
Safe Composition of Non-Monotonic Features

Martin Kuhlemann

Faculty of Computer Science
University of Magdeburg, Germany

mkuhlema@ovgu.de

Don Batory

Department of Computer Sciences
University of Texas at Austin, USA

batory@cs.utexas.edu

Christian Kästner

Faculty of Computer Science
University of Magdeburg, Germany

ckaestne@ovgu.de

Abstract

Programs can be composed from features. We want to verify auto-
matically that all legal combinations of features can be composed
safely without errors. Prior work on this problem assumed that fea-
tures add code monotonically. We generalize prior work to enable
features to add and remove code, describe our analyses and im-
plementation, and review case studies. We observe that more ex-
pressive features increase the complexity of developed programs
rapidly – up to the point where tools and automated concepts as
presented in this paper are indispensable for verification.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Validation; D.2.13 [Soft-
ware Engineering]: Reusable Software; D.2.1 [Software Engi-
neering]: Requirements/Specifications

General Terms Verification, design

Keywords Feature-oriented programming, safe composition, refac-
toring, AHEAD

1. Introduction

In feature-oriented programming, features encapsulate increments
in program functionality [9]. Features can be implemented as code
transformations called feature modules [9, 1]. Composing feature
modules in different ways yields a family of programs called a
product line [30].

Not all combinations of features are meaningful [8]. Meaning-
ful combinations are legal to a feature model which declares fea-
tures to be mandatory, optional, alternative, or inclusive to other
features [18]. Unfortunately, developers cannot verify properties of
all programs in a product line by simply composing and analyzing
every program in isolation (brute force strategy) as the number of
programs can be exponential in the number of features [22]. One
solution to this problem is safe composition, a technique to verify
that all programs of a product line that are assembled from fea-
ture modules are type correct [11, 35, 21, 20]. Safe composition
analyses effectively and efficiently analyze all compositions of fea-
tures. In prior work, safe composition approaches have been pro-
posed for monotonic feature modules that could add new classes to
a program, add new members to existing classes, and wrap existing
methods. Members or classes could never be deleted by a feature.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’09, October 4–5, 2009, Denver, Colorado, USA.
Copyright c© 2009 ACM 978-1-60558-494-2/09/10. . . $10.00

We recently proposed that feature modules be extended in a fun-
damental way: to include object oriented refactorings [23], which
can rename, add, and delete existing classes and members. With
refactorings, feature modules are now more expressive but also
break with the common assumption of monotonicity [5] where code
elements can only be added or extended. For example, a feature
can now rename a class or method M to N. If a subsequently added
feature references M, the resulting program is no longer correct
and will not compile. The benefits of adding refactorings to fea-
ture modules is not the subject of this paper (this is explored else-
where [23]), but we focus on the analyses to support refactorings
as elements of feature modules.

In this paper, we show how safe composition analyses can be
generalized to allow features to be non-monotonic transformations
(including but not limited to refactorings). To show that the resul-
tant computational effort is manageable for non-trivial programs,
we present a number of case studies.

We observe that when feature transformations can create and
delete code, the complexity of developed programs can grow
rapidly, more than we initially expected. We reason that a more
expressive language can increase the complexity of developed pro-
grams rapidly to the point where tools and automated concepts as
presented in this paper are indispensable for verification.

2. Background

2.1 Safe Composition in Feature-Oriented Design

Feature models. A feature is an increment in program functional-
ity [9]. A feature is implemented by a sequence of primitive trans-
formations (i.e., add method, add field, wrap method, etc.) called
a feature module. Feature modules are selected during a configura-
tion process to define a target program. When a feature module is
selected, its transformations are applied to that program.

Meaningful combinations of features are defined in a feature
model [18]. A feature model additionally defines the order in which
selected feature modules are composed [8].

A feature model is depicted by a feature diagram like the one
in Figure 1a. This model defines an abstract data type List with
the features Lock and Base and maps these features to the fea-
ture modules Lock and Base respectively. The model says that any
combination of Lock and Base yields a meaningful program, i.e.,
the legal feature compositions according to this feature model are
Lock, Base, and Lock • Base (denoting Lock applies transforma-
tions to Base). We encode the feature composition order in the fea-
ture model by reading from right to left in the feature diagram so
Base • Lock (Base applies transformations to Lock) is not a legal
program.

While the diagram notation is illustrative we need a different
representation of feature models in this paper. We represent the
model of Figure 1a as a propositional formula in Figure 1b fol-
lowing the standard rules in [11, 35, 7, 12]. Each variable in this

dsb
Text Box
Generative Programming And Component Engineering, 2009

OR relation

List

Lock Base

feature

(a) diagram notation

List∧
(Lock → List)∧
(Base → List)∧
(Lock ∨ Base)

(b) formula notation

Figure 1. Sample feature model.

formula corresponds to one feature – we thus call it a feature vari-
able. A feature variable is ’true’ when the feature is selected and
’false’ otherwise. The formula evaluates to ’true’ for legal feature
selections. Note, feature order is not defined in the formula because
there is only one ordering. Feature order is defined externally to the
formula notation.

Feature modules. Features are implemented by feature modules
which successively transform the code contributions of previously
composed features [31, 9]. They encapsulate classes and class re-
finements where class refinements add new members to classes or
extend existing members. If a feature module is not selected then
its classes and class refinements are not applied to the generated
program.

In Figure 2, we show the feature modules referenced in the
feature model of Figure 1 (we use the Jak language [9] which
adds feature modules to Java). The module Base encapsulates a
class List. The module Lock encapsulates a refinement of class
List which adds a field locked and a method setLock to class
List of Base. Method get of the class refinement List (in Lock)
refines method get of the class List (in Base) by wrapping. It
adds statements and calls the refined method using Jak’s keyword
Super (Line 14). Since Jak feature modules only add code (classes,
methods, fields, statements) we call them monotonic modules.

