and faces (F (1, 31) = 39.064, p < 0.001) and a 
signi�cant interaction (F (2, 30) = 42.422, p < 0.001).

MEG experimental task. During the MEG recording, ninety stimuli consisting of 45 faces and 45 text-based 
emoticons were presented in the centre of a screen using in-house so�ware, the KRISS MEG Stimulator 4 (Fig. 1). 
�e size, duration, and stimulus onset asynchrony (SOA) of all the stimuli were 27 × 18 cm, 500 ms and 1500 ms, 
respectively, and the order of the presentation of the stimuli was pseudo-randomized. Participants completed 
4 runs, each containing 180 stimuli (30 sad faces, 30 happy faces, 30 neutral faces, 30 sad emoticons, 30 happy 
emoticons, and 30 neutral emoticons) and lasting 270 s. In addition, to maintain participants’ attention to the 
task, when a question mark appeared, the participants had to discriminate by pressing buttons whether the emo-
tional face or emoticon presented just before had a sad or happy emotion. �is question mark appeared only 
a�er emotional stimuli and randomly appeared on the screen every 9 to 15 trials (mean = 11.3). A total of 4.7% 
of the trials was response trials. �e mean accuracy of the discrimination task was 93.07%, and no di�erence in 
the accuracy was found between face and emoticon or between sad and happy (in a 2 (emoticon or face) by 2 (sad 
or happy) repeated-measures ANOVA, there was no main e�ect of face or emoticon: F (1, 31) = 0.001, p = 0.978, 
no main e�ect of sad or happy: F (1, 31) = 0.001, p = 0.978 and no interaction e�ect: F (1, 31) = 0.036, p = 0.851).

Acquisition. A 152-channel MEG system (KRISS MEG, Daejeon, Korea, 152 axial first-order double- 
relaxation oscillation superconducting quantum interference device (DROS) gradiometers) covering the whole 
head was used for MEG recordings in a magnetically shielded room for 60–90 min at a sampling rate of 1,024 Hz. 
�e relative positions of the head and the MEG sensors were determined by attaching four small positioning 
coils to the head. �e positions of the coils were recorded at intervals of 10–15 min by the MEG sensors to allow 
co-registration with individual anatomical MRI data. �e maximum di�erence deviations between the head posi-
tions before and a�er the run were <2 mm, and the goodness of �t (GoF) was >95%. EEGs of eye and muscle 
artefacts were recorded simultaneously with the MEG recordings. During the MEG recordings, participants were 
seated with their heads leaned back in the MEG helmet. �e translation between the MEG coordinate systems 
and each participant’s structural MRI was made using four head position coils placed on the scalp and �ducial 
landmarks51.

