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Saddle points and dynamics of Lennard-Jones clusters, solids,
and supercooled liquids

Jonathan P. K. Doyea) and David J. Walesb)

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom

~Received 5 September 2001; accepted 27 November 2001!

The properties of higher-index saddle points have been invoked in recent theories of the dynamics
of supercooled liquids. Here we examine in detail a mapping of configurations to saddle points using
minimization of u¹Eu2, which has been used in previous work to support these theories. The
examples we consider are a two-dimensional model energy surface and binary Lennard-Jones
liquids and solids. A shortcoming of the mapping is its failure to divide the potential energy surface
into basins of attraction surrounding saddle points, because there are many minima ofu¹Eu2 that do
not correspond to stationary points of the potential energy. In fact, most liquid configurations are
mapped to such points for the system we consider. We therefore develop an alternative route to
investigate higher-index saddle points and obtain near complete distributions of saddles for small
Lennard-Jones clusters. The distribution of the number of stationary points as a function of the index
is found to be Gaussian, and the average energy increases linearly with saddle point index in
agreement with previous results for bulk systems. ©2002 American Institute of Physics.
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I. INTRODUCTION

The properties of the potential energy surface~PES!, or
landscape, of supercooled liquids and glasses have bee
focus of much recent theoretical research into glasses.
origins of this approach date back to Goldstein, who s
gested that the dynamics could be separated into vibrati
motion about a minimum on the PES and transitions betw
minima.1 This idea led to the pioneering ‘‘inherent structure
approach of Stillinger and co-workers.2,3 In this approach the
PES is partitioned into basins of attraction surrounding
minima ~inherent structures!, where a basin of attraction i
defined as the set of points for which steepest-descent p
ways lead to the same minimum. This mapping allows
conceptual framework to be built in which the role of th
minima can be separated from the effects of vibrational m
tion. The dynamics can then be viewed in terms of the tr
sitions between these basins which occur when the sys
passes along a transition state valley. Therefore, from
inherent structure point of view the key points on the P
are the minima and transition states, which are defined
stationary points with Hessian index one, i.e., one nega
eigenvalue. Higher-index saddle points~with I>2 negative
eigenvalues! need not be considered in this description, b
cause, by the Murrell–Laidler theorem, if two minima a
connected by an index two saddle, then there must b
lower-energy path between them involving only true tran
tion states.4

This inherent structure approach has provided impor
insights into the behavior of supercooled liquids a
glasses,5,6 as well as clusters,7 and biomolecules.8 For ex-
ample, changes in the dynamics of supercooled liquids as
temperature is decreased must correspond to descent

a!Electronic mail: jon@clust.ch.cam.ac.uk
b!Electronic mail: dw34@cam.ac.uk
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the PES to lower-energy minima.9 Furthermore, a carefu
investigation of the density dependence of the properties
the sampled minima has suggested how changes in the
can lead to a change in the dynamics from strong to fragil10

This approach has also been applied to investigate none
librium properties: Aging involves a slow decrease in t
energy of the sampled minima as the system heads tow
equilibrium.11,12

Much of the above work has focused on the poten
energy landscape as sampled under particular condition
density and temperature. It is also of interest to determine
fundamental characteristics of the landscape, which is
course, independent of temperature, atomic masses, an
ordinate system. For example, one of the most import
properties is the distribution of minima. Exhaustive en
meration of the minima of small systems13,14 seems to con-
firm the theoretical conjecture that the number of minim
increases exponentially with size.2,15 The distribution of
minima as a function of the potential energy can also
obtained by inverting simulation data. This inversion w
first performed for a medium-sized cluster,16 and later for
model glasses17,18 revealing that the distribution is Gaussia
This technique has since been applied to supercooled wa19

and silica.20 More recently, attention has begun to focus
the harder task of characterizing the distributions of tran
tion states and the resulting barriers.21,22

Alternatives to the inherent structure approach have b
proposed. In the instantaneous normal mode theory, de
oped by Keyes and co-workers,23 the focus is on the spec
trum of Hessian eigenvalues for instantaneous configu
tions. It is argued that diffusion and the associated barr
are related to the negative eigenvalues of this spectrum
though this idea has been the subject of some debate.24–26

Many of the negative eigenvalues result from the anharm
nicity within a well, however, once these are removed, sim
7 © 2002 American Institute of Physics
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3778 J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 J. P. K. Doye and D. J. Wales
lations have indicated that the number of diffusive directio
in a supercooled liquid tends towards zero near to the mo
coupling temperature.27,28

Another recent proposal emphasizes the role of high
index stationary points on the PES, and attempts to exp
the origins of strong and fragile liquids in these terms.29 One
of the underlying ideas is that as the size of the system
comes large, most of the configuration space volume i
basin of attraction is concentrated near to the borders of
basin, and so a randomly chosen point is more likely to
closer to a saddle point than to a minimum.30 Therefore, the
proposal is to divide the potential energy surface into ‘‘bas
of attraction’’ that surround stationary points of any inde
However, with the steepest-descent mapping of the inhe
structure approach, the basins of attraction only surro
minima, and convergence to a higher-index saddle point
only occur when the starting point lies exactly on the bou
ary between two basins of attraction. The volume associa
with these boundaries is of measure zero. Therefore, a
ferent mapping is required to divide configuration space
the desired way. Borrowing a trick that has been previou
used to locate transition states,31,32 a mapping has been sug
gested in which steepest-descent paths on the func
u¹Eu2, the modulus of the gradient of the energy squar
are followed.33,34 Stationary points on the PES of any inde
correspond to minima of this new function.

From the above mapping it was found that below t
mode-coupling35–37 temperature,Tc , the system sample
minima but that above this temperature the average sa
point index increases linearly with temperature.33,34Such be-
havior has been interpreted as a transition from dynam
between basins of minima to dynamics between basin
saddles. This approach is becoming more wid
applied.38–42 For example, it has been used to analyze
dynamics of aging. After a quench or crunch~a sudden in-
crease in density! to a state that lies belowTc for that den-
sity, initially the system is associated with saddle poi
whose index decreases logarithmically with time until
crossover time is reached when the system resides ne
minima.39,40

Here we look in more detail at theu¹Eu2 mapping and
how well it achieves its aim of dividing configuration spa
into neighborhoods around stationary points of any ind
We first examine in Sec. II a model two-dimensional ene
surface that can easily be visualized. Then, in Sec. III
study the properties of the mapping for a much-studied
nary Lennard-Jones~LJ! system. Given the problems wit
the u¹Eu2 mapping we then follow an alternative approach
studying the properties of higher-index saddle points. In S
IV we obtain near complete distributions of saddle points
small Lennard-Jones clusters and then analyze their pro
ties. Finally, we conclude with a discussion of some of
issues raised by our results in relation to recent work.

