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Abstract—Streaming APIs are becoming more pervasive in
mainstream Object-Oriented programming languages. For
example, the Stream API introduced in Java 8 allows for
functional-like, MapReduce-style operations in processing both
finite and infinite data structures. However, using this API
efficiently involves subtle considerations like determining when
it is best for stream operations to run in parallel, when running
operations in parallel can be less efficient, and when it is safe to
run in parallel due to possible lambda expression side-effects. In
this paper, we present an automated refactoring approach that
assists developers in writing efficient stream code in a semantics-
preserving fashion. The approach, based on a novel data ordering
and typestate analysis, consists of preconditions for automatically
determining when it is safe and possibly advantageous to convert
sequential streams to parallel and unorder or de-parallelize
already parallel streams. The approach was implemented as a
plug-in to the Eclipse IDE, uses the WALA and SAFE analysis
frameworks, and was evaluated on 11 Java projects consisting of
∼642K lines of code. We found that 57 of 157 candidate streams
(36.31%) were refactorable, and an average speedup of 3.49 on
performance tests was observed. The results indicate that the ap-
proach is useful in optimizing stream code to their full potential.

Index Terms—refactoring, static analysis, automatic
parallelization, typestate analysis, Java 8, streams

I. INTRODUCTION

Streaming APIs are widely-available in today’s mainstream,

Object-Oriented programming languages and platforms [1],

including Scala [2], JavaScript [3], C# [4], Java [5], and

Android [6]. These APIs incorporate MapReduce-like [7]

operations on native data structures such as collections. Below

is a “sum of even squares” example in Java [1], where map()

accepts a λ-expression (unit of computation) and results in the

list element’s square. The λ-expression argument to filter()

evaluates to true iff the element is even:

list.stream().filter(x->x%2==0).map(x->x*x).sum();

MapReduce, which helps reduce the complexity of writing

parallel programs by facilitating big data processing on

multiple nodes using succinct functional-like programming

constructs, is a popular programming paradigm for writing

a specific class of parallel programs. It makes writing parallel

code easier, as writing such code can be difficult due to

possible data races, thread interference, and contention [8]–[10].

For instance, the code above can execute in parallel simply

by replacing stream() with parallelStream().

MapReduce, though, traditionally operates in a highly-

distributed environment with no concept of shared memory,

while Java 8 Stream processing operates in a single node under

multiple threads or cores in a shared memory space. In the latter

case, because the data structures for which the MapReduce-like

operations execute are on the local machine, problems may

arise from the close intimacy between shared memory and the

operations being performed. Developers, thus, must manually

determine whether running stream code in parallel results in

an efficient yet interference-free program [11] and ensure that

no operations on different threads interleave [12].

Despite the benefits [13, Ch. 1], using streams efficiently

requires many subtle considerations. For example, it is often

not straight-forward if running a particular operation in parallel

is more optimal than running it sequentially due to potential

side-effects of λ-expressions, buffering, etc. Other times, using

stateful λ-expressions, i.e., those whose results depend on

any state that may change during execution, can undermine

performance due to possible thread contention. In fact, ∼4K

stream questions have been posted on Stack Overflow [14],

of which ∼5% remain unanswered, suggesting that there is

developer confusion surrounding this topic.

In general, these kinds of errors can lead to programs that

undermine concurrency, underperform, and are inefficient.

Moreover, these problems may not be immediately evident

to developers and may require complex interprocedural

analysis, a thorough understanding of the intricacies of a

particular stream implementation, and knowledge of situational

API replacements. Manual analysis and/or refactoring

(semantics-preserving, source-to-source transformation) to

achieve optimal results can be overwhelming and error- and

omission-prone. This problem is exacerbated by the fact

that 157 total candidate streams1 across 11 projects with a

34 project maximum2 were found during our experiments

(§ IV), a number that can increase over time as streams rise in

popularity. In fact, Mazinanian et al. [15] found an increasing

trend in the adoption of λ-expressions, an essential part of

using the Java 8 stream API, with the number of λ-expressions

being introduced increasing by two-fold between 2015 and

2016. And, a recent GitHub search by the authors yielded

350K classes importing the java.util.stream package.

The operations issued per stream may be many; we found an

average of 4.14 operations per stream. Permutating through op-

eration combinations and subsequently assessing performance,

if such dedicated tests even exist, can be burdensome. (Manual)

1The number of candidate streams is affected by several analysis parameters,
which involve performance trade-offs, as described in § IV-B and IV-C.

2A stream instance approximation is defined as an invocation to a stream
API returning a stream object, e.g., stream(), parallelStream().



interprocedural and type hierarchy analysis may be needed to

discover ways to use streams in a particular context optimally.

Recently, attention has been given to retrofitting concurrency

on to existing sequential (imperative) programs [16]–[18],

translating imperative code to MapReduce [19], verifying and

validating correctness of MapReduce-style programs [20]–[23],

and improving performance of the underlying MapReduce

framework implementation [24]–[27]. Little attention, though,

has been paid to mainstream languages utilizing functional-style

APIs that facilitate MapReduce-style operations over native data

structures like collections. Furthermore, improving imperative-

style MapReduce code that has either been handwritten or

produced by one the approaches above has, to the best of our

knowledge, not been thoroughly considered. Tang et al. [11]

only briefly present preliminary progress towards this end,

while Khatchadourian et al. [28] discuss engineering aspects.

The problem may also be handled by compilers or run times,

however, refactoring has several benefits, including giving

developers more control over where the optimizations take

place and making parallel processing explicit. Refactorings

can also be issued multiple times, e.g., prior to major releases,

and, unlike static checkers, refactorings transform source code,

a task that can be otherwise error-prone and involve nuances.

We propose a fully-automated, semantics-preserving

refactoring approach that transforms Java 8 stream code for

improved performance. The approach is based on a novel data

ordering and typestate analysis. The ordering analysis involves

inferring when maintaining the order of a data sequence in

a particular expression is necessary for semantics preservation.

Typestate analysis is a program analysis that augments the

type system with “state” and has been traditionally used for

preventing resource errors [29], [30]. Here, it is used to identify

stream usages that can benefit from “intelligent” parallelization,

resulting in more efficient, semantically-equivalent code.

Typestate was chosen to track state changes of streams that

may be aliased and to determine the final state following a

terminal (reduction) operation. Non-terminal (intermediate)

operations may return the receiver stream, in which case

traditional typestate applies. However, we augmented typestate

to apply when a new stream is returned in such situations

(cf. § III-B and III-D). Our approach interprocedurally

analyzes relationships between types. It also discovers possible

side-effects in arbitrarily complex λ-expressions to safely

transform streams to either execute sequentially or in parallel,

depending on which refactoring preconditions, which we

define, pass. Furthermore, to the best of our knowledge, it is

the first automated refactoring technique to integrate typestate.

The refactoring approach was implemented as an open-source

Eclipse [31] plug-in that integrates analyses from WALA [32]

and SAFE [33]. The evaluation involved studying the effects of

our plug-in on 11 Java projects of varying size and domain with

a total of ∼642K lines of code. Our study indicates that (i) given

its interprocedural nature, the (fully automated) analysis cost is

reasonable, with an average running time of 0.45 minutes per

candidate stream and 6.602 seconds per thousand lines of code,

(ii) despite their ease-of-use, parallel streams are not commonly

(manually) used in modern Java software, motivating an

automated approach, and (iii) the proposed approach is useful

in refactoring stream code for greater efficiency despite its con-

servative nature. This work makes the following contributions:

Precondition formulation. We present a novel refactoring

approach for maximizing the efficiency of their Java 8

stream code by automatically determining when it is safe

and possibly advantageous to execute streams in parallel,

when running streams in parallel can be counterproductive,

and when ordering is unnecessarily depriving streams of

optimal performance. Our approach refactors streams for

greater parallelism while maintaining original semantics.

