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A detailed analysis of the bound-state spectrum of HOCl ~hypoclorous acid! in the ground electronic
state is presented. Exact quantum mechanical calculations ~filter diagonalization! are performed
employing an ab initio potential energy surface, which has been constructed using the
multireference configuration-interaction method and a quintuple-zeta one-particle basis set. The
wave functions of all bound states up to the HO1Cl dissociation threshold are visually inspected in
order to assign the spectrum in a rigorous way and to elucidate how the spectrum develops with
energy. The dominant features are ~1! a 2:1 anharmonic resonance between the bending mode and
the OCl stretching mode, which is gradually tuned in as the energy increases, and ~2! a saddle-node
bifurcation, i.e., the sudden birth of a new family of states. The bifurcation is further investigated in
terms of the structure of the classical phase space ~periodic orbits, continuation/bifurcation
diagram!. It is also discussed how the spectrum of bound states persists into the continuum and how
the various types of quantum mechanical continuum wave functions affect the state-specific
dissociation rates. © 2000 American Institute of Physics. @S0021-9606~99!00901-0#

I. INTRODUCTION

The spectrum of vibrational states of a molecule reflects
in a unique way the intramolecular forces.1 It is usually regu-
lar and easily assignable in terms of a set of quantum num-
bers, provided the excitation energy is not too high, i.e., the
displacements of the vibrational coordinates from equilib-
rium are small.2 With increasing energy the coupling be-
tween the modes typically grows with the consequence that
the spectrum becomes more complex and the assignment of
the states gradually becomes more difficult.3 Eventually the
dynamics is mainly irregular and the majority of states can-
not be straightforwardly labeled by quantum numbers. The
‘‘rate’’ with which this change occurs depends, of course, on
the particular molecule, i.e., the potential energy surface
~PES! and the masses of the constituent atoms.

As one climbs up the ladder of vibrational energies, in-
teresting effects may occur.4 A common effect is the exis-
tence of an anharmonic resonance — the near degeneracy of
vibrational levels, which leads to a substantial mixing of the
corresponding ~zero-order! basis functions.5–9 As a result of
such resonances the energy levels are grouped into polyads.
Examples, which have been recently investigated in some
detail by us, include the 1:1 DC stretch : CO stretch reso-
nance in DCO,10 the 1:1 NO stretch : HNO bend resonance in
HNO,11 and the 1:2 HCP bend : CP stretch resonance in
HCP.12,13 In all these examples the resonances are already
present in the fundamentals and continue to shape the spec-
trum up to high energies. Another possibility is that two

frequencies gradually tune into resonance as the energy in-
creases, because one mode is considerably more anharmonic
than the other one. The result is that the mixing between the
modes gradually develops with energy and becomes fully
established at relatively high energies. An example, which
will be investigated in the present study, is the 2:1 HOCl
bend : OCl stretch resonance in HOCl.

Anharmonic resonances bring about intriguing effects as
one follows the spectrum from low to high energies, e.g., the
birth of a completely new class of wave functions, which did
not exist at lower energies. Such an effect, known as saddle-
node or tangent bifurcation in the nonlinear dynamics
literature,14,15 has been predicted to happen in HCP12 and
indeed has been observed in stimulated emission pumping
~SEP! spectra.13,16 As we will demonstrate in the present
work a similar bifurcation exists in HOCl.

Understanding the structure of a quantum mechanical
spectrum over an extended energy regime can be quite cum-
bersome, even for a triatomic molecule. However, in numer-
ous applications it has been demonstrated that classical me-
chanics, especially periodic orbits17,18 and continuation/
bifurcation diagrams,19 can be extremely helpful in
interpreting quantum spectra. This has been shown for
HCP12 and it is likewise true for HOCl.

The bound states of a molecule do not abruptly terminate
at the dissociation threshold, but persist into the continuum
as resonance or quasibound states.20 While bound states are
the real poles of the Green’s function, resonances are poles
in the complex energy plane with the imaginary parts repre-
senting the dissociation rates or the inverse of the lifetimes.a!Electronic mail: rschink@gwdg.de
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The decay of resonance states is intimately related to unimo-
lecular dissociation processes.21,22 Whether a resonance state
decays slowly or fast ultimately depends on the structure of
the corresponding wave function. In a recent article we found
that at threshold the dissociation rate of HOCl varies by
more than seven orders of magnitude.23 In the present article
we attempt to rationalize this ‘‘unexpectedly broad’’ distri-
bution of resonance widths in terms of the nature of the wave
functions near the HO1Cl threshold.

The spectroscopy24,25 and dissociation26–28 of HOCl are
the target of recent experimental interest. However, due to
experimental limitations ~vibrational overtone spectroscopy!
only states in the vicinity of overtones of the HO bond are
considered — out of the ;800 bound states merely 2%–3%
have been experimentally analyzed. Parallel to our own the-
oretical work, the spectroscopy and dissociation of HOCl is
currently under investigation — using an independently cal-
culated ab initio PES — by Skokov and co-workers.29–32 We
will refer to their work in the following when it is appropri-
ate.

The subject of the present article is a comprehensive
analysis of the HOCl spectrum from the bottom of the po-
tential well to the HO1Cl dissociation threshold and above.
We will focus the discussion on ~i! how the level pattern and
the underlying wave functions change with energy, ~ii! how
new states appear as a consequence of a saddle-node bifur-
cation of the classical phase space, and ~iii! how the structure
of the bound-state spectrum affects the state-specific disso-
ciation rates. The article is organized in the following way:
The ab initio calculations and the analytical fit of the PES
will be described in Sec. II, followed by a brief account of
the dynamics calculations in Sec. III. The evolution of the
bound states is the topic of Sec. IV, followed by classical
calculations in Sec. V, which elucidate the gross features of
the quantum spectrum in terms of a continuation/bifurcation
diagram. The consequences of the various types of wave
functions for the dissociation rates are explicated in Sec. VI.
The main results are summarized in Sec. VII. In a future
paper we will provide a more detailed analysis of the bound-
state structure in terms of a two-dimensional ~2D! model, in
which the HO stretching degree of freedom is adiabatically
separated.33 The reduction to two degrees of freedom allows
a more detailed analysis of the variation of the classical
phase space with energy and the classical/quantum mechani-
cal correspondence. Additional clues about the spectrum of
HOCl are obtained from a description in terms of a 1:2 reso-
nance Hamiltonian model, fitted to either the 2D or the three-
dimensional ~3D! quantum mechanical energy level
spectrum.33

II. POTENTIAL ENERGY SURFACE

A. Ab initio calculations

The total energies of hypochlorous acid are calculated
using the internally contracted multireference configuration
interaction method, icMRCI.34,35 The one-particle basis set
employed in this study is the correlation-consistent polarized
basis set of quintuple-zeta quality, cc-pV5Z.36,37 The cc-
pV5Z basis set consists of a (20s12p4d3 f 2g1h)/

@7s6p4d3 f 2g1h# set for chlorine, a (14s8p4d3 f 2g1h)/
@6s5p4d3 f 2g1h# set for oxygen, and a (8s4p3d2 f 1g)/
@5s4p3d2 f 1g# set for hydrogen, thus resulting in a molecu-
lar one-particle basis set of 241 contracted functions. Only
the spherical harmonic components of the d through h polar-
ization functions are used. The reference wave function in
the icMRCI calculations consists of a full valence complete
active space ~CAS!. The wave function thus includes all ex-
citations of 14 valence electrons in 9 molecular orbitals cor-
responding to the valence atomic sp orbitals of chlorine and
oxygen, and the 1s orbital of hydrogen. For each point of the
PES, the reference wave function is determined in the com-
plete active space self-consistent field calculation
~CASSCF!.38,39 The molecular 1s- and 2sp-like core orbitals
of chlorine and the 1s-like core orbital of oxygen are kept
doubly occupied in all the configurations and optimized. In
the vicinity of the minimum of the PES, the CI-expansion
coefficient of the SCF configuration in the CASSCF wave
function is determined to be about 0.98 and there are only
two excited configurations with coefficients greater than
0.05. The total energy of hypochlorous acid is determined in
the following icMRCI calculation, in which all single and
double excitations with respect to the reference wave func-
tion are included and external configurations are internally
contracted.34,35 The molecular core orbitals are kept doubly
occupied in all the configurations. This results in over one
million contracted configurations ~in contrast to over 75 mil-
lion uncontracted configurations!. The multireference David-
son correction40,41 to the calculated energy ~icMRCI1Q! is
then employed to approximately account for the effects of
higher excitations. The total energies are determined to an
accuracy better than 1028 hartree. The calculations are per-
formed using the MOLPRO-96 program.42