II. MÜLLER–BROWN SURFACE

We first examine the effect of theu¹Eu2 mapping for a
model two-dimensional energy surface that we can ea
visualize. We use the Mu¨ller–Brown surface,43 which has the
form
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E~x,y!5(
i 51

4

Aiexp@ai~x2xi
0!21bi~x2xi

0!~y2yi
0!

1ci~y2yi
0!2#, ~1!

where

A5~2200,2100,2170,15!, a5~21,21,26.5,0.7!,

b5~0,0,11,0.6!, c5~210,210,26.5,0.7!, ~2!

x05~1,0,20.5,21!, y05~0,0.5,1.5,1!.

This surface has been used as a test system for local op
zation algorithms and its properties have been thoroug
examined.44–48

FIG. 1. ~Color! Contour diagrams of~a! E and ~b! u¹Eu2 for the Müller–
Brown surface. The red lines divide the surfaces into basins of attrac
surrounding each minimum. In~a! the basin boundaries ofu¹Eu2 have been
superimposed in blue. Points have been added corresponding to in~a! the
minima of u¹Eu2 and in ~b! the maxima and minima ofu¹Eu2. In ~b! con-
tours occur every 1000 in the range 0–20 000, then every 5000 u
100 000 and finally every 50 000 beyond that range.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Minima of u¹Eu2 for the Müller–Brown surface. Those that are also stationary points ofE are
labeled SP, and those that are not are labeled NSP. The index,I, is the number of negative eigenvalues of th
Hessian at that point.

I E u¹Eu2 x y

SP1 0 2146.700 0.0 20.558 1.442
SP2 0 2108.167 0.0 0.623 0.028
SP3 0 280.768 0.0 20.050 0.467
SP4 1 272.249 0.0 0.212 0.293
SP5 1 240.665 0.0 20.822 0.624

NSP1 0 256.235 10 892.8 21.169 0.741
NSP2 0 19.057 175.2 21.559 1.543
NSP3 1 21.394 5018.2 20.097 1.076
NSP4 0 27.070 6533.2 20.995 20.053
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Contour plots ofE and u¹Eu2 are shown in Fig. 1 and
information concerning the minima ofu¹Eu2 are given in
Table I.49 The section of the energy surface that we consi
has five stationary points: three minima and the two tran
tion states that connect them. Stationary points of theu¹Eu2

surface satisfy 2Hg50, whereH is the Hessian~second de-
rivative matrix! andg5¹E is the gradient vector. Obviously
stationary points of the PES haveu¹Eu250, and so corre-
spond to minima ofu¹Eu2. However, there are additiona
minima on theu¹Eu2 surface withu¹Eu2.0, whereg is an
eigenvector ofH with zero eigenvalue, i.e., there is an i
flection point in the direction of the gradient. We will refer
these two types ofu¹Eu2 minima by the labels SP~stationary
point of E! and NSP~nonstationary point ofE!. There are
four such NSP’s on the Mu¨ller–Brown surface. The possibil
ity of NSP’s has been previously noted in Refs. 29, 33, a
34, however, it was claimed that their effect was negligible33

A further property of the NSP’s is that they must lie on
gradient extremal, one definition of which isHg5lg. Gra-
dient extremals are curves for which each point is an ex
mum of u¹Eu[ugu along the corresponding energy conto
The gradient extremals for the Mu¨ller–Brown surface have
been calculated in Ref. 47.

The basins of attraction associated with the SP’s
NSP’s on theu¹Eu2 surface are shown in Fig. 1. For th
region of configuration space that we depict here, the ma
ity of this space corresponds to basins of attraction ass
ated with NSP’s. Although much of this configuration spa
has a relatively high energy, the NSP basins of attraction
extend into some low-energy regions. In particular, NSP1
lower in energy than the transition state SP5, and on mov
away from the minimum SP1 along the softest mode, the
new basin of attraction that is encountered correspond
NSP1. Furthermore, the basins of attraction associated
NSP2 and NSP3 extend below the energy of SP5 into reg
corresponding to the walls of the basin of attraction ass
ated with SP1 on the original surface. Minimization ofu¹Eu2

for points from these regions will lead to a considerable
crease in energy.

It is clear from Fig. 1 that theu¹Eu2 surface is much
more rugged than the original energy surface. First, the
face has more minima. Second, the ratio of maximum
minimum nonzero Hessian eigenvalues of theu¹Eu2 function
at SP’s has a magnitude that is roughly the square of
corresponding ratio for stationary points ofE, because the
ar 2002 to 131.111.112.18. Redistribution subject to A
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second derivative ofu¹Eu2 includes a product of the origina
Hessian matrix. For SP1 this ratio is;100 and so the well
surrounding SP1 on theu¹Eu2 surface is extremely asym
metric and narrow.

This second feature of theu¹Eu2 surface has importan
practical consequences. In the language of optimiza
theory, such points are said to be ill-conditioned,50 and so
even simple minimization ofu¹Eu2 is likely to be rather
slow. These effects will be further examined when we co
sider a binary LJ system in Sec. III.

Although the Müller–Brown surface is not a physica
example, it does suggest that the division of configurat
space into basins of attraction surrounding the minima
u¹Eu2 could be problematic.

III. BULK BINARY LENNARD-JONES

Binary Lennard-Jones~BLJ! mixtures have been exten
sively studied in an effort to elucidate the complex pheno
enology of glasses, as they do not crystallize on the mole
lar dynamics ~MD! time scale when suitably para
meterized.9–12,17,18,21,22,27,33,34,51–61Most of these investiga-
tions have reported changes in behavior around the crit
temperature predicted by mode-coupling theory,35–37 which
is calculated asTc'0.435 for the mixture we conside
here.52,56 For example, Sastry, Debenedetti, and Stilling9

presented evidence that nonexponential relaxation starts
low aboutT51, while the height of the effective barriers t
relaxation increases significantly aroundT50.45. They view
the regions belowT51 and T50.45 as ‘‘landscape-
influenced’’ and ‘‘landscape-dominated’’ regimes, respe
tively. They also found that local minima obtained b
quenching from configurations generated atT50.5 could es-
cape to different local minima much more easily than lo
minima obtained from configurations generated atT50.4.

