

Safe Areas of Computation for Secure Computing with Insecure
Applications

André L. M. dos Santos and Richard A. Kemmerer
Reliable Software Group

Computer Science Department
University of California

Santa Barbara, CA 93106 USA
{andre, kemm}@cs.ucsb.edu

Abstract
Currently the computer systems and software used by the
average user offer virtually no security. Because of this
many attacks, both simulated and real, have been
described by the security community and have appeared
in the popular press. This paper presents an approach to
increase the level of security provided to users when
interacting with otherwise unsafe applications and
computing systems. The general approach, called Safe
Areas of Computation (SAC), uses trusted devices, such
as smart cards, to provide an area of secure processing
and storage.
This paper describes preliminary results of using the Safe
Areas of Computation approach to protect specific
browsing applications. The intent is for protected
browsers to be used to interact with institutions that have
requirements for high security, such as financial
institutions that enable users to perform sensitive
operations for electronic commerce or online banking.

1 Introduction

The Safe Area of Computation (SAC) approach uses a
collection of trusted devices that enforces the protection
of users from the insecurity of specific applications. Each
of these devices is called a Safe Area of Computation.
The goal of such devices is to provide islands of security
that interact with an ocean of insecurity.
The main goal of the SAC approach is to provide security
for client-server applications. The approach can be used
to protect stand-alone applications too. However, due to
space limitations this paper only describes its use for
protecting client-server applications. In a client-server
configuration Safe Areas of Computation provide:
a) Strong authentication. A client SAC exchanges

cryptographic messages with a server SAC in order
to perform mutual authentication. At the end of the
exchange the client SAC and the server SAC will
have agreed on a secret key.

b) Secure channels. Both the client and the server SAC
will use the secret key that was agreed on in the

authentication step to encrypt and decrypt messages
that are exchanged, thus providing a secure channel.

c) Access control. Every client SAC has an access
control list that specifies for each application being
secured, the types of data that the user can access. In
addition, if the type is hierarchical, the access list
entry also specifies the clearance level of the user for
that type. In order to access data the user’s access
control list must contain an entry of the type specified
by the data’s security label and the user’s clearance
level must dominate the security label of the data.

An important goal of SAC is to provide strong security
even for users that are not concerned with security. The
price paid for this security is that the SAC approach
requires the user to deal with a hardware token, which is
the client SAC. Although this requires an initial
adaptation to its use, the benefits of the additional security
provided outweigh the initial discomfort. The only
requirement for a user is to insert the client SAC in a
reader before performing a secure transaction, in the same
way that ATM cards are currently used for interactions
with bank ATM machines.
The SAC approach provides access control in a generic
way. The approach uses generic hierarchical security
labels and access control lists without predefining what
the labels and clearance levels are. This enables
contextual interpretation and implementation of more than
one security policy concurrently. A bank can, for
example, use security labels to specify what banking
transactions a user can perform, while a digital library can
use labels to specify what type of documents a user can
access and if the documents have clearance levels what
level is required. Although this paper uses documents to
demonstrate the use of security labels, many different
access policies can be modeled in the same way.
The SAC approach can be better understood with an
example. Therefore, the next section gives a high level
example of how the SAC approach can be used to protect
data distribution over the Internet. Section 3 describes the
details of the data structures used in the SAC approach
and the overall architecture of the system. A prototype
implementation of the SAC approach is described in

section 4. Finally, conclusions and future work are
presented in the last section.

2 Overview of the Use of SAC for Secure
Internet Transactions

Currently, many Internet transactions are claimed to be
secure because they use Secure Socket Layer (SSL) to
establish an encrypted link between the client and the
server. Although the SSL protocol is likely to be secure, it
is generally misused. The result is that the transactions are
not secure. Some of the problems are:
a) Users don’t check certificates. The usage of SSL

does not guarantee that a user is interacting with the
site that he/she wants to interact with. It only
guarantees that the site implements SSL. A user
needs to check the site certificate in order to verify
the name under which the site is certified. This is
usually neglected even by users that are aware of the
existence of certificates, and it is unknown to the rest.
Another problem is that some sites do not get a
certificate using the same name by which they may
be known to the user.

b) Anybody can have a certificate. Anybody can apply
for a certificate and receive one.

c) User credentials are stored in an unsafe place. Most
of the sites that use SSL do not require a user to have
a credential to authenticate his/herself to the site.
However, even when a site requires a credential and
the browser supports the use of credentials, this alone
does not guarantee that the user identified is the one
interacting with the site. For example, credentials that
are stored in an unsafe place, such as the user’s
computer, can be stolen. These credentials can then
be used later by an attacker.

d) The loss of a credential may not be noticed by the
user. Credentials that are stored in unsafe areas can
be compromised without the user ever noticing. In
contrast, if a token is used for safe transactions, the
stealing or loss of a user’s token is easily noticed by
the user.