B. Analytical fit

The PES is constructed by varying the two bond dis-
tances RHO and ROCl and the HOCl bond angle a on a three-
dimensional grid: 2.5a0<ROCl<9a0 , 1.3a0<RHO<3.5a0 ,
and 20°<a<160°. The grid spacings are DROCl5DRHO
50.1a0 , and Da510° for the largest part of the grid. Near
the equilibrium smaller spacings are chosen, whereas for
large OCl distances the grid is coarser. Altogether we have
calculated 1234 points. Only the HO1Cl exit channel is
sampled; the other two dissociation channels, O1HCl and
H1OCl,43,44 are energetically considerably higher and there-
fore not considered in the present work.

The analytical fit expression uses the three bond dis-
tances RHO , ROCl , and RClH rather than the two bond dis-
tances and the HOCl bond angle. It is hoped that this gives a
more reasonable extrapolation to the two linear configura-
tions (a50° and 180°, where no ab initio points have been
calculated!. Following Sorbie and Murrell45 the total poten-
tial is written as

V~ROCl ,RHO ,RClH!5V I~ROCl ,RHO ,RClH!1vHO~RHO!,
~1!

with V I going to zero for large OCl bond distances. Because
of some numerical instabilities of the ab initio calculations at
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large OCl distances, we do not calculate the asymptotic HO
oscillator, but use instead the Morse expression for it,

vHO~RHO!5DHO@12e2bHO(RHO2RHO
e )#2. ~2!

The parameters are taken from the literature:46 DHO54.621
eV, bHO51.2139a0

21, and RHO
e

51.8323a0 . In what follows,
energy normalization is such that E50 corresponds to
HO1Cl with the HO distance fixed at equilibrium. The ‘‘in-
teraction potential’’ is written as a threefold sum of one-
dimensional functions,

V I~ROCl ,RHO ,RClH!

5
1
2 @11tanh~62ROCl!#

3(
i50

7

(
j50

7

(
l50

7

a i j lg i~RHO!h j~ROCl!d l~RClH!, ~3!

with

g i~RHO!5@12e2kHO(RHO2R̄HO)# i, ~4!

h j~ROCl!5@12e2kOCl(ROCl2R̄OCl)# j11
21, ~5!

d l~RClH!5@12e2kClH(RClH2R̄ClH)# l. ~6!

The nonlinear parameters are: R̄HO51.85a0 , R̄OCl53.2a0 ,
R̄ClH54a0 , kHO50.3a0

21, kOCl50.8a0
21, and kClH

50.1a0
21. All functions h j(ROCl) go to zero as ROCl goes to

infinity. In order to avoid spurious features at large distances,
where fewer points have been calculated, the additional
damping factor in Eq. ~3! is introduced.

The linear parameters a i j l are determined using a least-
squares procedure employing a singular value
decomposition.47 In order to decrease the overall deviations
from the ab initio points, we actually performed two inde-
pendent fits; the resulting interaction potentials are denoted
by V I

(1) and V I
(2) , respectively. In the first fit, all points with

energies below the HO1Cl threshold are taken into account
with weight one, whereas points with energies above the
threshold are given a smaller weight. In the second fit all
points are included with identical weight. Thus, V I

(1) pro-
vides a more accurate description of the potential well, while
V I

(2) gives a better description of the global potential, includ-
ing both the well region and the repulsive parts of the poten-
tial. The final expression for the PES is a weighted sum of
both fits, with a switching function which ensures that the
two expressions are smoothly joined, i.e.,

V5~ t21 !V I
(1)

1tV I
(2)

1vHO . ~7!

The switching function is defined by

t5
1
2 $11tanh@8~V I

(2)
1vHO10.8!#%. ~8!

The potential energies in Eq. ~8! are given in electron volts.
For energies below 20.8 eV the potential is mainly deter-
mined by V I

(1) , whereas for energies above 20.8 eV, V I
(2) is

the dominant part.
The rms deviation of the fit from the ab initio points is

5.9 meV including only points from the minimum to E50
and 8.8 meV, if points up to an energy of 4 eV above the
threshold are taken into account. The deviations for points in

the vicinity of the equilibrium configuration are well below 1
meV. The sets of 23512 linear parameters a i j l

(1) and a i j l
(2) as

well as a FORTRAN code can be obtained from one of the
authors ~R.S.!.

The calculated equilibrium structure agrees favorably
with the experimental one ~Table I!. The dissociation energy
D0(HO–Cl) is also in good agreement with the experimental
value. Including spin–orbit coupling in the calculations
would decrease the dissociation energy and thereby further
improve the calculated value. The deviations in the funda-
mental transition frequencies are 9, 7, and 2 cm21 for modes
1, 2, and 3, respectively; (n1 , n2 , and n3 are the HO stretch-
ing, the bending, and the OCl stretching mode, respectively.!
One of the goals of our study of HOCl is the decay of the
overtone states ~6,0,0! and ~7,0,0!, for which experimental
results are available.26–28 Although a deviation of only 9
cm21 for the HO fundamental frequency is very satisfactory,
the deviations for the higher overtones seem to be unaccept-
able. In order to further improve the agreement, we slightly
scaled the two bond distances, i.e., x→ex with e50.996 for
the HO bond and 0.998 for the OCl bond distance. While the
original PES overestimates the HO stretching frequency by 9

TABLE II. Comparison of calculated and observed vibrational band origins
(cm21).

(v1 ,v2 ,v3) Theory Experiment Expt’l. Ref.

0 0 0 0 0
0 0 1 724.6 724.36 51
0 1 0 1238.3 1238.62 51
0 2 0 2458.2 2461.21 52
1 0 0 3602.2 3609.48 50
1 0 1 4323.8 4331.91 53
1 1 0 4813.8 4820.43 53
1 2 0 6003.3 6013.83 53
2 0 0 7036.7 7049.81 54
3 0 0 10 307.7 10 322.29 53
3 1 0 11 463.2 11 478.01 55
3 2 0 12 593.2 12 612.55 24
4 0 0 13 416.9 13 427.39 56
4 1 0 14 535.4 14 555.60 56
5 0 0 16 359.1 16 364.75 56
6 0 0 19 125.4 19 122.80 Cited in Ref. 29
7 0 0 21 715.6 21 709.07 27

TABLE I. Equilibrium geometries ~Å and deg.!, dissociation energies
(cm21), and fundamental transition frequencies (cm21).

Original PES Scaled PES Experiment

RHO
e 0.964 0.967 0.9644a

ROCl
e 1.694 1.702 1.6890a

ae 102.2 102.2 102.96a

De(HO-Cl) 20 366.6 20 366.6 —
D0(HO-Cl) 19 347.3 19 349.9 19 290.3b

n1 3618.3 3602.2 3609.48c

n2 1245.9 1238.3 1238.62d

n3 726.0 724.6 724.36d

aThe experimental equilibrium structure was taken from Refs. 48 and 49.
bReference 28.
cReference 50.
dReference 51.
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cm21, the scaled PES underestimates it by 7 cm21. How-
ever, the scaling factor is chosen so that the disagreement
with the experimental energies is small for all states of the
(v1,0,0) progression with v151 through 7 ~see Table II!.
The other two transition frequencies obtained with the scaled
PES are in very good agreement with experiment. The scal-
ing slightly modifies also the equilibrium bond distances.
This could be corrected for by a tiny translation of the two
stretch coordinates, which, however, has not been done. All
dynamics calculations, which will be presented in the follow-
ing, are performed with the scaled PES.