Using an instantaneous normal modes picture Don
Sciortino, and Tartaglia also concluded that activated dyna
ics becomes important aroundTc .27 Schrøderet al. found
that the liquid dynamics could be separated into transiti
between minima and vibrational motion1 at a similar
temperature,51 and correlated motions of atoms in grou
that grew with decreasing temperature were reported
some of the same workers.58 Two different groups have re
cently reported that the typical Hessian index of station
points sampled by BLJ systems extrapolates to zero, a
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE II. Mean total energy,E, potential energy, PE, kinetic energy, KE, and kinetic equipartition temperature,T, for the MD runs. The6 values represent
one standard deviation. #min, #ts and #G2 are the number of distinct minima, transition states and stationary point ofu¹Eu2 found for 103 searches~excluding
permutational isomers!, as described in the text. %SP and %NSP are the percentage of quenches on theu¹Eu2 surface that converged to stationary points a
nonstationary points ofE, respectively~out of 103 total!.

Run E PE KE T #min #ts #G2 %SP %NSP

256-atom supercell
1 21699.87960.002 2175362 5362 0.13860.005 54 274 740 1.6 98.4
2 21599.26860.005 2170464 10564 0.27660.010 46 509 909 9.6 90.4
3 21500.07060.008 2165666 15666 0.40960.015 280 789 1000 1.8 98.2
4 21399.48760.011 2159467 19467 0.51060.019 987 1000 1000 3.2 96.8
5 21301.87260.015 2154069 23869 0.62560.023 984 1000 1000 3.0 97.0
6 21201.00460.020 21485611 284611 0.74560.028 991 1000 1000 4.8 95.2
7 21098.88360.025 21431612 332612 0.87160.032 995 1000 1000 5.9 94.1
8 2999.98260.031 21380614 380614 0.99760.036 994 1000 1000 4.8 95.2

320-atom crystal
1 22192.67960.002 2227062 7862 0.16260.002 1 39 1 100.0 0.0
2 21992.69060.007 2217566 18266 0.38260.012 1 49 2 99.4 0.6
3 21792.71060.013 2208269 28969 0.60660.019 1 56 10 91.0 9.0
4 21592.73960.020 21989612 397612 0.83160.026 1 64 55 66.4 33.6
5 21392.77360.034 21889616 496616 1.04160.034 187 721 860 25.5 74.5
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aroundTc ,33,34 and we will present a more detailed inves
gation of this behavior below. Our results show that tran
tion states are still accessible belowTc , but support the gen
eral consensus that the PES sampled by the BLJ sys
changes in character somewhere aroundTc .

The BLJ mixture that we consider involves a 256-ato
supercell containing 205~80%! A atoms, and 51~20%! B
atoms, with parameterssAA51.0, sAB50.8, sBB50.88,
eAA51.00, eAB51.5, andeBB50.5.52 The units of distance
and energy were taken assAA and eAA . The chosen box
length gives a fixed number density of 1.2sAA

23, and a cutoff
of 2.5sAA was used along with the minimum image conve
tion and a shifting/truncation scheme that ensures contin
of the energy and its first derivative, as in previous work.9,62

Standard microcanonical molecular-dynamics~MD!
simulations of 105 equilibration steps, followed by 106 data
collection steps, were first run using the Verlet propagato
a series of increasing total energies~Table II!. The starting
point for the first run was the lowest-energy minimum fou
in previous work,21 and subsequent runs used the final co
figuration of the previous trajectory as the starting point
time step of 0.003 reduced units was employed in each c
Every 1000th configuration from the data collection pha
was saved and used as a starting point for the follow
geometry optimizations:~1! minimization using a modified
version of Nocedal’s LBFGS algorithm,63 ~2! a transition
state search using hybrid eigenvector-following,7,64,65 ~3!
minimization of u¹Eu2 using Nocedal’s LBFGS algorithm.63

The first two searches on the conventional PES employ s
dard techniques7 and were followed by between one to thr
full eigenvector-following steps to converge the root-mea
square~rms! force below 1027 reduced units and check th
Hessian index of the stationary point, defined as the num
of negative Hessian eigenvalues. All the searches in~1! and
~2! are tightly converged to stationary points of the requir
index with the above tolerance, which is more stringent th
the criteria used in Ref. 42.

As pointed out in Sec. II the ratio of the maximum to th
minimum eigenvalue ofu¹Eu2 near to an SP makes minim
Downloaded 15 Mar 2002 to 131.111.112.18. Redistribution subject to A
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zation ofu¹Eu2 laborious. There is a further problem becau
the second derivatives of the shifted-truncated B
potential62 are discontinuous at the cutoff, and hence the
rivatives of u¹Eu2 have corresponding discontinuities. Ne
ertheless, it is possible to converge theu¹Eu2 minimizations
to a root-mean-square force below 1025, at which point the
value of u¹Eu2 is generally converged to at least nine de
mal places. Such accuracy should be acceptable for
present purposes, and was achieved by fixing the neigh
list during minimization for SP’s and NSP’s close to conve
gence but suffering from discontinuities. Typically, the
minimizations of u¹Eu2 involve two orders of magnitude
more steps than minimizations on the original PES.

In most of the previous work reporting results ofu¹Eu2

minimizations33,34 details of the calculations, such as the a
gorithms employed, the convergence criteria or the num
of saddles actually found, were not reported. We are, the
fore, unable to provide detailed comparisons.

