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Abstract—Streaming applications process possibly infinite streams of data and often have both high throughput and low latency

requirements. They are comprisedof operator graphs that produceand consumedata tuples.General streaming applications use stateful,

selective, and user-defined operators. The stream programming model naturally exposes task and pipeline parallelism, enabling it to

exploit parallel systems of all kinds, including large clusters. However, data parallelism must either be manually introduced by

programmers, or extracted as an optimization by compilers. Previous data parallel optimizations did not apply to selective, stateful and

user-definedoperators. This article presents a compiler and runtime system that automatically extracts data parallelism for general stream

processing. Data-parallelization is safe if the transformed program has the same semantics as the original sequential version. The

compiler forms parallel regionswhile considering operator selectivity, state, partitioning, and graph dependencies. The distributed runtime

system ensures that tuples always exit parallel regions in the same order they would without data parallelism, using the most efficient

strategy as identified by the compiler. Our experiments using 100 cores across 14machines show linear scalability for parallel regions that

are computation-bound, and near linear scalability when tuples are shuffled across parallel regions.

Index Terms—Data processing, distributed computing, parallel programming

1 INTRODUCTION

STREAM processing is a programming paradigm that natu-
rally exposes task and pipeline parallelism. Streaming

applications are directed graphs where vertices are operators
and edges are data streams. Because the operators are inde-
pendent from each other, and they are fed continuous streams
of tuples, they can naturally execute in parallel. The only
communication between operators is through the streams
that connect them. When operators are connected in chains,
they expose inherent pipeline parallelism. When the same
streams are fed to multiple operators that perform distinct
tasks, they expose inherent task parallelism.

Being able to easily exploit task and pipeline parallelism
makes streaming popular in domains such as telecommuni-
cations, financial trading, web-scale data analysis, and social
media analytics. These domains require high throughput, low
latency applications that can scalewith the number of cores in
a machine and the number of machines in a cluster. Such
applications contain user-defined operators (for domain-
specific algorithms), operator-local state (for aggregation or
enrichment), and dynamic selectivity1 (for data-dependent
filtering, compression, or time-based windows).

While pipeline and task parallelism occur naturally in
stream graphs, data parallelism, or fission [1], requires

intervention. In the streaming context, fission involves split-
ting data streams and replicating operators. The parallelism
obtained through replication can be more well-balanced than
the inherent parallelism in a particular stream graph, and is
easier to scale to the resources at hand. Fission allows opera-
tors to take advantage of additional cores and hosts that the
task and pipeline parallelism are unable to exploit. Typically,
fission trades higher latency for improved throughput.

Extracting data parallelism by hand is possible, but cum-
bersome. Developers must identify where potential data
parallelism exists, while at the same time considering if
applying data parallelism is safe. In our context, safe means
that the sequential semantics of the application are preserved:
the order and values of the application’s tuples are the same
with and without data parallelism. The difficulty of devel-
opers doing this optimization by hand grows with the size of
the application and the interaction of the sub-graphs that
comprise it. After identifying where parallelism is both pos-
sible and legal, developers may have to enforce ordering on
their own. All of these tasks are tedious and error-prone—
exactly the kind of tasks that compiler optimizations should
handle for developers. As hardware grows increasingly par-
allel, automatic exploitation of parallelism will become an
expected compiler optimization.

Prior work on automatic stream fission is either unsafe [2],
[3], or safe butnot general, e.g., restricted to stateless operators
and/or static selectivity [4], [5]. Our work is the first to
automatically extract data parallelism from streaming appli-
cations with stateful and dynamic operators. Our compiler
analyzes the code to determine which subgraphs can be
parallelized. The runtime system implements policies
(round-robin or hashing, with sequence numbers as needed)
to back the compiler’s decisions. We implemented our auto-
matic fission in SPL [6], the stream processing language for
IBM InfoSphere Streams [7]. Streams is a high-performance
streaming platform running on a cluster of commodity ma-
chines. The compiler is oblivious to the actual size and
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1. Selectivity is the number of tuples produced per tuples consumed;
e.g., a selectivity of 0.1 means 1 tuple is produced for every 10 consumed.
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configuration of the cluster, and only decideswhich operators
belong to which parallel region, but not the degree of paral-
lelism. The actual degree of parallelism in each region is
decided at job submission time, which can adapt to system
conditions at that moment. This decoupling increases perfor-
mance portability of streaming applications.

This article makes the following contributions:
Language and compiler support for automatically dis-
covering safe data parallelization opportunities in the
presence of stateful and user-defined operators.
Runtime support for enforcing safetywhile exploiting the
concrete number of cores andhosts of a givendistributed,
shared-nothing cluster.
A side-by-side comparison of the fundamental techni-
ques used to maintain safety in the design space of
streaming fission optimizations.

We published an earlier version of this article in the
Conference on Parallel Architectures and Compilation Tech-
niques (PACT) [8]. This article makes substantial additions.
The PACT paper restricted parallization to operators with
selectivity , i.e., operators that produce atmost one output
tuple for each input tuple. This article improves the compiler
and runtime (Sections 3 and 4) to safely parallelize operators
with arbitrary selectivity, including > . The PACT paper
omitted the description of how auto-parallelization interacts
with punctuations, which are control signals interleaved on a
stream [9]; this article adds Section 5 to discuss that. Finally,
this article has more detailed experimental results (Section 6).

2 DATA PARALLELISM IN STREAMING

This article is concerned with extracting data parallelism by
automatically replicating operators. In a streaming context,
replication of operators is data parallelism because each
operator replica performs the same task on a different set of
the data. Data parallelism has the advantage that it is not
limited by the number of operators in the original stream
graph. Our auto-parallelizer is automatic, safe, and system
independent. It is automatic, since the source code of the
application does not indicate parallel regions. It is safe, since
the observable behavior of the application is unchanged. And
it is system independent, since the compiler forms parallel
regions without hard-coding their degree of parallelism.

