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SUMMARY

In an earlier paper Kume & Wood (2005) showed how the normalizing constant of the Fisher–
Bingham distribution on a sphere can be approximated with high accuracy using a univariate sad-
dlepoint density approximation. In this sequel, we extend the approach to a more general setting
and derive saddlepoint approximations for the normalizing constants of multicomponent Fisher–
Bingham distributions on Cartesian products of spheres, and Fisher–Bingham distributions on
Stiefel manifolds. In each case, the approximation for the normalizing constant is essentially
a multivariate saddlepoint density approximation for the joint distribution of a set of quadratic
forms in normal variables. Both first-order and second-order saddlepoint approximations are con-
sidered. Computational algorithms, numerical results and theoretical properties of the approxi-
mations are presented. In the challenging high-dimensional settings considered in this paper the
saddlepoint approximations perform very well in all examples considered.

Some key words: Directional data; Fisher matrix distribution; Kent distribution; Orientation statistics.

1. INTRODUCTION

The density of the Fisher–Bingham distribution on the unit sphere Sd−1 = {y ∈ R
d : yT y = 1},

with respect to Lebesgue measure on Sd−1, is

f0(y; δ,G)= C0(δ,G)−1 exp(δT y + yTGy), (1)

where the elements of δ ∈ R
d and the d × d real symmetric matrix G are parameters and C0(δ,G)

is the normalizing constant. The family of distributions (1) contains a number of subfamilies of
importance in direction statistics and shape analysis, including the von Mises–Fisher distribution,
the Bingham distribution, the complex Bingham distribution and the Kent distribution; see, for
example, Bingham (1974), Kent (1982, 1994) and, for a general review, Mardia & Jupp (2000).
Kume & Wood (2005) provided a convenient and accurate saddlepoint method for approximating
the normalizing constant C0(δ,G).
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The primary purpose of this paper is to extend the Kume & Wood (2005) saddlepoint approach
to enable the accurate approximation of the normalizing constant of two types of generalization
of (1): to Fisher–Bingham distributions on Cartesian products of spheres, and to Fisher–Bingham
distributions on Stiefel manifolds. The common feature in the two cases is that we consider the
most general exponential family in which the exponent consists of the sum of linear and quadratic
terms. These distributions may be defined by conditioning on suitable quadratic constraints in
a multivariate Gaussian distribution. Both first- and second-order saddlepoint approximations
are considered; as in Kume & Wood (2005), it turns out that the second-order approximations
typically have higher accuracy, often to an order of magnitude. In the present setting, this finding
is perhaps rather surprising, due to the complexity of the second-order term.

As a particular case of the Fisher–Bingham distribution on a product-of-spheres, we briefly
consider a multicomponent generalization of the Kent (1982) distribution. It turns out that for
this distribution, the limiting relative errors of the saddlepoint approximations are zero as con-
centration goes to infinity, provided the distribution is unimodal.

Let S p
d−1 denote the Cartesian product of p copies of Sd−1, and consider x = (xT

1, . . . , xT
p)

T ∈
S p

d−1, i.e., each xi is a unit vector in Sd−1. We define the density, with respect to Lebesgue
measure on S p

d−1, of the Fisher–Bingham distribution on S p
d−1 by

f1(x; a, B)= C1(a, B)−1 exp(aTx + xT Bx)

= C1(a, B)−1 exp

⎛
⎝ p∑

i=1

aT
i xi +

p∑
i, j=1

xT
i Bi j x j

⎞
⎠ , (2)

where a = (aT
1, . . . , aT

p)
T ∈ R

dp, B = (Bi j )
p
i, j=1 is a block matrix with p2 blocks Bi j of dimen-

sion d × d, and C1(a, B) is the normalizing constant chosen so that the integral of f1(x; a, B)
over S p

d−1 is 1. Without loss of generality we assume B is symmetric, so that Bi j = BT
j i . Mardia

(1975) considered (2) in the case p = 2; see also Jupp & Mardia (1980), Mardia & Jupp (2000),
Singh et al. (2002) and Mardia et al. (2008).

The second case we consider is a generalization of (1) to a Stiefel manifold. For d � q, the
Stiefel manifold Vd,q is defined by Vd,q = {Y (d × q) : Y TY = Iq}, where Iq is the q × q identity
matrix. Write X = (x1, . . . , xq) for the d × q matrix with columns x1, . . . , xq and define the vec
operator by vec(X)= (xT

1, . . . , xT
q)

T. The density of the Fisher–Bingham distribution on Vd,q ,
with respect to Lebesgue measure on Vd,q , is

f2(X; A, B)= C2(A, B)−1 exp
{

tr(AT X)+ vec(X)T B vec(X)
}

= C2(A, B)−1 exp

⎛
⎝ q∑

i=1

aT
i xi +

q∑
i, j=1

xT
i Bi j x j

⎞
⎠ , (3)

where tr(·) denotes trace, A = (a1, . . . , aq) is a d × q matrix, B = (Bi j )
q
i, j=1 has the same struc-

ture as in (2), and C2(A, B) is chosen so that the integral of f2(X; A, B) over Vd,q is 1. The
difference between (2) and (3) is that in the latter we have X T X = Iq , so that not only are the xi

unit vectors, but they also satisfy the orthogonality conditions xT
i x j = 0 if i |= j . The Fisher matrix

distribution, corresponding to the case where B in (3) is a matrix of zeros, has been considered by
a number of authors, including Downs (1972), Khatri & Mardia (1977), Jupp & Mardia (1979),
Prentice (1986) and Wood (1993). It turns out that in the Fisher matrix case the proposed saddle-
point approximations are available in closed form. The Bingham version of (3), corresponding
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to the case where A is the matrix of zeros, has been studied by Arnold & Jupp (2013); see also
Hoff (2009) for simulation from (3). In § 5 we consider a parametric model for rigid body motion
data in which (3) arises as a marginal distribution.