Safe composition of monotonic modules. The feature model in
Figure 1 does not represent the set of type correct programs which
can be composed from the referenced modules of Figure 2. Note
that Lock requires the selection of Base for two reasons: (a) the
class refinement of Lock requires the class List to exist and (b)
method refinement List.get of Lock requires the refined method
List.get to exist. Knowing this dependency we can infer that the
program defined only by Lock is in error because Base is not
selected, i.e., either the model is in error, feature module Lock is
in error, or both. In this example, the feature model is in error.

Thaker et al. [35] determined dependencies, called composition
constraints, between monotonic modules such that domain experts
could attach them to the features in the feature model. These com-
position constraints restrict the legal compositions to those which
compose without errors. To repair the feature model of Figure 1,
a constraint can be added to require Base to be present each time
Lock is selected – we use a propositional formula over feature vari-
ables to denote this constraint: Lock → Base .

2.2 Refactoring Feature Modules

There are many use cases for which more expressive feature mod-
ules are beneficial, e.g., [4, 3, 23]. An interesting extension to
monotonic feature modules is to allow them to create and delete
code, i.e., an extension that breaks with common assumptions of
monotonicity of feature modules. One example in which feature
modules are extended to create and delete code is adding refactor-
ings to feature modules.

A refactoring transforms a program by altering the program’s
structure but not its semantics [29]. For example, modifying a
method’s name and updating all references is a ’Rename Method’
refactoring [16]. The standard refactorings that we use to illustrate

Feature Module Base

1 public class L i s t {
2 private MyList elements ;
3 Object get () {
4 return elements . get (0) ;
5 }
6 }

Feature Module Lock

7 ref ines class L i s t {
8 boolean l ocked = fa lse ;
9 void setLock (boolean newLock){

10 l ocked=newLock ;
11 }
12 Object get () {
13 i f (locked) return nul l ;
14 return Super . get () ;
15 }
16 }

Figure 2. Sample feature-oriented design.

the concepts in this paper are ’Rename Method’ and ’Rename
Class’ as we assume them to be widely known1 – but, our approach
is not limited to them.

In previous work, we explored how refactorings could be
included in feature modules called a refactoring feature mod-
ule (RFM) [23]. Figure 3 shows RFMs in the order they can be
applied sequentially to the feature module Base (top-down order).
In line with sequentiality, an RFM only transforms code created in
feature modules which precede the RFM in a composition but not
code created after the RFM. For instance, RFM ListAdt in Figure 3
renames the class List to ADT of feature modules Base and GetPop
when they are selected. Since RFMs create and delete code ele-
ments (e.g., renaming can be represented as code element deletion
and creation), they are non-monotonic.

RFMs are beneficial for product lines of components [23]: A
component generated from feature modules often needs to integrate
with legacy applications [10], which expect particular names and
signatures for a component’s interface, that is, applications which
expect different names and signatures than those that are generated.
RFMs can transform generated interfaces so that they can neatly
be integrated with legacy code. RFMs in this use case are final
transformations performed on generated components.

We focus on refactorings in RFMs that modify fully qualified
names and signatures of code elements (’identifiers’ for short) be-
cause identifiers are important for module integration. Refactorings
which depend on method bodies (e.g., ’Change Bidirectional Asso-
ciation to Unidirectional’2) are not considered but our concepts ap-
ply for them too once we analyze method bodies. Still, even without
analyzing method bodies we cover implementations of about 28%
of the refactorings in [16].3

1 ’Rename Class’ changes the name of a class [16].
2 ’Change Bidirectional Association to Unidirectional’ removes a field of a
two-way association when it is not called/needed [16].
3 Refactorings that we cover are: ’Add Parameter’, ’Change Unidirectional
Association to Bidirectional’, ’Change Value to Reference’, ’Encapsulate
Field’, ’Extract Class’, ’Extract Complete Interface’, ’Extract Superclass’,
’Hide Delegate’, ’Inline Method’, ’Introduce Parameter Object’, ’Move
Class’, ’Move Field’, ’Move Method’, ’Rename Class’, ’Rename Field’,
’Rename Method’, ’Remove Assignments to Parameters’, ’Replace Con-
structor with Factory Method’, ’Replace Magic Number with Symbolic
Constant’, ’Replace Method with Method Object’, ’Self Encapsulate Field’.
Refactorings ’Consolidate Duplicate Conditional Fragments’ and ’Replace
Nested Conditional with Guard Clauses’ do not affect identifiers – thus,
they are irrelevant for module integration and we count them as covered.

Base

RenameClassRefactoring

<<RFM>>

RenameClassRefactoring

<<RFM>>

RenameMethodRefactoring

<<RFM>>

List

get()

_elements

rename ’LinkedList.pop’ into ’topmost’

RenameMethodRefactoring

<<RFM>>

rename ’LinkedList.get’ into ’topmost’

RenameMethodRefactoring

<<RFM>>

rename ’List’ into ’LinkedList’

rename ’List’ into ’ADT’

rename ’List.get’ into ’pop’

GetTopmost

PopTopmost

ListLlist

ListAdt

GetPop

Figure 3. Refactorings as parts of feature modules.

Given the above, we want to verify that every legal combination
of monotonic feature modules and non-monotonic RFMs that is
permitted by a feature model is type correct. We examine the
difficulty of doing so in the following sections.

3. Analysis of Non-Monotonic Modules

The key to safe composition of a non-monotonic feature module
– and thus an RFM – is to verify its preconditions [32, 16, 29,
36]. For refactorings, preconditions are formulated in terms of
identifiers which must exist when an RFM is applied and identifiers
which must not exist. For instance, a refactoring which renames
a class List into LinkedList requires both that a code element
with identifier List to exist and that a code element with identifier
LinkedList not to exist. If List does not exist then the refactoring
fails because there is no class to rename. If LinkedList exists
then the refactoring fails too as there can only be one LinkedList
class in a program [29, 32]. If these constraints are fulfilled in all
legal compositions then this ’Rename Class’ RFM is guaranteed to
compose safely.