The glass transition temperature for this system un
our simulation conditions lies between 0.4 and 0.5, as
evident from the caloric curve~not illustrated! and jumps in
various quantities tabulated in Tables II and III. Of cours
the precise temperature at which the glass transition oc
depends upon the rate at which the temperature is chan
The number of different minima and transition states loca
from the 103 different starting points decreases markedly
glass formation. However, a significant number of distin
minima and transition states are sampled below the g
transition, as expected from previous work that revea
large numbers of low barrier ‘‘nondiffusive’’ pathways fo
this system.21 The fraction of negative eigenvalues,i
5I /(3N23), ~the three zero eigenvalues corresponding
translations are excluded! located by minimizing u¹Eu2

jumps by a factor of about two on melting, and continues
rise approximately linearly at higher temperature. This res
is in line with previous calculations for supercoole
liquids,33,34,41and also with studies based upon instantane
normal mode analysis.27 However, in contrast to the finding
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. Mean energy differences,D, and displacements,D, between the starting point and the converg
geometry after searching for minima~min!, transition states~ts!, and minimizingu¹Eu2 ~G2!. i SP and i NSP are
the fractions of negative Hessian eigenvalues after minimizingu¹Eu2, split into stationary points and nonsta
tionary points ofE, respectively. The6 values represent one standard deviation.

Run DEmin Dmin DEts D ts DEG2 DG2 i NSP3103 i SP3103

256-atom supercell
1 216617 22.061.6 208617 23.162.0 199616 24.261.5 5.161.7 4.262.1
2 261622 25.260.8 253622 25.461.4 245622 25.661.2 5.462.0 5.161.3
3 303664 25.461.7 299662 25.761.6 286685 26.161.7 6.762.4 5.861.7
4 370637 81.366.2 365636 81.366.1 330634 81.366.2 15.063.9 12.765.5
5 425640 144.5610.2 421640 144.5610.2 366638 144.5610.1 21.364.4 19.665.2
6 485646 224.7612.6 480646 224.7612.6 403644 224.7612.6 28.065.1 27.866.0
7 544648 320.3616.9 539648 320.3617.0 439645 320.3616.9 34.565.5 34.467.1
8 602656 426.5622.3 598656 426.5622.3 475652 426.5622.3 41.065.6 42.165.5

320-atom crystal
1 7562 8.860.04 5368 9.461.1 7562 8.860.3 ¯ 0.060.0
2 17066 8.860.05 144610 9.761.0 17066 8.860.05 0.060.0 0.060.0
3 26369 8.960.1 240613 9.961.5 26369 8.960.1 0.060.2 0.060.2
4 356612 9.060.1 334616 9.861.3 352613 9.060.2 0.260.5 0.060.2
5 443615 15.463.7 432618 15.763.6 425620 15.763.7 1.661.5 1.261.3
va

o
lo
re

ex
3

ec
th
fie
na

be
ft

in
-
u
er
st

ov

o
t
a
b
r-
t

,
y

dl

d
ro

not
pe.
on
of

ap-
er

en

er
ions
S
ts
ter-
lts

ith
d
ith
-
ms.

s-
the

ere

su-

ds is
to

ary
he
iso-
e
ax
his
of Refs. 33, 34, and 41, the value ofi does not vanish, even
for our low-temperature glassy configurations.

Throughout the temperature range studied here the
majority of minimizations ofu¹Eu2 converge to NSP’s. The
largest percentage of SP’s occurs for run 2, but this is pr
ably a fluctuation caused by the nonergodic nature of the
temperature simulations. Similarly, in Ref. 34 NSP’s we
said to be ‘‘frequently sampled’’ and these points were
cluded from the calculated properties. By contrast, in Ref.
the number of NSP’s was said to be ‘‘negligible with resp
to the number of true saddles.’’ However, stimulated by
current results, the authors of this paper have now identi
the source of this discrepancy. A reanalysis of their origi
results has confirmed that the majority of theu¹Eu2 minima
that they found were in fact NSP’s.38

For each run we find the mean energy differences
tween the starting point and the structures obtained a
searching for minima~min!, transition states~ts! and mini-
mizing u¹Eu2 ~G2! are in the orderDEmin.DEts.DEG2.
Hence, in terms of energy, the system is closer to po
found by minimizingu¹Eu2 than it is to minima and transi
tion states, especially at high temperature. This result is
surprising. By the same logic as the Murrell–Laidl
theorem4 one expects the average potential energy of a
tionary point to increase withI.

However, the Euclidean distance between the ab
points is practically the same for all three searches~we
checked that the center-of-mass did not change during ge
etry optimization!. In terms of distance, the system seems
be equally close to a minimum, a true transition state, and
SP or NSP at all temperatures, Therefore, it cannot simply
claimed that theu¹Eu2 mapping takes the system to its nea
est stationary point. These results seem to contrast with
behavior for a spin glass, namely thep-spin spherical model
for which the closest minimum is significantly further awa
from an equilibrium configuration than is the closest sad
when the system is above the glass transition.66 For this
model the distance to the closest saddle was also reporte
be independent of temperature, again seeming to differ f
ar 2002 to 131.111.112.18. Redistribution subject to A
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our results for a structural glass~Table III!. However, the
mappings that we have employed in our calculations do
necessarily locate the closest stationary point of a given ty

To check that our results do not depend significantly
the minimization algorithm employed we repeated some
the u¹Eu2 minimizations using a true steepest-descent
proach. Both fifth-order Runga–Kutta and Bulirsch–Sto
algorithms were considered,67 with the former method prov-
ing to be the more efficient, although it still required betwe
102 and 103 times more steps than LBFGS minimization.63

To reduce the computational cost we used fifth-ord
Runga–Kutta integration of the steepest-descent equat
for order 105 steps and then switched to LBFG
minimization.63 For 100 regularly spaced starting poin
from trajectories 1 and 8 the statistics produced by this al
native minimization scheme were very similar to the resu
in Tables II and III.

We have also generated results for the BLJ crystal w
space groupI4/mmm, which we have recently describe
elsewhere.68 Here the supercell consists of 320 atoms w
box lengths of 6.1698~twice! and 7.0053; the other param
eters are the same as above, with 256 A and 64 B ato
Configurations were saved from five MD runs of 106 steps
each, with 105 steps of equilibration, as for the smaller sy
tem. The solid is superheated, and only escapes from
crystal in the highest energy run on this time scale~Table II!.
The fraction of NSP located inu¹Eu2 minimizations in-
creases systematically from zero at the lowest energy, wh
each minimization finds the crystal. TheI values associated
with these runs are all much lower than for the smaller
percell, indicating that the linear rise inI above a threshold
temperature that has been observed for supercooled liqui
not simply a universal effect of temperature, but is specific
that region of configuration space. However, station
points of index up to four are located in run four, where t
system still does not escape from a single permutational
mer of the crystal. On minimizing the energy from all th
u¹Eu2 stationary points located in the latter run 97.8% rel
to the crystal, but nine other minima are also found. T
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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result simply reflects the fact that minimizingu¹Eu2 can
raise the energy sufficiently for the configuration to esca
from the crystal, even though the system is trapped there
a long time scale.