The purpose of this paper is to present saddlepoint approximations to C1(a, B) and C2(A, B).
Matlab code for performing the calculations is available in the Supplementary Material.

2. REPRESENTATION OF THE NORMALIZING CONSTANTS

First, a brief heuristic outline of our approach is given, with the aim of explaining how and
why it works. The key theoretical result is then presented formally in Proposition 1 below.

Consider a d × q matrix X with real components and assume d � q. Provided U = X T X has
full rank, we can write X = YU 1/2, where U 1/2 is the upper-triangular matrix square root of U .
Multiplying on the right by the inverse of U 1/2 yields Y = X (U 1/2)−1, which implies Y TY = Iq

and therefore Y ∈ Vd,q . If X has a matrix Gaussian density f (X) and is such that U = X T X has
full rank with probability 1, then, ignoring regions with probability zero,

f (X)dX = f (YU 1/2)J (U, Y )(dU ) dVd,q(Y ), (4)

where dU is the implied volume element on the space of positive-definite matrices, dVd,q(Y ) is
the implied volume element on Vd,q and J (U, Y ) is the relevant Jacobian determinant.

The key points are now summarized without proof: (a) J (U, Y )≡ J (U ) does not depend on
Y , and J (U )may be calculated explicitly using Jacobian theory presented in the Supplementary
Material; (b) since J (U, Y )≡ J (U ) and f (X) is a Gaussian density, the conditional distribution
of Y given U = U † is of the form (3); (c) without loss of generality we may take U † = Iq , the
q × q identity matrix; (d) integrating the right-hand side of both (3) and (4) over Y shows that the
normalizing constant C2(A, B) is equal to the marginal density of U at U = Iq ; (d) the marginal
density of U is equal to a known function of U multiplied by the joint density, evaluated at U = Iq ,
of a set of quadratic forms in Gaussian variables; (e) although this density is not known in closed
form, its joint moment generating function is known, so that a saddlepoint density approximation
may be used; (f) this way of expressing the normalizing constant can be extended from a single
Y ∈ Vd,q to (Y1, . . . , Yp) in a Cartesian product of Stiefel manifolds, not necessarily of the same
dimension.

Kume & Wood (2005) cover the case where q = 1, Y is a unit vector and U is a positive scalar.
With general integer q � 1 considered here, points (a) and (d) are more challenging, and the
calculations involved in (e) are more difficult to implement because a multivariate saddlepoint
approximation is needed and the second-order term is far more complex.

Before stating Proposition 1, some definitions are needed. Let V p
d,q = Vd1,q1 × · · · × Vdp,qp

denote a Cartesian product of p Stiefel manifolds, not necessarily of the same dimension. The
Fisher–Bingham density with respect to Lebesgue measure on V p

d,q is

f3(X1, . . . , X p; A1, . . . , Ap; B)

= C3(A1, . . . , Ap; B)−1 exp

⎧⎨
⎩

p∑
i=1

tr(AT
i Xi )+

p∑
i, j=1

vec(Xi )
T Bi j vec(X j )

⎫⎬
⎭ , (5)

where for i, j = 1, . . . , p, Xi ∈ Vdi ,qi , Ai is a di × qi matrix and Bi j is a (di qi )× (d j q j )matrix;
and C3(A1, . . . , Ap; B) is chosen so that the integral of f3(X1, . . . , X p; A1, . . . , Ap; B) over
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V p
d,q is unity. Both (2) and (3) are particular cases of (5). This density (5) was mentioned by

Mardia (1975, Reply to Discussion) in the case p = 2, d1 = d2, q1 = q2.
Let V −1 = (V i j )

p
i, j=1 denote a symmetric matrix consisting of p2 blocks, where V i j is a

(di qi )× (d j q j ) matrix given by V i j = −2Bi j . We shall assume that V −1 and therefore V are
positive definite; it will be seen in § 3·5 that there is no loss of generality in doing so. Now
define μ via the equation μ= V {vec(A1)

T, . . . , vec(Ap)
T}T. In this case, we have the following

result. The vech operator, designed for symmetric matrices, stacks the lower triangular part of
the matrix with the diagonal included, using the ordering implied by vec.

PROPOSITION 1. Assume V is a positive-definite symmetric matrix of dimension r =∑p
i=1 di qi and that x = {vec(X1)

T, . . . , vec(X p)
T}T ∼Nr (μ, V ). Then the normalizing constant

C3(A1, . . . , Ap; B) in (5) may be written

C3(A1, . . . , Ap; B)= g(s1, . . . , sp;μ, V )(2π)r/2|V | 1
2 exp

(
1

2
μTV −1μ

)
2
∑ p

i=1 qi ,

where si = vech(Iqi ) and g(u1, . . . , u p;μ, V ) is the joint density of the ui = vech(X T
i Xi ).