In Table II we compare vibrational band origins with
available experimental data. The agreement is satisfactory
with the largest deviation being 20 cm21 and a rms deviation
of 11 cm21.

There are two other PESs available for HOCl, which
have been constructed very recently. Peterson57 determined a
near-equilibrium PES based on high quality coupled cluster
ab initio calculations. With this PES the experimentally
known overtones and combination bands up to energies of
about 10 000 cm21 were accurately reproduced. However,
because this PES is restricted to configurations not too far
from equilibrium, it cannot be used for studying the frag-
mentation into HO and Cl. Similar ab initio calculations on
an even higher level of accuracy were subsequently per-
formed by Koput and Peterson.58 Skokov, Peterson, and
Bowman29 extended the calculations of Peterson and con-
structed a global PES, which is suited to study high over-
tones of the HO stretching mode as well as dissociation into
HO1Cl. The ab initio level is comparable to the level of
accuracy used in our calculations. Skokov, Peterson, and
Bowman, however, performed a more elaborate scaling pro-
cedure and therefore their PES reproduces the experimen-
tally known vibrational energies slightly better than our sur-
face. The general topographies of the two potential surfaces
are very similar.

Figure 1 depicts three two-dimensional cuts through the
PES. The coordinates are the Jacobi coordinates appropriate
for dissociation into HO and Cl: R, the distance from Cl to
the center of mass of HO, r, the HO bond distance, and g ,
the angle between the two vectors R and r (g5180° corre-
sponds to linear HOCl!. The two dissociation channels,
HO1Cl (R→`) and H1OCl (r→`), are clearly seen in
Fig. 1 ~middle panel!. However, the latter one is consider-
ably higher in energy and therefore is of no consequence for
our study. There is no barrier in the HO1Cl exit channel
~Fig. 2!. In the linear geometry, g5180°, two pronounced
maxima exist, which are caused by conical intersections with
higher electronic states.29 The first one occurs near R'4a0
@Fig. 1 ~upper panel!# and the second one is located at large
HO distances @Fig. 1 ~lower panel!#.

The main characteristic of the HOCl ground-state PES is
the weak potential coupling between the three internal de-
grees of freedom. The minimum energy paths are almost
perfectly aligned along the respective coordinate axes. At
low energies the same is true for the nodal lines of the quan-
tum mechanical wave functions. At higher energies, how-
ever, an anharmonic resonance between R and g is devel-
oped, which strongly changes this simple picture.

III. CALCULATION OF BOUND AND RESONANCE
STATES

All dynamics calculations are performed using the filter
diagonalization method.59–61 In a first step, optimally
adapted basis functions ~so-called ’window basis functions’!

FIG. 1. Contour plots of the HOCl ground-state PES. The contour spacing is
0.25 eV and the highest energy in each panel is 3 eV. Energy normalization
is such that E50 corresponds to HO1Cl with HO at equilibrium.

FIG. 2. Minimum energy path along the dissociation coordinate R; the po-
tential is minimized in the other two degrees of freedom. The symbols
indicate the extension of wave functions in the two progressions (0,0,v3)
and (0,0,x)D , respectively ~see the text!.
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C i , which span only a relatively small subspace of the
whole Hilbert space, are generated by applying the Green’s
function

Ĝ1~E i!5~E i2Ĥ1iW !21 ~9!

as a filtering operator onto an initial wave packet x ,

C i5Im Ĝ1~E i!x , ~10!

where iW is a complex absorbing potential (W50 for
bound-states calculations!. The energies E i are taken to be
equally spaced in the interval @Emin ,Emax#. The filtering is
efficiently performed using the ~modified! Chebychev poly-
nomial expansion of the Green’s function.60–64 In the second
step the eigenstates in the energy window @Emin ,Emax# are
calculated by diagonalizing the Hamiltonian in the small set
of basis functions C i .

Because the window basis functions are explicitly stored
in the core memory of the computer, it is necessary to care-
fully choose the size of the energy windows @Emin ,Emax#. As
a rule of thumb, the number of basis functions for a particu-
lar interval should be roughly twice the number of eigen-
states as estimated from the expected density of states in this
window. In the present case we have calculated all the 827
bound states supported by our PES in 13 overlapping energy
windows, where we tried to keep the number of eigenstates
per window roughly constant. While the lowest energy win-
dow ranged from 22.2 to 21.3 eV, the highest window
covered an energy region of only 0.03 eV. None of the cal-
culations needed more than 300 Mbytes of main memory.

For the highest lying energy window the three-
dimensional grid was chosen to extend from 2.5a0 to 10.0a0
in R with 150 potential-optimized points,65 from 1.0a0 to
3.5a0 in r with 30 potential-optimized points, and from 0° to
180° in the angular coordinate with 70 Gauss–Legendre
quadrature points.66 The grid size of N5315 000 points has
been further reduced to N5197 000 points by discarding all
points with potential energies larger than 1.8 eV. We found
that 60 000 Chebychev iterations were sufficient for converg-
ing even the highest bound states of HOCl.

The calculation of the complex resonance energies
above the HO1Cl dissociation threshold has been performed
by adding an imaginary ~absorbing! potential67–69 iW to the
Hamiltonian @see Eq. ~9!#.60,61,63,64 It enters the filtering pro-
cedure in the form of a damping operator exp@2ĝ(R)#. Fol-
lowing Mandelshtam and Taylor, the coordinate dependent
function ĝ(R) is assumed to have the form60,61,63

ĝ~R !5

D0

~DH !1/2 S R2Rdamp

Rmax2Rdamp
D 2

Q~R2Rdamp!. ~11!

Here, DH ~in atomic units! and Q denote the spectral range
of the Hamiltonian and the Heaviside step function, respec-
tively. The three adjustable parameters are the damping
strength, D0 , the starting point for the absorbing potential,
Rdamp , and the end point of the grid in the dissociation co-
ordinate, Rmax . The relationship between ĝ and W is explic-
itly given in Ref. 64. After many test calculations we found
the following parameters to give tolerable resonance widths:
Rmax514a0 , Rdamp512a0 , and D050.1. Because the grid is

significantly extended in the R direction as compared to the
bound-states calculations, the number of grid points in the
dissociation coordinate is increased to 220. In addition, we
observed that an unexpectedly high number of Chebychev
iterations ~180 000! is required for converging the resonance
widths of states having substantial excitation in the HO
stretching mode.

IV. CHARACTERIZATION OF BOUND STATES

We have calculated all the bound states up to the
HO1Cl dissociation threshold—827 on our PES—and we
have visually inspected each of them in order to recognize
how the structure of the spectrum changes with energy. @A
list of all bound state energies and assignments is available
electronically70 or can be obtained from one of the authors
~R.S.!.# The inspection ‘‘by eye’’ is indispensable, we be-
lieve, for making the correct assignment. The energy level
spectrum of HOCl is simple and the assignment of the vibra-
tional states is straightforward up to about four-fifths of the
dissociation limit. Then, however, complications related to a
saddle-node bifurcation of the corresponding classical phase
space occur, which make the interpretation considerably
more complicated. We will first discuss the low-energy re-
gime and subsequently focus on the changes happening at
higher energies. The coupling between the HO stretching
mode and the other two degrees of freedom is very weak, so
that it is justified to analyze the manifolds for different val-
ues of v1 separately.

A. Polyad structure for v150 in the low-energy
regime

At low energies all states can be clearly assigned in
terms of quantum numbers (v1 ,v2 ,v3). The wave functions
of the pure overtone states (v1,0,0), (0,v2,0), and (0,0,v3)
are basically aligned along the HO stretch coordinate r, the
angular coordinate g , and the dissociation coordinate R, re-
spectively. The fundamental OCl frequency is slightly larger
than half of the fundamental bending frequency, that is, the
spectrum is governed by an approximate 1:2 anharmonic
resonance: Two quanta of OCl stretch are roughly worth one
quantum of the bending mode. As a consequence, the spec-
trum is organized, for a given HO quantum number v1 , in
polyads denoted by vv1 ,P b . The polyad quantum number is
defined by P52v21v3 . Figure 3 illustrates the polyad
structure of the energy levels for v150 in the range of poly-
ads v0,19b through v0,30b . The spectra with excitation of the
HO stretching coordinate are virtually replicas of the v150
spectrum, roughly shifted by one, two, etc., HO vibrational
quanta to higher energies ~see the following!. The number of
states in each polyad is (P12)/2 for even values of P and
(P11)/2 for odd polyad quantum numbers. Already at low
energies the polyads significantly overlap. The OCl stretch-
ing states (0,0,P) are always at the top of each polyad,
whereas — up to polyad v0,27b — the bending overtones
(0,v2,0) or (0,v2,1) demarcate the lower end. Around the
energy of 20.5 eV structural changes occur, which are dis-
cussed in detail in Sec. IV B.

