
 ISSN : 2347 - 8446 (Online)
 ISSN : 2347 - 9817 (Print)

www.ijarcst.com

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

© All Rights Reserved, IJARCST 2014365

Vol. 2 Issue Special 1 Jan-March 2014

SADDs – Self Annihilation and Downloadable Data system in
Cloud Storage Service

IR.Ramachandran, IIM.P. Revathi
IM.E Dept. of CSE, J J College of Engineering and Technology, Tiruchirappalli, India

IIAsst Professor (SE G), JJ College of Engineering and Technology, Tiruchirappalli, India

I. Introduction
With development of Cloud computing and popularization of
mobile Internet, Cloud services are becoming more and more
important for people’s life. People are more or less requested to
submit or post some personal private information to the Cloud by
the Internet. When people do this, they subjectively hope service
providers will provide security policy to protect their data from
leaking, so others people will not invade their privacy.
As people rely more and more on the Internet and Cloud technology,
security of their privacy takes more and more risks. On the one
hand, when data is being processed, transformed and stored by
the current computer system or network, systems or network must
cache, copy or archive it. These copies are essential for systems
and the network. However, people have no knowledge about these
copies and cannot control them, so these copies may leak their
privacy. On the other hand, their privacy also can be leaked via
Cloud Service Providers (CSPs’) negligence, hackers’ intrusion or
some legal actions. These problems present formidable challenges
to protect people’s privacy. A pioneering study of Vanish [1]
supplies a new idea for sharing and protecting privacy. In the
Vanish system, a secret key is divided and stored in a P2P system
with distributed hash tables (DHTs). With joining and exiting of
the P2P node, the system can maintain secret keys. According to
characteristics of P2P, after about eight hours the DHT will refresh
every node. With Shamir Secret Sharing Algorithm [2], when one
cannot get enough parts of a key, he will not decrypt data encrypted
with this key, which means the key is destroyed.
Some special attacks to characteristics of P2P are challenges of
Vanish [3], [4], uncontrolled in how long the key can survive is
also one of the disadvantages for Vanish. In considering these
disadvantages, this paper presents a solution to implement a self-
destructing data system, or SADDs, which is based on an active
storage framework [5]-[10].
The SADDs system defines two new modules, a self-destruct
method object that is associated with each secret key part and
survival time parameter for each secret key part. In this case,
SADDs can meet the requirements of self-destructing data with
controllable survival time while users can use this system as a
general object storage system. Our contributions are summarized
as follows.

We focus on the related key distribution algorithm, Shamir’s 1.
algorithm [2], which is used as the core algorithm to implement
client (users) distributing keys in the object storage system.
We use these methods to implement a safety destruct with
equal divided key (Shamir Secret Shares [2]).
Based on active storage framework, we use an object-based 2.
storage interface to store and manage the equally divided key.
We implemented a proof-of-concept SADDs prototype.
Through functionality and security properties evaluation of 3.
the SADDs prototype, the results demonstrate that SADDs
is practical to use and meets all the privacy-preserving goals.
The prototype system imposes reasonably low run-time
overhead.
SADDs support security erasing files and random encryption 4.
keys stored in a hard disk drive (HDD) or solid state drive
(SSD), respectively.

 The rest of this paper is organized as follows. We review the
related work in Section II. We describe the architecture, design
and implementation of SADDs in Section III. The extensive
evaluations are presented in Section IV, and we conclude this
paper in Section V.