Although the density g(u1, . . . , u p;μ, V ) is not available in explicit form, the moment gen-
erating function of the distribution with density function g is available in convenient form. Con-
sequently, g can be approximated using saddlepoint methods, given by (6) or (7). Although there
is no problem in principle in developing saddlepoint approximations in the general setting of
Proposition 1, we have chosen to focus on the particular cases (2) and (3) in the remainder of the
paper, which are likely to be the cases of most practical interest.

Case 1. C1(a, B). This arises when d1 = · · · = dp = d, q1 = · · · = qp = 1. Then put Ai = ai ,
where ai is d × 1, and a = (aT

1, . . . , aT
p)

T, in which case C1(a, B)= C3(A1, . . . , Ap; B). More-
over, in this case g is the joint density of u1 = xT

1 x1, . . . , u p = xT
px p, where x = (xT

1, . . . , xT
p)

T ∼
Ndp(μ, V ), and the distribution with density (2) is obtained by conditioning x ∼Ndp(μ, V ) on
u1 = · · · = u p = 1.

Case 2. C2(A, B). Here we have p = 1, d1 = d, q1 = q. Then C2(A, B)= C3(A, B), and here
g is the joint density of vech(X T X), where x = vec(X)∼Ndq(μ, V ). The distribution with den-
sity (3) is obtained by conditioning x ∼Ndq(μ, V ) on X T X = Iq .

3. SADDLEPOINT APPROXIMATIONS

3·1. Review of multivariate saddlepoint density approximations

Later in this section we derive saddlepoint approximations for C1(a, B) and C2(A, B). First,
general multivariate saddlepoint density approximations are briefly summarized; see, for exam-
ple, Butler (2007) for further details.

Let M(θ) and K (θ)= log M(θ) denote, respectively, the moment generating function and
cumulant generating function of a random m-vector x . If x has an absolutely continuous dis-
tribution on R

m , then the first-order saddlepoint approximation, f̂1(x), of the density f (x) of
x is

f̂1(x)= (2π)−m/2|K̂ ′′|− 1
2 exp(K̂ − θ̂Tx), (6)
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where θ̂ is the unique solution to the saddlepoint equation K ′(θ)≡ ∂K (θ)/∂θ = x ; K ′′ is the d ×
d matrix of second derivatives of K ; |·| denotes determinant; and, here and below, a circumflex
means evaluation of a function of θ at θ = θ̂ .

Two versions of the second-order saddlepoint approximation are

f̂2(x)= f̂1(x)(1 + T ), f̂3(x)= f̂1(x) exp(T ), (7)

where

T = 1

8
ρ̂4 − 1

24
(3ρ̂2

13 + 2ρ̂2
23) (8)

and

ρ̂4 = K̂i jkl K̂ i j K̂ kl , ρ̂2
23 = K̂i jk K̂rst K̂ ir K̂ js K̂ kt , ρ̂2

13 = K̂i jk K̂rst K̂ i j K̂ kr K̂ st , (9)

where K̂ i j is component (i, j) of (K̂ ′′)−1, and the summation convention is assumed in (9), i.e.,
when an index occurs as both a subscript and a superscript in a product of terms, then summation
over that index is implied. The approximation f̂3 in (7) has the potential advantage that it is
positive even when T � −1, although in the extensive numerical calculations performed for this
paper, we never encountered an example where T � −1. Our general findings are that f̂3 and f̂2
are typically very close, but that f̂3 tends to be slightly more accurate.

3·2. Saddlepoint approximation for C1(a, B)

The joint moment generating function of r1 = xT
1 x1, . . . , rp = xT

px p is

∫
exp

( p∑
i=1

θi x
T
i xi

)
φdp(x;μ, V ) dx1, . . . , dx p

= 1

|C(θ)|1/2|V |1/2 exp

{
1

2
μTV −1C(θ)−1V −1μ− 1

2
μTV −1μ

}

where φm(x;μ, V ) is the m-dimensional multivariate Gaussian density of Nm(μ, V ),

C(θ)= V −1 − 2
p∑

i=1

θi Ji , (10)

where Ji is a block diagonal matrix with p2 blocks, with the d × d identity matrix in the i th
diagonal block and zeros elsewhere. Consequently, the cumulant generating function K (θ) is

K (θ)= −1
2 log |C(θ)| − 1

2 log |V | + 1
2μ

TV −1C(θ)−1V −1μ− 1
2μ

TV −1μ. (11)

Then

Ki (θ)= ∂K (θ)

∂θi
= tr{C(θ)−1 Ji } + μTV −1C(θ)−1 Ji C(θ)

−1V −1μ,

where we have used the standard results

∂

∂θi
log |C(θ)| = tr

{
C(θ)−1 ∂C

∂θi
(θ)

}
,

∂

∂θi
C(θ)−1 = −C(θ)−1

{
∂C

∂θi
(θ)

}
C(θ)−1. (12)

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/100/4/971/212908 by guest on 21 August 2022



976 A. KUME, S. P. PRESTON AND ANDREW T. A. WOOD

Higher derivatives of K (θ), which are needed to obtain T in (8) via (9), may be calculated using
(12) repeatedly. Simplified expressions for these derivatives are given in the Supplementary
Material; see (S1)–(S3).