In view of the above results, and the dominance
NSP’s on minimizingu¹Eu2, we question whether the dy
namics of a supercooled liquid can usefully be described
terms of the basins of attraction ofu¹Eu2. Most of these
basins do not correspond to stationary points ofE at all for
the present system. It is also interesting to note that a m
recent study instead used a ‘‘Newton’’ method to locate s
tionary points of any index.41 This approach can potentiall
avoid the NSP problem, however few details were provid
and the nature of this new mapping should also be caref
examined.

Furthermore, the configuration does not appear to
closer~in terms of distance! to stationary points of any par
ticular index as the temperature varies. Although our res
do not support the claim thatI vanishes at a well-define
temperature above the glass transition, they do confirm
there is a dramatic decrease in the number of different lo
minima sampled around this point. Since the prediction thI
should vanish below a threshold energy is a mean-fi
result,69 it is perhaps not surprising that it is not precise
obeyed. Similarly, the relaxation time scale for structu
glasses does not actually diverge atTc because activated pro
cesses can still occur below this temperature. Of cours
should be remembered that all our low temperature res
for the 256-atom cell correspond to nonequilibrium da
since there is a crystalline phase available.68

IV. LENNARD-JONES CLUSTERS

From simulations one can obtain the probability dist
butions of the system being in the basin of attraction o
minimum of energyE at a temperatureT. As one can evalu-
ate the partition function of a minimum within the harmon
approximation, or more accurately using anharmo
expressions,16,70 the probability distributions can be inverte
to obtain distributions for the number of minima.16–18

However, even if we could find a way of dividing u
configuration space into basins around saddle points~i.e.,
without the problem of NSP’s associated with theu¹Eu2

mapping!, we could not find the actual distributions of th
number of saddles from simulation. The missing ingredi
is an expression for the partition function associated with
basin around a saddle,71 without which probability distribu-
tions of saddles obtained from simulation cannot be inver

Therefore, an alternative approach is needed to ob
distributions of saddle points. Here we aim to obtain~near!
complete sets of saddle points for a model finite syste
namely small Lennard-Jones clusters. This task has been
viously attempted for minima and transition states up toN
513 by Tsai and Jordan;14 since then larger databases ha
been obtained for some of these clusters.72–74Although there
are standard methods available to find minima and transi
states, finding saddle points of a particular index represen
new challenge. Eigenvector-following provides an efficie
way to locate transition states, where we search uphill in
Downloaded 15 Mar 2002 to 131.111.112.18. Redistribution subject to A
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direction while minimizing in the tangent space.75 We have
simply extended this approach to find a saddle point of ind
I by searching uphill inI orthogonal directions, while mini-
mizing in all other directions. All the uphill directions wer
treated in the same way as for a transition state search,
were orthogonalized to the search direction and gradien
the tangent space minimization, requiring only minor mo
fications of our usual approach.7

To generate the sets of stationary points, we begin
obtaining samples of minima and transition states as in p
vious applications.7,14,76From these sets of stationary poin
we search for index two saddles after randomly perturb
the coordinates of the minima and transition states. We ty
cally perform twenty such searches for each stationary po
We then iteratively repeat this procedure for higher-ind
stationary points, at each stage performing searches from
stationary points of lower index. This procedure is term
nated when no stationary points of a particular index
found.

The sets of stationary points obtained in this manner
typically incomplete, and the incompleteness is larger
stationary points of lower index, for which fewer search
have been conducted. To converge the sets a reverse p
dure was performed. Starting from the stationary points
highest index (I max) searches are performed for saddle poi
of index I max21 following a random perturbation. Typically
five searches from each stationary point are enough to en
convergence. Searches are then performed for statio
points of indexI max22 from all those of higher index, and s
on until the searches for minima are completed. The imp
tance of this reverse procedure is evident, for example, fr
the ;50% increase in the number of LJ13 transition states
located when the searches from higher-index saddle po
were performed.

The numbers of stationary points as a function of t
saddle point index are given in Table IV. We were able
find essentially complete distributions of stationary points
any index for all clusters up toN59. However, above this
size the search had to be terminated at low index, becaus
numbers of stationary points involved are too large for
characterization of the whole distribution to be feasible. F
example, extrapolation suggests that for LJ13 that there are of
the order of 108 saddle points of the most common inde
For these larger sizes the reverse procedure was still
formed, but starting from the highest index for which w
performed searches. As a result the number of saddle po
of the highest index searched is likely to be much less t
the true total, because no searches from saddle point
higher index have been attempted.

One particularly striking feature of the results is the lar
number of higher-index stationary points for systems of su
small size, especially relative to the number of minima. F
example, LJ9 has;800 times more index seven saddles th
minima.

To quantitatively probe these distributions we plot
Fig. 2~a! the number of saddle points against the intens
measure of the saddle point index,i. For a cluster, i
5I /(3N26) because there are a further three zero eigen
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



0

3783J. Chem. Phys., Vol. 116, No. 9, 1 March 2002 Dynamics of Lennard-Jones systems
TABLE IV. Number of saddle points of each index for LJN clusters. The numbers in italics are likely to be far from complete.

N

Stationary point index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 1 1 2 1 1 0 0
5 1 2 4 6 6 2 1 0
6 2 3 13 24 30 26 16 5 1 0
7 4 12 44 98 168 190 168 101 45 11 1 0
8 8 42 179 494 1000 1458 1619 1334 852 388 125 26 1 0
9 21 165 867 2820 6729 12 093 16 292 16 578 13 226 8286 4053 1444 376 56 1

10 64 635 4074 16 407 46 277 97 183
11 170 2424 17 109 47 068
12 515 8607 27 957
13 1509 28 756 88 079
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pr
ues corresponding to rotations. As is clear from Fig. 2~a! the
data fits very well to the Gaussian form

nsp~ I !5nsp
maxexpS 2

~ I 2I mid!
2

2s2 D . ~3!