To clarify the challenges, we deduce composition constraints
(dependencies between features) for the refactorings of Figure 3.
Note that the complexity of the constraints grows quickly as the
number of RFMs increases:

• The ’Rename Method’ refactoring in RFM GetPop renames
method List.get into pop and thus requires a method with the
identifier List.get. Base creates List.get and thus GetPop must
always appear after Base. GetPop additionally requires that a
code element with the identifier List.pop not to exist – this is

always true as List.pop is not created by any combination of
features prior to GetPop. The composition constraint for GetPop
is that GetPop requires Base (GetPop → Base).

• The ’Rename Class’ refactoring in RFM ListAdt renames class
List into ADT and thus requires that a code element with the
identifier List to exist and a code element with identifier ADT
not to exist. List is created by Base and ADT is not created
by any feature that can be composed prior to ListAdt. Thus the
composition constraint for ListAdt is ListAdt → Base .

• The ’Rename Class’ refactoring in RFM ListLlist renames class
List into LinkedList and thus requires a code element with
the identifier List and that there is no code element with the
identifier LinkedList. Special to the constraint of ListLlist is
feature ListAdt. ListAdt deletes List and so ListLlist can only
be applied if ListAdt is not also selected. We derive a constraint
ListLlist → (¬ListAdt ∧ Base).

• The ’Rename Method’ refactoring in RFM PopTopmost re-
names method LinkedList.pop into topmost and thus re-
quires a code element with the identifier LinkedList.pop.
LinkedList.pop can only be created by the feature composi-
tion ListLlist • GetPop • Base and that feature ListAdt not
be selected. The constraint is PopTopmost → (ListLlist ∧
¬ListAdt ∧ GetPop ∧ Base).

• Finally GetTopmost renames method LinkedList.get into top-
most and thus requires a code element with the identifier
LinkedList.get and that there is no code element with iden-
tifier LinkedList.topmost. LinkedList.get can only be created
by the feature composition ListLlist • Base and that features
GetPop and ListAdt not be selected (here, this includes the non-
existence of LinkedList.topmost): GetTopmost → (¬Pop−
Topmost ∧ ListLlist ∧ ¬ListAdt ∧ ¬GetPop ∧ Base)

Note that the above constraints can be simplified. Example:
GetTopmost → (ListLlist ∧ ¬GetPop).

Summary. In safe composition of monotonic feature modules, a
feature F requires another feature G if F references a code element
(e.g., method, field, class, interface) introduced in G [35]. In safe
composition of non-monotonic RFMs, one RFM may require that
multiple features apply in an ordered composition to create a code
element with a particular identifier and may additionally require
that certain features are not selected.

4. Safe Composition of Non-Monotonic Modules

In this section, we present our solution to verify safe composition
of non-monotonic feature modules. We proceed in three steps: In
Section 4.1 we describe the basic concept; in Sections 4.2 and 4.3
we describe the concepts of its implementation. We use the follow-
ing notation: F denotes the set of all features, C denotes the set of
all feature compositions (cf. Sec. 2.1) over F, P denotes the set of
all propositional formulas over feature variables4, I denotes the set
of all possible identifiers.

4.1 Basic Concept

Preconditions of refactorings define identifiers that either must exist
or must not exist in the code for the refactoring to be successful. We
determine composition constraints by relating feature compositions
to each other that make the referenced identifiers exist (or not exist),
i.e., where some code elements have these identifiers. We translate

4 A feature variable is a propositional variable that is ’true’ when the ac-
cording feature is selected and ’false’ otherwise (cf. Sec. 2.1).

these constraints to propositional formulas, as SAT solvers can
verify them efficiently for all feature combinations.

To provide a concise syntax for the following discussions, we
introduce a function p that translates feature compositions into
propositional formulas (p : C → P). The function p translates
a composition of features into a conjunction of feature variables
because all features in a composition must be selected in order
to apply it. When features in a feature composition are not se-
lected, their feature variables nevertheless contribute to the gen-
erated conjunction but are assigned as ’false’. As an example, p
translates a feature composition ListAdt • Base (that does not se-
lect GetPop) into the formula ListAdt ∧ ¬GetPop ∧ Base , i.e.,
p(ListAdt •Base) = ListAdt ∧¬GetPop ∧Base . Features that
are composed after ListAdt are not relevant.

Preconditions of refactorings fall into two camps: the existence
of some identifiers I+ and the non-existence of some identifiers I−

in the code to refactor (I+ ⊆ I; I− ⊆ I; I+∩ I− = ∅). We create
a composition constraint for each precondition. Both constraints
must be fulfilled in every legal composition in order to compose
a refactoring safely, i.e., every legal composition must make both
identifiers in I+ exist and identifiers in I− not-exist immediately
prior to that refactoring. Suppose a refactoring R requires some
code element with the identifier x (x ∈ I+): we verify that x always
exists immediately prior to R in all legal feature compositions
containing R in a product line. Further, suppose that a refactoring
R requires some code element with the identifier y to not exist
(y ∈ I−): we verify that y never exists immediately prior to R in
all legal feature compositions containing R in a product line.

We use the RFM ListLlist of Figure 3 as a running example in
our discussions: ListLlist renames class List into LinkedList. Thus,
ListLlist requires that List exist and LinkedList not exist in all legal
compositions immediately before feature ListLlist.