Applying Proposition 1 and (11), and depending on which of the saddlepoint approximations in
(6) and (7) is used, we obtain the following approximations for the normalizing constant C1(a, B):

Ĉ1,k(a, B)= 2p(2π)p(d−1)/2|K̂ ′′|−1/2|Ĉ |−1/2 exp

(
1

2
aTĈ−1a −

p∑
i=1

θ̂i

)
Rk(T ), (13)

where T is defined in (8) and

Rk(T )=

⎧⎪⎨
⎪⎩

1, k = 1,

1 + T, k = 2,

exp(T ), k = 3.

(14)

3·3. Saddlepoint approximation for C2(A, B)

Here we need the joint moment generating function of {xT
i x j : 1 � i � j � q}, which is

∫
exp

⎛
⎝∑

i� j

θi j x
T
i x j

⎞
⎠φdq(x;μ, V ) dx1, . . . , dx p

= 1

|C(θ)|1/2|V |1/2 exp

{
1

2
μTV −1C(θ)−1V −1μ− 1

2
μTV −1μ

}
,

i.e., of the same form as (14), but where now θ = {θi j : 1 � i � j � q},

C(θ)= V −1 −
∑

1�i� j�q

θi j (Ji j + J ji ), (15)

and Ji j is a (dq)× (dq) block matrix with q2 blocks each of dimension d × d, with block (i, j)
equal to the d × d identity matrix Id and all other blocks equal to the d × d matrix of zeros. The
cumulant generating function K (θ) is given by the expression (11), but it should be noted that
μ, V and C(θ) are defined differently.

Then, using the identities in (12), we obtain

K(rs)(θ)= ∂

∂θrs
K (θ)

= 1
2 tr{C(θ)−1(Jrs + Jsr )} + 1

2μ
TV −1C(θ)−1(Jrs + Jsr )C(θ)

−1V −1μ,

and the saddlepoint equation in this case is K(rs)(θ)= 0 if r < s and K(rr)(θ)= 1. Further appli-
cations of (12) yield higher derivatives that are needed to obtain T in (8) via (9); see (S4)–(S6)
in the Supplementary Material.

The resulting saddlepoint approximations, Ĉ2,k(A, B), with k = 1, 2, 3, of the normalizing
constant C2(A, B) are

Ĉ2,k(A, B)= 2q(2π)dq/2−q(q+1)/4

|K̂ ′′|1/2|Ĉ |1/2 exp

{
1

2
vec(A)TĈ−1vec(A)−

q∑
i=1

θ̂i i

}
Rk(T ) (16)

where Rk(T ) is defined in (14).
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3·4. The Fisher matrix case

The Fisher matrix distribution is the special case of (3) in which B = 0dq,dq , a matrix of zeros,
and the density with respect to Lebesgue measure on Vd,q simplifies to

C2(A, 0dq,dq)
−1 exp{tr(AT X)}, X ∈ Vd,q . (17)

Consider the isometry Y = QT X R on Vd,q , where Q and R are, respectively, d × d and q × q
orthogonal matrices, obtained from the singular valued decomposition A = Q�RT, and �=
(ωi j ) is d × q, with ωi j = 0 if i |= j and ωi i =ωi > 0 for i = 1, . . . , q. Applying this isometry,
the density (17) simplifies to

C2(�, 0dq,dq)
−1 exp

( q∑
i=1

ωi xii

)
, (18)

where C2(�, 0dq,dq)= C2(A, 0dq,dq). For the underlying multivariate normal distribution in § 2,
we takeμ= (ω1eT

1, . . . , ωqeT
q)

T, where e j is a d-vector with all components zero except for com-

ponent j , which is 1. Then C(θ) in (15) is C(θ)= −
† ⊗ Id where ⊗ denotes the Kronecker
product, 
† =
†(θ)= (θ

†
i j )

q
i, j=1, and θ

†
i j = θ

†
j i = θi j if i < j and θ

†
i j = 2θi i if i = j . Then

C(θ)−1 =�⊗ Id , where�= (φrs)
q
r,s=1 = − (


†)−1
, and consequently C(θ)−1 = (φrs Id)

q
r,s=1.

Therefore the saddlepoint equation is K(r,s) = δr,s , where δr,s is the Kronecker delta and

K(r,s) = ∂K

∂θrs
=
{

dφrs +∑q
u=1 ω

2
uφurφus, (r < s),

dφrr + ω2
rφ

2
rr , (r = s).

The unique solution is

φ̂rs = 0 (r < s), φ̂rr = {−d + (d2 + 4ω2
r )

1/2}/(2ω2
r ).