Commercial products that use smart cards to store
certificates in order to prevent attacks against these
certificates already exist. These products represent a move
in the right direction and provide some protection against
attacks to a user’s credentials. They, however, use the
smart card primarily for certificate storage, while still
making most of the decisions in an unsafe area.
The goal of the SAC approach is to protect specific
servers. Thus, it does not use the general approach of
certificates. Figure 1 shows a high level view of the SAC
approach to protecting Internet transactions. Each client
has a client SAC, which holds its access control list and
other security relevant information, and each server has a

server SAC. There are two different types of server sites:
central authority sites and service provider sites. Initially
there is a single central authority site with which the client
SAC can communicate. A central authority site is the only
site that can add access to other sites to a client SAC.
However, once a service provider site has been added to a
client site, Internet transactions are performed between
the service provider site and the user without intervention
from a central authority. A service provider can also
modify the portion of the client SAC’s access control list
that refers to that particular service provider, and it can
remove all of the user’s access to the site. It cannot,
however, modify the user’s access list for any other site.

Figure 1: SAC approach for Internet
Transactions

The use of the SAC approach for Internet transactions has
many desirable features. The protocol used by the SAC
approach provides strong authentication and prevents
spoofing attacks against a user in a user-friendly manner.
A private identification number (PIN) is used to
authenticate a user to the SAC. This number can be any
easy to remember number. To protect the data in the SAC,
in case the SAC is lost or stolen, the client SAC has a lock
out procedure that locks itself after a specified number of
wrong attempts. Because of this, any dictionary attack
against the client SAC has a high probability of being
unsuccessful. In addition, because the SAC is tamper
resistant, the data cannot be copied for repeating the
attack. After entering the PIN, a user does not need to
perform any additional authentication. The PIN is the
only secret information that a user has, and it is only
useful in the presence of the correct client SAC. In
addition, any spoofing attack will not be successful since
the protocol does not reveal any secret in the clear and the
user can at most be tricked into revealing his/her PIN. A
critical element of the SAC protocol is that the SAC
exchanges a secret key in the authentication step. Thus, an
attacker who tries to perform a man-in-the-middle attack,
during authentication, will be unsuccessful, because either
the user exchanges the secret key with the attacker, which
does not authenticate the user to the server, or with the
server, which does not reveal the secret key to the
attacker. The use of the server public key by the user and

CENTRAL
AUTHORITY

SERVICE
PROVIDER

Client
SAC

Server
SAC

Initial
Communication

Initial
Communication

INTERNET
Server

SAC

the user’s public key by the server for encryption
guarantees that only the end parties can decrypt and
retrieve the secret key.
Another desirable feature of the SAC approach is that the
use of access lists and security levels enables the
personalization of a user’s services without overloading
the server. Personalized data that is security related is
safely stored in the client SAC. This data is used by the
SAC to determine if the user can access the data
requested, and only pre-authorized access is transmitted.
Thus, any access that would not be authorized will not
even be transmitted to the server, which reduces the load
on the server. Although only pre-authorized requests are
transmitted to the server, there is a back up check at the
server to prevent any malicious requests.
A user can only be impersonated if his/her PIN is
compromised and his/her SAC is lost or stolen. If this is
the case, the user can easily notice the loss and the
particular SAC can be disabled the first time that it is
used. Furthermore, in the event that the SAC is not
disabled, it can only be used to the extent of the user’s
clearance. For example, in the case where a bank is the
service provider, a user can choose not to have access that
allows money transfers over the Internet, which the SAC
will enforce. Then if this client SAC is compromised it
will still only have limited access, such as the ability to
check the user’s balance.
The client SAC must be a device that is either integrated
into a computing base or that is easy to carry and can
interact with a computing base. Smart cards are plastic
cards that resemble magnetic strip cards, which most
users are already familiar with and that most users
associate with secure operations. Smart cards are an
appropriate choice for the client SAC requirements.
Current production versions of smart cards can have a
cryptographic co-processor, 16 Kbytes of EEPROM, 2
Kbytes of RAM and 32 Kbytes of ROM. This is sufficient
to implement a SAC client, although it still places some
restrictions on the number of service providers that can be
accessed by one card. In addition, smart cards and their
readers are dropping in price, their memory size is
increasing, and computer operating systems already
support smart card readers.

3 Details of the SAC Approach

In a client-server configuration a client SAC interacts
with a server SAC through an insecure medium. In this
configuration, the user is not protected when interacting
with either a client or server SAC alone. For example, in
order to safely browse the web a user must interact with a
server through a client site, both of which have safe areas
of computation. If either the client or server site does not
have the SAC, that particular interaction will not be
protected.