Existence of identifiers. With a function c we calculate the set
of unique feature compositions that make a code element with
the required identifier x exist at the point immediately before the
feature R. That is, c : I×F → P(C). For now, we assume that such
a function exists, its efficient implementation is discussed later.

c(x,R) = {C1, C2, . . . , Cn} (1)

For example, the set of compositions which make identifier List
exist immediately before ListLlist is:

c(List,ListLlist) = {Base,GetPop • Base}

Consequently, a propositional constraint which we must verify
for all legal feature compositions is: If feature R is selected then at
least one composition in the result of c(x,R) applies prior to it:

R → (p(C1) ∨ p(C2) ∨ . . . ∨ p(Cn)) (2)

For example, the composition constraint for ListLlist is5:

ListLlist → (p(Base) ∨ p(GetPop • Base))

SAT solvers efficiently verify existential clauses for proposi-
tional formulas [27]. Therefore, we transform constraint (2) into
a theorem to be verified by a SAT solver. That is, instead of verify-
ing that every legal composition fulfills the composition constraint
of feature R, we verify whether there is a composition that is legal
for a feature model but that does not fulfill R’s constraint.

5 p(Base) = ¬ListAdt ∧ ¬GetPop ∧ Base; p(GetPop • Base) =
¬ListAdt ∧ GetPop ∧ Base; features composed after ListADT (prede-
cessor of ListLlist) are not relevant

We use a key observation by Czarnecki [11]: if C is a constraint
that is to be satisfied by programs in a product line and FM is
the predicate that is derived from a feature model (like in Fig. 1b),
then FM → C must be a tautology and thus ¬(FM → C)
must be unsatisfiable. The theorem that we need to prove is that
the following predicate is unsatisfiable:

¬(FM → (R → (p(C1) ∨ p(C2) ∨ . . . ∨ p(Cn)))) (3)

Formula (3) is unsatisfiable when R composes safely. Stated an-
other way, if (3) is satisfiable then the binding provided by a SAT
solver tells us a legal composition of features for which R’s precon-
dition fails.

In our example, ListLlist can be composed safely if the follow-
ing predicate is unsatisfiable. FM is the predicate derived from the
feature model (not depicted but similar to Fig. 1b).

¬(FM → (ListLlist → (p(Base) ∨ p(GetPop • Base))))

Non-existence of identifiers. We now consider how to verify the
non-existence of an identifier. With our function c, we calculate
the set of feature compositions that make y exist at the point
immediately before R where R requires y to not exist.

c(y,R) = {C′
1, C

′
2, . . . , C

′
n} (4)

For example, ListLlist in Figure 3 requires LinkedList to not
exist – the set of compositions that create LinkedList immediately
before ListLlist is c(LinkedList,ListLlist) = ∅.

By symmetry, a constraint which we must verify for all legal
feature compositions is whether feature R implies that no composi-
tion in the result of c(y,R) applies prior to it:

R → ¬(p(C′
1) ∨ p(C′

2) ∨ . . . ∨ p(C′
n)) (5)

As before, we translate this constraint into a theorem for a SAT
solver to verify. A binding that satisfies the formula tells us a legal
composition for which R’s precondition fails (i.e., y exists).

In our running example, the result of c(LinkedList,ListLlist) is
the empty set and so the constraint becomes a tautology – thus the
SAT test of the negated formula fails.

When the tests for either the existence or the non-existence of
identifiers fail (a SAT-test succeeds) then we have found an error
in the feature model, the feature modules, or both. That is, when
feature R is selected, its precondition(s) can be violated. A domain
expert is alerted and can now correct the feature-oriented design.
If all constraints are verified, all programs of a product line can be
safely composed.

4.2 Computing Feature Compositions with Identifiers

In order to assemble composition constraints, we relied on a func-
tion c which determines compositions where some code element
with a particular identifier exists. In this section, we show the con-
cept how to implement c efficiently, i.e., how to calculate composi-
tions without actually enumerating them all.

We record all identifiers of code elements that monotonic fea-
ture modules create and we establish each identifier as root of a
decision tree. In the case where two features introduce two code el-
ements with the same identifier then two root nodes (and thus two
decision trees) emerge. The decisions recorded in these trees are
whether features are selected or not. Feature decisions then map
nodes of identifiers to nodes of new identifiers. A single decision
tree represents one code element that has different identifiers over
time (after RFMs have been applied). Decision trees may contain
a special node indicating the code element got deleted (instead of
transformed).

In Figure 4a, we visualize the effects of feature decisions prior
to ListLlist from Figure 3 (Base, GetPop, and ListAdt) on class List

Base

ListAdt

GetPop

identifier

Legend

empty program

feature is not selected

feature is selected

Base

ListAdt

GetPop

Y Y N

Y

Y N

N

N Y

Y

Y N

List

List

List

ADTADT

List

List

List

List ADT

(a) unoptimized (b) optimized

Figure 4. Decision trees for List of Fig. 3.

in Base. That is, we show the decision tree of List. In this tree,
an arrow is a feature which transforms a code element’s identifier
(arrow-source) to a new identifier (arrow-target). With different
labels for arrows, we indicate whether the decision to select a
feature creates the child node or whether the decision to not select it
does. Features that do not modify identifiers of code elements lead
to the same identifier whether they are selected or not.

We iterate the features in a linear process, namely in the order
that is defined in the feature model. In each iteration step we first
verify safe composition for the current feature with the existing
trees before we record the current feature’s effects on identifiers in
these trees, i.e., trees successively grow. Consequently, the trees
we use to verify an RFM contain only effects of features that
precede the currently verified RFM (as RFMs only transform code
preceding features added/changed, cf. Sec. 2.2).

With decision trees for all identifiers we can determine com-
positions which include code elements with a particular identifier.
When an RFM requires that a code element of a particular identifier
exists immediately before the RFM then it requires a leaf node with
this identifier in the decision trees (such leafs can exist in different
trees6). The composition, that makes the tree’s code element with
its leaf’s identifier exist before the verified RFM, emerges from the
path of feature decisions from this leaf backward to the empty pro-
gram.