Generalized typestate analysis. Streams necessitate several

generalizations of typestate analysis, including determining

object state at arbitrary points and support for immutable

object call chains. Reflection is also combined with (hybrid)

typestate analysis to identify initial states.

Implementation and experimental evaluation. To ensure

real-world applicability, the approach was implemented as

an Eclipse plug-in built on WALA and SAFE and was used

to study 11 Java programs that use streams. Our technique

successfully refactored 36.31% of candidate streams, and

we observed an average speedup of 3.49 during performance

testing. The experimentation also gives insights into how

streams are used in real-world applications, which can

motivate future language and/or API design. These results

advance the state of the art in automated tool support for

stream code to perform to their full potential.

II. MOTIVATION, BACKGROUND, AND PROBLEM INSIGHT

We present a running example that highlights some of the

challenges associated with analyzing and refactoring streams

for greater parallelism and increased efficiency. Lst. 1 portrays

code that uses the Java 8 Stream API to process collections

of Widgets with weights (class not shown). Lst. 1a is

the original version, while Lst. 1b is the improved (but

semantically-equivalent) version after our refactoring. In lst. 1a,

a Collection of Widgets is declared (line 1) that does

not maintain element ordering as HashSet does not support

it [34]. Note that ordering is dependent on the run time type.

A stream (a view representing element sequences supporting

MapReduce-style operations) of unorderedWidgets is

created on line 5. It is sequential, meaning its operations will

execute serially. Streams may also have an encounter order,

which can be dependent on the stream’s source. In this case,

it will be unordered since HashSets are unordered.

On line 6, the stream is sorted by the corresponding

intermediate operation, the result of which is a (possibly)

new stream with the encounter order rearranged accordingly.

Widget::getWeight is a method reference denoting the

method that should be used for the comparison. Intermediate

operations are deferred until a terminal operation is executed

like collect() (line 7). collect() is a special kind of

(mutable) reduction that aggregates results of prior intermediate

operations into a given Collector. In this case, it is one that

yields a List. The result is a Widget List sorted by weight.



Listing 1 Snippet of Widget collection processing using Java 8 streams based on java.util.stream (Java SE 9 & JDK 9) [5].

(a) Stream code snippet prior to refactoring.

1 Collection<Widget> unorderedWidgets = new HashSet<>();

2 Collection<Widget> orderedWidgets = new ArrayList<>();

3

4 List<Widget> sortedWidgets = unorderedWidgets

5 .stream()

6 .sorted(Comparator.comparing(Widget::getWeight))

7 .collect(Collectors.toList());

8

9 // collect weights over 43.2 into a set in parallel.

10 Set<Double> heavyWidgetWeightSet = orderedWidgets

11 .parallelStream().map(Widget::getWeight)

12 .filter(w -> w > 43.2).collect(Collectors.toSet());

13

14 // sequentially collect into a list, skipping first 1000.

15 List<Widget> skippedWidgetList = orderedWidgets

16 .stream().skip(1000).collect(Collectors.toList());

17

18 // collect the first green widgets into a list.

19 List<Widget> firstGreenList = orderedWidgets

20 .stream()

21 .filter(w -> w.getColor() == Color.GREEN)

22 .unordered().limit(5).collect(Collectors.toList());

23

24 // collect distinct widget weights into a TreeSet.

25 Set<Double> distinctWeightSet = orderedWidgets

26 .stream().parallel()

27 .map(Widget::getWeight).distinct()

28 .collect(Collectors.toCollection(TreeSet::new));

29

30 // collect distinct widget colors into a HashSet.

31 Set<Color> distinctColorSet = orderedWidgets

32 .parallelStream().map(Widget::getColor)

33 .distinct()

34 .collect(HashSet::new, Set::add, Set::addAll);

(b) Improved stream client code via refactoring.

1 Collection<Widget> unorderedWidgets = new HashSet<>();

2 Collection<Widget> orderedWidgets = new ArrayList<>();

3

4 List<Widget> sortedWidgets = unorderedWidgets

5 .stream()parallelStream()

6 .sorted(Comparator.comparing(Widget::getWeight))

7 .collect(Collectors.toList());

8

9 // collect weights over 43.2 into a set in parallel.

10 Set<Double> heavyWidgetWeightSet = orderedWidgets

11 .parallelStream().map(Widget::getWeight)

12 .filter(w -> w > 43.2).collect(Collectors.toSet());

13

14 // sequentially collect into a list, skipping first 1000.

15 List<Widget> skippedWidgetList = orderedWidgets

16 .stream().skip(1000).collect(Collectors.toList());

17

18 // collect the first green widgets into a list.

19 List<Widget> firstGreenList = orderedWidgets

20 .stream()parallelStream()

21 .filter(w -> w.getColor() == Color.GREEN)

22 .unordered().limit(5).collect(Collectors.toList());

23

24 // collect distinct widget weights into a TreeSet.

25 Set<Double> distinctWeightSet = orderedWidgets

26 .stream().parallel()

27 .map(Widget::getWeight).distinct()

28 .collect(Collectors.toCollection(TreeSet::new));

29

30 // collect distinct widget colors into a HashSet.

31 Set<Color> distinctColorSet = orderedWidgets

32 .parallelStream().map(Widget::getColor)

33 .unordered().distinct()

34 .collect(HashSet::new, Set::add, Set::addAll);

It may be possible to increase performance by running this

stream’s “pipeline” (i.e., its sequence of operations) in parallel.

Lst. 1b, line 5 displays the corresponding refactoring with the

stream pipeline execution in parallel (removed code is struck

through, while the added code is underlined). Note, however,

that had the stream been ordered, running the pipeline in

parallel may result in worse performance due to the multiple

passes and/or data buffering required by stateful intermediate

operations (SIOs) like sorted(). Because the stream is

unordered, the reduction can be done more efficiently as the

framework can employ a divide-and-conquer strategy [5].

In contrast, line 2 instantiates an ArrayList, which main-

tains element ordering. Furthermore, a parallel stream is derived

from this collection (line 11), with each Widget mapped to

its weight, each weighted filtered (line 12), and the results

collected into a Set. Unlike the previous example, however,

no optimizations are available here as an SIO is not included

in the pipeline and, as such, the parallel computation does not

incur the aforementioned possible performance degradation.

Lines 15–16 create a list of Widgets gathered by (sequen-

tially) skipping the first thousand from orderedWidgets.

Like sorted(), skip() is also an SIO. Unlike the previous

example, though, executing this pipeline in parallel could be

counterproductive because, as it is derived from an ordered

collection, the stream is ordered. It may be possible to unorder

the stream (via unordered()) so that its pipeline would be

more amenable to parallelization. In this situation, however,

unordering could alter semantics as the data is assembled into

a structure maintaining ordering. As such, the stream remains

sequential as element ordering must be preserved.

On lines 19–22, the first five green Widgets of

orderedWidgets are sequentially collected into a List

As limit() is an SIO, performing this computation in parallel

could have adverse effects as the stream is ordered (with the

source being orderedWidgets). Yet, on line 22, the stream is

unordered3 before the limit() operation. Because the SIO

is applied to an unordered stream, to improve performance,

the pipeline is refactored to parallel on line 20 in lst. 1b.

Although similar to the refactoring on line 5, it demonstrates

that stream ordering does not solely depend on its source.

A distinct widget weight Set is created on lines 25–28.