FIG. 2. The number of saddle points as a function of~a! the saddle point
index and~b! the size. In~a! the data points are from Table IV, the curve
are Gaussian fits to the data, each curve is labeled by the cluster siz
only sizes for which we have obtained complete distributions are re
sented. In~b! lines are labeled by the saddle point index.
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The agreement is less good for the smaller sizes, but
result is unsurprising considering the small number of s
tionary points.

The parameters of the Gaussian fits appear in Table V
is particularly noteworthy that the mid-points of the distrib
tions in Fig. 2~a! are approximately constant.i mid'1/3 which
implies I mid'N22. Of course, the tail of the Gaussian
cutoff at I 50, but it is also cut off beyond 2I mid . There are
no stationary points forI .I max52N24.

Another interesting feature of the Gaussian distribut
is that the standard deviation of the distributions is only
weak function ofN, scaling sublinearly with size. Therefore
the distributions when considered as a function ofi ~rather
than I!, as in Fig. 2, become narrower as the size increas

Equation~3! allows us to predict the ratio of the numbe
of transition states to minima

nts

nmin
5expS 2I mid21

2s2 D.expS 2N25

2s2 D . ~4!

This ratio scales less than exponentially withN, becauses is
a weakly increasing function ofN. The above equation ca
be rearranged to obtain an expression fors

s'A N25/2

log~nts/nmin!
. ~5!

The value of s thus obtained will, of course, involve
greater error than that obtained from fitting to the compl
saddle point distribution, but it can be applied to the larg
clusters for which we do not have complete distribution
Again we find thats continues to increase slowly withN.

In Fig. 2~b! we show how the number of stationar
points with a particular index depends uponN. Most of the

nd
e-

TABLE V. Parameters for the Gaussian fits of the distributionsnsp(I ). Re-
sults are only included for sizes that have a complete distribution.

N nsp
max I mid i mid s

4 1.49 1.700 0.283 1.699
5 5.59 2.989 0.332 1.545
6 27.9 4.063 0.339 1.663
7 191.4 4.944 0.330 1.738
8 1706 5.858 0.325 1.791
9 18782 6.728 0.320 1.853
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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plots seem to tend to straight lines for largerN. Of course,
there are likely to be significant deviations whennsp(I )
,100, where the values could reflect peculiarities of th
small sizes. Furthermore, there is insufficient data to d
nitely confirm an exponential scaling with size.

There is a theoretical expectation fornmin to scale expo-
nentially with size.2,15 Here we present the simple argume
of Ref. 2, which applies to a sufficiently large system. If
system ofmN atoms can be divided intom equivalent sub-
systems ofN atoms, and the stable arrangements of the s
system are effectively independent, then

nmin~mN!5nmin~N!m. ~6!

The solution of this equation is

nmin~N!5exp~aN!. ~7!

A similar argument can be given for the number of transit
states. Assuming the rearrangements associated with
transition states can be localized to one sub-cell, the wh
mN-atom system will be at a transition state when one of
subsystems is at a transition state and the rest are at a
mum. Therefore,

nts~mN!5mnmin~N!m21nts~N!. ~8!

The solution of this equation is

nts~N!5N exp~aN!. ~9!

Hence,nts/nmin grows linearly with size. Our databases a
consistent with this trend~Fig. 3!. The value ofa is system
dependent, and we illustrate this fact for the 13-atom clu
bound by the Morse potential, M13, as a function of the
range parameter,r. The results in Table VI supersede tho
in previous work,7 and were obtained using transition sta
searches based on starting points obtained by conside
hard sphere collisions, as described elsewhere.21

This approach to finding expressions for the distribut
of saddles becomes more problematic for saddle point
higher index. AsI increases, the equations are increasin
hard to solve, as more combinations of saddle points of

FIG. 3. The ratio of the number of minima to transition states as a func
of N.
Downloaded 15 Mar 2002 to 131.111.112.18. Redistribution subject to A
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ferent index have to be considered, and the assumptio
sub-system independence becomes less plausible. Ther
we need a different approach if we are to justify the Gauss
distribution fornsp(I ).

For any cluster there will always be a single stationa
point of index 2N24 corresponding to a linear chain. Fo
this configuration there are five zero Hessian eigenval
~three translations and only two rotations!, N21 positive
eigenvalues corresponding to bond stretches, as well as
2N24 negative eigenvalues corresponding to bond-an
deformations.

The chain contains the minimum possible number
nearest-neighbor contacts for a bound configuration. To p
duce any more negative eigenvalues would require the
sociation of an atom, but then the system would no lon
correspond to a cluster ofN atoms. Therefore, the linea
chain must correspond to the saddle point with the high
index, in agreement with the value ofI max that we found for
each distribution. In fact the linear chain is rather exceptio
because of its five zero eigenvalues. Any other configura
with N21 bonds must be nonlinear and so has 2N25 nega-
tive Hessian eigenvalues, six zeros, as well as theN21 posi-
tive eigenvalues. The linear chain’s five zero eigenvalues
low the possibility of another negative eigenvalue.

The analysis of the linear configuration suggests that
stationary point index corresponds to the number of bo
angle degrees of freedom that have negative eigenval
The stationary points in Fig. 4 illustrate this trend. Of cour
there are some stationary points where there are nega
eigenvalues in the bond-stretch degrees of freedom, but t
are in the minority.

This upper limit to I also suggests that the Gaussi
distribution may be a result of the number of different wa
of choosing negative eigenvalues for 2N25 bond-angle de-

n

FIG. 4. Some LJ7 stationary points. Each structure is labeled by the value
I, the index of the stationary point, and each is at the midpoint of the en
distribution for stationary points of that index.

TABLE VI. Numbers of minima,nmin , and transition states,nts , for M13

clusters at three values of the range parameterr.

r 3 4 6 10

nmin 7 159 1477 10 815
nts 47 1366 26 431 .218 584

nts /nmin 6.7 8.6 17.9 .20.2
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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grees of freedom~assuming six zero eigenvalues andN21
bond stretches!. This assumption gives a binomial distribu
tion

nsp~ I !5
~2N25!!

~2N252I !! I !
, ~10!

which can be well approximated by a Gaussian with

I mid5N25/2,

nsp
max5

~2N25!!

@~N25/2!! #2 , ~11!

s5AN25/2

2
.