To exemplify the use of decision trees in the function c, we
recalculate the compositions prior to ListLlist that include List (in
the prior section we assumed the function c to compute this set).
That is, we want to calculate in Figure 4a the compositions that
make List exist for ListLlist. From List leaf nodes in our decision
tree we calculate two different compositions that contain List so
c(List,ListLlist) = {Base,GetPop • Base}. We translate and
use these compositions in order to create composition constraints
and verify these constraints with SAT technologies.

As an aside, we do not need to encode orderings of features in
propositional formulas because we defined that there is only one
composition order for all features (cf. Sec. 2.1). This ordering is
encoded in the trees which we create iteratively with that ordering.
For example, when features Base and GetPop are both assigned
’true’ by SAT, we know that that they apply in the order GetPop •
Base. Thereby, it does not matter whether GetPop ∧ Base or
Base ∧ GetPop is assigned ’true’.

Special cases of individual refactorings require extensions to the
above concepts. We omit their discussion here and focus on the core
concepts for the clarity of this paper.

6 If an identifier exists in multiple trees, safe composition of preceding
monotonic feature modules and RFMs guarantees the identifier does not
occur twice in a particular program.

Optimization. The decision tree of every code element grows
exponentially with the number of features it records. To reduce the
size of decision trees, we do not add children to a node when both
children have the same identifier as the current node, i.e., when
the feature does not change the identifier of a code element. For
example, the ’Rename Method’ RFM GetPop does not change the
identifier of class List. Thus, GetPop adds two children to node
List in Figure 4a but both have the same identifier as their father
node. In the optimized trees, we do not add either child to the List
node when recording GetPop. The optimized decision tree for List
is shown in Figure 4b. In practice, almost all monotonic feature
modules and RFMs will not change a given identifier of a code
element (see case studies Sec. 5) and this makes it an important
optimization.

Optimized decision trees allow us to compute patterns for com-
positions with a code element of a particular identifier when we cal-
culate paths from leafs to the empty program. Inside such a pattern
only features appear which decide whether a code element with this
identifier exists, e.g., GetPop is not in the pattern of List (cf. Fig. 4b;
GetPop is not in the path of decisions from leaf List towards the
empty program) because GetPop does not decide the existence of
List. We use these patterns instead of compositions inside compo-
sition constraints.

Patterns are translated differently into propositional formulas
than completely defined compositions so we must replace the p

function7 with a new function p’. The function p’ translates a
pattern, i.e., a set of features that are defined to be selected and a set
of features that are defined to be not selected, into a propositional
formula (p’ : P(F) × P(F) → P). In a formula that p translated
from a composition, every feature was defined to be selected or
not selected. In a formula that p’ translates from a pattern, only
features are defined that decide whether the tree’s code element
exists with a particular identifier. That is, all features that are not
inside the pattern remain undefined in the translated formula. The
pattern that describes for ListLlist the compositions where List
exists is ¬ListAdt ∧Base (cf. Fig. 4b) where GetPop, which does
not decide the existence of List, is undefined. Since, this pattern is
already a propositional formula it is not translated further.

To reduce the size of decision trees even more, we merge spe-
cific nodes when they expose the same identifier. As a consequence,
decision trees become directed graphs when one identifier can be
created with different feature selections. As we show in Section 4.3,
nodes with equal identifiers cannot be merged generally.

7 Function p translated feature compositions into propositional formulas, cf.
Sec. 4.1.

Program Refactorings #SLOC
⋆

#MFM
♦

#id
† from

MFMs
♦

#id
† from

RFMs

max. TH
♭

avg. TH
♭

ADT library 1x rename class, 4x rename method 11 1 7 9 5 2
Workbench.texteditor 1x rename class, 2x rename field ∼16K 2 3428 68 3 1.02
Workbench.texteditor #2 27x rename class, 28x rename field ∼16K 2 3428 2538 55 1.53
GPL 2x rename class, 2x rename method,

18x encapsulate field, 2x extract
interface

∼1K 15 160 252 4 1.89

ZipMe 1x rename class ∼3K 14 656 18 2 1.03
Raroscope 2x rename class ∼250 5 57 54 2 1.9

⋆lines of source code without RFMs; ♦monotonic feature module; †identifier; ♭tree height

Table 1. Information on case studies.

Additionally, we implemented technical optimizations for deci-
sion trees. We omit their discussion because they are not important
for the presented concept.

4.3 Preconditions on Inheritance Hierarchies

It is not enough for some refactorings that code elements with
certain identifiers exist. Additionally to the existence of single code
elements, a number of refactorings require properties of inheritance
hierarchies [29, 33].8 As an example, the result of a ’Rename
Method’ refactoring is well-typed but regarded as incorrect when it
creates a method that overrides an existing method the transformed
method did not override before the refactoring (an error called
’method capture’) [29, 26, 33]. In order to verify that such errors do
not occur, we must consider relationships between code elements
(and thus between nodes of different decision trees).

We maintain the relationship of code elements, known already
from the type system. For example, a decision tree node which
represents a method references a node (in a different tree) which
represents this method’s host class. As a result, we can compute
connections between nodes of different code elements/trees, e.g.,
calculate the methods a method, that is to be renamed, may capture.

As an example, when a single identifier occurs in different de-
cision trees then different code elements can have the same iden-
tifier in different configurations (e.g., after refactorings apply). Al-
though they have equal identifiers, these code elements still may
differ in their relations to other code elements. For instance, con-
sider a method x1, which has the identifier x in one configuration, is
in a class that has a superclass. Consider further, a different method
x2, which has the same identifier x in another configuration, is in a
class without superclass. As a consequence, x1 may capture a dif-
ferent method but x2 cannot. When method x1 applies, the method
that can be captured must not exist – we assure this by relating
patterns of both methods.