As �̂= (φ̂rs)
q
r,s=1 is diagonal, so is 
̂†, and so θ̂rs = 0 if r < s and θ̂rr = −1/(2φ̂rr )=

−ω2
r /{(d2 + 4ω2

r )
−1/2 − d}. Further calculations using (S4) in the Supplementary Material show

that

K̂(r1,s1)(r2,s2)

⎧⎪⎪⎨
⎪⎪⎩

0, (r1 |= r2 or s1 |= s2),

dφ̂rr φ̂ss + φ̂rr φ̂ss(ω
2
r φ̂rr + ω2

s φ̂ss), (r1 = r2 < s1 = s2),

2dφ̂2
rr + 4ω2

r φ̂
3
rr , (r1 = r2 = s1 = s2),

where always ri � si by convention.
If, as is the case here at the saddlepoint, K̂i j = K̂ i j = 0 unless i = j , i.e., K̂i j and K̂ i j are

diagonal, then the formulae in (9) simplify to the following:

ρ̂2
4 =

m∑
i=1

m∑
j=1

K̂ii j j K̂ i i K̂ j j , ρ̂2
13 =

m∑
i=1

m∑
j=1

m∑
k=1

K̂ii j K̂ jkk K̂ ii K̂ j j K̂ kk, (19)

ρ̂2
23 =

m∑
i=1

m∑
j=1

m∑
k=1

(K̂i jk)
2 K̂ ii K̂ j j K̂ kk . (20)

In the case of the Stiefel manifold Vd,q , i , j and k are of the form (r, s)where 1 � r � s � q, and
m = q(q + 1)/2. Convenient expressions for (19) and (20) in the Fisher matrix case are given in
the Supplementary Material; see (S7)–(S12).
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3·5. Practical issues

As a consequence of the constraint yT y = 1 in (1), it follows that C0(δ,G + λId)= eλC0(δ,G);
see, e.g., formula (2) of Kume & Wood (2005). The constraints in (2) and (3) lead to generaliza-
tions of this identity.

In (2) we have the constraints xT
i xi = 1 for i = 1, . . . , p, from which we conclude that C1(a, B)

satisfies the following identity: for any diagonal matrix 
= diag(λ1, . . . , λp),

C1(a, B +
⊗ Id)= exp

( p∑
i=1

λi

)
C1(a, B). (21)

The corresponding identity for C2(A, B) is that for any symmetric matrix 
= (λi j )
q
i, j=1,

C2(A, B +
⊗ Id)= exp

( q∑
i=1

λi i

)
C2(A, B). (22)

It is straightforward to check that the approximations (13) and (16) satisfy (21) and (22),
respectively. A practical consequence is that we can always arrange for V to be positive definite
when calculating (6) and (7).

Finally, we offer some brief comments on numerical implementation. One convenient and
numerically robust way to solve the saddlepoint equation is to minimize K (θ)−∑p

i=1 θi , or
K (θ)−∑q

i=1 θi i , over θ . An important point in practice is to ensure that we restrict attention to
θ such that the cumulant generating function K (θ) is finite. A necessary and sufficient condition
for θ to be feasible is that C(θ) in (10) or (15) is positive definite.

4. THEORETICAL RESULTS

Some results on the relative errors of the saddlepoint approximations of C1(a, B) and C2(A, B)
are now presented; all proofs are given in the Supplementary Material. Propositions 2 and 3
describe relative accuracy in the neighbourhood of the relevant uniform distribution, while Propo-
sitions 4 and 5 describe limiting behaviour for, respectively, highly concentrated Fisher matrix
distributions, and highly concentrated multicomponent Kent distributions, defined below.

PROPOSITION 2. For any (dp)× 1 vector a, any symmetric (dp)× (dp) matrix B, and any
diagonal matrix 
= diag(λ1, . . . , λp), the saddlepoint approximations in (13) with k = 1, 2, 3
satisfy

lim
ψ→0

Ĉ1,k(ψa, ψB +
⊗ Id)

C1,k(ψa, ψB +
⊗ Id)
=
{
�(d/2)

�̂(d/2)

}p

Rk{−p/(6d)}

where Rk(T ) is defined in (14), �(α)= ∫∞
0 zα−1e−z dz is the gamma function and �̂(x)=

(2π)1/2xx−1/2e−x is Stirling’s approximation to �(x).

The above result is a generalization of Kume & Wood (2005, Proposition 2). The
⊗ Id term
is included because of the degeneracy indicated in (21). Next we state the corresponding result
for the uniform distribution on the Stiefel manifold Vd,q . Define

�m(α)= πm(m−1)/4
m∏

i=1

�{α − (i − 1)/2}, �̂m(α)= 2m/2αmα
(π
α

)m(m+1)/4
e−mα, (23)
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where �m(α) is the multivariate gamma function (Muirhead, 1982), and �̂m(α) is the large-α
approximation to �m(α) mentioned by Butler & Wood (2003).

PROPOSITION 3. For any d × q matrix A, any symmetric (dq)× (dq)matrix B and any sym-
metric q × q matrix 
, the saddlepoint approximations in (16) with k = 1, 2, 3 satisfy

lim
ψ→0

Ĉ2,k(ψ A, ψB +
⊗ Id)

C2(ψ A, ψB +
⊗ Id)
= �q(d/2)

�̂q(d/2)
Rk(T )

where T = −q(q3 − 2q2 + 17q − 8)/(48d), �q is the multivariate gamma function, �̂q is
defined in (23) and Rk(T ) is defined in (14).

Our next result is a generalization of Kume & Wood (2005, Prop. 3).

PROPOSITION 4. For any d × q matrix A, the saddlepoint approximations in (16) with k =
1, 2, 3 satisfy limψ→∞ Ĉ2,k(ψ A, 0dq,dq)/C2(ψ A, 0dq,dq)= 1.