Our programming model allows for completely dynamic
selectivity, in direct contrast to synchronous data flow (SDF)
languages [10] such as StreamIt [4], or cyclo-static dataflow
(CSDF) [11]. In SDF, the selectivity of each operator is known
statically, at compile time. Compilers can create a static
schedule for the entire stream graph, which specifies exactly
how many tuples each operator consumes and produces.
Such static schedules enable aggressive compile-time optimi-
zations, making SDF languages well suited for digital signal
processors and embedded devices—our language targets
coarser computations more prevalent in the data manage-
ment domain. CSDF languages relax the strict static schedules
of SDF by allowing operators to change the tuple rate per
firing, as long as the rates follow a cyclic pattern.

We can still use static analysis to classify an operator’s
selectivity, but unlike SDF languages, the classification may
be a range of values rather than a constant. Such dynamic
selectivity means that the number of tuples produced per

tuples consumed can depend on runtime information. As a
result, we cannot always produce static schedules for our
stream graphs. Our operators consume one tuple at a time,
and determine at runtime how many (if any) tuples to pro-
duce. This dynamic behavior is well suited for the more
coarse-grain computations present in big data applications.
Another way of thinking about selectivity is the consumption
to production ratio. In SDF, the ratio is , where and
can be any non-negative integers, but they must be known
statically. In our model, the general ratio is . Source
operators, and operators with time-dependent triggers that
fire independent of tuple arrival, are . All other operators
are . When such an operator fires, it consumes a single
tuple, but can produce any number of output tuples, includ-
ingnone. This number canbedifferent at eachfiring, hencewe
call this dynamic selectivity.

Fig. 1 presents a sample SPL program [9] on the left. The
program is a simplified version of a common streaming
application: networkmonitoring. The application continually
reads server logs, aggregates the logs based on user IDs, looks
for unusual behavior, and sends the results to an online
service.

The types Entry and Summary describe the structure of
the tuples in this application. A tuple is a data item consisting
of attributes,where each attribute has a type (such asuint32)
and a name (such as uid). The stream graph consists of
operator invocations, where operators transform streams of
a particular tuple type.

The first operator invocation, ParSrc, is a source, so it
does not consume any streams. It produces an output stream
called Msgs, and all tuples on that stream are of type Entry.
The ParSrc operator takes two parameters. The
partitionBy parameter indicates that the data is partitioned
on the server attribute from the tuple type Entry. In other
words, server is the partitioning key for this operator.

The Aggregate operator invocation consumes the Msgs

stream, indicated by being “passed in” to the invocation. The
window clause specifies the characteristics of the window of
tuples: it is tumbling, meaning that if flushes after each
aggregation; an aggregation fires every 5 seconds; and it is
partitioned, meaning that it maintains separate tumbling

composite Main { 
type

Entry = tuple<uint32 uid, rstring server, rstring msg>; 
Summary = tuple<uint32 uid, int32 total>; 

graph 

stream<Entry> Msgs = ParSrc() { 
param servers: "logs.*.com"; 

              partitionBy: server; 
} 
stream<Summary> Sums = Aggregate(Msgs) { 
window Msgs: tumbling, time(5), partitioned; 

param partitionBy: uid; 
output Sums: uid = Any(uid), total = Count(); 

} 
stream<Summary> Suspects = Filter(Sums) { 

  param filter: total > 100; 
} 
() as Sink = TCPSink(Suspects) { 
param role: client; 

              address: "suspects.acme.com"; 

                  port: "http"; 
} 

} 

ParSrc

Aggr

Filter 

Sink

ParSrc

Aggr

Filter 

ParSrc

Aggr

Filter 

Sink

1 1 1 

1 1 1 

Fig. 1. Example SPL program (left), its stream graph (middle), and the
parallel transformation of that graph (right). The paper icons in the lower
right of anoperator indicate state, and thenumbers in the lower left indicate
selectivity.
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windows for each partitioning key. The partitioning key is
specified as the uid attribute of the Entry tuples by the
partitionBy parameter. The output clause specifies the
aggregations to perform on each window. The result tuple
(of type Summary) will contain any uid from the window,
and a count of how many tuples are in the window. Because
theAggregate is stateful andpartitioned, this invocation has
partitioned state. In general, programmers can provide multi-
ple attributes to partitionBy, and each attribute is used in
combination to create the partitioning key. The operator
maintains separate state for each partitioning key.2

The Filter operator invocation drops all tuples from the
aggregation that have no more than 100 entries. Finally, the
TCPSink operator invocation sends all of the tuples that
represent anomalous behavior to an online service outside
of the application.

The middle of Fig. 1 shows the stream graph that pro-
grammers reason about. In general, SPL programs can specify
arbitrary graphs, but the example consists of just a simple
pipeline of operators. We consider the tuple values and
ordering that results from the stream graph in the SPL source
code to be the sequential semantics, and our work seeks to
preserve such semantics. The right of Fig. 1 shows the stream
graph that our runtime will actually execute. First, the com-
piler determines that the first three operators have data
parallelism, and it allows the runtime to replicate those
operators. The operator instances ParSrc and Aggregate

are partitioned on different keys. Because the keys are incom-
patible, the compiler instructs the runtime to perform a shuffle
between them, so the correct tuples are routed to the correct
operator replica. The Filter operator instances are stateless
and can accept any tuple.Hence, tuples canflowdirectly from
the Aggregate replicas to the Filter replicas, without
another shuffle. Finally, the TCPSink operator instance is
not parallelizable, which implies that there must be a merge
before it to ensure it sees tuples in the same order as in the
sequential semantics.

Note that there are no programmer annotations in the SPL
code to enable the extraction of data parallelism.Our compiler
inspects the SPL code, determines where data parallelism can
be safely extracted, and informs the runtime how to safely
execute the application. The operators themselves are written
in C++ or Java and have operator models describing their
behavior. Our compiler uses these operator models in con-
junction with SPL code inspection to extract data parallelism.
While this program is entirely declarative, SPL allows pro-
grammers to embed custom, imperative logic in operator
invocations. Our static analysis includes such custom logic
that is expressed in SPL.Many applications do not implement

their own operators, and instead only use existing operators.
In our example, operators Aggregate, Filter, and
TCPSink come from the SPL Standard Toolkit, and operator
ParSrc is user-defined.

Parts of the stream graph that the compiler determines are
safe to parallelize are called unexpanded parallel regions, as
shown in Fig. 2. Note that the compiler only demarcates
where the parallel regions are; it does not transform the
stream graph. The runtime performs the graph transforma-
tion, producing the expanded parallel region at job submission
time, as shown in Fig. 3.