Nodes with equal identifiers cannot be merged generally. To
deal with the above example and similar cases, we must distinguish
code elements x1 and x2 although they have equal identifiers in
decision trees. We do not merge respective nodes. Two nodes can
only be merged when they have equal identifiers and the same
relations to other nodes (e.g., to the same host class node).

5. Case Studies

Previously, we implemented RFMs and a tool to compose RFMs
together with monotonic feature modules [23]. To verify safe com-

8 14 of the 23 covered refactoring types (cf. Sec. 2.2) have preconditions on
inheritance hierarchies.

position for RFMs, we extended Thaker’s safe composition algo-
rithm [35] with our additions described in the previous section.9

We now report on four case studies. First, a library of abstract
data types (ADTs) with transformations was written independently
of this work. This study was our proof of concept because it is
rather small. Second, we verified safe composition for RFMs ap-
plied on a large-scale Eclipse library to verify that storing the trees
does not exceed memory. Third, to verify that current computers
can create and evaluate trees in reasonable time for a high number
of refactorings in a large-scale program, we report on an extended
study of the Eclipse library. Finally, we verify RFMs that were
added to an existing feature-oriented design of a software product
line, i.e., where numbers of monotonic feature modules can apply
and create identifiers before the RFMs apply. We summarize prop-
erties of the analyzed programs in Table 1.

Abstract data type library. With the running example in this
paper, we lean on a former study on abstract data types. Although
the feature model of this study is moderately complex, e.g., it
subdivides features, we expected this study to be easy because its
implementation is small (only 11 lines of source code). We were
surprised that our verifier still discovered mistakes, because the
design looked correct – after we had a closer look we found the
error inside our model and corrected it.

Technically, this study was small: it comprises only 7 identi-
fiers of members and classes that are created from one monotonic
feature module. Just five RFMs could be selected to create 9 addi-
tional identifiers (resulting in 16 identifiers). The maximal height
of an optimized decision tree in this study was five and the average
height of all trees was just 2. Our verifier created the trees and eval-
uated them in 0.2 seconds10 which was obviously much faster than
our manual attempt.

’Workbench.texteditor’. This study was inspired by work of Dig
et al. [14]. Commonly, monotonic feature modules are large-scale
building blocks that may include a large number of classes and
members, i.e., a large number of identifiers to manage. To mea-
sure the size of decision trees in large-scale programs we veri-
fied a study that we performed when we discussed RFMs [23]. In

9 We use the Sat4j SAT solver (http://www.sat4j.org/). We reuse Thaker’s
tool and the tools it relies on, e.g., AHEAD’s bcj2j or bccompiler. In
line with these tools, our prototype does not support packages yet – our
theoretical approach however is not restricted this way. We moved the
classes of all case studies into the default package.
10 All measurements in this paper were performed on an Intel Centrino
with 1.5GHz and 512MB RAM. They are meant as hints, e.g., they do not
include checks for safe composition of included monotonic feature modules
or calculating statistics.

this study, we reimplemented, with monotonic feature modules and
non-monotonic RFMs, the transformations performed on a large
Eclipse library between two releases of this library. The transfor-
mations were recorded by the library’s revisioning system. That is,
features in this study represent selectable development steps.

We moved the large Eclipse library ’workbench.texteditor’
(∼16K lines of source code) into a monotonic feature module and
refined it with a monotonic feature module and non-monotonic
RFMs. One RFM renames a class Levenstein into Levenshtein
because this change was recorded in the revisioning system, two
other RFMs renamed two fields which have Levenstein as their
static type. The ’Rename Field’ RFMs are arranged after the ’Re-
name Class’ RFM and reference the fields using the new class-
name Levenshtein (as class Levenstein does no longer exist).
Thus, both depend on the ’Rename Class’ RFM which creates
Levenshtein. The verifier alerts that the feature model we used
so far for this study (every monotonic feature module and every
RFM is declared as independent) allows feature combinations that
have errors when composed. Specifically, the verifier alerts us that
both ’Rename Field’ refactorings depend on the ’Rename Class’
refactoring but can be selected without it. The verifier proposes to
add this dependency to the model in order to make it safe. After we
corrected our model all legal feature combinations compose safely.

The two monotonic feature modules in this study are large
(they comprise 3428 identifiers) but the three RFMs only create 68
additional identifiers. With our optimized trees we managed these
3496 identifiers easily and did not run into memory problems. Our
verifier created the trees and evaluated them in 1.6 seconds.

’Workbench.texteditor’ #2. Next, we verified how the perfor-
mance is affected when we apply a large number of RFMs to
the (large) Eclipse library ’workbench.texteditor’. We applied
55 RFMs onto the ’workbench.texteditor’ library. We renamed
class Levenstein 27 times, renamed the field DefaultCellCom-
puter.levenstein of type Levenstein 1 time, and renamed field
OptimizedCellComputer.levenstein of type Levenstein 27 times.
We chose these refactorings to create high decision trees with dif-
ferent refactorings.

This study starts with 3428 identifiers that are created from two
monotonic feature modules (i.e., 3428 decision trees). Fifty-five
RFMs then can create 2538 additional identifiers (resulting in 5966
identifiers) that were managed in our trees. Our verifier created the
optimized trees and evaluated them in an acceptable 6.7 seconds.
In this study our tree optimizations became very important: with-
out optimizations all 3428 trees would have a height of 57 nodes
(2 monotonic feature modules + 55 RFMs) and every tree would
have 256 leaf nodes as every tree is binary and balanced, but due to
our optimization we managed just 5966 nodes altogether. Interest-
ingly the average height of all optimized trees remains rather small
(1.53 nodes).