II. Related Work

A. Data Self-Destruct
The self-annihilating (destructing) data system in the Cloud
environment should meet the following requirements: i) How
to destruct all copies of the data simultaneously and make them
unreadable in case the data is out of control? A local data destruction
approach will not work in the Cloud storage because the number
of backups or archives of the data that is stored in the Cloud is
unknown, and some nodes preserving the backup data have been
offline. The clear data should become permanently unreadable
because of the loss of encryption key, even if an attacker can
retroactively obtain a pristine copy of that data; ii) No explicit
delete actions by the user, or any third-party storing that data; iii)
No need to modify any of the stored or archived copies of that
data; iv) No use of secure hardware but support to completely
erase data in HDD and SSD, respectively.
Tang et al. [11] proposed FADE which is built upon standard
cryptographic techniques and assuredly deletes files to make them

Abstract
Personal data stored in the Cloud may contain account numbers, passwords, notes, and other important information that could be
used and misused by a miscreant, a competitor, or a court of law. These data are cached, copied, and archived by Cloud Service
Providers (CSPs), often without users’ authorization and control. Self-Annihilating data mainly aims at protecting the user data’s
privacy. All the data and their copies become destructed or unreadable after a user-specified time, without any user intervention. In
addition, the decryption key is destructed after the user-specified time. To implement the SADDs security system we are using AES
and Random key Generation. Random Key generation is the process of generating keys for cryptography. A key is used to encrypt
and decrypt whatever data is being encrypted/decrypted.

Keywords
Active storage, Cloud computing, data privacy, self-Annihilating (destructing) data

 ISSN : 2347 - 8446 (Online)
 ISSN : 2347 - 9817 (Print)

www.ijarcst.com

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

© 2014, IJARCST All Rights Reserved 366

Vol. 2 Issue Special 1 Jan-March 2014

unrecoverable to anyone upon revocations of file access policies.
Wang et al. [12] utilized the public key based homomorphism
authenticator with random mask technique to achieve a privacy-
preserving public auditing system for Cloud data storage security
and uses the technique of a bilinear aggregate signature to support
handling of multiple auditing tasks. Perlman et al. [13] present
three types of assured delete: expiration time known at file
creation, on-demand deletion of individual files, and custom keys
for classes of data.
Vanish [1] is a system for creating messages that automat-ically
self-destruct after a period of time. It integrates crypto-graphic
techniques with global-scale, P2P, distributed hash ta-bles (DHTs):
DHTs discard data older than a certain age. The key is permanently
lost, and the encrypted data is permanently unreadable after
data expiration. Vanish works by encrypting each message with
a random key and storing shares of the key in a large, public
DHT. However, Sybil attacks [3] may compromise the system
by continuously crawling the DHT and saving each stored value
before it ages out and the total cost is two orders of magnitude
less than that mentioned in reference [14] estimated. They can
efficiently recover keys for more than 99% of Vanish messages.
Wolchok et al. [3] concludes that public DHTs like VuzeDHT [15]
probably cannot provide strong enough security for Vanish. So,
Geambasu et al. [14] proposes two main countermeasures.
Although using both OpenDHT [16] and VuzeDHT might raise
the bar for an attacker, at best it can provide the maximum security
derived from either system: if both DHTs are insecure, then the
hybrid will also be insecure. OpenDHT is controlled by a single
maintainer, who essentially functions as a trusted third party in
this arrangement. It is also susceptible to attacks on roughly 200
PlanetLab [17] nodes on which it runs, most of which are housed
low-security research facilities. Vanish is an interesting approach
to an important privacy problem, but, in its current form, it is
insecure [3].
To address the problem of Vanish discussed above, in our previous
work [4], we proposed a new scheme, called Safe Vanish, to
prevent hopping attack, which is one kind of Sybil attacks [18],
[19], by extending the length range of the key shares to in-crease
the attack cost substantially, and did some improvement on the
Shamir Secret Sharing algorithm [20] implemented in the Vanish
system. Also, we presented an improved approach against sniffing
attacks by way of using the public key cryptosystem to prevent
from sniffing operations
However, the use of P2P features still is the fatal weakness both
for Vanish and Safe Vanish, because there is a specific attack
against P2P methods (e.g., hopping attacks and Sybil at-tacks
[3]). In addition, for the Vanish system, the survival time of key
attainment is determined by DHT system and not controllable for
the user. Based on active storage framework, this paper pro-poses
a distributed object-based storage system with self-destructing
data function. Our system combines a proactive approach in the
object storage techniques and method object, using data processing
capabilities of OSD to achieve data self-destruction. User can
specify the key survival time of distribution key and use the
settings of expanded interface to export the life cycle of a key,
allowing the user to control the subjective life-cycle of private
data.