Unlike the previous example, this collection already takes place

in parallel. Note though that there is a possible performance

degradation here as the SIO distinct() may require multiple

passes, the computation takes place in parallel, and the stream

is ordered. Keeping the parallel computation but unordering

the stream may improve performance but we would need to

determine whether doing so is safe, which can be error-prone

if done manually, especially on large and complex projects.

Our insight is that, by analyzing the type of the resulting

reduction, we may be able to determine if unordering a

stream is safe. In this case, it is a (mutable) reduction (i.e.,

collect() on line 28) to a Set, of which subclasses that

do not preserve ordering exist. If we could determine that the

resulting Set is unordered, unordering the stream would be

safe since the collection operation would not preserve ordering.

The type of the resulting Set returned here is determined

3The use of unordered() is deliberate despite nondeterminism.



TABLE I
CONVERT SEQUENTIAL STREAM TO PARALLEL PRECONDITIONS.

exe ord se SIO ROM transformation

P1 seq unord F N/A N/A Convert to para.
P2 seq ord F F N/A Convert to para.
P3 seq ord F T F Unorder and convert to para.

by the passed Collector, in this case, Collectors. ⌋

toCollection(TreeSet::new), the argument to which is

a reference to the default constructor. Unfortunately, since

TreeSets preserve ordering, we must keep the stream ordered.

Here, to improve performance, it may be advantageous to run

this pipeline, perhaps surprisingly, sequentially (line 26, lst. 1b).

Lines 31–34 map, in parallel, each Widget to its Color,

filter those that are distinct, and collecting them into a

Set. To demonstrate the variety of ways mutable reductions

can occur, a more direct form of collect() is used rather

than a Collector, and the collection is to a HashSet, which

does not maintain element ordering. As such, though the

stream is originally ordered, since the (mutable) reduction

is to an unordered destination, we can infer that the stream

can be safely unordered to improve performance. Thus,

line 33 in lst. 1b shows the inserted call to unordered()

immediately prior to distinct(). This allows distinct()

to work more efficiently under parallel computation [5].

Manual analysis of stream client code can be complicated,

even as seen in this simplified example. It necessitates a

thorough understanding of the intricacies of the underlying

computational model, a problem which can be compounded

in more extensive programs. As streaming APIs become more

pervasive, it would be extremely valuable to developers, particu-

larly those not previously familiar with functional programming,

if automation can assist them in writing efficient stream code.

III. OPTIMIZATION APPROACH

A. Intelligent Parallelization Refactorings

We propose two new refactorings, i.e., CONVERT SEQUEN-

TIAL STREAM TO PARALLEL and OPTIMIZE PARALLEL

STREAM. The first deals with determining if it is possibly

advantageous (performance-wise, based on type analysis) and

safe (e.g., no race conditions, semantics alterations) to transform

a sequential stream to parallel. The second deals with a stream

that is already parallel and ascertains the steps (transformations)

necessary to possibly improve its performance, including

unordering and converting the stream to sequential.

1) Converting Sequential Streams to Parallel: Table I

portrays the preconditions for our proposed CONVERT

SEQUENTIAL STREAM TO PARALLEL refactoring. It lists the

conditions that must hold for the transformation to be both

semantics-preserving as well as possibly advantageous, i.e.,

resulting in a possible performance gain. Column exe denotes

the stream’s execution mode, i.e., whether, upon the execution

of a terminal operation, its associated pipeline will execute

sequentially or in parallel (“seq” is sequential and “para” is

parallel). Column ord denotes whether the stream is associated

with an encounter order, i.e., whether elements of the stream

must be visited in a particular order (“ord” is ordered and

TABLE II
OPTIMIZE PARALLEL STREAM PRECONDITIONS.

exe ord SIO ROM transformation

P4 para ord T F Unorder.
P5 para ord T T Convert to seq.

“unord” is unordered). Column se represents whether any

behavioral parameters (λ-expressions) that will execute during

the stream’s pipeline have possible side-effects. Column SIO

constitutes whether the pipeline has any stateful intermediate

operations. Column ROM represents whether the encounter

order must be preserved by the result of the terminal reduction

operation. A T denotes that the reduction result depends on

the encounter order of a previous (intermediate) operation.

Conversely, an F signifies that any ordering of the input

operation to the reduction need not be preserved. Column

transformation characterizes the transformation actions to

take when the corresponding precondition passes (note the

conditions are mutually exclusive). N/A is either T or F.

A stream passing P1 is one that is sequential, unordered, and

has no side-effects. Because this stream is already unordered,

whether or not its pipeline contains an SIO is inconsequential.

Since the stream is unordered, any SIOs can run efficiently in

parallel. Moreover, preserving the ordering of the reduction is

also inconsequential as no original ordering exists. Here, it is

both safe and possibly advantageous to run the stream pipeline

in parallel. The stream derived from unorderedWidgets on

line 5, lst. 1 is an example of a stream passing P1. A stream

passing P2 is also sequential and free of λ-expressions contain-

ing side-effects. However, such streams are ordered, meaning

that the refactoring only takes place if no SIOs exist. P3, on the

other hand, will allow such a refactoring to occur, i.e., if an SIO

exists, only if the ordering of the reduction’s result is inconse-

quential, i.e., the reduction ordering need not be maintained. As

such, the stream can be unordered immediately before the (first)

SIO (as performed on line 33, lst. 1b). The stream created on

line 16, lst. 1 is an example of a stream failing this precondition.

2) Optimizing Parallel Streams: Table II depicts the

preconditions for the OPTIMIZE PARALLEL STREAM

refactoring. Here, the stream in question is already parallel. A

stream passing either precondition is one that is ordered and

whose pipeline contains an SIO. Streams passing P4 are ones

where the reduction does not need to preserve the stream’s

encounter order, i.e., ROM is F. An example is depicted on

line 32, lst. 1. Under these circumstances, the stream can be

explicitly unordered immediately before the (first) SIO, as

done on line 33 of lst. 1b. Streams passing P5, on the other

hand, are ones that the reduction ordering does matter, e.g., the

stream created on line 26. To possibly improve performance,

such streams are transformed to sequential (line 26, lst. 1b).

B. Identifying Stream Creation

Identifying where in the code streams are created is imperative

for several reasons. First, streams are typically derived from a

source (e.g., a collection) and take on its characteristics (e.g.,

ordering). This is used in tracking stream attributes across their



pipeline (§ III-C). Second, for streams passing preconditions,

the creation site serves a significant role in the transformation.

There are several ways to create streams, including being

derived from Collections, being created from arrays (e.g.,

Arrays.stream()), and via static factory methods (e.g.,

IntStream.range()). Streams may also be directly created

via constructors, but it is not typical of clients, which are

our focus. We consider stream creation point approximations

as any expression evaluating to a type implementing the

java.util.stream.BaseStream interface, which is the top-

level stream interface. We exclude, however, streams emanating

from intermediate operations, i.e., instance methods whose

receiver and return types implement the stream interface, as

such methods are not likely to produce new streams but rather

ones derived from the receiver but with different attributes.

C. Tracking Streams and Their Attributes

We discuss our approach to tracking streams and their

attributes (i.e., state) using a series of labeled transition systems

(LTSs). The LTSs are used in in the typestate analysis (§ III-D).

1) Execution Mode:

Definition 1. The LTS E is a tuple E=(ES ,EΛ,E→) where

ES={⊥,seq ,para} is the set of states, EΛ is a set of labels,

and E→ is a set of labeled transitions.

The labels EΛ corresponds to method calls that either

create or transform the execution mode of streams. We denote

the initial stream (“phantom”) state as ⊥. Different stream

creation methods may transition the newly created stream to

one that is either sequential or parallel. Transitions stemming

from the ⊥ state represent stream creation methods (§ III-B).