Besides auto-parallelization, another important streaming
optimization is fusion [4], [12]. Fusion combines multiple
operators into a single PE (processing element) to reduce
communication overhead. PEs become operating system pro-
cesses. Our compiler ensures that PEs never span parallel
region boundaries. PEs in the same application execute
simultaneously, potentially on separate hosts. Operators
inside of a PE communicate through function calls and shared
memory; operators in different PEs communicate through
TCP over the network. Because our runtime is distributed, we
must carefuly consider what information to communicate
across PEs.

The runtime expands the parallel regions by replicating
their PEs. A port is the point where a PE and a stream connect.
The runtime implements split as a special output port, and
merge as a special input port.We refer to each path through an
expanded parallel region as a channel. The set of replicas of the
same PE is called a stage. These are illustrated in Fig. 3.

3 COMPILER

The compiler’s task is to decide which operator instances
belong to which parallel regions. Furthermore, the compiler
picks implementation strategies for each parallel region, but
not the degree of parallelism. One can think of the compiler as
being in charge of safety while avoiding platform-dependent
profitability decisions.

3.1 Safety Conditions

This section lists sufficient pre-conditions for auto-
parallelization. As usual in compiler optimization, our
approach is conservative: the conditions may not always be
necessary, but they imply safety. The conditions for paralleliz-
ing an individual operator instance are:

No state or partitioned state: The operator instance must be
either stateless, or its state must be amapwhere the key is
a set of attributes from the input tuple. Each firing only
updates the state for the given key. This makes it safe to
parallelize by giving each operator replica a disjoint
partition of the key domain.
Atmost one predecessor and successor:Theoperator instance
must have fan-in and fan-out . This means parallel

Stage 

Channel 
Split 

Expanded parallel region

PE replica 
Merge 

Fig. 3. Stream graph, from the runtime’s perspective.

Processing element (PE) 

Unexpanded parallel region 

Operator instance 

Stream 

Fig. 2. Stream graph, from the compiler’s perspective.

2. In our runtime, operators maintain a map from keys to their associ-
ated state.Operators obtainkeys byhashing thevalues of the attributes from
the partitioning set. So, given a state map, a current tuple and the set of
partitioning attributes {a1 an}, each operator firing accesses:

state partition tuple a1 tuple a2 tuple an)].
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regions have a single entry and exit where the runtime
can implement ordering.

The conditions for forming larger parallel regions with
multiple operator instances are:

Compatible keys: If there are multiple stateful operator
instances in the region, their keys must be compatible.
Akey is a set of attributes, andkeys are compatible if their
intersection is non-empty. Parallel regions are not re-
quired to have the exact same partitioning as the opera-
tors they contain so long as the region’s partitioningkey is
formed from attributes that all operators in the region are
also partitioned on. In other words, the partitioning
cannot degenerate to the empty key, where there is only
a single partition. It is safe to use a coarser partitioning at
the parallel region level because it acts as first-level
routing. The operators themselves can still be partitioned
on a finer grained key, and that finer grained routing will
happen inside the operator itself.
Forwarded keys: Care must be taken that the region key as
seen by a stateful operator instance indeed has the same
value as at the start of the parallel region. This is because
the split at the start of the region uses the key to route
tuples, whereas uses the key to access its partitioned
state map. All operator instances along the way from the
split to must forward the key unchanged; i.e., theymust
copy the attributes of the region key unmodified from
input tuples to output tuples.
Region-local fusion dependencies: SPL programmers can
influence fusion decisions with pragmas. If the pragmas
require two operator instances to be fused into the same
PE, and one of them is in a parallel region, the other one
must be in the same parallel region. This ensures that the
PE replicas after expansion can be placed on different
hosts of the cluster.
No shuffle after prolific regions:Ashuffle is a bipartite graph
between the end of one parallel region and the beginning
of the next. A prolific region is a region containing prolific
operators, i.e., operators that can emit multiple output
tuples for a single input tuple. Prolifacy causes tuples
with duplicate sequence numbers. Within a single
stream, such tuples are still ordered. But after a shuffle,
this ordering could be lost. Thus, the compiler does not
allow a shuffle at the end of a prolific region.

3.2 Compiler Analysis

This section describes how the compiler establishes the safety
conditions from the previous section. We must first distin-
guish an operator definition from an operator invocation. The
operator definition is a template, such as an Aggregate oper-
ator. It provides different configuration options, such as what
window to aggregate over or which function (Count, Avg,
etc.) to use. Since users have domain-specific code written in
C++ or Java, we support user-defined operators that encap-
sulate such code. Each operator definition comes with an
operator model describing its configuration options to the
compiler. The operator invocation is written in SPL and con-
figures a specific instance of the operator, as shown in Fig. 1.
The operator instance is a vertex in the stream graph.

We take a two-pronged approach to establishing safety:
program analysis for operator invocations in SPL, and properties
in the operator model for operator definitions. This is a

pragmatic approach, and requires some trust: if the author
of the operator deceives the compiler by using the wrong
properties in the operator model, then our optimization may
be unsafe. This situation is analogous to what happens in
other multi-lingual systems. For instance, the Java keyword
final is a property thatmakes afield of an object immutable.
However, the author of the Java code may be lying, and
actually modify the field through C++ code. The Java com-
piler cannot detect this. By correctly modeling standard
library operators, and choosing safe defaults for new opera-
tors that can then be overridden by their authors, we dis-
charge our responsibility for safety.

The following flags in the operator model support auto-
parallelization. The default for each is Unknown.

state Stateless ParamPartitionBy Unknown .

In the ParamPartitionBy case, the partitionBy pa-
rameter in the operator invocation specifies the key.

selectivity ExactlyOne ParamFilter

AtMostOne ParamGroupBy Unknown .

Using consumption to production ratios, selectivity
(ExactlyOne) means 1:1, selectivity (AtMostOne) means

and Unknown selectivity means . In the
ParamFilter case, the selectivity is if there is a Filter

parameter, and otherwise. In the ParamGroupBy case,
the selectivity is Unknown if there is a groupBy parameter,
and otherwise3.

forwarding Always FunctionAny Unknown .