This simple analysis gives properties that are in good ag
ment with our actual distributions.I mid almost exactly
matches the observed value ands is a weakly increasing
function of N. The main error is the result thatnsp(0)
5nsp(2N25)51. This error occurs because even when
have the maximum or minimum number of bond-angle
grees of freedom with negative eigenvalues, there are st

FIG. 5. I /3N vs E/N. In ~a! the points are averages overI and in ~b!
averages over the energy. In~b! the curves are cut off atI max21/2 for those
sizes that have incomplete saddle point distributions.
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number of different structural ways that this can be achie
@roughly exp(aN) in fact#. Therefore, to correct for this error
the above expression fornsp

max can be multiplied by an expo
nential function fitted to the number of minima. Also, th
Gaussian fit to the binomial distribution gives the erroneo
prediction thatnts/nmin is independent ofN. However, the
binomial distribution itself gives the correct result, while th
Gaussian approximation begins to break down at the tail
the distribution.

One quantity that has been focused upon in previ
studies of saddle points in glasses has been the variatio
the saddle point index with potential energy.33,34,41The aver-
aging performed to obtain this function can be done in t
ways. One can either look at^E(I )&, the average energy o
saddles with indexI @Fig. 5~a!#, or at ^I (E)&, the average
index of stationary points with energyE @Fig. 5~b!#. For N
>10 as the energy increases the latter function saturate
the highest index for which we have performed searches
avoid this effect of the incomplete distributions, we have c
off the function atI max21/2.

Both averages show an approximately linear increase
the energy with saddle point index, similar to that observ
for supercooled liquids.33,34,41 However, the slope is some
what lower for^I (E)&, because the energy at which sadd
points of a particular index are the most common does
necessarily correspond to the energy at the maximum of t
distribution i.e.,^E(I )& ~Fig. 6!. For I ,I mid the majority of
the range for which they are most numerous hasE,^E(I )&
and for I .I mid hasE.^E(I )&.

The slopes of curves such as those in Fig. 5 have b
interpreted in terms of a characteristic barrier height for
PES.34,40,41 As the lines in Fig. 5 have similar slopes th
‘‘barrier’’ is only a weak function of cluster size. Howeve
there is of course a distribution of barrier heights.21,22 Fur-
thermore, the experimentally observed activation energy
structural relaxation is unlikely to correspond to a barr
associated with a single rearrangement, but to the ove
barrier associated with a sequence of rearrangement7,77

FIG. 6. The number of LJ9 saddle points of indexI as a function of energy.
Each curve is labeled by the indexI, except for the sum of all the distribu
tions.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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It is also easy to show that the average barrier betw
minima and transition states,^D&, is different from the slope
of Fig. 5~a!:

^D&5^Ets&2(
i

nts
i Emin

i /2nts, ~12!

Þ^Ets&2^Emin&, ~13!

whereEmin
i is the energy of minimumi andnts

i is the number
of transition states connected to that minimum.^D& is likely
to be larger because the average over minima in the se
term of Eq. ~12! is usually weighted towards the lowe
energy minima, since they are connected to more transi
states. For example, for LJ13 ^D&51.771e, whereas^Ets&
2^Emin&50.728e.

Another property of saddle points that has received
tention is the lowest eigenvalue of the Hessian. For a bin
Lennard-Jones liquid a linear decrease in the average v
of the lowest Hessian eigenvalue was observed as the en
is increased above the threshold energy at which hig
index saddle points were first observed.34 This result is
equivalent to a linear decrease withi. The behavior of this
property for our cluster saddle points is depicted in Fig.
The curves seem to have a common form, in which the lo
est eigenvalue reaches a minimum close toI mid . However,
these values ofi are much larger than those probed in R
34, and the initial parts of the curves in Fig. 7 seem to sh
greater linearity as the size is increased.

V. DISCUSSION

So far we have examined the properties of a particu
mapping that attempts to provide a definition of the neig
borhood of a saddle point, and looked at the properties
higher-index saddle points for systems where we can ob
essentially complete distributions. Here, we want to th
more about the role of higher-index saddle points in the
namics, assuming that one could find a mapping that divi
all of the PES in neighborhoods around the closest sad

FIG. 7. The average of the lowest eigenvalue of the Hessian for sa
points of the same index as a function ofi. The different curves correspon
to different sizes as labeled. The eigenvalues are in units ofe/s2.
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First we review the relevant aspects of the inherent struc
approach to the dynamics, i.e., in terms of the dynamics
transitions between the basins of attraction surround
minima. This approach can be formulated in terms of a m
ter equation78 describing the evolution of the occupatio
probability of a particular minimum in terms of the rates
probability flow into and out of that minimum7,79

dPi~ t !

dt
5(

j Þ i
@ki j Pj~ t !2kji Pi~ t !#, ~14!

where Pi is the occupation probability of the basin aroun
minimum i andki j is the rate constant for a transition from
basinj to basini. This set of equations can then be solved
give a complete picture of the inter-minimum dynamics.

The only assumption that this approach relies upon is
Markovian nature of the underlying dynamics, i.e., the pro
ability of the transitioni→ j must not depend on the histor
of reaching minimumi, so that theki j are constants for a
given temperature or energy. This assumption will certai
be true when states within a basin of attraction equilibrate
a time scale faster than transitions to different minima, i
t inter@t intra, where these two time scales are for interba
and intrabasin relaxation. Indeed, it is this separation of ti
scales that makes the inherent structure approach a na
way to describe the dynamics. The breakdown of the M
kovian character of the interbasin dynamics places an up
bound on the temperature for which this approach is ap
cable. Previous results for small alkali halide and LJ clust
show reasonable agreement between MD rates and m
rate theory for relatively high energies.80,81

In the above theory for isomerization rates there is
requirement for the system to lie close to the minimum
configuration space. During the occupancy of a given cat
ment basin the system could be found, on average, clos
the boundary. Therefore, the increase inI with temperature
seen for supercooled liquids above a threshold tempera
does not necessarily imply that the inherent structure dyn
ics approach has broken down. Rather the test is whethe
interbasin dynamics are no longer Markovian.