The SAC, however, does not need to enforce the security
policy of the computing system as a whole. The purpose
of the SAC is to enforce a security policy tailored to the
interactions of specific applications that a user needs to
accomplish securely. The use of generic trusted areas that
implement security critical functions to protect particular
applications makes this approach different from
approaches that use specific hardware for integrity checks
of the computing system [9].
A security perimeter is defined as the imaginary boundary
of a trusted computing base (TCB) within which all
security-related functions are executed [8]. The trusted
devices that compose a SAC define the SAC’s security
perimeter. The SAC can be as simple as a standalone
smart card or secure coprocessor or it can be a collection
of trusted processors, keyboards, displays, interfaces, etc..
The idea is to increase the number of safe operations that
can be performed by adding trusted devices. As each new
trusted device is added the security perimeter is extended.

3.1 SAC Data Structures
In the SAC approach data is organized in multi-level
security containers. The container model used is a
variation of the container model described in [5], which
was proposed for military multi-level security documents,
where each container is an abstraction for a set of data
that has some attribute in common.
The SAC approach guarantees that only data to which a
user has clearance is released outside the SAC. However,
it is a function of the application software to present these
containers and a description of the data inside the
containers to the user for browsing and possible selection,
after the SAC has approved access to them. To achieve
this the SAC approach represents information by
metadata, which has three fields: description, security
level, and pointer. The metadata can be related to
containers or to data. For containers the pointer field in
the metadata information is a pointer to the container
header, and for data this field is a pointer to actual data.
The security level field represents the level a user must be
cleared to in order to receive the data or header pointed to.
A user who does not have the necessary clearance will not
even know about the existence of the data or header to
which the pointer points. The description field is used by
the software that the SAC is protecting. It contains all
information necessary to the software to interpret the
metadata and to present it to the user for browsing and
selection (e.g., MIME type information).
A header is a set of zero or more metadata entries. The
possibility of a header having zero entries enables a
pointer to a container header to have any security level
without releasing additional covert information about the
existence of classified data. In particular, this enables an
unclassified pointer to a classified container header. This
fact is used by the SAC approach to enable users to start

their sessions with unclassified pointers to (possibly
empty) container headers. An analysis of these pointers
does not reveal the existence or the number of containers
with classified data since the pointers can, and some will,
point to empty container headers.
Consider a user making a query to request images of
Santa Barbara, California. An example return value from
the query could be the information shown in Table1. In
practice there would be many entries, each with metadata
that satisfies the query parameters. Since the security
level of the example container “Satellite images of Santa
Barbara from July 14th, 1998” is unclassified, any user
would be able to request the container header. If a user
requests the container header, the information in Table 2
will be sent in a secure way to the client SAC. This
information represents the metadata that can be used to
request further data or containers. Using containers inside
other containers, any level of indirection, with possibly
different clearance requirements, can be supported using
this approach.
The user is shown representations of only the metadata
from Table 2 to which he/she has clearance. For instance,
if the user does not have secret clearance, the “Satellite
Image 4 (infra-red)” metadata will not be shown. That is,
the decrypted metadata about “Satellite Image 4 (infra-
red)” will never leave the client SAC. Based on the
information shown the user may then choose and request
further metadata of interest.

DESCRIPTION SECURITY
LEVEL

POINTER

Container: “Satellite
images of Santa
Barbara. 07/14/ 98”

Unclassified ContainerServer
::DB0::satellite:
:SB071498

Table 1: Pointer to a container with satellite
images

DESCRIPTION SECURITY
LEVEL

POINTER

Visible Container:
“Container of
classified Satellite
Images”

Confidential ConfidentialSer
ver::DB0::sat::S
Bvis071498

Infra-Red Image:
“Satellite Image 3”
(infra-red)

Unclassified Mainserver::DB
1::sat::SBir0714
98

“Satellite Image 4”
(infra-red)

Secret SecretServer::D
B0::sat::SBir07
1498

Table 2: Header of the container in Table 1

3.2 The Client-Server SAC Architecture
When used in a client-server configuration, the SAC
architecture is as shown in Figure 2. The following
subsections describe the client SAC and server SAC in
more detail.

Figure 2: SAC in client-server configuration

3.2.1 The Client SAC
The client SAC and Client Communication Package
(CCP) together are used to provide security without
interpreting or presenting the data to users for browsing
and selection. After the client SAC receives encrypted
metadata from the server SAC, it decrypts it and uses the
security level fields to check if a specific user has the
appropriate clearances to receive the metadata. If the user
is allowed to access the data, then the client SAC hands
the decrypted metadata to the particular application via
the CCP. The application then presents this metadata to
the user to browse and query. The application software
primarily uses the description field of the metadata to
accomplish this, but in some cases may additionally use
the other fields.
The CCP is not inside the security perimeter and is not
considered a safe area. Because of this it does not deal
with clear text data until the data has been authorized for
access. The application software interacts directly with
the CCP using generic functions, it does not interact with
the client SAC. The generic functions provided deal with
user and server authentication, requests for headers, and
requests for data. Each of these is discussed in the next
subsections.
The initial queries of the server application do not involve
the SAC’s; that is, the initial query of the server is made
directly from the client application to the server
application over an unprotected communication channel.
The metadata returned by this query is a set of
unclassified descriptions of the data or container in