As an example, the stream on line 5, lst. 1a would transition

from ⊥ to seq , while the stream at line 26 would transition

from seq to para as a result of the corresponding call.

2) Ordering: Whether a stream has an encounter order

depends on the stream source (run time) type and the

intermediate operations. Certain sources (e.g., List) are

intrinsically ordered, whereas others (e.g., HashSet) are

not. Some intermediate operations (e.g., sorted()) may

impose an encounter order on an otherwise unordered stream,

and others may render an ordered stream unordered (e.g.,

unordered()). Further, some terminal operations may

ignore encounter order (e.g., forEach()) while others (e.g.,

forEachOrderer()) abide by it [5].

Definition 2. The LTS O for tracking stream ordering is

the tuple O=(OS ,OΛ,O→) where OS={⊥,ord ,unord} and

other components are in line with definition 1.

For instance, the stream on line 5, lst. 1a would transition

from ⊥ to unord due to HashSet.stream(). Although the

compile-time type of unorderedWidgets is Collection

(line 1), we use an interprocedural type inference algorithm

(explained next) to approximate HashSet. The stream at

line 26 would transition from ⊥ to ord state as a result of

orderedWidgets having the type ArrayList (line 2).

a) Approximating Stream Source Types and Characteristics:

The fact that stream ordering can depend on the run time type

of its source necessitates that its type be approximated. For

this, we use an interprocedural type inference algorithm via

points-to analysis [35] that computes the possible run time

types of the receiver from which the stream is created. Once

the type is obtained, whether source types produce ordered or

unordered streams is determined via reflection. While details

are in § IV-A, briefly, the type is reflectively instantiated and

its Spliterator [36] extracted. Then, stream characteristics,

e.g., ordering, are queried [36]. This is enabled by the fact

that collections and other types supporting streams do not

typically change their ordering characteristics dynamically.

Using reflection in this way amounts to a kind of hybrid

typestate analysis where initial states are determined via

dynamic analysis. If reflection fails, e.g., an abstract type

is inferred, the default is to ordered and sequential. This

choice is safe considering that there is no net effect caused

by our proposed transformations, thus preserving semantics.

Furthermore, to prevent ambiguity in state transitions, it is

required that each inferred type have the same attributes.

D. Tracking Stream Pipelines

Tracking stream pipelines is essential in determining satisfied

preconditions. Pipelines can arbitrarily involve multiple meth-

ods and classes as well as be data-dependent (i.e., spanning mul-

tiple branches). In fact, during our evaluation (§ IV), we found

many real-world examples that use streams interprocedurally.

Our automated refactoring approach involves developing a

variant of typestate analysis [29], [30] to track stream pipelines

and determine stream state when a terminal operation is issued.

Typestate analysis is a program analysis that augments the

type system with “state” information and has been traditionally

used for prevention of program errors such as those related

to resource usage. It works by assigning each variable an

initial (⊥) state. Then, (mutating) method calls transition

the object’s state. States are represented by a lattice and

possible transitions are represented by LTSs. If each method

call sequence on the receiver does not eventually transition

the object back to the ⊥ state, the object may be left in a

nonsensical state, indicating the potential presence of a bug.

Our typestate analysis makes use of a call graph, which is

created via a k-CFA call graph construction algorithm [37],

making our analysis both object and context sensitive (the

context being the k-length call string). In other words, it adds

context so that method calls to an object creation site (new

operator) can be distinguished from one another [38, Ch. 3.6].

It is used here to consider client-side invocations of API calls

as object creations. Setting k = 1 would not suffice as the

analysis would not consider the client contexts as stream

creations. As such, at least for streams, k must be >= 2.

Although k is flexible in our approach, we use k=2 as the

default for streams and k = 1 elsewhere. § IV-B1 discusses

how k was set during our experiments, as well as a heuristic

to help guide developers in choosing a sufficient k.

We formulate a variant of typestate since operations like

sorted() return (possibly) new streams derived from the

receiver stream with their attributes altered. Definition 3 por-

trays the formalism capturing the concept of typestate analysis



used in the remainder of this section. Several generalizations

are made to extract typestate at a particular program point.

Definition 3 (Typestate Analysis). Define

TStateLTS (is,exp) = S where LTS is a labeled transition

system, is a stream instance, exp an expression, and to be the

possible states S of is at exp according to LTS.

In definition 3, exp, an expression in the Abstract Syntax Tree

(AST), is used to expose the internal details of the analysis.

Typically, typestate is used to validate complete statement se-

quences. Regarding definition 3, this would be analogous to exp

corresponding to a node associated with the last statement of the

program. In our case, we are interested in typestates at particular

program points; otherwise, we may not be able to depict

typestate at the execution of the terminal operation accurately.

As an example, let is be the stream on line 5, lst. 1a

and exp the expression collect() at line 7. Then,

TStateO(is,collect(..))={ord}.

Traditional typestate analysis is used with (mutating) methods

that alter object state. The Stream API, though, is written in an

immutable style where each operation returns a stream reference

that may refer to a new object. A naı̈ve approach may involve

tracking the typestates of the returned references from interme-

diate operations. Doing so, however, would produce an undesir-

able result as each stream object would be at the starting state.

§ III-C treats intermediate operations as being (perhaps

void returning) methods that mutate the state of the receiver.

This makes the formalism concise. However, in actuality,

intermediate operations are value returning methods, returning

a reference to the same (general) type as the receiver. As such,

the style of this API is that of immutability, i.e., “manipulating”

a stream involves creating a new stream based on an existing

one. In such cases, the receiver is then considered consumed,

i.e., any additional operations on the receiver would result in

a run time exception, similar to linear type systems [39].

Our generalized typestate analysis works by tracking the state

of stream instances as follows. For a given expression, the

analysis yields a set of possible states for a given instance

following the evaluation of the expression. Due to the API style,

a typestate analysis that has a notion of instances that are based

on other instances is needed. As such, we compute the typestate

of individual streams and proceed to merge the typestates

to obtain the final typestate after the expression of where a

terminal operation consumes the stream. The final typestate is

derived at this point because that is when all of the (queued)

intermediate operations will execute. Moreover, the final

typestate is a set due to dataflow analysis of possible branching.

1) Intermediate Streams: A stream is created via APIs calls

stemming from the ⊥ state as discussed in § III-C. Recall that

intermediate operations may or may not also create streams

based on the receiver. We coin such streams as intermediate

streams as they are used to progress the computation to a final

result. Moreover, intermediate streams cannot be instantiated

alone; they must be based on (or derived from) existing ones.

If an intermediate stream is derived from another intermediate

stream, then, there must exist a chain of intermediate stream

creations that starts at a non-intermediate stream. Due to condi-

tional branching and polymorphism, there may be multiple such

(possible) chains. Intermediate streams must be appropriately

arranged so that the correct final state may be computed.

To sequence stream instances, we require a “predecessor”

function Pred(is) = {is1 ,...,isn} that maps a stream is to a

set of streams that may have been used to create is. Pred(is)
is computed by using the points-to set of the reference used as

the receiver when is was instantiated. Definition 4 describes

this function more generally.

Definition 4 (Predecessor Objects). Define Pred(o.m()) =
{i1, i2, ... , in} where o is an object reference, m a method,

o.m() results in an object reference, and ik ∈ {i1,i2,...,in}
for 1≤k≤n an abstract heap object identifier:

Pred(o.m())=

{

∅ if m() is not intermediate.

PointsTo(o) o.w.