B. Object-Based Storage and Active Storage
Object-based storage (OBS) uses an object-based storage
device (OSD) as the underlying storage device. The T10 OSD

standard is being developed by the Storage Networking Industry
Association (SNIA) and the INCITS T10 Technical Committee.
Each OSD consists of a CPU, network interface, ROM, RAM,
and storage device (disk or RAID subsystem) and exports a high-
level data object abstraction on the top of device block read/write
interface.
With the emergence of object-based interface, storage devices
can take advantage of the expressive interface to achieve some
cooperation between application servers and storage devices. A
storage object can be a file consisting of a set of ordered logical
data blocks, or a database containing many files, or just a single
application record such as a database record of one transaction.
Information about data is also stored as objects, which can
include the requirements of Quality of Service (QoS), security,
caching, and backup. Kang et al. Even implemented the object-
based model enables storage class memories (SCM) devices to
overcome the disadvantages of the current interfaces and provided
new features such as object-level reliability and compression.
In recent years, many systems, such as Lustre , Panasas and
Ceph , using object-based technology have been developed and
deployed. Since the data can be processed in storage devices,
people attempt to add more functions into a storage device (e.g.,
OSD) and make it more intelligent and refer to it as “Intelligent
Storage” or “Active Storage” [5]-[10]. For instance, SmAS Disk
can offload application codes to disks, but the disks respond to I/O
requests of clients passively. A stream-based programming model
has been proposed for Active Disk , but the stream is allowed to
pass through only one disklet (user-specific code).
Today, the active storage system has become one of the most
important research branches in the domain of intelligent storage
systems. For instance, Wickremesinghe et al. proposed a model of
load-managed active storage, which strives to integrate computation
with storage access in a way that the system can predict the effects
of offloading computation to Active Storage Units (ASU). Hence,
applications can be configured to match hardware capabilities
and load conditions., a storage system for active storage devices,
provided a single framework to support various services at the
device level. MVSS separated the deployment of services from
file systems and thus allowed services to be migrated to storage
devices.
There have been several efforts to integrate active storage
technology into the T10 OSD standard. References [5], [7], [8],
and [10] all proposed their own implementation of active storage
framework for the T10 OSD standard. These implementations
either are preliminary or validate their systems on a variety of
data intensive applications and fully demonstrate the advantage of
object-based technology. Our work extends prior research (such as
Qin et al.’s [5], John et al.’s [7], Devulapalli et al.’s [8] and Xie et
al.’s [10]) in this area by considering data self-destruction.

C. Completely Erase Bits of Encryption Key
In SADDs, erasing files, which include bits (Shamir Secret Shares
[2]) of the encryption key, is not enough when we erase/ delete
a file from their storage media; it is not really gone until the
areas of the disk it used are overwritten by new information. With
flash-based solid state drives (SSDs), the erased file situation is
even more complex due to SSDs having a very different internal
architecture .
Several techniques that reliably delete data from hard disks are
available as built-in ATA or SCSI commands, software tools and
government standards . These techniques provide effective means

 ISSN : 2347 - 8446 (Online)
 ISSN : 2347 - 9817 (Print)