Client
Application

Server
Communication
Package (SCP)

Server
Application SERVER

SAC
MODULE 1

SERVER
SAC
MODULE n

CLIENT
SAC

SERVER
SAC

DATABASE
MANAGER

DATABASE
MANAGER CLASSIFIED

DATA

UNCLASSIFIED
DATA

Client
Communication
Package (CCP)

addition to their pointers. The disadvantage of this
approach is that a user may be returned a pointer to a
container that has no data. This, however, is not believed
to be critical since the user will immediately find that
he/she is following a link that will result in no data after
requesting the container header with no data. The
advantage of this approach is that if a user wishes to
browse only unclassified data, then the SAC components
will not be involved and some may not even be present.

3.2.2 User and Server Authentication
In order to start a session with a secure server the user
must be authenticated to the client SAC and the client
SAC and server SAC must mutually authenticate
themselves. If this is not done or if the authentication
fails, then any additional requests from the application
software to the CCP will be denied.
The application software interacts with the user to request
a pin code. After this pin code has been entered, the
application software calls a CCP function “boolean
AskSACAuthentication(char *pin)”. This function takes
as input a 4 digit pin code, represented as an array of
characters. The choice of a 4 digit pin code is used due to
an embedded functionality in most smart cards, which
uses a 4 digit pin code to authenticate a user to the card.
The card does not allow any transaction with it without
the correct pin code. Although four is a small number of
digits, which could suggest a brute force attack, the card
only allows three wrong pin codes to be presented in a
sequence. If a fourth wrong pin code is presented, the card
will lock itself and will not work anymore. In order to
unlock a card and return it to service, a special sequence
of commands must be invoked on the locked card along
with the use of a secret master key.
After the user has been authenticated to the client SAC
the client SAC uses the Feige-Fiat-Shamir identification
scheme [3] to identify itself to the server SAC. It then
uses the Diffie-Hellman key-exchange algorithm [2] to
agree on a session key. To prevent a man-in-the-middle
attack, the client SAC and the server SAC use digital
signatures based on the RSA algorithm [7] to sign the
key-exchange. All information exchanged by the SACs
will then be protected against eavesdropping by DES [6]
using the session key. This provides a virtual secure
channel between the client SAC and the server SAC.

3.2.3 Request for Headers
From the client SAC perspective, the starting point of any
transaction request is an unclassified metadata. This
metadata is the result of a query run without the use of
any SAC component. If the metadata pointer points to a
container, then a header describing this container can be
requested. The headers are all encrypted and are assumed
to be small, so they can be efficiently decrypted inside the
security perimeter of the client SAC.

In order to request a header, the application software calls
the function “int RequestHeader(DataPtr req, DataPtr
**ans)”. This function uses the struct DataPtr, which is
defined as:
typedef struct _DataPtr{
 char description[100];
 char pointer[50];
 unsigned char securityLevel;
} DataPtr;
When requesting a header, the security level field of
DataPtr is filled in by untrusted software (including CCP),
which resides outside the client SAC. For this reason, the
SAC approach does not rely solely on this information to
grant or deny access to data. Thus, the SAC approach
guarantees that even if a user provides a wrong or
malicious security level to the client SAC, the server will
not be misled into sending data that the user is not
allowed to access. To assure this the server SAC will
perform a backup check between the claimed security
label and the security label that is linked to the header,
which is stored in the server database.
When the function returns, the application software will
receive an array of DataPtr in the ans argument. The
number of elements in this array is specified by the
integer returned by the function. The elements returned
are only those elements of the container to which this user
has access.

3.2.4 Request for Data
A request for data can be made if the user has a DataPtr
structure that points to data. The request usually happens
after a header is received and the available data is shown
to the user. The user chooses the data of interest and the
application software will make a request on behalf of the
user. It is the function of the application software to
arrange the data to be shown to the user and to handle
his/her selections.
When the application software wants data, it calls the
function “boolean RequestData(DataPtr req, char
filename[8])”. The requested data is specified in the
argument req, in the same way that requests for headers
are specified. The function returns true if the data has
been received by the client computer, and the filename
argument contains a pointer to the file that has the
requested data in clear text. Currently it is the
responsibility of the application software to sanitize the
file after using it.

3.3 The Server SAC
The individual Server SAC modules and Server
Communication Package (SCP) are sensitive software that
must be protected. The protection of these modules is
centralized in the server that uses the SAC approach for
security. The administrator of the server must ensure the
protection of this server, which is usually easier than

ensuring the protection of the distributed clients. In
addition, it is expected that the system administrator of
this server is more security aware than the individual
clients. For these reasons, the tamper resistant area where
these modules run may be implemented using existing
hardware on the server, such as implementing it in kernel
space.
The Server SAC has a database, which contains client
SAC public keys to identify and interact with each user.
Every time a user initiates an authentication with the
server the SCP spawns a new server SAC module with
properly initiated parameters, including the user ID, the
user’s public key, and the server private key. The SCP
also checks if the specific user needs to have any of
his/her accesses updated, such as for adding a new service
provider. To accomplish this, the SCP uses a database of
access control list (ACL) modifications. The
modification, if there is any, is requested by the server
SAC through the secure channel, immediately after the
channel is established.
The Safe Area of Computation in the server is composed
of the dynamic set of server SAC modules, the databases
that store keys and ACL modifications, and the Server
Communication Package. This area, which must be well
protected, is shown in Figure 3

Figure 3: Server SAC Components.