In order to illustrate the general behavior of wave func-
tions in the low-energy regime, we depict in Fig. 4 the wave
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functions for all states of the v0,12b polyad. We plot them in
the (R ,g) plane because of the resonance between the bend-
ing and the OCl stretching degrees of freedom. The labeling
with quantum numbers is straightforward: They specify the
number of nodes along the three coordinate axes. Because of
the relatively large mismatch of more than 100 cm21 be-
tween n2/2 and n3 , the mixing between R and g is not well
developed in the lower energy region and the wave functions
do not show the general structure characteristic for a 1:2
resonance.8,71 The backbones of the wave functions for states
(0,P/2,0) and (0,0,P) are almost perpendicular to each
other.

However, being the dissociation mode, the OCl stretch is
much more anharmonic than the bend. Therefore, the mis-
match between the corresponding transition frequencies
gradually decreases and the resonance condition becomes
better and better fulfilled, as it is seen in Fig. 5~c!, where we
show for the two progressions (0,0,P) and (0,P/2,0) the
energy gap between adjacent levels as functions of energy.
The transition frequencies of the bending mode are divided
by two. The two frequency curves come very close to each
other near P'16 and remain close until P'25. The more
and more exact resonance leads to an increasing mixing be-
tween the R and the g motions, at least for the states at the

upper ends of the polyads. For example, the (0,0,P) wave
functions become gradually more curved in the (R ,g) plane
as illustrated in the left-hand panel of Fig. 6. The curvature is
already present for polyad P512 ~Fig. 4!, but it becomes
clearly pronounced not until P is larger than 16 or so. This
horseshoe-type behavior is typical for systems governed by a
1:2 resonance.8 As a consequence of the mixing, the states
which at low energies start out to advance along the disso-
ciation coordinate, ROCl , at high energies avoid the dissocia-
tion path. This is illustrated in Fig. 2, where we plot the
value of the dissociation coordinate, Rmax , at which the
(0,0,P) wave functions have their outermost maximum, ver-
sus energy. Rmax first increases with P, reaches a maximum
around P'17– 18, and then again decreases slightly. As will
be discussed in Sec. V, the backbones of the (0,0,P) wave
functions are scarred by a stable classical periodic orbit ~PO!.
Because of the strong mixing, referring to the (0,0,P) states
as ‘‘OCl stretching states’’ is meaningless, except in the low-
energy regime. The quantum number v3 denotes the number
of nodes along the corresponding PO, rather than along the R

axis. In contrast, the wave functions of the states at the bot-
tom of the polyads, (0,P/2,0), retain their general shape
from low to very high energies. They do not show the be-
havior representative for a 1:2 resonance. Their backbones

FIG. 3. Energy level spectrum in the region of polyads
v0,19b – v0,30b . The dissociation states (0,v2 ,x)D(P) are
indicated by dashed lines.
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are also scarred by a stable PO ~see the following!.
A quantity, which to some extent reflects the degree of

mixing, is the energy spacing between adjacent levels inside
the polyads. In Fig. 7 we depict DE5En

P
2En21

P as function
of n for various polyads P; the index n specifies the state
inside the polyad with n50 being the lowest state. In the
low-P region, DE is a smooth, monotonically decreasing
function with its minimum value at the top of the polyad.
Between P516 and 18, however, the energy spacing curve
loses its monotonic behavior.

B. Genesis of dissociation states

The increasing coupling between R and g with increas-
ing energy and the resulting mixing leads — above polyad
v0,21b — to a gradual distortion of the simple appearances of
the wave functions observed for the lower polyads. This dis-

tortion is most pronounced for the states in the middle of the
polyads, whereas the states near the bottom or the top of a
polyad still can be characterized and assigned in the same
manner as for the lower polyads. Figure 8 illustrates these
changes in the wave function character for selected states
belonging to polyads v0,21b through v0,25b . The way in
which the assignment is done, i.e., the ‘‘axes’’ along which
the number of nodes v2 and v3 are counted, is illustrated by
the arrows in some of the panels.

The wave function for state ~0,7,8! in polyad v0,22b still
has a structure, which matches the behavior of the wave
functions in the lower polyads and its assignment is quite

FIG. 4. Wave functions for polyad P512. The g axis ranges from 19° to
179° and the R axis ranges from 2.5a0 to 5.42a0 . All wave function plots
depicted in this article, if not stated otherwise, have been obtained from a
plotting routine which allows one to rotate 3D objects in space. Shown is
one particular contour e(R ,r ,g)5uC(R ,r ,gu2 with the value of e being the
same in each figure. The plots are viewed along one coordinate axis, in the
direction perpendicular to the plane of the other two coordinates. Shading
emphasizes the 3D character of the wave functions. The potential is shown
in the upper left-hand panel. The numbers are the energies of the respective
quantum states.

FIG. 5. ~a!–~c! Energy difference between adjacent states of the pure pro-
gressions (v1,0,v3), (v1 ,v2,0), and (v1,0,x)D~P! as function of energy for
v150,1, and 2. The inset in ~c! shows an enlargement of the ‘‘crossing
region.’’ ~d! Frequencies of the classical periodic orbits belonging to various
families. Solid lines indicate stable POs and dashed lines represent unstable
ones. The branches, which influence the quantum mechanical states, are
indicated by the thicker solid lines. The frequencies of the (0,v2,0) states

and, likewise, the frequencies of the @g#-, @ g̃#-, and @g1#-type POs are
divided by two. See the text for more details.
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clear. The appearance of the wave functions for the next
three higher states, however, is more involved, especially for
state ~0,6,10!. Making the same plot with a lower contour
level shows a slightly different nodal structure and in par-
ticular reveals that the assignment as ~0,6,10! can still be
justified. Nevertheless, the general appearance of the ~0,6,10!
wave function is different from that for state ~0,7,8!: There is
a central ‘‘backbone’’ along which the amplitude is maxi-
mal. Such a backbone is missing for ~0,7,8!. The wave func-
tions for the higher states in this polyad, ~0,5,12!, ~0,4,14!,
etc., have shapes, which resemble the nodal structures known
from the states in the lower polyads.

The particular shape of the ~0,6,10! wave function be-
comes more evident in the higher polyads: See, e.g., the
wave functions for state ~0,7,9! for P523, ~0,8,8! for P

524, and ~0,9,7! for P525. While the wave functions for
states ~0,6,10! and ~0,7,9! still show amplitude off the main
backbone, the wave functions for states ~0,8,8! and ~0,9,7!
are much more distinct, i.e., the amplitude outside the region
of the backbone is marginally small.

The assignment of the fifth (n54) state in polyad P

523 as ~0,7,9! is nonetheless justified: Plotting the wave

function at a lower contour level reveals that it has 7 and 9
nodes, respectively, along the v2 and v3 ‘‘axes,’’ which are
indicated in Fig. 8. On the other hand, the assignments of the
n54 state of P524 and the n52 state in polyad P525 as
~0,8,8! and ~0,9,7!, respectively, are not at all reasonable.
The labels ~0,8,8! and ~0,9,7! merely indicate that at these
positions states with these assignments are expected. How-
ever, such states are missing and their positions are occupied
by these new states. In order to distinguish the ‘‘new’’ states
from the ‘‘normal’’ ones, we will assign them as
(v1 ,v2 ,x)D~P! , where the abbreviation D stands for ‘‘disso-
ciation’’ and the number in parentheses indicates the polyad
this state belongs to. With increasing polyad quantum num-
ber combination states of the D type with one, two, and more
nodes in the direction perpendicular to the main backbone,
i.e., with excitation essentially in the bending mode, come
into existence, e.g., state ~0,8,9! for polyad P525.