2) Typestate Merging: Since intermediate operations possibly

create new streams based on the receiver, the typestate analysis

will generate different states for any stream produced by an

intermediate operation. We are interested in, however, the final

state just before the commencement of the terminal operation,

which results in stream consumption. Recall from § III-C1

that ⊥ models an initial state. As such, ⊥ will symbolize the

initial state of intermediate streams. In other words, although

an intermediate stream may “inherit” state from the stream

from which it is derived, in our formalism, we use ⊥ as a

placeholder until we can derive what exactly the state should

be. To this end, we introduce the concept of typestate merging.

First, we define a state selection function that results in the

first state if it is not ⊥ and the second state otherwise:

Definition 5 (State Selection). Define Select : S×S→ S to

be the state selection function:

Select(si,sj)=

{

sj if si=⊥

si o.w.

Definition 5 “selects” the “most recent” state in the case

that the typestate analysis determines it for the instance under

question and a previous state otherwise. For example, let

si =⊥ and sj = para . Then, Select(si,sj) = para. Likewise,

let si=unord and sj=ord . Then, Select(si,sj)=unord .

Next, we define the state merging function, which allows

us to merge two sets of states, as follows:

Definition 6 (State Merging). Define Merge(Si,Sj) = S to

be the typestate merging function:

Merge(Si,Sj)=











Si if Sj=∅

Sj if Si=∅

{Select(si,sj) |si∈Si∧sj ∈Sj} o.w.

As an example, let Si = {⊥} and Sj = {seq ,para}. Then,

Merge(Si,Sj)= {seq ,para}. Likewise, let Si= {ord ,unord}
and Sj={ord ,unord}. Then, Merge(Si,Sj)={unord ,ord}.

Finally, we define the notation of merged typestate analysis:

Definition 7 (Merged Typestate Analysis). Define

MTStateLTS (is,exp)=S where LTS is a labeled transition



system, is a stream, exp an expression, to be the typestate

analysis merging function:

MTStateLTS (is,exp)=














TStateLTS (is,exp) if Pred(o.m())=∅
⋃

isk∈Pred(is)

Merge(TStateLTS (is,exp),

MTStateLTS (isk ,exp))

o.w.

This final function aggregates typestate over the complete

method call chain until the terminal operation after exp.

E. Determining Whether Reduction Ordering Matters

To obtain a result from stream computations, a terminal

(reduction) operation must be issued. Determining whether

the ordering of the stream immediately before the reduction

matters (ROM) equates to discovering whether the reduction

result is the same regardless of whether the stream is ordered

or not. In other words, the result of the terminal operation

does not depend on the ordering of the stream for which the

operation is invoked, i.e., the value when the stream is ordered

is equal to the value when the stream is unordered. Some

reductions (terminal operations) do not return a value, i.e.,

they are void returning methods. In these cases, the behavior

rather than the resulting value should be the same. Terminal

operations fall into two categories, namely, those that produce

a result, e.g., count(), and those that produce a side-effect,

normally by accepting a λ-expression, e.g., forEach() [5].

1) Non-scalar Result Producing Terminal Operations: In the

case of non-scalar return values, whether the return type main-

tains ordering is determined by reusing the reflection technique

described in § III-C2a. Specifically, a stream is reflectively

derived from an instance of the non-scalar return (run time) type

approximations and its characteristics examined. And, from this,

whether reduction order matters is determined as follows. If it

is impossible for the returned non-scalar type to maintain an

element ordering, e.g., it is a HashSet, then, the result ordering

cannot make a difference in the program’s behavior. If, on the

other hand, the returned type can maintain an ordering, we

conservatively determine that the reduction ordering does matter.

As before, if there is any inconsistencies between the ordering

characteristics of the approximated types, the default is ordered.

2) Side-effect Producing Terminal Operations: When there

is a void return value, as is the case with side-effect producing

terminal operations, then, we need to know the order in which

the stream elements are “served” to the λ-expression argument

producing the side-effect. Currently, the list of void terminal

operations that maintain element ordering is also a parameter to

our analysis. As with determining SIOs, a more sophisticated

analysis would be needed to possibly approximate this charac-

teristic. In the current Java 8 Stream API, there are only two

such methods, namely, forEach() and forEachOrdered().

3) Scalar Result Producing Terminal Operations: The last

case is perhaps the most difficult. While discussing whether

non-scalar types (e.g., containers) maintain element ordering

seems natural, when the reduction is to a scalar type, it is

challenging to determine whether or not the element ordering

used to produce the resulting value had any influence over it.

Another view of the problem involves determining whether or

not the operation(s) “building” the result from the stream are

associative. Examples of associative operations include numeric

addition, minimum, and maximum, and string concatenation [5].

To address this, we divide the problem into determining the

associativity of specialized and general reduction operations.

a) Specialized Reduction Operations: Luckily, the number

and associativity property of specialized reduction operations

are fixed. As such, the list of specialized operations along

with their associativity property is input to the approach.

b) General Reduction Operations: The remaining general

reduction operations are reduce() and collect(). We have

already covered the cases where these operations return non-

scalar types. What remains is the cases when these operations

return scalar types. Due to the essence of collect(), in

practice, the result type will most likely fall into the non-scalar

category. In fact, collect() is a specialization of reduce()

meant for mutable reductions. Recall from § II that such

operations collect results in a container such as a collection [5].

The generality of these reduction operations make

determining whether ordering matters difficult. For example,

even a simple sum reduction can be difficult for an automated

approach to analyze. Consider the following code [5] that

adds Widget weights together using reduce():
widgets.stream().reduce(0,

(sum, b) -> sum + b.getWeight(), Integer::sum);

The first argument is the identity element; the second an

accumulator function, adding a Widget’s weight into the

accumulated sum. The last argument combines two integer sums

by adding them. The question is how, in general, can we tell

that this is performing an operation that is associative like sum-

mation? In other words, how can we determine that the reducer

computation is independent of the order of its inputs? It turns

out that this is precisely the reducer commutativity problem [20].

Unfortunately, this problem has been shown to be undecidable

by Chen et al. [20]. While we will consider approximations

and/or heuristics as future work, currently, our approach conser-

vatively fails preconditions in this case. During our experiments

detailed in § IV, these failures only accounted for 5%.

IV. EVALUATION

A. Implementation

Our approach was implemented as a publicly available, open

source Eclipse IDE [31] plug-in [28] and built upon WALA [32]

and SAFE [33]. Eclipse is leveraged for its extensive refactoring

support [40] and that it is completely open-source for all Java

development. WALA is used for static analyses such as side-

effect analysis (ModRef), and SAFE, which depends on WALA,

for its typestate analysis. SAFE was altered for programmatic

use and “intermediate” typestates (cf. § III-D2). For the refactor-

ing portion, Eclipse ASTs with source symbol bindings are used

as an intermediate representation (IR), while the static analysis

consumes a Static Single Assignment (SSA) [41] form IR.

As discussed in § III-D, our approach utilizes a k-CFA

call graph construction algorithm. To make our experiments

tractable and to treat client-side API invocations as stream cre-

ations (since the focus of this work is on manipulation of client



TABLE III
EXPERIMENTAL RESULTS.

subject KLOC eps k str rft P1 P2 P3 t (m)

htm.java 41.14 21 4 34 10 0 10 0 1.85
JacpFX 23.79 195 4 4 3 3 0 0 2.31

jdp* 19.96 25 4 28 15 1 13 1 31.88

jdk8-exp* 3.43 134 4 26 4 0 4 0 0.78
jetty 354.48 106 4 21 7 3 4 0 17.85
jOOQ 154.01 43 4 5 1 0 1 0 12.94
koral 7.13 51 3 6 6 0 6 0 1.06
monads 1.01 47 2 1 1 0 1 0 0.05
retroλ 5.14 1 4 8 6 3 3 0 0.66
streamql 4.01 92 2 22 2 0 2 0 0.72
threeten 27.53 36 2 2 2 0 2 0 0.51
Total 641.65 751 4 157 57 10 46 1 70.60

* jdp is java-design-patterns and jdk8-exp is jdk8-experiments.

code), we made k an input parameter to our analysis (with k=2
being the default as it is the minimum k value to consider client-

code) for methods returning streams and k=1 elsewhere. Recall

that k amounts to the call string length in which to approximate

object instances, thus, k=1 would consider constructor calls as

object creation locations, while k=2 would consider calls to

methods calling constructors as (“client”) object creation sites.