The following subsections explain the communication of
the server with the Internet and with the secured database
and discuss the security of the server.

3.3.1 Server SAC Communication with the Internet
Communication with the Internet is handled by the Server
Communication Package (SCP). Every time a client SAC
issues a request to the server through the Client
Communication Package, the SCP sends the request to a
specific server SAC module. After this server SAC

module processes the request it sends an answer to the
SCP, which sends it back through the secure connection
used by the client to issue the request.
Every communication out to the Internet and from the
Internet is encrypted when the secure channel is used.
Every pair of server SAC module/client SAC have
specific cryptographic keys to encrypt and decrypt their
transactions. This means that although only one secure
channel is shown in Figure 3, there will be one distinct
secure channel for each client. Thus, any adversary in the
Internet cannot maliciously eavesdrop on a transaction
that is conducted through the secure channel. In addition,
since the keys are unique, malicious impersonation is not
possible.

3.3.2 Server SAC Communication with the Secured
Database Manager

The Server Communication Package also manages
communication with a secured database manager, which
handles all accesses to classified data. Since the database
manager sends sensitive unencrypted data in answer to
requests, the line of communication between the SCP and
the secured database manager must be secure.
The request that is sent to the secured database manager is
the data pointer sent from the client SAC and decrypted
by the server SAC. Neither the server SAC nor the SCP
interprets the pointer. As a result, the SAC approach can
accommodate any database format without the need for
any change, assuming the pointers are consistent with the
secured database manager format. The requirement is that
the database manager exports a function call, so that the
SCP can send the pointer and receive back the security
level of this data in addition to the data requested.

3.3.3 Security of the Server
A proper implementation of the server is an
implementation where the modules shown in Figure 3 are
kept in a safe area. In addition, this implementation trusts
the data received from the secure communication with the
secured database. This is a blind trust and nothing is done
to guarantee the integrity of the data.
There is a possibility of denial of service attacks due to
the fact that in every transaction with a client the server
first needs to identify which user is requesting the
transaction. This verification is accomplished by
appending the user ID encrypted with the server’s public
key to the transaction. A malicious attacker cannot benefit
from this since he/she will not be able to complete an
authentication nor be able to get the session key used by a
legitimate user interacting with the server. The attacker
can, however, flood the server with transactions from
possibly existing user IDs. This will require the server to
process all these requests and may force legitimate users
to restart sessions because of time-outs.

Server
Private Key

ACL
MODIFICATIONS

Server
Communication
Package

Server SAC
Module 1

User: 01
User Public Key:
FE…
Server Private
Key
Session
Key:76BAEB90

Server SAC
Module 2
User: 02
User Public Key:
47…
Server Private
Key
Session Key:
978FC564

User ID: 03
Add: Confidential
Delete: Eyes only

User ID Public Key
01 FE4375…2D
02 47984F….01
03 DCEC0…73

Secure
Communication
With
Secured
DB Manager

Normal
Communication
With the
Internet

SERVER
SAC S C

E H
C A
U N
R N
E E
 L

4 A Prototype SAC for Internet
Transactions

As a proof of concept, the SAC approach was
implemented for secure Internet transactions. It uses the
configuration shown in Figure 4 to protect the
transactions. The data used in this implementation is
generic MIME data. The intent was to explore the ability
of a browser to directly handle many types of MIME data
securely. The transactions use the Netscape Navigator
browser, and Plug in technology is used to communicate
with the Client Communication Package (CCP).

Figure 4: Safe Internet transactions using the
SAC approach

When a client visits a secure server, the first (main) page
in the secure server loads the Plug in, which loads the
CCP and the client SAC. The client SAC is presently
implemented by a program in the user’s computer, but is
currently being implemented using smart cards. The Plug
in pops up a window requesting the pin code from the
user. After the user enters this information, it calls the
authentication function.
If the user is authenticated, one of the frames in the main
page allows the user to request a search from the secure
server. The answer to this search is a set of unclassified
pointers to collections.
The following subsections detail the components in
Figure 4 and describe the steps of a simple transaction.

4.1 Components of the Internet Prototype
In this section each of the components is described.

4.1.1 Plug In
The current version of the implementation assumes a user
interacting with the secure server using the Netscape
Navigator browser. The Plug in technology was chosen to
implement the active interaction between the browser and
the Client Communication Package (CCP). The same
design may be used with ActiveX controls for interactions
using the Microsoft Internet Explorer browser and Java
applets with special capabilities.
By implementing this program as a Plug in, all the visual
interfaces are provided to the user. The user interacts with
the server using these visual interfaces, and the Plug in
program interacts with the CCP when it needs classified
data.