www.ijarcst.com

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

© All Rights Reserved, IJARCST 2014367

Vol. 2 Issue Special 1 Jan-March 2014

of sanitizing HDDs: either individual files they store or the drive
in their entirety. Software methods typically involve overwriting
all or part of the drive multiple times with patterns specifically
designed to obscure any remnant data.
For instance, different from erasing files which simply marks
file space as available for reuse, data wiping overwrites all data
space on a storage device, replacing useful data with garbage
data. Depending upon the method used, the overwrite data could
be zeros (also known as “zero-fill”) or could be various random
patterns . The ATA and SCSI command sets include “secure erase”
commands that should sanitize an entire disk. Physical destruction
and degaussing are also effective.
SSDs work differently than platter-based HDDs, especially when it
comes to read and write processes on the drive. The most effective
way to securely delete platter-based HDDs (over writing space
with data) becomes unusable on SSDs because of their design.
Data on platter-based hard disks can be deleted by overwriting it.
This ensures that the data is not recoverable by data recovery tools.
This method is not working on SSDs as SSDs differ from HDDs
in both the technology they use to store data and the algorithms
they use to manage and access that data.
Analog sanitization is more complex for SSDs than for hard drives
as well. The analysis in suggests that verifying analog sanitization
in memories is challenging because there are many mechanisms
that can imprint remnant data on the devices. Wei et al. found that,
for SSDs, built-in commands are effective, but manufacturers
sometimes implement them incorrectly; overwriting the entire
visible address space of an SSD twice is usually, but not always,
sufficient to sanitize the drive; none of the existing hard drive-
oriented techniques for individual file sanitization are effective
on SSDs.

Fig. 1: SADDs System Architecture

To the best of our knowledge, in most of the previous work aimed
at some special applications, e.g., database, multimedia, etc., there
is no general system level self-destructing data in the literature. In
order to substantiate our proposed SADDs, we have implemented
a fully functional prototype system. Based on this prototype, we
carry out a series of experiments to examine the functions of
SADDs. Extensive experiments show that the proposed SADDs
does not affect the normal use of storage system and can meet
the requirements of self-destructing data under a survival time
by user controllable key.

III. Design and Implementation of SADDs

A. SADDs Architecture
Fig. 1 shows the architecture of SeDas. There are three parties
based on the active storage framework. i) Metadata server (MDS):
MDS is responsible for user management, server management,
session management and file metadata management. ii) Application
node: The application node is a client to use storage service of
the SADDs. iii) Storage node: Each storage node is an OSD. It
contains two core subsystems: key value store subsystem and
active storage object (ASO) runtime sub system. The key value
store subsystem that is based on the object storage component is
used for managing objects stored in storage node: lookup object,
read/write object and so on. The object ID is used as a key. The
associated data and attribute are stored as values.
The ASO runtime subsystem based on the active storage agent
module in the object-based storage system is used to process
active storage request from users and manage method objects
and policy objects.

B. Active Storage Object
An active storage object derives from a user object and has a
time-to-live (ttl) value property. The ttl value is used to trigger
the self-destruct operation. The ttl value of a user object is infinite
so that a user object will not be deleted until a user deletes it
manually. The ttl value of an active storage object is limited so
an active object will be deleted when the value of the associated
policy object is true.
Interfaces extended by ActiveStorageObject class are used to
manage ttl value. The create member function needs another
argument for ttl. If the argument is -1, UserObject:: create will
be called to create a user object, else, ActiveStorageObject::create
will call UserObject::create first and associate it with the self-
destruct method object and a self-destruct policy object with the
ttl value. The getTTL member function is based on the read_attr
function and returns the ttl value of the active storage object. The
setTTL, addTime and decTime member function is based on the
write_attr function and can be used to modify the ttl value.

C. Self-Destruct Method Object
Generally, kernel code can be executed efficiently; however, a
service method should be implemented in user space with these
following considerations. Many libraries such as libc can be used
by code in user space but not in kernel space. Mature tools can be
used to develop software in user space. It is much safer to debug
code in user space than in kernel space.
A service method needs a long time to process a complicated
task, so implementing code of a service method in user space can
take advantage of performance of the system. The system might
crash with an error in kernel code, but this will not happen if the
error occurs in code of user space. A self-destruct method object
is a service method. It needs three arguments. The lun argument
specifies the device, the pid argument specifies the partition and
the obj_id argument specifies the object to be destructed.

D. Data Process
To use the SADDs system, user’s applications should implement
logic of data process and act as a client node. There are two
different logics: uploading and downloading.