In the Always case, all attributes are forwarded unless the
operator invocation explicitly changes or drops them. The
FunctionAny case is used for aggregate operators, which
forward only attributes that use an Any function in the
operator invocation.

In most cases, analyzing an SPL operator invocation is
straightforward given its operator model. However, operator
invocations can also contain imperative code,whichmayaffect
safety conditions. State canbeaffectedbymutatingexpressions
such as n or foo n , if function foomodifies its parameter
or is otherwise stateful. SPL’s type systemsupports the analysis
by making parameter mutability and statefulness of functions
explicit [9], similar to Finifter et al. [13]. Selectivity can be
affected if the operator invocation calls submit to send tuples
to output streams. Our compiler uses data-flow analysis to
count submit-calls. If submit-calls appear inside of -state-
ments, the analysis computes the minimum and maximum
selectivity along eachpath. Ifsubmit-calls appear in loops, the
analysis assumes that selectivity is Unknown.

3.3 Parallel Region Formation

After the compiler analyzes all operator instances to deter-
mine the properties that affect safety, it forms parallel regions.
In general, there is an exponential number of possible choices,
so we employ a simple heuristic to pick one. This leads to a
faster algorithm and more predictable results for users.

Our heuristic is to always form regions left-to-right. In
other words, the compiler starts parallel regions as close to

3. In SPL, filter parameters are optional predicates that determine
when to drop tuples, and groupBy parameters cause a separate output
tuple for each group.
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sources as possible, and keeps adding operator instances as
long as all safety conditions are satisfied. This is motivated by
the observation that in practice, more operators are selective
than prolific, since streaming applications tend to reduce the
data volume early to reduce overall cost. Therefore, our left-
to-right heuristic tends to reduce the number of tuples travel-
ing across region boundaries, where they incur split or merge
costs. Our heuristic assumes that the partitioning key space is
not skewed. If it is, then the optimal decision must also
minimize the number of operators exposed to the skew,which
our heuristic may not do.

The example stream graph in Fig. 4 illustrates our algo-
rithm. The first parallel region contains just , since its
successor violates the fan-in condition. Similarly, the
next region contains just , since its successor is “n.p.” (not
parallelizable). Operator instances and are combined in a
single region, since is stateless and has state partitioned
by key . The regionwith and ends before , because
adding would lead to an empty region key. This illustrates
our left-to-right heuristic: another safe alternativewould have
been to combine with insteadof . Finally, is not in a
parallel region, because it has a fusion dependency with
(recall that programmers can request operators to be fused
together into a PE). That means they would have to be in the
same parallel region, but is in theway and violates the fan-
in condition.

3.4 Implementation Strategy Selection

Besides deciding which operator instances belong to which
parallel region, the compiler also decides the implementation
strategy for each parallel region. We refer to the single entry
and single exit of a region as the first joint and last joint,
respectively. The first joint can be a parallel source, split, or
shuffle. Likewise, the last joint can be a parallel sink,merge, or
shuffle. The compiler decides the joint types, as well as their
implementation strategies. Later, the runtime picks up these
decisions and enforces them.

Our region formation algorithm keeps track of the region
key and overall selectivity as it incrementally adds operator
instances to the region. When it is done forming a region, the
compiler uses the key to pick a tuple-routing strategy (e.g.,
hashing), and it uses the selectivity to pick an ordering
strategy (for example, round-robin). After region formation,
the compiler inserts shuffles betweenpairs of adjacent parallel
regions, and adjusts their joint types and ordering strategies
accordingly.

3.5 Interaction with Fusion

As mentioned before, besides the auto-parallelization optimi-
zation, the SPL compiler supports an auto-fusion optimization.

On top of that, users can influence fusion decisions with
pragmas. The compiler first checks the pragmas to infer
mandatory fusion dependencies between operator instances.
Next, it runs the region-formation algorithm, which updates
the stream graph with unexpanded parallel regions. Finally,
the compiler runs the fusion algorithm, which updates the
stream graph with PEs, as shown in Fig. 2.

Wemodified the fusion algorithm to ensure that it respects
region-safety conditions. Specifically, if the auto-parallelizer
decides to put two operator instances into different parallel
regions, then the auto-fusermustput them intodifferent fused
PEs. SPL’s fusion algorithm works by iterative refinement
[12]. In the original version, it starts with a single PE contain-
ing all operator instances, and then keeps dividing PEs into
smaller ones to introduce task and pipeline parallelism. In our
modified version, instead of starting from a single PE, the
algorithm starts from one PE per region, plus one PE for all
operator instances that are not part of any region. Then, it
iteratively refines starting from those PEs.

4 RUNTIME

The runtime has two primary tasks: route tuples to parallel
channels, and enforce tuple ordering. Parallel regions should
be semantically equivalent to their sequential counterparts.
That equivalence is maintained by ensuring that the same
tuples leave parallel regions in the same order regardless of
the number of channels.

The distributed nature of our runtime—PEs can run on
separate hosts—has influenced every design decision. We
favored a design which does not add out-of-band communi-
cation between PEs. Instead, we either attach the extra infor-
mation the runtime needs for parallelization to the tuples
themselves, or add it to the stream.

4.1 Splitters and Mergers

Routing andordering are achieved through the samemechan-
isms: splitters and mergers in the PEs at the edges of parallel
regions (as shown in Fig. 3). Splitters exist on the output ports
of the last PE before the parallel region. Their job is to route
tuples to the appropriate parallel channel, and add any
information needed to maintain proper tuple ordering. Mer-
gers exist on the input ports of the first PE after the parallel
region. Their job is to take the streams from each parallel
channel andmerge their tuples into one, well-ordered output
stream. The splitter and merger must perform their jobs
invisibly to the operators both inside and outside the parallel
region.