The number of nodes along the backbones of these func-
tions is not identical to the polyad quantum number P. For
example, the (0,0,x)D~24! wave function for polyad P524
has only 19 nodes. ~It, beyond any doubt, is not a member of
polyad P519.! Because of the mismatch between the polyad
quantum number P and the actual number of nodes along the
backbone, we replace the quantum number v3 by x without
specifying the value of x. As before, v1 is the number of HO
stretching quanta and v2 refers to the number of quanta in

FIG. 6. Wave functions of the pure overtone states (0,0,P) ~left-hand col-
umn! and the dissociation states (0,0,x)D~P! ~right-hand column!. For further
details see Fig. 4.

FIG. 7. Energy spacings between neighboring states inside the polyads
v0,14b – v0,28b as function of n, where n indicates the position in the polyad
(n50 for the lowest state!.
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the direction perpendicular to the backbone, basically the
angular coordinate. There is another peculiarity. The number
of nodes of the D states along their backbones does not nec-
essarily increase by one when going from one polyad to the
next higher one. For example, the wave functions for states
(0,0,x)D~24! and (0,0,x)D~25! both have 19 nodes. Moreover, it
is possible that the number of nodes along the backbones is
identical for states (0,0,x)D~P! and (0,1,x)D~P! . The allocation
to a particular polyad is only possible by carefully following
how the spectrum and the wave functions develop from low
energies to high energies and this requires one to inspect
each wave function state by state.

The D states clearly follow the dissociation path, i.e,
they extend further and further into the HO1Cl fragment
channel when the energy increases ~Fig. 2 and the right-hand
panel of Fig. 6!. They form a new family of states, which
does not exist at lower energies, but comes into existence
abruptly at high energies. As we will show in Sec. V, the D
states can be interpreted as the consequence of a saddle-node
bifurcation of the classical phase space. Details of the quan-
tum mechanical/classical correspondence will become
clearer in the two-dimensional study.33 The birth of the D

states leaves the number of states per polyad intact; it is the
structure of the individual polyads, i.e., the wave functions
and the energy spacings between neighboring states ~see the
following!, that is considerably changed by the D states. The
alterations become rapidly more severe with increasing en-
ergy.

The evolution of the wave functions as illustrated in Fig.
8 continues at higher polyads, namely some of the ‘‘normal’’
states, which are well assignable in the lower polyads, dis-
appear and at the same time new D states are born. Since the
D states advance along the dissociation path, they show a
considerable anharmonicity as indicated by the energy level
spacing between adjacent (0,0,x)D~P! states in Fig. 5~c!. The
curve of transition frequencies for the D states seems to be
the continuation of the curve for the (0,0,v3) states, i.e., the
states which in the low energy regime have mainly OCl
stretching character. The extrapolation of the (0,0,x)D~P!

curve to lower energies merges with the (0,0,v3) frequency
curve around P'16– 17 (E'20.9 eV!, just in the region
where the frequency curves for the states (0,0,v3) and
(0,v2,0) intersect each other, i.e., where the two transition
frequencies are almost identical.

FIG. 8. Selected wave functions for
polyads v0,21b – v0,25b illustrating the
gradual distortion of the nodal behav-
ior observed for the lower polyads and
the genesis of the (v1 ,v2 ,x)D~P! disso-
ciation states. For further details see
Fig. 4.
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The energy-level spectrum of HOCl becomes quite com-
plex in the high-polyad regime. When the D states come into
existence around P523– 24, they are born in the middle of
the respective polyads. However, because of the large anhar-
monicity, they quickly move to the lower ends ~Fig. 3!. In
polyad v0,28b it happens for the first time that an (0,0,x)D~P!

state is the lowest state in a polyad. From there on, more and
more states with D character and several quanta in the bend-
ing mode appear at the lower parts of the polyads. That the
upper end of a polyad overlaps with the lower part of the
next higher polyad does happen even at low energies, where
D states do not yet exist. However, in the high-P regime it
occurs that several polyads overlap. For example, the upper
part of polyad P528 overlaps with states from polyads 29
and 30. This makes the analysis of the energy level spectrum
cumbersome, especially if the wave functions are not avail-
able.

The problems related to the assignment rapidly grow as
one approaches the dissociation limit. Actually, polyad
v0,31b is the last one for v150 that can be completely as-
signed. The number of unassignable states quickly gets
larger for energies E.0. In order to demonstrate the com-
plexity of the wave functions at high energies we show in
Fig. 9 all wave functions for polyad v0,30b . The three lowest
states are clear-cut D states of the form (0,v2 ,x)D~30! . They

are followed by a region in which D states and bending states
alternate. The states in the middle of the polyad have an
extremely complex nodal structure, whereas the top of the
polyad again is governed by levels, which have the same
general behavior as observed in the lower polyads and the
assignment is rather clear. The highest state, ~0,0,30!, has
mainly bending character, although the lowest members of
this progression started out to have excitation along the OCl
stretching degree of freedom.

There is a further detail worth mentioning. The ~0,15,0!
wave function has a clear node along the R coordinate, which
is in contradiction to the general building principle of the
polyads, i.e., the wave functions for the states (0,v2,0) have
no node in the R direction. Again, this effect has a counter-
part in the analysis of the classical phase space: At a period-
doubling bifurcation of the bending family of POs the PO
describing pure motion in g becomes unstable and a new
stable PO is created ~see Sec. V!. The latter one has the form
of a very narrow horseshoe and it is this PO which scars the
(0,v2,0) wave functions. The same effect also occurs in the
2D calculations and is even more clearly conceivable there.33

The emergence of the D states has a profound impact on
the energy spacings inside the polyads ~Fig. 7!. While DE is
a smooth and monotonically decreasing function in the
low-P region, between P516 and 18 a very shallow mini-

FIG. 9. All wave functions for polyad
v0,30b . For further details see Fig. 4.
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mum develops in the top part of the polyads. With increasing
polyad quantum number this minimum becomes more pro-
nounced and gradually shifts toward the bottom of the
polyad. The location of the minimum in the intrapolyad en-
ergy spacing is closely related to the (0,0,x)D~P! states. For
example, for P522 the minimum is at n56 and the D state
in this polyad is the sixth state; for P524 the D state is the
fifth state of this polyad and the minimum occurs at n54. As
P increases the D states rapidly move to the bottom part of
the polyads and so does the minimum in the intrapolyad
energy spacing. The ‘‘fluctuations’’ for the higher polyads,
P526 for example, are the consequence of the occurrence of
more than one D state and their alternation with the ‘‘nor-
mal’’ states ~Fig. 9!.

The minimum begins to develop in polyads P516– 18.
This is exactly the region in which the mixing between g and
R at the top of the polyads gets large because of the almost
perfect degeneracy ~see Fig. 5!. As previously discussed, this
is also the region in which the D states begin to come into
existence. States with a clear-cut ‘‘dissociation’’ behavior do
not show up before P521. However, an extrapolation of the
(0,0,x)D~P! frequency curve to lower polyads suggests that
first indications already occur as early as P'16– 18. In other
words, the intrapolyad energy spacing is a very sensitive
probe of the saddle-node bifurcation through which the D
states are born. The relation between a minimum in the in-
trapolyad energy spacing and saddle-node bifurcations had
been previously discussed by Svitac et al.72 for a model reso-
nance Hamiltonian and by Joyeux et al.73 for HCP. It is in-
teresting to note that well below the resonance region, DE is
a monotonically decreasing function of n, while in the higher
polyads, when the resonance behavior is fully developed, DE

monotonically rises with n, except for the fluctuations at the
bottom of the polyad. A detailed analysis is given in Ref. 33.