The tool currently uses a heuristic to inform developers when

k is too small via a precondition failure. It does so by checking

that call strings include at least one client method starting from

the constructor call site. Future work involves automatically

determining an optimal k, perhaps via stochastic optimization.

The call graph used in the typestate analysis is pruned by

removing nodes that do not have reaching stream definitions.

B. Experimental Evaluation

Our evaluation involved studying 11 open source Java

applications and libraries of varying size and domain (table III).

Subjects were also chosen such that they are using Java >=8
and have at least one stream declaration (i.e., a call to a stream

API) that is reachable from an entry point (i.e., a candidate

stream). Column KLOC denotes the thousands of source

lines of code, which ranges from ∼1K for monads to ∼354K

for jetty. Column eps is the number of entry points. For

non-library subjects, all main methods were chosen, otherwise,

all unit test methods were chosen as entry points. Column k is

the maximum k value used (see § IV-B1). Subjects compiled

correctly and had identical unit test (27,955; mostly from jetty)

results and compiler warnings before and after the refactoring.

The analysis was executed on an Intel Xeon E5 machine

with 16 cores and 30GB RAM and a 25GB maximum

heap size. Column tm (m) is the running time in minutes,

averaging ∼6.602 secs/KLOC. An examination of three of the

subjects revealed that over 80% of the run time was for the

typestate analysis, which is performed by SAFE. This analysis

incorporates aliasing information and can be lengthy for larger

applications. However, since our approach is automated, it can

be executed on a nightly basis or before major releases.

1) Setting k for the k-CFA: As discussed in § III-D, our

approach takes as input a maximum call string length parameter

k, which is used to construct the call graph using nCFA. Each

call graph node is associated with a context, which, in our

case, is the call string. This allows our analysis to approximate

TABLE IV
REFACTORING FAILURES.

failure pc cnt

F1. InconsistentPossibleExecutionModes 1
F2. NoStatefulIntermediateOperations P5 1
F3. NonDeterminableReductionOrdering 5
F4. NoTerminalOperations 13
F5. CurrentlyNotHandled 16
F6. ReduceOrderingMatters P3 19

F7. HasSideEffects
P1 4
P2 41

Total 100

stream object creation in the client code rather than in

the framework, where the stream objects are instantiated.

Otherwise, multiple calls to the same API methods that create

streams would be considered as creating one new stream.

During our experiments, a default k value of 2 was used. This

is the minimum k value that can be used to distinguish client

code from framework stream creation. However, depending on

which stream framework methods are utilized in a particular

project, this value may be insufficient. We detect this situation

via a heuristic of examining the call string and determining

whether any client code exists. If not, k may be too small.

Setting k constitutes a trade-off. A k that is too small

will produce correct results but may miss streams. A larger

k may enable the tool to detect and subsequently analyze

more streams but may increase run time. Thus, an optimal

k value can be project-specific. In our experiments, however,

we determined k empirically based on a balance between

run time and the ratio between total (syntactically available)

streams and candidate streams (i.e., those detected by the

typestate analysis). Notwithstanding, in keeping k between 2

and 4 (cf. table III), good results and reasonable runtime were

observed. Thus, it was not difficult to find an “effective” k.

2) Intelligent Parallelization: Streams are still relatively new,

and, as they grow in popularity, we expect to see them used

more widely. Nevertheless, we analyzed 157 (origin) streams

reachable from entry points (column str) across 11 subjects.

Of those, we automatically refactored ∼36.31% (column rft

for refactorable) despite being highly conservative. These

streams are the ones that have passed all preconditions; those

not passing preconditions were not transformed (cf. table IV).

Columns P1–3 are the streams passing the corresponding pre-

conditions (cf. tables I and II). Columns P4–5 have been omit-

ted as all of their values are 0. The number of transformations

can be derived from these columns as preconditions are associ-

ated with transformations, amounting to 10+46+(1∗2)=58.

3) Refactoring Failures: Table IV categorizes reasons why

streams could not be refactored (column failure), some of

which correspond directly to preconditions (column pc).

Column cnt depicts the count of failures in the respective

category and further categorized by precondition, if applicable.

Significant reasons streams were not refactorable include

λ-expression side-effects (F7, 45%) and that the reduction

ordering is preserved by the target collection (19%, c.f. § II).

Some of the refactoring failures were due to cases currently

not handled by our tool (F5), which are rooted in implemen-

https://github.com/iluwatar/java-design-patterns
https://github.com/edalorzo/jdk8-experiments
https://github.com/RutledgePaulV/monads
https://github.com/eclipse/jetty.project
https://github.com/eclipse/jetty.project


TABLE V
AVERAGE RUN TIMES OF JMH BENCHMARKS.

# benchmark orig (s/op) refact (s/op) su

1 shouldRetrieveChildren 0.011 (0.001) 0.002 (0.000) 6.57
2 shouldConstructCar 0.011 (0.001) 0.001 (0.000) 8.22
3 addingShouldResultInFailure 0.014 (0.000) 0.004 (0.000) 3.78
4 deletionShouldBeSuccess 0.013 (0.000) 0.003 (0.000) 3.82
5 addingShouldResultInSuccess 0.027 (0.000) 0.005 (0.000) 5.08
6 deletionShouldBeFailure 0.014 (0.000) 0.004 (0.000) 3.90
7 specification.AppTest.test 12.666 (5.961) 12.258 (1.880) 1.03
8 CoffeeMakingTaskTest.testId 0.681 (0.065) 0.469 (0.009) 1.45
9 PotatoPeelingTaskTest.testId 0.676 (0.062) 0.465 (0.008) 1.45

10 SpatialPoolerLocalInhibition 1.580 (0.168) 1.396 (0.029) 1.13
11 TemporalMemory 0.013 (0.001) 0.006 (0.000) 1.97

tation details related to model differences between representa-

tions [28]. For example, streams declared inside inner (embed-

ded) classes are problematic as such classes are part of the outer

AST but the instruction-based IR is located elsewhere. Though

we plan to develop more sophisticated mappings in the future,

such failures only accounted for 16%. Other refactoring failures

include F4, where stream processing does not end with a termi-

nal operation in all possible executions. This amounts to “dead”

code as any queued intermediate operations will never execute.

F3 corresponds to the situation described in § III-E3b, F1 to the

situation where execution modes are ambiguous on varying exe-

cution paths, and F2 means that the stream is already optimized.

4) Performance Evaluation: Many factors can influence

performance, including dataset size, number of available cores,

JVM and/or hardware optimizations, and other environmental

activities. Nevertheless, we assess the performance impact of

our refactoring. Although this assessment is focused on our

specific refactoring and subject projects, in the general case, it

has been shown that a similar refactoring done manually has

improved performance by 50% on large datasets [42, Ch. 6].

a) Existing Benchmarks: We assessed the performance

impact of our refactoring on the subjects listed in table III.