4.2 Routing

Tuple routing is orthogonal to tuple ordering. When parallel
regions only have stateless operators, the splitter routes tuples
in round-robin fashion. When parallel regions have parti-
tioned state, the splitter is not free to route any tuple to any
channel: the channels will have accumulated state based on
the attributes they expect. The splitter uses the attributes that
define the partition key to compute a hash value. It then uses
that hash to route the tuple, ensuring that the same attribute
values are always routed to the same operators.

o8o7

n.p.

o3

n.p.

o4

o12

l

o13 o14

o1

o9

k

o10

k,l

o2

o11

l

o5 o6

k

Fig. 4. Parallel region formation example. Operator instances labeled
“n.p.” are not parallelizable (e.g., due to unknownstate). The letters and
indicate key attributes. The dotted line from to indicates a fusion
dependency. Dashed ovals indicate unexpanded parallel regions. The
paper icons indicate stateful operators.
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4.3 Ordering

There are four different ordering strategies: round-robin,
sequence numbers, and strict vs. relaxed sequence numbers.
(We define pulses in Section 4.3.3.) The situations in which
each strategy is employed depend on state and selectivity, as
shown in Table 1.

Internally, mergers maintain queues for each channel. PEs
work on a push basis. So a PE can receive tuples from a
channel even if the merger is not yet ready to send them
downstream.Thequeues let themerger accept tuples from the
transport layer immediately andhandle them later as dictated
by their ordering strategy.

In fact, all of the merging strategies follow the same algo-
rithmwhen they receive a tuple. Upon receiving a tuple from
the transport layer, the merge places that tuple into the
appropriate queue. It then attempts to drain the queues as
much as possible based on its ordering strategy. All of the
tuples in each queue are ordered. If a tuple appears ahead of
another tuple in the same channel queue, thenwe know that it
must be submitted downstream first. Mergers, then, are
actually performing a merge across ordered sources. Several
of the ordering strategies take advantage of this fact.

4.3.1 Round-Robin

The simplest ordering strategy is round-robin, and it can only
be employed with parallel regions that have stateless opera-
torswith a selectivity of 1. Because there is no state, the splitter
has the freedom to route any tuple to any parallel channel. On
the other end, the merger can exploit the fact that there will
always be an output tuple for every input tuple. Tuple
ordering can be preserved by enforcing that the merger pops
tuples from the channel queues in the same order that the
splitter sends them.

The left side of Fig. 5 shows an example of a round-robin
merge. The merger has just received a tuple on channel 1,
which isnext in the round-robin order, so themerger submits
the tuple on queue 1, followed by the front tuples on queues 2
and 0, and again waits on 1.

4.3.2 Sequence Numbers

The second ordering strategy is sequence numbers, where the
splitter adds a sequence number to each outgoing tuple. The
PE runtime inside of each parallel channel is responsible for
ensuring that sequence numbers are preserved; if a tuple with
sequence numberx is the cause of an operator sending a tuple,
the resulting tuple must also carry x as its sequence number.
When tuples have sequence numbers, the merger’s job is to
submit tuples downstream in sequential order.

The precondition for using sequence numbers without
pulses is selectivity 1: 1, i.e., every sequence number shows

up at the merger exactly once, without omissions or dupli-
cates. Therefore, the merger can submit a tuple with number
nextwhen the gap between lastSeqNo and next is 1. The
merger maintains lastSeqNo and a minimum-heap
nextHeap of the channel queue heads. While the top of the
nextHeap has a gap of 1, the merger drains and submits it.
This is a heap operation, where is the number of
channels. The following function determines if a sequence
number is ready to be submitted:

def gap seqno :
return seqno lastSeqno

def readySeqno next :
return gap next 1

The second pane of Fig. 5 shows an example of a sequence
numbermerge that has just received a tuple on channel 1. The
merger uses the nextHeap to keep track of the lowest se-
quence number across all channel queues. In this instance, it
knows that lastSeqno 4, so the next tuple to be submit-
tedmust be 5. The top of the nextHeap is 5, so it is submitted.
Tuples 6 and 7 are also drained from their queues, and the
merger is then waiting for 8.

4.3.3 Strict Sequence Number and Pulses

A more general strategy is strict sequence number and pulses,
which permits operators with selectivity at most 1, meaning
they may drop tuples. In that case, if the last tuple to be
submitted was y, the merger cannot wait until y 1 shows
up—it may never come. But timeouts are inappropriate, since
our system is designed for arbitrarily sized computations.

Pulses solve this problem. The splitter periodically sends a
pulse on all channels, and the length of this period is an epoch.
Pulses carry the same sequence number on all channels, and
pulses are merged along with tuples. Operators in parallel
channels forward pulses regardless of their selectivity; even
an operator that drops all tuples will still forward pulses. The
epoch limits thememory requirements for the channel queues
at the merger, or conversely, prevents deadlock if the channel
queues are bounded-size buffers [14].

The presence of pulses guarantees that the merger will
receive information on all incoming channels at least once per
epoch. The merger uses pulses and the fact that all tuples and
pulses come in sequential order on a channel to infer when a
tuple has been dropped. In addition to the nextHeap, the
merger maintains an additional minimum-heap of the tuples
last seen on each channel, which are the backs of the channel
queues. This heap keeps track of the minimum of the max-
imums; the backof each channel queue is the highest sequence
number seen on that channel, and the top of this heap is the
minimum of those. We call this heap the seenHeap. It makes
finding the min-of-the-maxes a operation. Consider the
arrival of the tuple with sequence number z. As in the
sequence number case, if z lastSeqno 1 where
lastSeqno is the sequence number of the tuple submitted
last, then z is ready to be submitted. If that is not the case, we
may still submit z if we have enough information to infer that
tuple z 1 has been dropped. The top of the seenHeap can
provide that information: if 1 is less than the top of the
seenHeap, then we know for certain that z 1 is never
coming, since all channels have moved on to higher sequence
numbers already. Recall that the top of the seenHeap is the

TABLE 1
Ordering Strategies, and Circumstances They Handle
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lowest sequence number among the backs of the channel
queues (the min-of-the-maxes), and that the channel queues
are in sequential order.

Using the above reasoning, we can define a function that
determines whether we can infer that a particular sequence
number has been dropped:

def dropped seqno :

return seqno<seenHeap top and isSteadyState

The function isSteadyState returns true only if we
have received a tuple on each channel, and false otherwise.
Establishing that we have some information on every channel
is critical, as without it, we cannot conclude that a tuple has
been dropped.