4.1.2 Client Communication Package
While the Plug in has a specific design developed to
satisfy a particular application and server, the Client
Communication Package (CCP) is designed to be generic
and to support the functionality of the SAC approach. The
CCP does not require a safe area and never deals with
sensitive plain text data that has not been first approved
for release by the Client SAC.
The CCP implements all functionality that can run in the
unprotected area. This includes manipulation of sensitive
data that has been cleared by the Client SAC. In addition,
it implements the Internet communication line, which is
used to exchange encrypted data between the client SAC
and the server SAC and in which the virtual secure
channel is established.

4.1.3 Client SAC
The Client SAC is assumed to have limited memory and
low processing power because it will eventually be
housed in a smart card. The code that provides security, as
well the cryptographic keys, are stored inside its security
perimeter.
Because the client SAC has low processing power, it
would take a long time to decrypt large files. Therefore,
file decryption is performed by the CCP, outside of the
client SAC. The server SAC encrypts each file with a
unique one-time key and sends the encrypted result to the
CCP using a standard Internet connection. The key is then
sent through the secure channel to the client SAC. The
client SAC can then hand the CCP this key to decrypt
sensitive data file. Thus, the client SAC always controls
the decryption of sensitive data. This sensitive data is
either used directly by the CCP, such as metadata in the
clear, or is a key that can be used by the CCP to decrypt
other sensitive data. The sensitive data or key will only
leave the security perimeter if the access control list
(ACL) inside the client SAC certifies that this user is
cleared to access the data.

BROWSER Plug
In

Server
Communication
Package (SCP)

HTTP
Server

SERVER SAC 1

DATABASE
MANAGER

SERVER SAC 2

SERVER SAC N

SECURED
DATABASE
MANAGER

UNCLASSIFIED
DATA

PROTECTED

SERVER SAC

CLIENT
SAC

CLASSIFIED
DATA

Client
Communication
Package (CCP)

S C
E H
C A
U N
R N
E E
 L

4.1.4 HTTP Server
The SAC approach does not make any assumption about
the http server. That is, the generic nature of the approach
does not require any particular http server. Although not
currently implemented, the http server could transmit and
receive encrypted sensitive data that is sent from the CCP
to the SCP or vice-versa without compromising the
security of the data. This would be accomplished by
adding a communication channel between the http server
and the SCP using a technology that extends the http
server, e.g. CGI and servlets.

4.1.5 Secured Database Manager
The secured database manager handles sensitive data and
should be kept in a protected area satisfying only requests
from trusted sources. No sensitive data will be leaked if
the SCP runs in a safe area and its communication with
the secured database manager is secure.

4.1.6 Server Communication Package
The Server Communication Package (SCP), unlike the
Client Communication Package, needs to run in a
protected area in the server. The reason for this is that it
interacts directly with the secured database manager to
request sensitive data.
The function of the SCP is to interact with different
clients and to dynamically allocate a specific Server SAC
for each client. Each server SAC establishes a separate
secure channel with the corresponding client SAC. A
spawned server SAC uses the SCP as an auxiliary module
to communicate with its respective client SAC in a secure
way. In addition, the SCP is used to communicate and
request data from the secured database manager.

4.1.7 Server SAC Module
One Server SAC module is spawned for each user that is
successfully authenticated to the server. The Server SAC
module has the necessary keys to interact with a particular
client SAC.
The server SAC modules are kept inside the server SAC,
while interacting with the corresponding client. When the
client SAC ends a session with the server, the
corresponding server SAC module is deleted. However, a
session between a client and a server SAC module often
has transactions that cannot be anticipated. Therefore, it
may be desirable to keep that specific server SAC module
around. Time-outs are used in the current implementation
to solve this problem and to determine if a session has
finished. This can cause some users to restart a session
after a time-out.

4.1.8 Database Manager
In order to lower the workload when dealing with
unclassified data, the server may run a second database
manager that does not require a protected area. The
system is responsible for assuring that this database

manager can only access non-sensitive data. Using this
approach the http server can request non-sensitive data
directly from the unclassified database manager. This
unclassified data can be used later to fetch classified data
through the Safe Areas of Computation.

4.2 Example Session
The following sections describe in detail each step of a
session. They discuss what tests and functions are
executed in order to provide security.