C. Polyad structure for v1>0

Up to now we have only discussed the polyad structure
for states in which the HO moiety is not excited, v150.
Because of the weak potential coupling between r on one
hand and R and g on the other, and because of the relatively
large mismatch of the fundamental frequencies, n1 /n2
'n1/2n3'3, the HO stretching motion is to a large degree
separated from the motions in R and g . As a consequence,
the polyad structures for v151 and 2 are almost replicas of
the spectrum for v150, merely shifted by the corresponding
excitation energies. This general behavior is, for example,
confirmed by the frequency curves for v151 and 2 in Fig. 5.
The point of intersection of the curves for the two progres-
sions (1,0,v3) and (1,v2,0) is shifted by about 4600 cm21 to
higher energies with respect to the curves with v150. As a
result, the D states occur at energies very close to the disso-
ciation threshold. The point of intersection is further shifted
to higher energies for two quanta of excitation of the HO
mode; D states with v152 occur only in the continuum. The
weak coupling between HO stretching motion and the other
two degrees of freedom ~together with the fact that n1

@n2,3) is responsible for the success of the two-dimensional
model in reproducing — and explaining — the results of the
present three-dimensional study.33

Although the coupling between r, on the one hand, and R

and g , on the other, is weak, it is not negligible. This can be
seen in Fig. 10, where we depict the wave functions for
states ~0,8,0!, ~1,8,0!, and ~2,8,0! in the (r ,g) plane. The
wave function for state ~0,8,0! shows an undulatory behav-
ior, which is characteristic for a 3:1 resonance system,6 i.e.,
one quantum of HO stretch is worth three quanta of the
bending mode. As will be discussed in the Sec. V, the pre-
cise shape of the (0,v2,0) wave functions in the (r ,g) plane
is helpful in finding those periodic orbits which correspond
to the quantum wave functions. The wave functions for the
states with excitation in r show a different behavior; they are
slightly bent without the characteristic 3:1 resonance behav-
ior.

V. ANALYSIS OF THE CLASSICAL PHASE SPACE

The structure of the quantum mechanical spectrum and
particularly the shapes of the wave functions can be eluci-
dated in terms of the structure of the classical phase space
and special trajectories therein, so-called periodic orbits
~POs!.18,74 POs are classified as stable or unstable depending
on the eigenvalues of the monodromy matrix.15 For many
systems it has been demonstrated that the ‘‘backbones’’ of
quantum mechanical wave functions closely follow certain
stable POs.75 HOCl is a particularly illuminating system for
illustrating the close correspondence between the phase-
space structure and the quantum mechanical spectrum, all the
way from the bottom of the potential well to the dissociation
threshold.

Despite the remarkable simplicity of the quantum me-
chanical spectrum up to high energies, the structure of the
classical phase space is quite involved already at low ener-
gies. Near the bottom of the well there are three types of
POs, the principal families. They are denoted by @r#, @g# ,
and @R#, respectively, because the POs basically describe mo-
tions along the three coordinate axes. Instead of showing

FIG. 10. Examples of (v1 ,v2,0) wave functions in the (r ,g) plane. The g
axis ranges from 1° to 179° and the r axis ranges from 1.0a0 to 3.5a0 .
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individual POs we present in Fig. 5~d! the corresponding
frequencies as functions of the energy ~continuation/
bifurcation diagram76!. In order to simplify the presentation,
the frequency for the @r# family is not shown. In accordance
with the quantum mechanical results in Figs. 5~a!–5~c! the
frequencies of the @g#-type orbits are divided by two. All
classical curves are shifted by 0.23 eV, the estimated quan-
tum mechanical zero-point energy in the HO stretching mode
at the equilibrium configuration, to higher energies.77 Repre-
sentative examples of POs and the corresponding wave func-
tions are depicted in Fig. 11.

The @r#-type POs ~not shown! exist up to very high en-
ergies, far above threshold, and they are stable for the entire
energy regime studied. The general structure of these orbits
does not change as energy increases. The behavior of the
POs of the other two principal families, however, is more
involved.

In contrast to the @r# orbits, the @g#-type POs very early
change their qualitative morphology: As energy increases the
HO mode becomes excited, as is seen in Fig. 11~b! ~the
dashed line!, and the degree of excitation grows with E.
These changes start around 21.95 eV ~including the 0.23 eV
shift to higher energies! and are the consequence of the 3:1
resonance between the HO mode and the bending mode.
This resonance has only a small effect on the quantum me-
chanical wave functions, but seems to influence the classical
trajectories more strongly. However, although the @g# family

of POs remains stable up to energies well above the disso-
ciation threshold and although they seem to follow the back-
bone of the (0,v2,0) wave functions in the (R ,g) plane @Fig.
11~a!#, they do not scar the (0,v2,0) wave functions: The
behavior of the wave functions in the (r ,g) plane @Fig.
11~b!# is not properly described by the @g#-type POs.

In the same energy range, where the @g#-type POs
change their structure (21.95 eV!, the first saddle-node ~SN!

bifurcation is found. The stable branch of this bifurcation,
which is denoted by @ g̃# in what follows, has POs with small
excitation along the r coordinate — for low energies as well
as for high energies. As Figs. 11~a! and 11~b! indicate, it is
the POs of the @ g̃# family which scar the (0,v2,0) wave
functions. The @ g̃# POs are stable up to about 20.4 eV,
where a period-doubling bifurcation occurs. At this bifurca-
tion the @ g̃# branch becomes unstable and the new branch,
labeled by @g1# , is stable, at least initially. At still higher
energies this branch goes through several additional bifurca-
tions and eventually also loses its stability.

As previously mentioned, the pure bending wave func-
tions (0,v2,0) change their shapes at high energies, i.e., when
v2 is larger than 13 or so. While at lower energies the
(0,v2,0) wave functions do not have a node in the R direc-
tion, in the high-energy regime they develop excitation in R

@Fig. 11~f!#. The structural change of the wave functions is
reflected by the change of the slope of the

FIG. 11. Comparison of selected POs and the corre-
sponding wave functions ~two-dimensional contour
plots; the third coordinate is integrated over!. ~a!, ~b!

The solid ~dashed! lines represent orbits of the @ g̃#

(@g#) type; ~c!, ~d! the solid ~dashed! lines represent

orbits of the @ R̃# ~@R#! type; ~e! the solid line represents
an orbit of the @D# type; ~f! the solid line shows an orbit
of the @g1# type.
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(0,v2,0)-frequency curve near 20.25 eV in Fig. 5~c!. The
high-energy (0,v2,0) wave functions are scarred by the POs
of the @g1# branch, which have the shape of a very narrow
horseshoe @Fig. 11~f!#. Because of the splitting into two
branches, the period of the @g1# orbits is about two times
longer than the period of the @ g̃#-type POs ~period-doubling
bifurcation!; accordingly, the frequency is lowered by a fac-
tor of 2. ~Actually, in order to compare with the correspond-
ing quantum mechanical frequency curve, the frequency of
the @g1#-type orbits should be multiplied by two.! The
horseshoe becomes increasingly wider with increasing en-
ergy. At still higher energies these POs also become un-
stable, which explains why no clear-cut (0,v2,0) wave func-
tions exist above 0 eV or so.

The POs of the @R#-type principal family are also stable
up to very high energies. However, there is a sudden change
of the frequency around 21.4 eV and at the same time a
change of the character of these orbits. While below 21.4
eV the @R#-type orbits have no significant excitation in r,
above this energy they show substantial excitation in the HO
stretching mode @see Fig. 11~d! ~dashed lines!#, which grows
with energy. A careful analysis of the eigenvalues of the
monodromy matrix shows that the POs belonging to the two
apparently different parts of the frequency curve are mem-
bers of the same family. The @R#-type orbits change abruptly
their character. The cause of this transition is the almost
exact 1:6 resonance between the r coordinate, which was
basically unexcited up to this energy, and R. Above 21.4 eV
the additional energy is to a large extent channeled into r

motion, while the energy contained in R increases only
slightly. Figures 11~c! and 11~d! clearly show that the
(0,0,v3) wave functions do not follow the @R#-type POs.