Because establishing that a sequence number has been
dropped requires being in the steady state, we cannot deter-
mine that a tuple has been dropped at startup. Hence, we still
want to pay attention to sequential order, as in the sequence
number case. Using the already defined functions, then the
condition for strict sequence number and pulses is:

def readyStrictSeqnoAndPulse next :

return gap next 1 or dropped next 1

In other words, we can submit next if it is next in strict
sequential order, or if we can establish that next 1 has been
dropped.

The thirdpaneof Fig. 5 showsan exampleof a strict sequence
number and pulses merger that has just received a tuple on
channel 1. In addition to the nextHeap, the merger uses the
seenHeap to track the lowest sequence number among the
backs of the queues. In this instance, lastSeqno 4, so
themerger needs to either see 5 or be able to conclude it is never
coming. After 8 arrives on channel 1 and becomes the top of
the seenHeap, the merger is able to conclude that 5 is never
coming—the top of the seenHeap is the lowest sequence
number of the backs of the queues, and < . The merger then
submits 6, and it also has enough information to submit 8. It
cannot submit 10 because it does not have enough information
to determine if 9 has been dropped.

4.3.4 Relaxed Sequence Number and Pulses

The priormerge strategies are sufficient only in the absence of
prolific operators—operators where a single firing can pro-
duce > tuples. Our system handles prolific operators by
giving the same sequence number to all tuples in a group. So,
if an operator consumes a tuplewith sequence numberx, all of
the tuples produced as a result of that firing will also have
sequence number x.We call such sequence numbers duplicates.

The merger must be able to handle duplicates, yet still
maintain correct ordering. The challenge in handling dupli-
cates is making certain that the merger has seen all duplicates
for a particular sequence number before submitting higher
sequence numbers. Themanner inwhichwe establish this fact

is similar to establishing that a tuple has been dropped:
we monitor the backs of the channel queues, looking for
evidence that it is impossible for aparticular sequence number
to arrive.

We are aided this timeby the fact that if sequence numberx
arrives on channelc, thenduplicates ofx can only arrive on the
same channel c. If we can establish that a sequence number
greater than x arrived on channel c, then it is impossible for
the merger to receive any more duplicates of x. Thus, we only
need to check the queue for the last channelwe received a tuple
on, which we keep track of with lastChan. Using that
reasoning,we can define a functionwhich performs this check:

def noDups seqno :

return seqno channels lastChan back

When themergerwants to evaluate if sequencenumbers is
in order, it also has to check if it can prove that there are no
outstanding duplicates for s 1. Until the merger can prove
that nomore tuples with sequence number s 1will arrive, it
cannot be sure that submitting s will be in sequential order.
However, the presence of duplicates means that it is possible
for the gap between s and lastSeqNo to be 0—they are the
same. In that case, it is clearly ready to be submitted. The final
decision to submit a tuple is then expressed as:

def readyRelaxedSeqnoAndPulse next :

return gap next 0

or gap next 1 and noDups next 1

or gap next > 1 and dropped next 1

In other words, we can submit next if there is no gap
between it and the last sequence number submitted (they are
the same); or, if the gap is 1, then we can submit it if we can
prove that no duplicates for next 1 can arrive; or we can
submitnext if the gap is greater than 1, andwe canprove that
next 1 has been dropped.

The far right of Fig. 5 shows an example of a relaxed
sequence number and pulses merge. The seenHeap is not
yet usable (shown as a dangling pointer), becausewe have yet
to receive a tuple or pulse on channel 1. The top of the
nextHeap is 5, and lastSeqno 1 is 5, so we can establish
that the top of the nextHeap is in relaxed (non-decreasing)
order. However, we must also be able to prove that no more
tuples can arrive with sequence number 4. Since a tuple with
sequence number 4 last arrived on channel 0, and we can see
that the back of channel 0’s queue is 7, we can prove that no
more duplicates of 4 will arrive because < . We can then
submit 5, but we are unable to subsequently submit 7 because
it is still possible for duplicates of 5 to arrive on channel 2.

4.4 Shuffles

When the compiler forms parallel regions (Section 3.3), it
aggressively tries to merge adjacent regions. Adjacent parallel
regions that are not merged are sequential bottlenecks. When
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possible, the compiler merges parallel regions by simply re-
moving adjacent mergers and splitters. Section 3.1 lists the
safety conditions forwhenmergingparallel regions is possible.
However, when adjacent parallel regions have incompatible
keys, they cannot be merged. Instead, the compiler inserts a
shuffle: all channels of the left parallel region end with a split,
and all channels of the right parallel region beginwith amerge.
Shufflespreservesafetywhile avoidinga sequentialbottleneck.

In principle, shuffles are just splits andmerges at the edges
of adjacent parallel regions. However, splits and merges in a
shuffle modify their default behavior, as shown in Fig. 6.

Ordinary splitters have both routing and ordering respon-
sibilities. The ordering responsibility for an ordinary splitter is
to create and attach sequence numbers (if needed) to each
outgoing tuple. When tuples arrive at a splitter in a shuffle,
those tuples already have sequence numbers. The PE itself
preserves sequence numbers, so a splitter in a shuffle only has
routing responsibilities. Splitters inside of a shuffle also do not
generate pulses; theywere already generated by the splitter at
the beginning of the parallel region.

Whenmergers exist at the edge of parallel regions, they are
responsible for stripping off the sequence numbers from tuples
and dropping pulses. Mergers that are a part of a shuffle must
preserve sequence numbers and pulses. But they cannot do so
naively, sincemergers insideof a shufflewill actually receive
copies of every pulse, where is the number of parallel
channels. The split before them has to forward each pulse it
receives to all of the mergers in the shuffle, meaning that each
merger will receive a copy of each pulse. The merger prevents
this problem fromexploding by ensuring that only one copy of
each pulse is fowarded on through the channel. If the merger
did not drop duplicated pulses, then the number of pulses that
arrived at thefinalmergerwould be on the order of where
is the number of stages connected by shuffles.

5 PUNCTUATIONS

Punctuationsare control signals ina streamthat are interleaved
with tuples [9]. Punctuations impact auto-parallelization,
including both compile-time region formation and run-
time policy enforcement. Before we detail how our auto-
parallelizer handles punctuations, we briefly discuss what
they are, how they are used in our system, and the set of
composition rules governing the interaction of punctuations
with operators.