After we were corrected by our tool in the small ADT case
study, we were not really surprised when our verifier revealed errors
in this study. For instance, we did not notice in our model that
certain RFMs depend on each other. With the verifier, we also found
multiple spelling mistakes inside our RFMs, e.g., when fields to be
renamed could not exist at all. Still, we were surprised about the
number of mistakes we found with our verifier.

Graph Product Line (GPL). RFMs integrate into feature-oriented
design so we must test whether the approach works when numbers
of monotonic feature modules can create identifiers before RFMs
apply. In prior work we explored the facilities of RFMs and applied
RFMs to a standard product line of graph data structures (proposed
as benchmark for product line technologies) [25].

Fifteen monotonic feature modules of GPL create identifiers
of members and classes. Twenty-four RFMs can be selected in

this study and can create a number of identifiers as well. The
GPL features are related to each other with complex composition
constraints which seriously interfered with our manual verification
attempt. Our verifier created the decision trees and evaluated them
in 1.5 seconds while we needed minutes to confirm composition
errors – several times we doubted our verifier until we found the
subtle errors in the verified code (of the RFMs) or feature model.

Further studies. In prior work [23], we applied one RFM to a
version of the ZipMe library11, in which 14 monotonic feature mod-
ules (like Crc or Checksum) create identifiers, in order to integrate
this library with legacy clients. Special to this study is the number
of variants – namely, we could compose 27 different variants of
ZipMe. Our verifier created and evaluated the trees for this study in
0.2 seconds without composing the large number of variants.

We also verified a study from prior work where we integrated a
version of the compression library Raroscope12 with legacy clients.
In this library, 5 features (like Crc or OperatingSystem) create
identifiers – two RFMs succeed these features. Our verifier created
the trees of this study and evaluated them in 0.1 seconds – we did
not have to compose all 24 Raroscope variants.

Summary. Our prototype implementation found errors which
would have gone unnoticed without it. We found that our prototype
implementation verified complex feature models with numbers of
large-scale monotonic feature modules and non-monotonic RFMs
in no time. However, overall we found that feature modules that
create and remove code (like RFMs) increase complexity rapidly.
Specifically, even small programs became hard to verify manually
(several times we doubted the verifier until we found the alerted
subtle errors). We believe that non-monotonic features have po-
tential to increase expressiveness and might be suited for several
use cases like refactorings, but we argue: When such powerful fea-
ture transformations (feature modules) apply we need automated
concepts and tools as presented in this paper to verify resultant
designs.

6. Related Work

Safe composition of transformations. Thaker et al. [35] deter-
mined composition constraints for monotonic feature modules and
used the constraints to verify safe composition. Delaware et al.
extended this work and proved the underlying type system to be
sound [13]. Similarly, Apel et al. defined a product line type sys-
tem and proved it sound [2]. They all assume that feature modules
monotonically add code. Czarnecki applied safe composition tech-
niques to transformations performed on feature-based model tem-
plates, transformations that monotonically remove elements [11].
CIDE guarantees safe composition for ifdefs (represented as col-
ors) [19, 21]. Ifdefs delete code monotonically. In this paper we
guarantee safe composition for refactorings as part of feature mod-
ules, i.e., feature transformations that create and delete code.

Whitfield et al. aims at safe composition of code transforma-
tions like ’dead code elimination’ or ’loop unrolling’ [36]. With
found dependencies, they aim to find an ordering for transforma-
tions and to warn developers against interactions between transfor-
mations. We verify that a set of feature transformations (monotonic
and non-monotonic) can be combined as defined in a feature model.

Model checking. Researchers use model checking technology to
verify properties for programs, e.g., [15], or program transforma-
tions [24]. In contrast to their work, we use SAT technologies to
verify configurable sequences of refactoring transformations that
are performed on (possibly) configurable base code.

11 http://sourceforge.net/projects/zipme/
12 http://code.google.com/p/raroscope/

Graphs as program representations. Compilers usually repre-
sent programs as graphs, called abstract syntax trees [28]. Some
researchers perform refactorings on enriched graphs that represent
programs [17]. Others formalize refactorings as graph rewrite rules
to guarantee they preserve program properties [26]. All these ap-
proaches do not verify sequences of selectable refactorings on a
(configurable) base code.

Sequenced program transformations. Roberts defined precondi-
tions for refactorings and showed how to combine preconditions
of sequenced refactorings [32]. Roberts derives composite precon-
ditions for single sequences but does not verify configurable se-
quences against a model.

Several approaches for meta-programming exist like [34, 6].
The transformations in these approaches are commonly non-
monotonic like RFMs. A possible direction of future work is to
extend our concept of decision trees to verify safe composition for
such approaches as well. For that we need to figure out the pre-
conditions for each meta-program (and implement a template test
for these preconditions on decision trees). For some of them we
need to record method bodies in decision trees too – this will also
increase the coverage of standard refactorings from [16].

7. Conclusions

Programs can be composed by successively applying transforma-
tions that add features to a program. Program transformations must
be verified to apply without errors. However, we cannot test every
combination of transformations as there can be millions of combi-
nations.

Prior work focused on safe composition of transformations that
monotonically add code in order to produce program variants. We
generalized prior work in that we automatically verified safe com-
position for transformations that add and remove code. Specifi-
cally, we detect errors for automated refactorings that transform
a program when selected. We implemented the proposed concepts
and tested them using case studies.

We found that the complexity to verify safe composition of
transformations, that can add and delete code, grows rapidly.
Specifically, we experienced subtle mistakes when we manually
verified even small studies. We argue that automated analyses as
presented in this paper are essential to apply and manage more
powerful transformations than those already known.

Acknowledgments

Martin Kuhlemann was supported and partially funded by the
DAAD Doktorandenstipendium #D/07/45661. Batory’s work was
supported by NSF’s Science of Design Project #CCF-0724979.
The authors thank Norbert Siegmund and Maider Azanza for help-
ful discussions and hints on earlier versions of this paper.