For our final result, in (2) define

a = (κ1μ
T
1, . . . , κpμ

T
p)

T, Bii ′ =
{∑d−1

j, j ′=1 ai j,i ′ j ′μi jμ
T
i ′ j ′, (i |= i ′),∑d−1

j=1 βi jμi jμ
T
i j , (i = i ′),

(24)

where, without loss of generality, we assume κi � 0,
∑d−1

j=1 βi j = 0 and ai j,i ′ j ′ = ai ′ j ′,i j for
all i, i ′ = 1, . . . , p and j, j ′ = 1, . . . , d − 1; and for each i , {μi , μi,1, . . . , μi,d−1} is a set of
orthonormal d-vectors. Also, define the p(d − 1)× p(d − 1) block matrix � = (�i i ′)

p
i,i ′=1

where each block is a (d − 1)× (d − 1) matrix,

�i i ′ =
{
(αi j,i ′ j ′)

d−1
j, j ′=1, (i |= i ′),

κi Id−1 − 2 diag(βi1, . . . , βi,d−1), (i = i ′).
(25)

PROPOSITION 5. Consider the distribution (2) with vector a and block matrix B = (Bii ′)
p
i,i ′=1

defined by (24). Suppose that the matrix � = (�i i ′)
p
i,i ′=1 defined in (25) is positive defi-

nite. Then the saddlepoint approximations (13) with k = 1, 2, 3 satisfy limψ→∞ Ĉ1,k(ψa, ψB)/
C1(ψa, ψB)= 1.

The distribution defined via (2) and (24) may be thought of as a multicomponent generalization
of the Kent (1982) distribution when p> 1. When p = 1 and d = 3 we obtain FB5, the standard
Kent distribution, and with p = 1 and general d � 3 we obtain the Kent distribution on Sd−1. This
distribution has p(d − 1){3 + p(d − 1)}/2 free parameters: p parameters from the κi , p(d −
2) from the βi j , p(p − 1)(d − 1)2/2 from the ai j,i ′ j ′ and pd(d − 1)/2 from the μi and μi j .
This is the same number of free parameters as in the p(d − 1)-dimensional multivariate normal
distribution. The unit d-vectorsμi andμi j determine the orientation of the distribution but do not
appear in the normalizing constant C1(a, B). Also, from symmetry considerations, it follows that
there is always a stationary point at x = (μT

1, . . . , μ
T
p)

T. Some further calculations show that a
necessary and sufficient condition for this stationary point to be a local maximum, and therefore
the global maximum of the density, is that � in (25) is positive definite. Moreover, if we define
ξi j = xT

i μi j for i = 1, . . . , p and j = 1, . . . , d − 1, and replace κi , βi j and ai j,i ′ j ′ by ψκi , ψβi j

and ψai j,i ′ j ′ respectively, then, under the assumption that � in (25) is positive definite, it may
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be shown with some further calculations that, as ψ → ∞,

ψ1/2(ξ11, . . . , ξ1,d−1, ξ2,1, . . . , ξp,d−1)
T →Np(d−1)(0p(d−1), �) (26)

in distribution.
Proposition 5 above generalizes Kume & Wood (2005, Proposition 3) in two senses: when

p = 1, from the von Mises–Fisher distribution on Sd−1 to the unimodal Kent distribution on
Sd−1; and to p> 1.

Limiting asymptotic normality of the type shown in (26) is not sufficient for limiting relative
error to be zero, as is the case in Proposition 5 above. A counterexample is Proposition 4 of
Kume & Wood (2005), in which a central limit theorem analogous to (26) holds but the limiting
relative error is nonzero. In saddlepoint terminology, the reason that the limiting relative error is
zero in the present setting is that the relevant tilted distribution, standardized to have mean zero
and covariance matrix the identity, converges as ψ → ∞ to a multivariate Gaussian distribution,
for which the saddlepoint approximation is exact.

5. A PARAMETRIC MODEL FOR RIGID BODY MOTION DATA

5·1. The model

In an interesting recent paper, Oualkacha & Rivest (2012) develop statistical methods for the
analysis of rigid body motion data, focusing on the question of how to define an average rigid
body motion. A rigid body motion in R

d relative to a fixed coordinate system is defined by a pair
(X, y) where X is a d × d rotation matrix that represents the change in orientation of the object,
while y ∈ R

d is a vector that represents the translation of the object. An issue not considered
by Oualkacha & Rivest (2012) is the development of parametric models that incorporate depen-
dence between X and y. One possibility, which so far as we are aware has not been considered
before, is to consider an exponential family model of the form

f (X, y)∝ exp
{

tr( ÃT X)+ xT B̃x + yTC̃x − (y − μ)TV −1(y − μ)/2
}
, (27)

where x = vec(X). Dependence between X and y is governed by the cross-product term yTC̃x .
Absorbing this cross-product term into the quadratic form in y by completing the square, and
writing

A = Ã + vec−1
d (C̃Tμ), B = B̃ + C̃TV C̃/2,C = V C̃,

where vec−1
d , the inverse of the vec operator, maps a d2 × 1 vector argument onto a d × d matrix,

we obtain

f (X, y)∝ exp
{

tr(AT X)+ xT Bx − (y − μ− Cx)TV −1(y − μ− Cx)/2
}
. (28)

From (28), y | X ∼ Nd(μ+ Cx, V ) and the marginal density function of X is given by
f2(X; A, B) in (3). Moreover, from (27), X | y ∼ f2(X; Ã + vec−1

d (CT y), B̃) and the marginal
density function of y is proportional to

C2{ Ã + vec−1
d (CT y), B̃} exp

{
−(y − μ)TV −1(y − μ)/2

}
,

where C2 is the normalizing constant given in (3).
A convenient estimation approach is to estimate A and B using the marginal likelihood based

on f2 in (3), with C2(A, B) approximated using one of the saddlepoint approximations described
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in this paper; and to estimate C , μ and V using multivariate linear regression based on the con-
ditional likelihood y | X ∼ Nd(μ+ Cx, V ).