5.1 Punctuation Kinds

Our system uses three kinds of punctuations. First arewindow
punctuations, which are one of the ways to create windows
within a stream. Suchwindows identify a group of tuples that
form a larger unit. For instance, a group of tuples marked by

window punctuations can be reduced as a batch using an
aggregate operator. Second are final punctuations, which iden-
tify the end of a stream.While streams are potentially infinite,
in practice they do terminate when applications are brought
down. Final punctuations help implementing logic associated
with termination processing, such as flushing buffers. The
third kind of punctuations are pulses, as described in Sec-
tion 4.3.3. Unlike the other punctuations, pulses never exist
outside of a parallel region.

5.2 Punctuation Rules

We now look at the rules that govern operator composition
under punctuations. An output port of an operator can either
generate, remove, or preserve punctuations. Punctuation-free
output ports guarantee that their output stream does not
contain punctuations, whereas punctuation-preserving ports
will forward punctuations from the input (if they exist). An
input port of an operator can either be punctuation-oblivious
or punctuation-expecting. An input port is oblivious to punc-
tuations if it does not require a punctuated stream to function
properly,whereas punctuation-expecting input portsmust be
connected to exactly one punctuated stream.

A stream is punctuated if it is generated by a punctuation-
generating output port or an output port that preserves
punctuations from an input port that receives a single punc-
tuated stream. Performing fan-in on two punctuated streams
results in a stream that is not punctuated, since punctuation
semantics are lost (e.g., window boundaries are garbled).

5.3 Region Formation and Punctuations

We now describe how punctuation rules impact parallel
region formation. Operators with punctuation-expecting in-
put ports depend on up-stream operators that generate punc-
tuated streams and forward them (if any). If a down-stream
operator depends on punctuations generated or forwarded
from an up-stream operator , and is in a parallel region,
then must be in the same parallel region as . Otherwise,
the replicas of would each independently generate punc-
tuations, which would have undefined semantics for .

In summary, during region formation, the compiler en-
sures that if an operator is inside a parallel region, then other
operators that have punctuation dependencies on it are also
inside the same parallel region. If this causes other conflicts,
then the operator cannot be placed in a parallel region.

5.4 Runtime Handling of Punctuations

The punctuation safety checks performed by the compiler
prevent punctuations generated from inside a parallel region
from ever reaching a merger. However, punctuations gener-
ated by an operator outside and before a parallel region are
allowed to pass through the region. Unlike tuples, punctua-
tions do not carry unique data. Rather, they are semantic
markers inside of a stream, and for that reason, punctuations
must be routed to all channels inside of a parallel region.

Because punctuations are duplicated at the split, themerg-
er has to take care not to submit the duplicated punctuations
downstream. For the round-robin ordering strategy, the
merge recognizes when it is submitting a punctuation, and
it knows that the next full round of items to submit will be
duplicates of that punctuations. The merger checks that they
are and drops them.
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Fig. 6. Splitter and merger responsibilities in a shuffle.
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When tuples have sequence numbers, handling duplicate
punctuations is actually easier. The splitter assigns the same
sequence number to all duplicates of a punctuation. When a
punctuation is a candidate for submitting downstream, the
merger checks its sequence number. If the sequence number is
less than or equal to the last-submitted sequence number, then
the punctuation is a duplicate and the merger drops it. This
behavior is the same as for pulses.

6 RESULTS

We use three classes of benchmarks. The scalability bench-
marks are designed to show that simple graphs with data
parallelism will scale using our techniques. Our microbe-
nchmarks are designed to measure the overhead of runtime
mechanisms that are necessary to ensure correct ordering.
Finally, we use five application kernels to show that our
techniques can improve the performance of stream graphs
inspired by real applications.

All of our experimentswere performed onmachineswith 2
Intel Xeon processors where each processor has 4 cores with
hyperthreading. In total, eachmachine has 8 cores, 16 threads,
and 64 GB of memory. Each machine runs Linux, with a 2.6
version of the kernel.

Our Large-scale experiment uses 112 cores across 14 ma-
chines. The large-scale experiments demonstrate the inherent
scalability of our runtime, and indicate that the linear trends
seen in the other experiments are likely to continue. The
machines in the large-scale experiments were connected with
Ethernet. The remainder of our experiments use 4 machines
connected with Infiniband.

Our experiments in Sections 6.1 and 6.2 vary the amount of
work per tuple on the -axis, where work is the number of
integer multiplications performed per tuple4. We scale this
exponentially to explore how our system behaves with both
very cheap and very expensive tuples. When there is little
work per tuple, scaling is harder because the parallelization
overhead is significant compared to the actual work. Hence,
the low end of the spectrum—the left side of the -axis—is
more sensitive to runtime parallelization overheads. The high
end of the spectrum—the right side of the -axis—shows the
scalability that is possible when there is sufficient work.

All data points in our experiments represent the average of
at least three runs, with error bars showing the standard
deviation.

6.1 Scalability Benchmarks

The scalability benchmarks, Fig. 7, demonstrate our runtime’s
scalability across a wider range of parallel channels. These
experiments use 4 machines (32 cores). When there is a small
amount of work per tuple (left side of the -axis), these
experiments also show how sensitive the runtime is to having
more active parallel channels than exploitable parallelism.

The Stateless scalability experiment has a stream graph
with a single stateless operator inside of a parallel region.
Because the operator in the parallel region is stateless, the
compiler recognizes that the runtime can use the least expen-
sive ordering strategy, round-robin. Hence, we observe linear
scalability, up to 32 times the sequential case when 32 parallel
channels are usedwith 32 cores available. Just as importantly,
when there is very little work—when the amount of work to
be done is closer to the parallelization cost—additional paral-
lel channels do not harm performance.