One of the subjects, htm.java [43], has formal performance tests

utilizing a standard performance test harness, namely, the Java

Microbenchmark Harness (JMH) [44]. Using such a test harness

is important in isolating causes for performance changes to

the code changes themselves [42, Ch. 6.1]. As such, subjects

with JMH tests will produce the best indicators of performance

improvements. Two such tests were included in this subject.

b) Converted Benchmarks: Although the remainder of

the subjects did not include formal performance tests, they

did include a rich set of unit tests. For one subject, namely,

java-design-patterns [45], we methodically transformed

existing JUnit tests that covered the refactored code to

proper JMH performance tests. This was accomplished by

annotating existing @Test methods with @Benchmark, i.e., the

annotation that specifies that a method is a JMH performance

test. We also moved setup code to @Before methods, i.e.,

those that execute before each test, and annotated those with

@Setup. This ensures that the test setup is not included in the

performance assessment. Furthermore, we chose unit tests that

did not overly involve I/O (e.g., database access) to minimize

variability. In all, nine unit tests were converted to performance

tests and made our changes available to the subject developers.

c) Augmenting Dataset Size: As all tests we designed

for continuous integration (CI), they executed on a minimal

amount of data. To exploit parallelism, however, we augmented

test dataset sizes. For existing benchmarks, this was done under

the guidance of the developers [46]. For the converted tests, we

chose an N (dataset size) value that is consistent with that of

the largest value used by Naftalin [42, Ch. 6]. In this instance,

we preserved the original unit test assertions, which all passed.

This ensures that, although N has increased, the spirit of the

test, which may reflect a real-life scenario, remains intact.

d) Results: Table V reports the average run times

of five runs in seconds per operation. Rows 1–9 are for

java-design-patterns, while rows 10–11 are for htm.java;

benchmark names have been shortened for brevity. Column

orig is the original program, refact is the refactored program,

and su is the speedup (runtimeold/runtimenew ). Values

associated with parentheses are averages, while the value

in parenthesis is the corresponding standard deviation. The

average speedup resulting from our refactoring is 3.49.

5) Discussion: The findings of Naftalin [42, Ch. 6] using

a similar manual refactoring, that our tool was able to refactor

36.31% of candidate streams (table III), and the results of the

JMH tests on the refactored code (table V) combine to form a

reasonable motivation for using our approach in real-world sit-

uations. Moreover, this study gives us insight into how streams,

and in a broader sense, concurrency, are used, which can be

helpful to language designers, tool developers, and researchers.

As mentioned in § IV-B2, columns P4–5 in table III all have

0 values. Interestingly, this means that no (already) parallel

streams were refactored by our tool. Only two candidate

streams, stemming from only a single subject, htm.java, were

originally parallel. This may indicate that developers are

either timid to use parallel streams because of side-effects,

for example, or are (manually) unaware of when using

parallel streams would improve performance [42]. This further

motivates our approach for automated refactoring in this area.

From table IV, F6 and F7 accounted for the largest

percentage of failures (64%). For the latter, this may indicate

that despite that “many computations where one might be

tempted to use side-effects can be more safely and efficiently

expressed without side-effects” [5], in practice, this is either

not the case or more developer education is necessary to avoid

side-effects when using streams. This motivates future work

in refactoring stream code to avoid side-effects if possible.

Imprecision is also a possibility as we are bound by

the conservativeness of the underlying ModRef analysis

provided by WALA. To investigate, we manually examined

45 side-effect failures and found 11 false positives. Several

subject developers, on the other hand, confirmed correct

refactorings, as discussed in § IV-B6. As for the former, a

manual inspection of these sites may be necessary to confirm

that ordering indeed must be preserved. If not, developers

can rewrite the code (e.g., changing forEachOrdered() to

forEach()) to exploit more parallelism opportunities.

The average speedup of 1.55 obtained from htm.java

(benchmarks 10–11) most likely reflects the parallelism

http://github.com/numenta/htm.java
https://github.com/iluwatar/java-design-patterns
https://github.com/iluwatar/java-design-patterns
http://github.com/numenta/htm.java
http://github.com/numenta/htm.java
http://github.com/numenta/htm.java


opportunities available in computationally intensive

programs [47]. Benchmarks 1–6, which had good speedups as

well, also mainly deal with data. Benchmark 7 had the smallest

speedup at 1.03. The problem is that the refactored code

appears in areas that “will not benefit from parallelism” [48],

demonstrating a limitation of our approach that is rooted

in its problem scope. Specifically, our tool locates sites

where stream client code is safe to refactor and is possibly

optimizable based on language semantics but does not assess

optimizability based on input size/overhead trade-offs.

6) Pull Request Study: To assess our approach’s usability, we

also submitted several pull requests (patches) containing the re-

sults of our tool to the subject projects. As of this writing, eight

requests were made, with three pending (e.g., [46]) and five

rejected. One rejected request [48] is discussed in § IV-B5. Oth-

ers (e.g., [45]) confirmed a correct refactoring but only wanted

parallel streams when performance is an observed problem.

C. Threats to Validity

The subjects may not represent the stream client code usage.

To mitigate this, subjects were chosen from diverse domains

as well as sizes, as well as those used in previous studies

(e.g., [49], [50]). Although java-design-patterns is artificial,

it is a reference implementation similar to that of JHotDraw,

which has been studied extensively (e.g., [51]).

Entry points may not be correct, which would affect which

streams are deemed as candidates, as well as the performance

assessment as there is a trade-off between scalability and

number of entry points. Since standard entry points were chosen

(see § IV-B), representing a super set of practically true entry

points. For the performance test (see table V), the loads may not

be representative of real-world usage. However, we conferred

with developers regarding this when possible [46]. For the

performance tests we manually generated from unit tests, a

systematic approach to the generation was taken using the same

parameters (N ) on both the original and refactored versions.

V. RELATED WORK

Automatic parallelization can occur on several levels,

including the compiler [52], [53], run time [54], and source [17].

The general problem of full automatic parallelization by

compilers is extremely complex and remains a grand

challenge [55]. Many attempt to solve it in only certain contexts,

e.g., for divide and conquer [56], recursive functions [57],

distributed architectures [58], graphics processing [59], matrix

manipulation [60], asking the developer for assistance [61],

and speculative strategies [62]. Our approach focuses on

MapReduce-style code over native data containers in a shared

memory space using a mainstream programming languages,

which may be more amenable to parallelization due to more ex-

plicit data dependencies [16]. Moreover, our approach can help

detect when it is not advantageous to run code in parallel, and

when unordering streams can possibly improve performance.

Techniques other than ours enhance the performance of

streams as well. Hayashi et al. [63] develop a supervised

machine-learning approach for building performance heuristics

for mapping Java applications onto CPU/GPU accelerators

via analyzing parallel streams. Ishizaki et al. [64] translate λ-

expressions in parallel streams into GPU code and automatically

generates run time calls that handle low-level operations. While

all these approaches aim to improve performance, their input is

streams that are already parallel. As such, developers must still

manually identify and transform sequential streams. Nonethe-

less, these approaches may be used in conjunction with ours.

Harrison [65] develops an interprocedural analysis and auto-

matic parallelization of Scheme programs. While Scheme is a

multi-paradigm language, and shared memory is modeled, their

transformations are more invasive and imperative-focused, in-

volving such transformations as eliminating recursion and loop

fusion. Nicolay et al. [66] have a similar aim but are focused on

analyzing side-effects, whereas we analyze ordering constraints.