At the energy, where the resonance between R and r sets
in, a second SN bifurcation emanates, the stable branch of
which will be denoted by @ R̃# in what follows. The orbits
belonging to this manifold have the same character as the
POs of the @R# family below the SN bifurcation. In particu-
lar, they do not have substantial excitation in r and therefore
are believed to scar the wave functions of the (0,0,v3) pro-
gression @Figs. 11~c! and 11~d!#. The @ R̃# branch is stable up
to the highest energy considered. It seems to be the high-
energy continuation of the low-energy branch of the @R# fam-
ily.

The sudden change of the frequency of the @R# family
and the occurrence of the SN bifurcation, at which the @ R̃#

orbits are born, is to some extent replicated at higher ener-
gies: There is a whole cascade of SN bifurcations. The cor-
responding trajectories will be denoted by @D1# , @D2# , etc.
All frequency curves of the @D i# families have a similar
pattern, that is, a short branch with large anharmonicity,
which appears to be the extrapolation of the low-energy seg-
ment of the @R# family, and a second part, for which the
slope is smaller, approximately the same as for the @r# fam-
ily. The trajectories belonging to the first branch are stable,
have no excitation in r, and scar the (0,0,x)D~P! wave func-
tions, which is the reason why we term them @D i# orbits. On
the other hand, the trajectories belonging to the second seg-
ments are mainly unstable, show considerable excitation of

the HO mode, and therefore do not guide the (0,0,x)D~P!

wave functions, which do not show excitation along the r

coordinate. It is plausible to assume that the abrupt change of
the @R# frequency and the corresponding changeover of the
morphology of the orbits at the SN bifurcation near 21.4
eV, on the one hand, and the changes of the @D i# frequency
curves and the change of the character of the @D i#-type tra-
jectories, on the other, have the same origin, namely the
resonance between r and R. While the former SN bifurcation
is the result of a 6:1 resonance, the SN bifurcations of the
@D i# families are caused by 8:1, 9:1 resonances, etc., as the
analysis of the unstable trajectories in the (R ,r) plane indi-
cates.

It is not surprising that the families of periodic orbits,
which are associated with excitation in r, appear at energies
at which the r mode tunes into resonance with the other two
modes. Of course, a mode which is almost separated from
the other two modes classically can be excited at any energy
— one simply has to put some amount of energy into r,
where it will stay because of the separability. However, the
resulting trajectories would be only quasiperiodic rather than
fully periodic. A given trajectory is periodic if the number of
cycles in the ~separable! mode r is a multiple of the number
of cycles in the (R ,g) plane and this means that the r mode
is in resonance with the other two modes. This explains why
the @R# and @D i# families have SN bifurcations at specific
energies. The amount of energy put into the r mode along
these special periodic orbits does not correspond to one
quantum of HO stretch vibration and therefore quantum me-
chanics totally ignores these bifurcated branches. A similar
situation was previously discussed in Ref. 73 in connection
with the PO analysis of HCP.

The classical continuation/bifurcation diagram looks
much more complicated than its quantum mechanical coun-
terpart in Fig. 5~c!. If only those branches, which apparently
correspond to the quantum mechanical curves @highlighted
by thicker lines in Fig. 5~d!#, were drawn, the analogy be-
tween Figs. 5~c! and 5~d! would be more evident. Neverthe-
less, we also show those branches, which do not affect the
quantum mechanical wave functions of the overtone states,
because they are the high-energy continuations of those seg-
ments which at lower energies do influence the quantum me-
chanical states. All of these branches have one feature in
common, i.e., significant excitation of the HO mode. As a
result of this, their anharmonicities are similar to that of the
@r# branch. The continuation/bifurcation diagram obtained in
the 2D model, in which the HO vibration is adiabatically

decoupled, is much simpler and resembles very closely the
corresponding quantum mechanical picture.33

In previous applications of PO analysis to molecular
systems18,78,79 we observed SN bifurcations to occur mainly
near energies, where the topography of the potential changes
drastically, e.g., near a barrier ~HCN80! or a ‘‘kink’’
~HCP12!. In these cases, the principal families continue to
exist with the corresponding POs gradually changing their
morphologies; the new regions of phase space, which be-
come accessible, are explored by the POs of the SN families.
HCP is a well-understood example.13 The situation is differ-
ent for HOCl. First, the PES does not have a characteristic
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feature like a barrier, at least not in the energy regime studied
in the present investigation, which underlines that SN bifur-
cations do not require drastic changes of the PES. Second, at
the SN bifurcation the POs of the principal families change
drastically by penetrating into a new dimension ~r! and the
emerging SN orbits explore those regions of phase space
which before the SN bifurcation are sampled by the principal
families. A more detailed analysis of this development will
be published at a later date by investigating a two-
dimensional model ~coordinates R and g), in which r is
treated as a second control parameter in addition to E.

VI. UNIMOLECULAR DISSOCIATION

In Secs. IV and V we analyzed the evolution of the
bound states up to the dissociation threshold and showed
how they are affected by SN bifurcations of the classical
phase space. In this section we will discuss the implications
of the bound-state structure for the fragmentation above the
HO1Cl threshold. The link between spectroscopy, on the
one hand, and kinetics ~i.e., unimolecular dissociation!, on
the other, are resonances, that is, quasibound states in the
dissociation continuum. In scattering theory, resonances
emerge as poles of the S matrix.81 In our calculations, based
on Feschbach’s optical model, resonances are approximated
by the eigenvectors of a complex-symmetric Hamiltonian
~see Sec. III!. This Hamiltonian differs from the one used in
the bound-state calculations by an imaginary absorbing po-
tential term. As such, each resonance is uniquely character-
ized by a complex wave function and a complex eigenen-
ergy, E02iG/2. The real part determines the position of the
resonance on the energy axis ~in what follows E0 is the en-
ergy in excess of the dissociation threshold!, and the imagi-
nary part gives the resonance width. The resonance lifetime
is given by t5\/G , and the dissociation rate is defined as
k5t21.

An overview of the dissociation dynamics of HOCl was
already given in Ref. 23, where we calculated ~with a differ-
ent method than the one employed in the present work! the
resonance widths in the region from the threshold up to
about 4000 cm21 above it. The main finding was a pro-
nounced state dependence of the unimolecular decay with k

fluctuating over seven orders of magnitude. A detailed analy-
sis of this wide distribution was not the aim of that initial
survey study. In the present work we attempt to rationalize
the strong state dependence of the resonance widths and to
this end analyze the resonance wave functions and relate
their structure to the magnitude of the dissociation rate. For
convenience, only a narrow energy range of about 500 cm21

above the threshold is considered. Each of the ;160 eigen-
functions is visually inspected and assigned ~when possible!.
A complete list of the calculated resonance energies, widths,
and assignments can be obtained from one of the authors
~R.S.! or electronically.70

The resonances can be roughly divided into two groups:
Those whose wave functions are mainly confined to the re-
gion of the potential well—with only small amplitudes in the
exit channel and those whose wave functions extend far out
into the dissociation channel, in many cases even to the
boundary of the grid. In order to simplify the notation, we

will refer to the first group of states as quasibound states and
denote the resonances with wave functions significantly pen-
etrating into the product channel as ‘‘d’’ states in what fol-
lows. The states denoted by (v1 ,v2 ,x)D previously are a
subgroup of the ‘‘d’’ states. The distinction of the two
groups is, of course, not completely unambiguous. All cal-
culated resonance widths are depicted in Fig. 12.

Most of the quasibound states have widths below 1
cm21, which corresponds to a lifetime of the order of 5 ps.
Many of them have a clear-cut assignment in terms of quan-
tum numbers (v1 ,v2 ,v3) in the same way as the true bound
states @Fig. 13~a!#. All assignable states have at least one

FIG. 12. Resonance widths G as a function of the excess energy E0 . The
widths for states which are mainly localized in the region of the potential
well are represented by the closed circles and the widths for states which
extend far into the fragment channel are indicated by the open circles. The
solid line is the width estimated from SACM theory and the dashed line
represents Gmax(E0) defined in Eq. ~13!.