Uploading file process (see Fig. 2): When a user uploads a file 1.
to a storage system and stores his key in this SADDs system,

 ISSN : 2347 - 8446 (Online)
 ISSN : 2347 - 9817 (Print)

www.ijarcst.com

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

© 2014, IJARCST All Rights Reserved 368

Vol. 2 Issue Special 1 Jan-March 2014

he should specify the file, the key and ttl as arguments for the
uploading procedure. Fig. 3 presents its pseudo-code. In these
codes, we assume data and key has been read from the file.
The ENCRYPT procedure uses a common encrypt algorithm
or user-defined encrypt algorithm. After uploading data to
storage server, key shares generated by ShamirSecretSharing
algorithm will be used to create active storage object (ASO)
in storage node in the SADDs system.
Downloading file process: Any user who has relevant 2.
permission can download data stored in the data storage
system. The data must be decrypted before use. The whole
logic is implemented in code of user’s application.

Fig. 2: Uploading File Process

In the pseudo code, we assume encrypted data and meta
information of the key has been read from the downloaded file.
Before decrypting, client should try to get key shares from storage
nodes in the SADDs system. If the self-destruct operation has not
been triggered, the client can get enough key shares to reconstruct
the key successfully. If the associated ASO of the key has been
destructed, the client cannot reconstruct the key so he only read
encrypted data.

E. Data Security Erasing in Disk
We must secure delete sensitive data and reduce the negative
impact of OSD performance due to deleting operation. The
proportion of required secure deletion of all the files is not great,
so if this part of the file update operation changes, then the OSD
performance will be impacted greatly.
Our implementation method is as follows: i) The system prespecifies
a directory in a special area to store sensitive files. ii) Monitor the
file allocation table and acquire and maintain a listof all sensitive
documents, the logical block address (LBA). iii) LBA list of
sensitive documents appear to increase or decrease, the update is
sent to the OSD. iv) OSD internal synchronization maintains the
list of LBA, the LBA data in the list updates. For example, for
SSD, the old data page write 0, and then another writes the new
data page. When the LBA list is shorter than the corresponding
file, size is shrinking. At this time, the old data needs to correspond
to the page all write. v) For ordinary LBA, the system uses the
regular update method. vi) By calling ordinary data erasure API,
we can safely delete sensitive files of the specified directory.
Our strategy only changes a few sensitive documents to the update
operation, no effect on the operational performance of the ordinary
file. In general, the secure delete function is implied while the
OSD read and write performance can be negligible.

Fig. 4: Structure of user application program realizing storage
process

V. Conclusion
Data privacy has become increasingly important in the Cloud
environment. This paper introduced a new approach for protecting
data privacy from attackers who retroactively obtain, through
legal or other means, a user’s stored data and private decryption
keys. A novel aspect of our approach is the lever-aging of the
essential properties of active storage framework based on T10
OSD standard. We demonstrated the feasibility of our approach
by presenting SADDs, a proof-of-concept prototype based
on object-based storage techniques. SADDs causes sensitive
information, such as account numbers, passwords and notes to
irreversibly self-destruct, without any action on the user’s part.
Our measurement and experimental security analysis sheds insight
into the practicability of our approach. Our plan to release the
current SeDas system will help to provide researchers with further
valuable experience to inform future object-based storage system
designs for Cloud services.

References
[1] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy, “Vanish:

Increasing data privacy with self-destructing data,” in Proc.
USENIX Security Symp., Montreal, Canada, Aug. 2009, pp.
299-315.

 ISSN : 2347 - 8446 (Online)
 ISSN : 2347 - 9817 (Print)

www.ijarcst.com

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

© All Rights Reserved, IJARCST 2014369

Vol. 2 Issue Special 1 Jan-March 2014

[2] A. Shamir, “How to share a secret,” Commun. ACM, vol.
22, no. 11, pp. 612-613, 1979.

[3] S. Wolchok, O. S. Hofmann, N. Heninger, E. W. Felten, J.
A. Haderman, C. J. Rossbach, B. Waters, and E. Witchel,
“Defeating vanishwith low-cost sybil attacks against large
DHEs,” in Proc. Network and Distributed System Security
Symp., 2010.