4.2.1 Authentication
The Plug in interacts with the user, with the browser, and
with the Client Communication Package providing the
particular functionality needed by a specific application.
The Plug in, Client Communication Package, and Client
SAC, are implemented as programs that run in the user’s
computer and that must be installed before any transaction
can be accomplished. The Client SAC, which is a very
sensitive set of modules, is currently being migrated to a
smart card.
When accessing the protected server, the user displays a
page that resides in this server. This page will load the
Plug in, which starts the client SAC and the Client
Communication Package programs. A window pops up
requesting the user to enter a pin code in order to
authenticate the user to the client SAC.
After the user enters a pin code and clicks the OK button
the process of authentication starts. If the user enters the
correct pin code, he/she will be authenticated to the client
SAC. The client SAC will then authenticate itself to the
server SAC, using an Internet connection opened by the
CCP. The result of the successful authentication process
is a session key that provides a secure channel over the
standard Internet connection.

4.2.2 Request for Container Pointers
After the authentication and secure channel establishment
takes place, the user can request containers by making
queries. The browser issues a query, through an insecure
Internet connection to the http server. The http server
queries the database manager, which will run the query on
the unclassified data and return unclassified information
that points to container headers. This information is
composed of text information to be displayed to the user,
an internal pointer to be used when requesting the
container, and the security level of each container, as was
shown in Table 1.
The list of available containers is returned to the user's
browser through the Internet connection. Since this
information is unclassified it is displayed to the user as a
list without restriction.

4.2.3 Request for Container
The user selects a container from the list. When the user
clicks a “Get Container” button, requesting the container,

the Plug in sends this request to the Client
Communication Package (CCP), which forwards the
request to the client SAC, specifying the pointer to the
container header and its security level. If the user has the
clearance necessary to request the container header, as
specified by the security level of the container and the
access control list, then the client SAC uses the secure
channel to request the container header. Since the data
used in the request is sent through the secure channel,
neither the CCP nor the Internet can tamper with the
request.
The request includes the security level of the container to
which the clearance was checked and a header with the
user ID. The security level will be used to prevent
software outside the client SAC from maliciously faking a
request. The user ID is used in order to identify which
spawned server SAC module has established a secure
channel with the particular user.

4.2.4 Server Processing of Container Requests
The appropriated server SAC module, from the possibly
many spawned by the Server Communication Package
(SCP), receives a request for a container from the client
SAC that is associated with it. The server SAC uses the
SCP to request the container specified by the pointer sent
by the client SAC. The SCP requests the container from
the Secured Database Manager using this pointer.
The Secured Database Manager fetches the requested data
(a container header) and returns it to the SCP, together
with the security level associated with this data. The SCP
returns the container with this security level to the
appropriated server SAC module. The result is tested
against the security level sent by the client SAC when
requesting the specific container. If both security levels
are not the same the operation fails and an error is sent to
the client SAC. This is the second time that the security
level of the requested data is checked and will catch
malicious requests, where the security level has been
changed before it is sent to the client SAC. In the case
where the security levels agree, the server SAC will send
the container and the security level received from the SCP
back to the client SAC through the secure channel.

4.2.5 Requests for Data
The client SAC receives the container header through the
secure channel and processes it. Before processing any of
the data inside the header the client SAC uses the access
control list and the security level of the header received
from the server SAC, to check if the user has access to
this header. This is the third time that the clearance is
checked and should never fail. A failure at this point is
unexpected and should be logged for further studies.
The client SAC checks the user clearance for each data or
container embedded in the container, as represented in the
container header. It sends the client communication

package only the information for the data and containers
to which the user has clearance. The CCP will send this
information to the Plug in, which shows it to the user for
browsing and selection.
After browsing the information about the metadata inside
the container, the user can select one of interest by
clicking the “Get Data” button. The client SAC makes the
request in the same way that it requests container headers.

4.2.6 Server Processing of Data Requests
The process of directing a request for data to the correct
server SAC module is the same as the process of directing
a request for a container. The correct server SAC module
again uses the Server Communication Package (SCP) to
request the data from the secured database manager.
When the server SAC receives the potentially large data
back, it generates a one-time key to encrypt this data. The
server SAC will only continue operations, as in the
request for a container header, if the security level of the
data reported by the secured database manager agrees
with the security level reported by the client SAC when
requesting the data.
The server SAC encrypts the data using DES and the
generated one-time key, and sends it to the SCP, which
sends it to the Client Communication Package (CCP) via
the standard Internet connection between them (outside
the secure channel). Additionally, the server SAC uses the
secure channel to send the key used for the encryption and
the security level of the data to the client SAC. The client
SAC will release the key to the CCP only if the user is
cleared to access this data. This is the third check of
clearance, analogous to the procedure used when
requesting container headers.

4.2.7 Results of Requesting Data
The Client Communication Package receives the
encrypted data from the Server Communication Package
and the key for the decryption of this data from the client
SAC. It uses this key to decrypt the data and to write it to
a local file, which is returned to the Plug in. The Plug in
shows the data to the user as appropriate to the particular
application.
The Plug in must interpret the data in a way appropriate
for the application. The SAC approach only delivers the
data to the Plug in without interpreting it. A specific
application can use the description field to specify
possible formats. In the prototype, the description field
includes the MIME type of the data, which is easily
interpreted by the browser.