References

[1] S. Apel and C. Kästner. An overview of feature-oriented software
development. Journal of Object Technology (JOT), 8(5):49–84, 2009.

[2] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type-safe
feature-oriented product lines. Technical Report MIP-0909, Depart-
ment of Informatics and Mathematics, University of Passau, 2009.

[3] S. Apel, M. Kuhlemann, and T. Leich. Generic feature modules:
Two-staged program customization. In Proceedings of the Inter-

national Conference on Software and Data Technologies (ICSOFT),
pages 127–132, 2006.

[4] S. Apel, T. Leich, and G. Saake. Aspectual feature modules. IEEE

Transactions on Software Engineering (TSE), 34(2):162–180, 2008.

[5] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An algebra for
features and feature composition. In Proceedings of the Interna-

tional Conference on Algebraic Methodology and Software Technol-

ogy (AMAST), pages 36–50, 2008.

[6] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for class
library migration. In Proceedings of the International Conference on

Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pages 265–279, 2005.

[7] D. Batory. Feature models, grammars, and propositional formulas. In
Proceedings of the International Software Product Line Conference

(SPLC), pages 7–20, 2005.

[8] D. Batory and S. O’Malley. The design and implementation of hierar-
chical software systems with reusable components. ACM Transactions

on Software Engineering and Methodology (TOSEM), 1(4):355–398,
1992.

[9] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise
refinement. IEEE Transactions on Software Engineering (TSE),
30(6):355–371, 2004.

[10] D. Batory, V. Singhal, M. Sirkin, and J. Thomas. Scalable software
libraries. In Proceedings of the International Symposium on Founda-

tions of Software Engineering (FSE), pages 191–199, 1993.

[11] K. Czarnecki and K. Pietroszek. Verifying feature-based model tem-
plates against well-formedness OCL constraints. In Proceedings of

the International Conference on Generative Programming and Com-

ponent Engineering (GPCE), pages 211–220, 2006.

[12] K. Czarnecki and A. Wasowski. Feature diagrams and logics: There
and back again. In Proceedings of the International Software Product

Line Conference (SPLC), pages 23–34, 2007.

[13] B. Delaware, W. Cook, and D. Batory. A machine-checked model of
safe composition. In Workshop on Foundations of Aspect-Oriented

Languages (FOAL), pages 31–35, 2009.

[14] D. Dig, S. Negara, V. Mohindra, and R. Johnson. ReBA: Refactoring-
aware binary adaptation of evolving libraries. In Proceedings of

the International Conference on Software Engineering (ICSE), pages
441–450, 2008.

[15] D. R. Engler and M. Musuvathi. Static analysis versus software model
checking for bug finding. In International Conference on Verification,

Model Checking and Abstract Interpretation (VMCAI), pages 191–
210, 2004.

[16] M. Fowler. Refactoring: Improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[17] N. Juillerat and B. Hirsbrunner. Food: An intermediate model for au-
tomated refactoring. In International Conference on Software Method-

ologies, Tools and Techniques (SoMeT), pages 452–461, 2006.

[18] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mel-
lon University, 1990.

[19] C. Kästner and S. Apel. Type-checking software product lines - A
formal approach. In Proceedings of the International Conference on

Automated Software Engineering (ASE), pages 258–267, 2008.

[20] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in software
product lines. In Proceedings of the International Conference on

Software Engineering (ICSE), pages 311–320, 2008.

[21] C.H.P. Kim, C. Kästner, and D. Batory. On the modularity of feature
interactions. In Proceedings of the International Conference on Gen-

erative Programming and Component Engineering (GPCE), pages
23–34, 2008.

[22] C. W. Krueger. New methods in software product line practice.
Communications of the ACM (CACM), 49(12):37–40, 2006.

[23] M. Kuhlemann, D. Batory, and S. Apel. Refactoring feature modules.
In Proceedings of the International Conference on Software Reuse

(ICSR), 2009.

[24] D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen. Proving
correctness of compiler optimizations by temporal logic. In Proceed-

ings of the International Symposium on Principles of Programming

Languages (POPL), pages 283–294, 2002.

[25] R. E. Lopez-Herrejon and D. Batory. A standard problem for evalu-
ating product-line methodologies. In Proceedings of the International

Symposium on Generative and Component-Based Software Engineer-

ing (GCSE), pages 10–24, 2001.

[26] T. Mens, N. v. Eetvelde, D. Janssens, and S. Demeyer. Formalizing
refactorings with graph transformations. Software Maintenance and

Evolution: Research and Practice, 17(4):247–276, 2005.

[27] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the

Conference on Design Automation (DAC), pages 530–535, 2001.

[28] S. S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann Publishers Inc., 1997.

[29] W. F. Opdyke. Refactoring object-oriented frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, 1992.

[30] D. L. Parnas. On the design and development of program fami-
lies. IEEE Transactions on Software Engineering (TSE), SE-2(1):1–9,
1976.

[31] C. Prehofer. Feature-oriented programming: A fresh look at objects.
In Proceedings of the European Conference on Object-Oriented Pro-

gramming (ECOOP), pages 419–443, 1997.

[32] D. B. Roberts. Practical analysis for refactoring. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, 1999.

[33] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse contracts:
Managing the evolution of reusable assets. In Proceedings of the

International Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 268–285, 1996.

[34] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. OpenJava: A
class-based macro system for Java. In Workshop on Reflection and

Software Engineering, pages 117–133, 2000.

[35] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition
of product lines. In Proceedings of the International Conference

on Generative Programming and Component Engineering (GPCE),
pages 95–104, 2007.

[36] D. L. Whitfield and M.L. Soffa. An approach for exploring code im-
proving transformations. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), 19(6):1053–1084, 1997.