FIG. 13. ~a!–~d! Selected examples of resonance wave functions. The g
axis ranges from 19° to 178° and the R axis ranges from 2.5a0 to 5.43a0 .
The two numbers in each panel are the excess energy E0 and the width G ~in
brackets!, respectively, both given in cm21. The wave function in ~c! ex-
tends far beyond the range shown.
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quantum stored in the weakly coupled HO stretching mode.
As previously mentioned, the spectra for different values of
v1>1 are to a large extent replicas of the spectrum of v1
50. Thus, exciting HO by one or several quanta promotes a
considerable number of states with clear–cut assignment into
the continuum without making the excess energy directly
available for the dissociation mode. In other cases the assign-
ment is not at all clear @Fig. 13~b!#. Such states typically
have many quanta in modes 2 and 3 and relatively large
widths. The widths of the quasibound states show a great
diversity with fluctuations over several orders of magnitude.
Because of the very narrow energy interval studied, it is not
possible to investigate longer ‘‘progressions’’ of resonances
like for HCO, for example.82 Nevertheless, some conclusions
can be drawn. The lower bound of the distribution is formed
by the states with strong excitation in the HO mode and
weak excitation in the other two modes. Their width can be
as low as 1026 cm21. It must be underlined that states with
large values of v3 do not necessarily have large dissociation
rates. As previously discussed, the (0,0,v3) states are
strongly bent in the (R ,g) plane, i.e., they avoid the direct
dissociation path, and therefore they do not couple efficiently
to the continuum. Strongly fluctuating widths for the assign-
able states have been also reported by Skokov, Bowman, and
Mandelshtam31 in their study of the HOCl dissociation.

The resonances belonging to the ‘‘d’’ group must be
analyzed with great caution. Since their wave functions ex-
tend with large amplitude into the dissociation channel, in
many cases they must be interpreted as ‘‘direct scattering
states.’’ In contrast to the quasibound states, their widths are
difficult to converge with respect to the parameters ~onset
and strength! of the optical potential, especially for those
states whose wave functions reach the end of the grid. Be-
cause the ‘‘d’’ states have strong excitation in the dissocia-
tion mode, the widths are generally much larger than the
widths of the quasibound states (G.1 cm21 or so!. The
reason why we do not eliminate them from the present dis-
cussion is their close similarity with the D states discussed in
great detail in the previous sections.

A rough estimate of whether a pole of the Green’s func-
tion represents a meaningful resonance state or not can be
derived as follows. The wave number, corresponding to the
dissociation mode R, for a complex eigenstate is also
complex,83

kR5

1

\
A2mR~E02iG/2!. ~12!

Thus, the outgoing wave, exp(ikRR/\), contains an exponen-
tially growing admixture, which for a narrow resonance has
the form exp@1(mR/8E0)1/2GR/\# . This term becomes sig-
nificant at a certain ‘‘critical distance,’’ R5R*, at which the
exponent is of order of unity. R* is a function of the reso-
nance width and the excess energy E0: The broader the reso-
nance and the smaller E0 , the smaller is R*. If R* lies in the
inner part of the potential, the divergent term strongly affects
the wave function and an assignment consistent with the as-
signment of bound states cannot be made. In contrast, wave
functions with R* lying in the asymptotic region can be ana-
lyzed as if they were bound. Rigorously speaking, only those

states are undisturbed by the exponential growth for which
R* exceeds the potential radius, that is — in practice — the
boundary of the grid, Rmax . The condition R*5Rmax defines
a maximum resonance width, which a state may have with-
out being affected by the exponential divergence,

Gmax~E0!'2\A2E0 /mRRmax
21 . ~13!

The square root in this equation is the velocity vR of a free
particle with mass mR and energy E0 , and thus the maximum
width corresponds to the time a particle, ballistically ejected,
requires to fly across the grid. This estimation suggests that
the interpretation of poles with G.Gmax as ‘‘metastable’’
states is rather symbolic. For HOCl, a typical value of Gmax
close to the threshold (E0510 cm21) is 2 cm21, while for
500 cm21 above the threshold Gmax'14 cm21. The large
reduced mass of the HO–Cl system causes Gmax to be so
small in the present case. The curve Gmax(E0) is depicted in
Fig. 12; for comparison, the widths according to the statisti-
cal adiabatic channel model of Quack and Troe84 are also
shown. Of course, the one-dimensional estimation Eq. ~13! is
only an upper limit. All the quasibound states have widths,
which fulfill the requirement G,Gmax . A more rigorous way
for distinguishing the real resonance states from direct scat-
tering states would be to perform calculations for different
grid boundaries and to analyze how the various pole energies
vary. This is a very time consuming procedure and has not
been done here.

A typical wave function for a state with G'Gmax is de-
picted in Fig. 13~c!. It stretches all the way to the boundary
of the grid. Although the HO mode is not excited, it has a
regular nodal structure in the R coordinate, and excitation in
the local bending mode can be clearly distinguished. Because
wave functions of this type are so similar to those shown in
Fig. 6 ~right column!, we believe that these states are the
continuations of the bound (v1 ,v2 ,v3)D~P! states into the
continuum. Their lifetimes are nearly ballistic or even
smaller. The D states just under the threshold are kept bound
only by a tiny potential force at large interfragment dis-
tances. Several wave numbers of additional energy in the
dissociation mode are enough to smoothly transform them
into quickly dissociating states. A similar effect was recently
observed in model studies of the near-threshold dissociation
of NO2 .85

Nevertheless, there are also a few states of the ‘‘d’’ type
with widths well below Gmax and which can be considered as
quasibound states. They have at least one quantum of HO
stretch. Because a substantial amount of energy is stored in
the weakly coupled mode, their lifetime is comparatively
long. These states are bound with respect to the HO(v1
51) asymptote and can decay only by a nonadiabatic tran-
sition to v150 manifold, in a similar way as previously de-
scribed for HCO.86 A wave function for a typical example is
shown in Fig. 13~d!. Except for a small-amplitude tail it does
not extend to the grid boundary and has exactly the form of
the (v1 ,v2 ,v3)D~P! bound-state wave functions.

The extreme state specificity of HOCl is mainly due to a
lack of coupling between the modes. If the coupling were
stronger, the dynamics would be more irregular and the wave
functions would look — on average — more alike. As a
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consequence, the dissociation rates would not vary as much
as for HOCl. The dissociations of HNO21 and NO2 ~Ref. 87!
are typical examples.

VII. SUMMARY

~1! We have calculated a potential energy surface for the
ground electronic state of HOCl appropriate for studying the
dissociation into HO and Cl. The ab initio calculations have
been performed using the multireference configuration-
interaction method and a quintuple-zeta one-particle basis
set. The agreement with known experimental data ~equilib-
rium data, dissociation energy, transition frequencies! is very
good.

~2! All bound states up to the dissociation threshold, for
total angular momentum J50, have been calculated by
means of the filter diagonalization technique. Altogether, our
potential energy surface supports 827 bound vibrational
states.

~3! The bound state spectrum is affected by a 2:1 anhar-
monic resonance between the HOCl bending mode and the
OCl stretching mode leading to a clustering of the energy
levels in terms of polyads. The resonance is only approxi-
mate at low energies, but because of the anharmonicity of the
OCl stretching mode it becomes better and better fulfilled at
higher energies.

~4! As a result of the Fermi resonance the bending mode
and the OCl stretching mode are significantly mixed with the
consequence that the pure (0,0,v3) overtone states acquire
more and more bending character and avoid the dissociation
channel.

~5! States, which do clearly follow the dissociation path,
come into existence at high energies. This family of states is
very anharmonic with the result that their density quickly
increases with energy.

~6! The structure of the quantum mechanical spectrum
and the quantum mechanical wave functions has been inter-
preted in terms of the structure of the classical phase space
and certain stable periodic orbits. In particular, the abrupt
birth of the dissociation states can be viewed as the result of
a saddle-node or tangent bifurcation.

~7! The bound-state spectrum persists into the continuum
with the wide variety of wave function structures leading to
a pronounced state specificity of the dissociation rates. The
above-threshold counterparts of the bound states with clear
extension along the dissociation channel are broad reso-
nances with nearly ballistic lifetimes.
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