Data preprocessing. Data were processed with the FieldTrip toolbox52. First, continuous MEG data were 
�ltered with a 1–30 Hz Butterworth �lter. �en, eye movement and CFAs were removed by ICA on �ltered con-
tinuous MEG data19 by the artefact correction algorithm used in the Human Connectome Project (HCP) MEG 
preprocessing pipeline20,21. Brie�y, the independent component (IC) decomposition was performed iteratively. 
For each iteration, the ICs were classi�ed as ‘Brain’ or ‘Noise’ using six parameters. �e �rst three parameters 
were the correlation between (1) the IC and the electrocardiogram (ECG)/electrooculogram (EOG) channel 
time courses, (2) the IC and the ECG/EOG channel power time series (PTC), and (3) the IC and the ECG/EOG 
power spectral density (PSD). �ree additional parameters derived from both the spectral and temporal proper-
ties were added to aid in the classi�cation of system or environmental noise21. Finally, the iteration that had the 
highest brain component subspace dimensionality and the lowest residual artefact contamination was selected20. 
�e average number of CFA-related ICs that were removed was 2.23 (Figs 1 and 2). Note that although the ICA 
is the most commonly used and reliable method to suppress the e�ect of CFAs, it is hard to completely remove 
the CFAs. �erefore, while we believe that the ICA removed most of the CFAs, it is not certain that there were no 
residual CFAs in our �nal preprocessed data. Second, the IC-removed data were epoched from 700 ms before the 
stimulus onset to 1300 ms a�er the stimulus onset. �en, the HERs for each stimulus condition were extracted 
by subsequent epoching, which was time-locked to the R peak of every epoch (Fig. 1). �e R peaks were detected 
using the Pan-Tompkins algorithm53, and the HERs of each condition were extracted by epoching from 500 ms 
before the R peak to 600 ms a�er the R peak in the epoch of each condition. �e average interbeat interval (IBI) 
was calculated by measuring the mean time interval between two consecutive R peaks in the whole data. �e 
average IBI of all subjects was 905 ± 104 ms (heartrate = 66.3 BPM), with a range of 773 ms to 1126 ms (heart-
rate = 58.3 ~77.6 BPM). We also veri�ed whether there was an IBI that was shorter than 600 ms (which might 
induce R-peak occurrence within another HER epoch). In 25 of 32 subjects, there was no IBI that shorter than 
600 ms, and only 0.2% of the IBIs were shorter than 600 ms. Because a heartbeat is known to enter the central 
nervous system (CNS) approximately 200 ms a�er the R peak by vagal a�erent stimulation at the carotid body54, 
while a visual stimulus enters the CNS immediately through the retina, a heartbeat that occurs 200 ms before a 
visual stimulus onset stimulates the brain earlier than a visual stimulus onset. �erefore, we excluded R peaks 
that occurred 200 ms before a stimulus onset to include only heartbeat-evoked processing that occurred a�er a 
visual stimulus. �erefore, we assumed that this procedure excluded most of the cortical inputs of a heartbeat that 
occurred before the visual stimulus. However, we cannot completely exclude this possibility because it is possible 
that an earliest cardiac input can enter the CNS within 200 ms a�er an R peak. R peaks at 700 ms a�er the stim-
ulus onset were also excluded because that HER epoch would contain the next visual stimulus onset. Finally, the 
single epochs were inspected visually, and epochs containing artefacts were removed. �e mean number of HER 
epochs per condition a�er the HER extraction procedure was 113.82, and there was no signi�cant di�erence in 
the number of epochs between conditions (one-way repeated-measures ANOVA, F (5, 155) = 0.9151, p = 0.47). 
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Finally, baseline correction was performed using a pre-R-peak interval of 150 ms, and trials on the same condition 
for each subject were averaged.

Sensor analysis: Cluster-based permutation paired t tests between each emotional condition 
and the neutral condition. We compared the HERs of an emotional condition and a neutral condition. 
Four tests were performed, including a sad face vs. a neutral face, a happy face vs. a neutral face, a sad emoticon 
vs. a neutral emoticon, and a happy emoticon vs. a neutral emoticon. To address multiple comparison problems, 
we used cluster-based permutation paired t tests. �ese tests were performed as follows. First, the data were 
downsampled to 512 Hz to make the computation e�cient, and paired t tests were performed at every time point 
between 200 and 600 ms and all sensors. �en, the signi�cant spatiotemporal points of uncorrected p-values 
below 0.005 (two-tailed) were clustered by the spatiotemporal distance, and the summed t-value of each cluster 
was calculated. A�er the calculation of the cluster t-stat, a permutation distribution was created by randomly 
switching condition labels within subjects, calculating the t-value of the paired t test between permutated condi-
tions, forming clusters as mentioned above, selecting the maximum cluster t-value and repeating this procedure 
2000 times. Finally, a�er the maximum cluster t-values of each permutation were used to create a permutation 
distribution, the corrected-p-value original clusters were calculated.

Source analysis. Source reconstruction was conducted using the MATLAB package Brainstorm23. To esti-
mate the time courses of both cortical and subcortical activities, we used the default settings in the open-source 
MATLAB toolbox Brainstorm’s implementation of the deep brain activity model using the MNE23,24. First, cor-
tical surfaces and subcortical structures, including the amygdala and basal ganglia, were generated for each sub-
ject from 3T MPRAGE T1 images using FreeSurfer55. �e individual heads/parcellations were then read into 
Brainstorm23 along with the tracked head points to re�ne the MRI registration. In Brainstorm, a mixed surface/
volume model was generated, and 15,000 dipoles were generated on the cortical surface with another 15,000 
dipoles generated in the subcortical structure volume. Re�ning the registration with the head points improves the 
initial MRI/MEG registration by �tting the head points digitized at the MEG acquisition and the scalp surface. 
Using the individual T1 images and transformation matrix generated as above, a forward model was computed 
for each subject using a realistic overlapping sphere model. �e source activity for each subject was computed 
using the MNE (Brainstorm default parameters were used). �e source map was averaged over a time window 
of 494 ms to 504 ms, and there was shown to be a signi�cant di�erence between a sad face and a neutral face 
at the sensor level (other emotional conditions were not signi�cantly di�erent from the neutral conditions in 
cluster-based permutation paired t tests). �en, this averaged spatial map was exported to SPM12 so�ware25, 
and more statistical tests were performed. Paired t tests were used to identify regions that had di�erent HER time 
courses for sad and neutral faces within the selected time window.