[4] L. Zeng, Z. Shi, S. Xu, and D. Feng, “Safevanish: An improved
data self-destruction for protecting data privacy,” in Proc.
Second Int. Conf.Cloud Computing Technology and Science
(CloudCom), Indianapolis, IN, USA, Dec. 2010, pp. 521-
528.

[5] L. Qin and D. Feng, “Active storage framework for object-
based storage device,” in Proc. IEEE 20th Int. Conf.
Advanced Information Networking and Applications (AINA),
2006.

[6] Y. Zhang and D. Feng, “An active storage system for high
performance computing,” in Proc. 22nd Int. Conf. Advanced
Information Networking and Applications (AINA), 2008, pp.
644-651.

[7] T. M. John, A. T. Ramani, and J. A. Chandy, “Active storage
using object-based devices,” in Proc. IEEE Int. Conf. Cluster
Computing, 2008, pp. 472-478.

[8] A. Devulapalli, I. T. Murugandi, D. Xu, and P. Wyckoff, 2009,
Design of an intelligent object-based storage device
[Online].Available:http://www.osc.edu/research/network_
file/projects/object/papers/istor-tr.pdf

[9] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B.
Ozisikyilmaz, W.-K. Liao, and A. Choudhary, “Enabling
active storage on parallel I/O software stacks,” in Proc.
IEEE

26th Symp. Mass Storage Systems and Technologies (MSST),
2010.

[10] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, D. D. E. Long, Y.
Kang, Z. Niu, and Z. Tan, “Design and evaluation of oasis:
An active storage framework based on t10 osd standard,”
in Proc. 27th IEEE Symp. Massive Storage Systems and
Technologies (MSST), 2011.

[11] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman, “FADE:
Secure overlay cloud storage with file assured deletion,” in
Proc. SecureComm, 2010.

[12] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving
public auditing for storage security in cloud computing,” in
Proc. IEEE INFOCOM, 2010.

[13] R. Perlman, “File system design with assured delete,” in
Proc. Third IEEE Int. Security Storage Workshop (SISW),
2005.

[14] R. Geambasu, J. Falkner, P. Gardner, T. Kohno, A.
Krishnamurthy, and H. M. Levy, Experiences building
security applications on DHTs UW-CSE-09-09-01, 2009,
Tech. Rep..

[15] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S.Shenker, I. Stoica, and H. Yu, “OpenDHT: A public DHT
service and its uses,” in Proc. ACM SIGCOMM, 2005

[16] T. Cholez, I. Chrisment, and O. Festor, “Evaluation of sybil
attack protection schemes in kad,” in Proc. 3rd Int. Conf.
Autonomous Infrastructure, Management and Security,
Berlin, Germany, 2009, pp. 70-82.

[17] B. Poettering, 2006, SSSS: Shamir’s Secret Sharing Scheme
[Online].Available: http://point-at-infinity.org/ssss/

[18] Y.Lu,D.Du,andT.Ruwart,“QoSprovisioningframeworkforan
OSD based storage system,” in Proc. 22nd IEEE/13th NASA
Goddard Conf.Mass Storage Systems and Technologies
(MSST),2005, pp. 28-35.

[19] Z. Niu, K. Zhou, D. Feng, H. Chai, W. Xiao, and C. Li,
“Implementing and evaluating security controls for an object
based storage system,” in Proc. 24th IEEE Conf. Mass
Storage Systems and Technologies (MSST), 2007.

[20] Y. Kang, J. Yang, and E. L. Miller, “Object-based SCM:
An efficient interface for storage class memories,” in Proc.
27th IEEE Symp. Massive Storage Systems and Technologies
(MSST), 2011.

I am R.Ramachandran. I did my BE.
Compter Science in Mohamed sathak
Engg college kilakarai and now i am
doing my ME. Computer Science in
JJ college of Engg and technology.
My research area covers security in
networking and cloud computing.