5·2. A real data example

The model defined by (28) contains many parameters, some of which will be difficult to
identify, particularly in high-concentration settings. It is therefore of interest to identify and test
suitable submodels of (28). Our purpose here is to fit various submodels of (28) to the ankle-
joint data from Rivest et al. (2008) and Oualkacha & Rivest (2012), which consist of a sample
{(y1, X1), . . . , (y50, X50)}. For simplicity, we treat the (yi , Xi ) as independent and identically
distributed. We first consider the following models related to the Gaussian conditional likeli-
hood y | X : M1,C = 0; M2, rank(C)= 1; M3,C free. In each of the models M1, M2 and M3, μ
and the symmetric matrix V are free. For M2, the unit-rank constraint can be imposed by setting
C = βγ T where β is a d-vector and γ is a d2-vector, and the model can be estimated by iterat-
ing between the following three steps until convergence: fixing γ,� and estimating μ, β; fixing
μ, β,� and estimating γ ; and fixing μ, γ, β and estimating �. The Wilks statistic, i.e., twice
the difference of maximized loglikelihoods, is used to compare nested models, and is referred to
the χ2 distribution with degrees of freedom given by the difference in the number of free param-
eters in each model. Fitting the models M1, M2, M3 to the ankle-joint data from Rivest et al.
(2008) and Oualkacha & Rivest (2012), the Wilks statistic for testing M1 against M2 is 335 on
11 degrees of freedom, and for testing M2 against M3, it is 439 on 16 degrees for freedom. Con-
sequently there is strong evidence for rejecting the simpler models M1 and M2 and preferring
the more general model M3, suggesting that there is dependence between the y component and
the X component that is not simply characterized in terms of a few parameters.

Fitting marginal models for X based on (3) is now considered. Let B0 = ĈTV̂ −1Ĉ , where Ĉ
and V̂ are the estimates from the fitted model M3, and consider the models M4, A = 0, B = λB0;
M5, A free, B = 0; M6, A free, B = λB0, where λ is a free scalar parameter. Neither M4 or M5
is a submodel of the other, but each is a submodel of M6. For these models we find the Wilks
statistic for testing M4 against M6 is 788 on 9 degrees of freedom, while for testing M5 against
M6 it is 128 on one degree of freedom. Hence there is strong evidence in favour of M6 over each
of M4 and M5, and in particular the Fisher matrix model M5 for X provides an inferior fit.

The data of Rivest et al. (2008) are highly concentrated, yet M6 is favoured strongly over
the Fisher matrix model, M5, even though plots do not suggest any obvious inadequacy in the
Gaussian tangent-space approximation. To understand this finding, consider the singular value
decomposition A = Q�RT and write Y = QT X R = exp(H) , where H = (hi j ) is d × d skew-
symmetric matrix. Under high concentration, exp(H)≈ I + H + H2/2 and H ≈ (Y − Y T)/2.
Then

exp{tr(AT X)} ≈ exp

[
tr

{
�

(
I + H + 1

2
H2
)}]

∝ exp

⎧⎨
⎩−1

2

∑
i< j

h2
i j (ωi + ω j )

⎫⎬
⎭ .

It follows that, for large ω1, . . . , ωd , the elements hi j , for i < j , have approximately independent
Gaussian distributions with mean zero and variance σ 2

i j = (ωi + ω j )
−1. Conversely, however, the

hi j being asymptotically independent and Gaussian does not necessarily lead to a well-matched
Fisher matrix distribution for X : for the case d = 3, ω1 = (σ−2

12 + σ−2
13 − σ−2

23 )/2, ω2 = (σ−2
12 +

σ−2
23 − σ−2

13 )/2, ω3 = (σ−2
13 + σ−2

23 − σ−2
12 )/2, and these expressions impose constraints on the

σi j in order that ωi � 0. If some of the σ 2
i j are sufficiently different from the others, then the

nonnegativity constraint ωi � 0 may not be achieved by all of the ωi . For the data of Rivest et al.
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Table 1. Numerical results showing the performance of the normalizing constant approxi-
mations for (i) a density with respect to Lebesgue measure on S2

1 given by (2) with a =
(ω1, 0, ω2, 0)T and B having all elements zero except b24 =ω3; (ii) a density on S2

2 given
by (2) with a = (0, 0, ω1, 0, 0, ω2)

T and B having all elements zero except b11 = −b22 =ω3,
b44 = −b55 = −ω4, b14 = b25 =ω5, b15 = b24 =ω6; and (iii) the density on V3,3 defined by
(18). To investigate performance at various concentrations, for each of (i)–(iii) we consid-
ered three values of the parameter�= (ωi ). The parameter values used were�1 = (10, 5, 1),

�2 = (15, 5, 4, 3, 2, 1), �3 = (30, 10, 6).