4.2.8 Access Control List Updates
The steps above describe a simple session. Additionally,
the current implementation supports dynamic
modification of the client SAC access control list (ACL).
For this the server SAC may send a request to the client
SAC to update its ACL when the client SAC authenticates

itself. The request is sent through the secure channel just
after it is established. This request is a list of accesses to
add and delete. It is not possible to tamper with this data
since it uses the established secure channel, which uses a
different session key each time.

5 Conclusions and Future Work

The technologies currently used for interactions between
users and sites on the World Wide Web have many
security weaknesses. This paper presented the SAC
approach, which uses trusted devices to improve the
security of user interactions with a site. An advantage of
the SAC approach is that standard applications only need
to be modified to use the generic functions provided by
the SAC Client Communication Package to get secure
access to sensitive data. The prototype Internet SAC
showed how this could be easily implemented using Plug
in technology. This initial implementation was tested
exchanging MIME data, particularly images and html
pages. Images were classified with different security
levels to demonstrate the container model.
The use of safe areas of computation for protecting user
transactions is intended to make these transactions more
secure. An advanced test bed for the current system is
being implemented to protect Internet transactions of a
user with the Alexandria digital library [4]. For this test
bed two smart card operating systems are currently being
used: CardOS M3 from Siemens and MultOS from
MAOSCO. A test bed for protecting a financial institution
is also planned.
The SAC approach uses access control lists implemented
on the client SAC. Employing a user-specific, or device-
specific access control list enables the personalization of
the accesses and restrictions a user will have (e.g. only
allowing the checking of a bank account balance and not
allowing withdrawals). This personalization has the
advantage of providing access to only the services that a
user signs up for, which limits the possibility of
impersonation of the user to only these services.
Another advantage of storing the access control lists on
the client SAC is that when the server receives a request
for a service, the client SAC has already authorized this
request at the client host. The result is that the server does
not need to again verify that the specific client has the
necessary access rights for the requested service.
However, if this redundant verification is desirable, it
could be done for a small set of critical services. The
security provided would be in addition to that already
provided by the client SAC alone.
The implementation of the protected browser
demonstrated that much of the burden of providing a user-
friendly interface is placed on the application specific
non-secure software. It is not a function of the SAC
components. In addition, the SAC approach does not

impose additional requirements that would make the
application software less user-friendly.
The grouping of users and/or data providers is one way to
lower the memory requirements for the client SAC. This
means, however, that private keys will be shared inside a
group, which represents a security weakness. The
grouping used and the feasibility of grouping is an area
for further investigation.
It is possible to charge for information using electronic
commerce techniques and electronic cash. There are
already some standards for these transactions. The best
way to do this and the best technology available is another
area to be investigated.
Currently, traffic analysis prevention is not considered to
be a requirement; however, in future implementations it
may be required. Thus, the interactions between the user’s
computer and the secure server for the first search will
need to be protected. This could be accomplished using
the protection of SSL. However, even the use of SSL will
not prevent a man-in-the-middle attack whose goal is
traffic analysis [1]. Because of this, functions for
protecting queries will need to be implemented by the
SAC for use if traffic analysis protection is desirable.

6 Acknowledgements

This research was partially supported by PulsePoint
Communications and the University of California through
a Micro Grant. It was also partially supported by Siemens
AG and Mondex International.
References
1. F. De Paoli, A.L. dos Santos, and R. A. Kemmerer, “Web

Browsers and Security”, Mobile Agents and Security,
LNCS 1419, pp. 235-256, Springer-Verlag, 1998.

2. W. Diffie and M. E. Hellman, “New directions in
cryptography”, IEEE Transactions on Information Theory,
v. IT-22, n. 6, Nov. 1976.

3. U. Feige, A. Fiat, and A. Shamir, “Zero knowledge proofs
of identity”, Proceedings of the 19th annual ACM
symposium on the theory of computing, 1987.

4. J. Frew, et. al., “The Alexandria Digital Library
Architecture”, Proc. of the Second European Conference on
Research and Advance Technology for Digital Libraries,
September 1998.

5. C. E. Landwehr, C. L. Heitmeyer, and J. McLean, “A
Security Model for Military Message Systems,” ACM
Trans. on Computer Systems Vol. 9, No. 3 (Aug. 1984), pp.
198-222.

6. NBS FIPS PUB 46, “Data Encryption Standard”, National
Bureau of Standards, U.S. Department of Commerce, 1977.

7. R. L. Rivest, A. Shamir, and L. M. Adleman,”A method for
obtaining digital signatures and public-key cryptosystems”,
Communications of the ACM, v. 21, n.2, Feb 1978.

8. D. Russel and G. T. Gangemi Sr., "Computer Security
Basics", O'Reilly & Associates, Inc., July 1991.

9. B. S. Yee. “Using Secure Coprocessors”. PhD
dissertation, Carnegie Mellon University, 1994.