GC analysis of HER source activity. A�er identifying the brain regions that had di�erent time courses, we 
performed a GC analysis14 on two regions of interest, the RAI and the RdACC, to determine whether the e�ective 
connectivity between these regions is modulated di�erently in emotional conditions compared to a neutral con-
dition. �ese regions are known from many previous studies to be core regions of interoceptive processing and 
feelings16,17,28. Moreover, emotional processing in the AI and ACC is known to be right-lateralized, especially in 
the AI11,29. �e time courses of these two regions were extracted from peak the voxels of clusters containing the 
RAI and RdACC, which were found in the source analysis of the HER. �e coordinates of the RAI and the 
RdACC were (29, 24, 8) and (7, 28, 22), respectively, and included 25 adjacent voxels. In the GC analysis56, time 
course Y Granger-causes time course X if the k past time point data of both X …− − + −X X X( , )t k t k t1, 1  and Y 

…− − + −Y Y Y( , )t k t k t1, 1  predict X at time t (Xt) better than the past time point data of X alone. �erefore, Granger 
causality is also called Granger prediction and measures the predictive causality. �e GC is formulated by the 
log-likelihood ratio between the residual covariance matrix of the model that explains X by the pasts of X and Y 
and the residual covariance matrix of the model that explains X by the past of X alone14.
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A is the matrix of the regression coe�cient, epsilon is the residual, sigma is the covariance matrix of the residual, 
and F is the GC of X and Y. �e �rst equation presents a regression model that predicts the time course of region 
X at time point t (Xt) using previous time points of both X and another region Y, and the second equation repre-
sents the regression model that predicts Xt using only the previous time point of X. �e GC(FY→X) is formulated 
by the log-likelihood ratio between the residual covariance matrices Σ = ε( xx cov( )x t,  and Σ ′ = ε′xx cov( ))x t, . All 
calculations were performed using a multivariate GC toolbox (MVGC toolbox)14.

�e time courses of two ROIs were extracted for every trial for each subject. To satisfy the stationarity assump-
tion of the GC analysis, we used a short time window approach for GC estimations with sliding windows57,58. �is 
approach was also appropriate for our analysis of the HER modulation e�ect, which was identi�ed in a very short 
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time window and thus required a high temporal precision for the GC estimation. �e size of the window was 
60 ms, the step size was 2 ms57,59, and the GC calculation was performed for the whole epoch, which started from 
the (−500 ms −440 ms) window to the (540 ms 600 ms) window. Stationarity was further controlled by remov-
ing the average event-related responses from each trial60. �e model order was determined using the Akaike 
information criterion (AIC) to a maximum order of seven time points, which corresponded to 14 ms. A�er the 
model estimation, we tested the stationarity of the model by examining whether the spectral radius ρ(A) > 1 in 
every time window and every subject14. Although we tried to control every time window to satisfy the station-
arity assumption, a�er the (507 ms 567 ms) time window and from the (−137 ms −77 ms) to the (77 ms 137 ms) 
window, there were participants who violated the stationarity assumption. A similar pattern was observed even 
when we tested variable lengths of the time window and model orders. We suspected that this stationarity viola-
tion might be induced by CFAs. �erefore, we used the time window starting from the (170 ms 230 ms) window 
to the (507 ms 567 ms) window, and every time window satis�ed the stationarity assumption in every participant. 
Pairwise GC analyses of the two ROIs (two GCs: RAI to RdACC and RdACC to RAI) were performed for emo-
tional and neutral conditions. To compare the emotional and neutral conditions, GC baseline normalization 
was performed in both conditions by calculating the change in the GC relative to the average GC between the 
(−257 ms −197 ms) window and the (−167 ms −107 ms) window such that di�erence between the end point and 
starting point of the baseline is equal to the length of the baseline that we used in the previous analyses (150 ms)59. 
Time windows approximately 0 ms post-R peak were not used as a baseline because three subjects violated the 
stationarity assumption. Finally, the 2 estimated GCs of emotional and neutral conditions were compared using 
a cluster-based permutation paired t test for all time windows starting from the (170 ms 230 ms) window to the 
(507 ms 567 ms) window52. �erefore, the multiple comparisons were controlled for the number of GCs and the 
number of time windows using a cluster-based permutation paired t test.

Data Availability
�e dataset in this study is available from the corresponding author upon reasonable request.
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