One of the main advantages of Eq.~14! is that we can
draw on the mature field of unimolecular rate theory82 to
calculate theki j . For example, the classical limits for th
microcanonical and canonical Rice–Ramsperger–Kass
Marcus rate constants in the harmonic approximation are82

k~E!5S E2E†

E D s21 n̄s

n̄†
s21 ,

k~T!5exp~2E†/kT!
n̄s

n̄†
s21 , ~15!

whereE andE† are the total energy and the potential ener
of the transition state relative to the energy of the minimu
s is the number of vibrational degrees of freedom, andn̄ and
n̄† are the geometric mean vibrational frequencies of
minimum and transition state, respectively.

Angelani et al. have argued that ‘‘diffusion is entrop
driven, even belowTMCT’’ based on the observation that th
instantaneous potential energy of the system lies well ab
the SP’s obtained by minimizingu¹Eu2.33 However, increas-

le
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ingly large values of the total energy are needed to ob
significant rates as the number of degrees of freedom
creases~see, for example83!, as is clear from Eqs.~15!. To
maintain a finite microcanonical rate constant ass rises the
ratio E/E† must increase. From the canonical viewpoint, t
higher total energy is simply required to maintain a const
temperature as the system size grows.

In the microcanonical ensemble the entropy is the app
priate thermodynamic potential, while in the canonical e
semble we must instead consider free energy barriers
though it should be remembered that the two ensembles
equivalent in the bulk limit. The relative energies of the tra
sition state and minimum, and the widths of the minimu
and transition state valley contained in the ratio of frequ
cies, contribute to the rate constant for an elementary uni
lecular isomerization in both ensembles. Both are include
the standard rate expressions above. However, the rel
importance of different contributions tok(E) cannot be as-
sessed without considering how the different terms sc
with system size. For the canonical rate constantk(T),
where it is meaningful to consider separate entropic and
ergetic contributions to the free energy barrier, the total
ergy does not enter. The energy difference,E†, for a particu-
lar class of rearrangement should be an intensive rather
an extensive quantity.

For normal liquids above the melting point Dzuguto
has demonstrated a strong empirical correlation between
entropy and the diffusion constant.84 Other recent simulation
studies10,19,53 have been interpreted using the Adam–Gib
model,85 where the entropy, or part of it, enters in a rath
different way through heuristic arguments. On the oth
hand, atomic diffusion in solids is routinely treated by Vin
yard’s approach,86 which is simply an application of conven
tional unimolecular rate theory to bulk. There is clearly
pressing need to determine the limit of applicability of sta
dard rate theory to supercooled liquids, and to develop a
native approaches with a firm microscopic basis where n
essary.

Cavagna has suggested that whent inter;t intra it is more
appropriate to think about the dynamics in terms of tran
tions between the neighborhoods of saddle points.29 As Eq.
~14! can be applied to any partition of the PES into ‘‘basins
not just those surrounding minima, a similar formalism c
be developed as long as the inter-saddle dynamics are
kovian. However, therein lies the problem. If the residen
times in the basins of attraction surrounding a minimum
too short for equilibrium between the vibrational modes to
established, it seems even less likely that the necessary s
ration of time scales will hold for basins surrounding sad
points. By definition, there are forces acting to take the s
tem out of such regions. Furthermore, in contrast to the c
of isomerizations between minima, there is no establis
theory for transition rates between saddles. In fact, it is
clear how to calculate the partition function for the catc
ment basin of a saddle, which would surely be necessar
evaluate rate constants. It is, therefore, hard to see how
view of the dynamics can be put on a quantitative footing.
his contribution Cavagna simply speculated that the in
saddle rate constants would increase asI increased.29
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One other possible criticism of the ‘‘saddles-ruled’’ a
proach of Cavagna is that it seems to ignore many of
effects of the topography of the PES, and so seems to con
with much of the recent work that has emphasized the
portance of this topography.5,9,10For example, Cavagna sug
gests that the origin of strong and fragile behavior87 simply
lies in the value of the thermal energy at the temperature
which saddles begin to be frequently sampled relative to
‘‘barrier’’ obtained from the slope of the line giving the av
eraged dependence of the index upon the saddle p
energy.29

It is also too simplistic to suggest that the index of
saddle indicates the ‘‘number of diffusive directions.’’33 In
fact, rearrangements may be both diffusive and nondiffus
in nature,21 and the character can only be diagnosed by c
culating steepest-descent paths connecting the relevant
tionary points, not from purely local information. The no
diffusive transitions typically involve an atom movin
slightly within the cage of its neighbors.

VI. CONCLUSIONS

We have examined in detail the behavior of theu¹Eu2

mapping of configurations to saddle points, and find tha
has a number of shortcomings. We agree with Cavagna29 that
the mapping cannot partition the whole of the PES into
sins surrounding the saddle points, as claimed by Ange
et al.33 In fact, for the systems we have studied the v
majority of configuration space sampled by the supercoo
liquid is mapped on to points that are not stationary points
the PES. Furthermore, the saddle points obtained by
mapping are no closer to the initial configuration than are
the transition states and minima that we located. Theref
the mapping does not seem to satisfy the requiremen
dividing the PES into neighborhoods around the clos
saddle. We have also pointed out problems with a numbe
interpretations suggested in previous work.

A more straightforward way to characterize the prop
ties of higher-index saddles is for systems where comp
distributions of saddle points can be obtained. Our results
LJ clusters reveal that the distributions are a Gaussian fu
tion of the index, as well as of the energy.17,18 Gaussian
index distributions have also been found for rando
matrices.88 We have suggested an explanation for this dis
bution in terms of the number of possible ways of assign
negative eigenvalues to a set of bond-angle degrees of
dom. We find an approximately linear relationship betwe
the potential energy of the saddle point and its index, sim
to the results for supercooled liquids.

We do not think that a description of the dynamics
terms of inter-saddle, rather than inter-minimum, transitio
will offer any advantages, even if a proper partitioning of t
PES into catchment basins of saddles can be devised.
though the temperature at which the dynamics become n
Markovian, and hence the linear master equation formal
breaks down, has not yet been established it may well b
temperatures where the time scale for transitions betw
minima is comparable to the time for equilibrium to be e
tablished between the vibrational modes. Below this regi
we should be able to apply standard unimolecular rate the
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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but above it any approach focusing on uncorrelated tra
tions between local regions of configuration space is likely
fail. Other approaches, such as mode-coupling theory,35–37

will then be more appropriate.
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