Density Support � Ỹ1 W̃1 ñ1 Ỹ3 W̃3 ñ3

(i) S2
1 �1 −9·5×10−2 4·9×10−3 1·6×103 −6·6×10−3 1·3×10−4 6·1×104

�1/2 −1·5×10−1 4·2×10−3 1·9×103 −1·2×10−2 1·3×10−4 5·9×104

�1/10 −1·7×10−1 3·7×10−4 2·1×104 5·5×10−3 5·8×10−5 1·4×105

(ii) S2
2 �2 −1·2×10−2 1·5×10−2 8·5×102 −1·3×10−2 3·2×10−2 4·0×102

�2/3 −9·2×10−2 1·1×10−2 1·2×103 −1·3×10−2 1·8×10−3 6·9×103

�2/15 −1·1×10−1 5·3×10−3 2·4×103 3·0×10−4 4·3×10−4 2·9×104

(iii) V3,3 �3 −5·1×10−1 1·1 ×10−1 7·4 ×101 −5·7×10−2 2·2×10−2 3·6×102

�3/5 −1·5 9·4×10−2 8·3×101 −4·5×10−1 1·8×10−2 4·3×102

�3/30 −1·6 4·5×10−4 1·7×104 −5·0×10−1 4·0×10−4 2·0×104

(2008), the sample analogues of the σ 2
i j are given by σ̂ 2

12 = 0·0008, σ̂ 2
13 = 0·0352, σ̂ 2

23 = 0·0708,
which corresponds to a negative ω̂3. This explains why the Fisher matrix model does not produce
a good fit here, and it is interesting that the introduction of the one-parameter quadratic term in
M6 produces a much improved fit. More generally, further work is needed to identify useful
subfamilies of (3) with nonzero B.

6. NUMERICAL ACCURACY

We present results on the numerical accuracy of the normalizing constant approximations for
two particular Fisher–Bingham distributions on (i) S2

1 and (ii) S2
2 , and for (iii) the Fisher matrix

distribution on V3,3. Table 1 shows results in terms of Yk = log(C)− log(Ĉk), where C is the true
normalizing constant and Ĉk the corresponding saddlepoint approximation; a Wilks statistic, Wk ,
defined below; and the sample size, nk , necessary for a likelihood ratio test to detect a difference
between the true maximum likelihood estimate and an estimate that comes from maximizing an
approximate likelihood based on Ĉk .

The loglikelihood corresponding to (2) or (3) is �(�)= − log C(�)+�Tt , where
�= {aT, vec(B)T}T, t = {E(x)T, E vec(xxT)T}T in the case of (2), and �= {vec(A)T,

vec(B)T}T, t = [E vec(X)T, E vec {vec(X)vec(X T)}T]T in the case of (3), where E denotes expec-
tation with respect to the true density. An approximate loglikelihood, based on Ĉk in place of C,
is

�̂k(�)= − log Ĉk(�)+�Tt. (29)

Denote �MLE = argmax�(�) and �̂MLE,k = argmax�̂k(�), and define Wk = 2|�(�MLE)−
�(�̂MLE,k)|. Then the sample size necessary for a difference between �MLE and �̂MLE,k to be
detected at the 5% level by a large-sample likelihood ratio test is nk = χ2

p(0·95)/Wk , where

χ2
p(0·95) is the 95% quantile of a chi-squared distribution with degrees of freedom equal to p,

the number of parameters in �.
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In the absence of a convenient method for calculating C(�) and t , we estimated them using
107 Monte Carlo samples. We substituted the estimate of t into (29) and used an optimization
routine to calculate a Monte Carlo estimate, �̂∗

MLE,k , of �̂MLE,k , then used a further 107 Monte
Carlo samples to estimate C(�̂∗

MLE,k), l(�̂∗
MLE,k) and hence Wk . To generate the data for each

row of Table 1, we repeated the foregoing procedure 100 times, each run yielding a Monte Carlo
estimate of Yk and Wk , over which we averaged to obtain the Ỹk and W̃k shown in Table 1. The
relative standard errors, not shown, are negligible for Ỹk and in all cases less than ten percent for
W̃k . We estimated the critical sample size for the large-sample test by ñk = χ2

p(0·95)/W̃k .
The results for the first-order approximation, k = 1, indicate good accuracy, but the second-

order, k = 3, approximation is typically a major improvement, in some cases having values of
Ỹk and W̃k an order of magnitude smaller than for k = 1. Further results given in the Supple-
mentary Material show there is little to choose between k = 2 and k = 3, although the latter is
slightly superior. The results show that in most cases considered, which span a range of concen-
trations, a large sample size would be necessary to detect a significant difference, at the 95%
level, between the exact and approximate maximum likelihood estimates. The dimensions of the
underlying saddlepoint approximation for distributions (i)–(iii) are 2, 2, 6, respectively. Even in
the more challenging higher-dimensional setting, performance is strong. However, the computa-
tional cost of the second-order approximations grows rapidly with p; typical timings to compute a
second-order approximation of C1 for the product of p = 2, 4, 6, 8, 10 circles are 0·2, 1, 5, 21, 70
seconds.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online contains formulae for the cumulant
derivatives in the product-of-spheres and Stiefel manifold cases, formulae for ρ̂2

13, ρ̂2
23 and ρ̂4 in

the matrix Fisher case, proofs of Propositions 1–5, numerical results for the k = 2 second-order
approximations, and Matlab code for performing calculations in this paper.
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