Many approaches use streams for other tasks or enhance

streams in some way. Cheon et al. [67] use streams for

JML specifications. Biboudis et al. [1] develop “extensible”

pipelines that allow stream APIs to be extended without

changing library code. Other languages, e.g., Scala [2],

JavaScript [3], C# [4], also offer streaming APIs. While we

focus on Java 8 streams, the concepts set forth here may

be applicable to other situations, especially those involving

statically-typed languages, and is a topic for future work.

Other approaches refactor programs to either utilize or

enhance modern construct usage. Gyori et al. [16] refactor

Java code to use λ-expressions instead of imperative-style

loops. Tsantalis et al. [68] transform clones to λ-expressions.

Khatchadourian and Masuhara [69] refactor skeletal implemen-

tations to default methods. Tip et al. [70] use type constraints

to refactor class hierarchies, and Gravley and Lakhotia [71] and

Khatchadourian [72] refactor programs to use enumerated types.

Typestate has been used to solve many problems. Mishne et

al. [73] use typestate for code search over partial programs.

Garcia et al. [74] integrate typestate as a first-class citizen in

a programming language. Padovani [75] extends typestate ori-

ented programming (TSOP) for concurrent programming. Other

approaches have also used hybrid typestate analyses. Bodden

[76], for instance, combines typestate with residual monitors

to signal property violations at run time, while Garcia et al.

[74] also make use of run time checks via gradual typing [75].

VI. CONCLUSION & FUTURE WORK

Our automated refactoring approach “intelligently” optimizes

Java 8 stream code It automatically deems when it is safe and

possibly advantageous to run stream code either sequentially or

in parallel and unorder streams. The approach was implemented

as an Eclipse plug-in and evaluated on 11 open source programs,

where 57 of 157 candidate streams (36.31%) were refactored.

A performance analysis indicated an average speedup of 3.49.

In the future, we plan to handle several issues between

Eclipse and WALA models and incorporate more kinds of

(complex) reductions like those involving maps, as well as look

into approximations to combat the problems set forth by Chen

et al. [20]. Approximating SIOs may also involve heuristics,

e.g., analysis of API documentation. Lastly, we will explore

applicability to other streaming frameworks and languages.

https://github.com/iluwatar/java-design-patterns
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[45] I. Seppälä. (2018). Design patterns implemented in Java,
[Online]. Available: http://git.io/v5lko (visited on 08/24/2018).

[46] D. Ray. (Mar. 2018). Pull request #539–numenta/htm.java,
[Online]. Available: http://git.io/fAqDq (visited on 03/21/2018).

[47] M. Kumar, “Measuring parallelism in computation-intensive
scientific/engineering applications,” IEEE Transactions on
Computers, vol. 37, no. 9, pp. 1088–1098, Sep. 1988, ISSN:
0018-9340. DOI: 10.1109/12.2259.

[48] E. Luontola. (Mar. 2018). Pull request #140–
orfjackal/retrolambda, [Online]. Available: http://git.io/fAqHz.

[49] R. Khatchadourian and H. Masuhara, “Proactive empirical
assessment of new language feature adoption via automated
refactoring: The case of Java 8 default methods,” in Interna-
tional Conference on the Art, Science, and Engineering of
Programming, 2018, 6:1–6:30. DOI: 10.22152/programming-
journal.org/2018/2/6.

[50] A. Ketkar, A. Mesbah, D. Mazinanian, et al., “Type migration
in ultra-large-scale codebases,” in International Conference on
Software Engineering, To appear, 2019.

[51] M. Marin, L. Moonen, and A. van Deursen, “An integrated
crosscutting concern migration strategy and its application to
JHotDraw,” in International Working Conference on Source
Code Analysis and Manipulation, 2007.

[52] M. Wolfe, “Parallelizing compilers,” ACM Comput. Surv.,
vol. 28, no. 1, pp. 261–262, Mar. 1996. DOI: 10.1145/234313.
234417.

[53] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua,
“Automatic program parallelization,” Proceedings of the IEEE,
vol. 81, no. 2, pp. 211–243, 1993.

[54] B. Chan and T. S. Abdelrahman, “Run-time support for the
automatic parallelization of java programs,” The Journal of
Supercomputing, vol. 28, no. 1, pp. 91–117, 2004.

[55] G. C. Fox, R. D. Williams, and G. C. Messina, Parallel
computing works! Morgan Kaufmann, 2014.

[56] R. Rugina and M. Rinard, “Automatic parallelization of divide
and conquer algorithms,” in ACM SIGPLAN Notices, ACM,
vol. 34, 1999, pp. 72–83.

[57] M. Gupta, S. Mukhopadhyay, and N. Sinha, “Automatic
parallelization of recursive procedures,” International Journal
of Parallel Programming, vol. 28, no. 6, pp. 537–562, 2000.

[58] M. Ravishankar, J. Eisenlohr, L.-N. Pouchet, et al., “Automatic
parallelization of a class of irregular loops for distributed
memory systems,” ACM Trans. Parallel Comput., vol. 1, no. 1,
7:1–7:37, Oct. 2014, ISSN: 2329-4949. DOI: 10.1145/2660251.

[59] A. Leung, O. Lhoták, and G. Lashari, “Automatic paralleliza-
tion for graphics processing units,” in Principles and Practice
of Programming in Java, ACM, 2009, pp. 91–100.

[60] S. Sato and H. Iwasaki, “Automatic parallelization via matrix
multiplication,” in ACM SIGPLAN Notices, ACM, vol. 46,
2011, pp. 470–479.

[61] H. Vandierendonck, S. Rul, and K. De Bosschere, “The paralax
infrastructure: Automatic parallelization with a helping hand,”
in International Conference on Parallel Architectures and
Compilation Techniques, IEEE, 2010, pp. 389–399.

[62] J. G. Steffan and T. C. Mowry, “The potential for using thread-
level data speculation to facilitate automatic parallelization,”
in International Symposium on High-Performance Computer
Architecture, IEEE, 1998, pp. 2–13.

[63] A. Hayashi, K. Ishizaki, G. Koblents, and V. Sarkar, “Machine-
learning-based performance heuristics for runtime cpu/gpu
selection,” in Principles and Practices of Programming on
The Java Platform, 2015, pp. 27–36. DOI: 10.1145/2807426.
2807429.

[64] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar, “Com-
piling and optimizing Java 8 programs for GPU execution,”
in International Conference on Parallel Architecture and
Compilation, 2015, pp. 419–431. DOI: 10.1109/PACT.2015.46.

[65] W. L. Harrison, “The interprocedural analysis and automatic
parallelization of scheme programs,” LISP and Symbolic
Computation, vol. 2, no. 3, pp. 179–396, Oct. 1989, ISSN:
1573-0557. DOI: 10.1007/BF01808954.

[66] J. Nicolay, C. de Roover, W. de Meuter, and V. Jonckers,
“Automatic parallelization of side-effecting higher-order scheme
programs,” in International Working Conference on Source
Code Analysis and Manipulation, 2011, pp. 185–194. DOI:
10.1109/SCAM.2011.13.

[67] Y. Cheon, Z. Cao, and K. Rahad, “Writing JML specifications
using Java 8 streams,” University of Texas at El Paso, 500
West University Avenue, El Paso, Texas 79968-0518, USA,
Tech. Rep. UTEP-CS-16-83, Nov. 2016.

[68] N. Tsantalis, D. Mazinanian, and S. Rostami, “Clone refactor-
ing with lambda expressions,” in International Conference on
Software Engineering, 2017, pp. 60–70. DOI: 10.1109/ICSE.
2017.14.

[69] R. Khatchadourian and H. Masuhara, “Automated refactoring
of legacy Java software to default methods,” in International
Conference on Software Engineering, May 2017, pp. 82–93.
DOI: 10.1109/ICSE.2017.16.
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