The stream graph is the same for the Stateful scalability
experiment, but the operator is an aggregator that has local
state. The compiler instructs the runtime to use sequence
numbers andpulses to ensure proper ordering. The scalability
is linear for 2–16 parallel channels, and achieves 31.3 times the
sequential case for 32 parallel channels when using 32 cores.
However, all cases see some performance improvement with
very inexpensivework,with all but the 32-channel cases never
dropping below improvement. The 32-channel case never
has less than improvement for very inexpensive work.
This result indicates that our runtime has little overhead.Note
that in the Stateful experiment, inexpensive work exhibits
more than improvement for 1–8 channels, which is not
the case with the Stateless experiment. Even though the per-
tuple cost is the same for both experiments, the aggregation
itself adds a fixed cost. Hence, operators in the Stateful experi-
ment domorework than operators in the Stateless experiment.
Very inexpensivework in the Stateful experiment is benefiting
from both pipeline and data parallelism.

Fig. 8 shows the stream graph for the Shuffle experiment,
which has two aggregations partitioned on different keys,
requiring a shuffle between them.When there are 32 channels
in the Shuffle experiment, there are actually 64 processes (two

Fig. 7. Scalability benchmarks.
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PEs per channel) running on 32 cores. (In the Stateless and
Stateful experiments, 32 channels use only 32 processes: one
PE per channel.) Hence, the 32-channel case is an over-
subscribed system by a factor of 2, and it only scales to

. The 16-channel case has 32 PEs, which is a fully
subscribed system, and it scales to . As with the Stateful
experiment, the inexpensive end of the work spectrum ben-
efits from pipeline as well as data parallelism, achieving over

improvement for 4–32 channels.
Note that the effect of pipeline parallelism for low tuple

costs is least pronounced in the Stateless experiment, andmost
pronounced in Shuffle. In the sequential case with low-tuple
costs, the one PE worker is the bottleneck; it must receive,
process, and send tuples. The splitter only sends tuples.As the
number of parallel channels increases, the work on each
worker PE decreases, making the splitter the bottleneck. The
more costly thework is, the stronger the effect becomes,which
iswhy it isweakest in the Stateless experiment and strongest in
the Shuffle experiment.

The Large-scale experiment in Fig. 10 demonstrates the
scalability the runtime system is able to achieve with a large
number of cores across manymachines. This experiment uses
a total of 14 machines. One machine (8 cores) is dedicated to
the source and sink, which includes the split andmerge at the

edges of the parallel region. The other 13machines (104 cores)
are dedicated to the PEs in the parallel region. The stream
graph for the stateful experiment is a single, stateful aggrega-
tion in a parallel regionwith 100 parallel channels. The stateful
experiment shows near linear scalability, maxing out at
improvement.

The shuffle experiment in Fig. 10 has the same streamgraph
as shown in Fig. 8. Therefore, there are twice as many
processes as parallel channels. When there are 50 parallel
channels in each of its two parallel regions, the improvement
in throughput maxes out at . The shuffle experiment
cannot scale as high as stateful because with 50 parallel
channels, there are 100 PEs.

6.2 Microbenchmarks

Fig. 9 shows the microbenchmarks. The stream graph for the
microbenchmarks is a single-operator parallel region.

As described in Section 4.3, adding sequence numbers to
tuples and inserting pulses on all channels will incur some
overhead. We measured this overhead in Fig. 9, using pure
round-robin ordering as the baseline. As expected, as the
work-per-tuple increases, the cost of adding a sequence num-
ber to each tuple becomes negligible compared to the actual
work done. However, even when relatively little work is
done, the highest average overhead is only 12%. Pulses add
more overhead, but never more than 21%. As with sequence
numbers alone, the overhead goes towards zero as the cost of
the work increases. Handling duplicates due to prolific re-
gions does not add extra overhead on top of pulses, but results
in slightly higher variance in the overhead results.

Epochs, as explained in Section 4.3, are the number of
tuples on each channel between generating pulses on all
channels. The Epoch experiment in Fig. 9 measures how
sensitive performance is to the epoch length. An epoch of
means that the splitter will send tuples, where is the
number of channels, before generating a pulse on each

– – –

Fig. 9. Microbenchmarks.

Fig. 10. Large-scale scalability.
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channel. We scale the epoch with the number of channels to
ensure that each channel receives tuples before it receives a
single pulse. The default epoch is . Results show that
beyond an epoch length of 8, speedup does not vary more
than 8% in the range from 8–32.

The Skew experiment in Fig. 9 demonstrates that because
our runtime does not yet perform dynamic load balancing, it
may be vulnerable to skewed distributions in parallel regions
with partitioned state. As explained in Section 4.2, when
parallel regions contain partitioned state, tuples are routed
based on a hash of the key attributes. Hence, each tuple has a
particular channel it must be routed to. The -axis is the
amount of skew. The first data point on the -axis means
that 78% of the keys constitute 80% of the volume, in other
words, there is only very little skew. The last data point on the
-axis means that 1% of the attributes constitute 80% of the

volume. As expected, when many tuples must be routed to a
few channels, speedup suffers. This experiment indicates that
our runtime could benefit from dynamic load balancing.
While the runtime is unable to change the fact that a particular
tuple must be routed to a single channel, it could separate out
the heavily loaded attributes into different channels.

In the Selectivity experiment, we fixed the number of
parallel channels at 32. Each line in the graph represents a
progressively more selective aggregator. So, when selectivity
is 1:1, the operator performs an aggregation for every tuple it
receives. When selectivity is 1:256, it performs 1 aggregation
for every 256 tuples it receives. When per-tuple cost is low,
and the selectivity increases, the worker PEs do very little
actualwork; theymostly receive tuples. However, the cost for
the splitter remains constant, as it always has 32 channels.
When selectivity is high, the splitter is paying the cost to split
to 32 channels, but there is no benefit to doing so, since real
work is actually a rare event. As a result, as selectivity
increases, there is actually slowdown until the cost of proces-
sing one of the selected tuples become large.

ThePunctuation experiment in Fig. 11 quantifies the impact
of punctuated streams flowing through parallel regions. As
explained in Section 5.4, punctuations are replicated on all
channels. As the number of punctuations increases, the inher-
ent dataparallelismdecreases. The -axis varies the amount of
punctuations per tuple in a stream. On the left, at 1, there is 1
punctuation for every tuple. On the far right, at 256, there is 1
punctuation for every 256 tuples.

As expected, when the stream has many punctuations, the
overhead is high: there is nodataparallelism to exploit, butwe
still pay all of the synchronization overheads. The only
exception is for the largest tuple processing cost, for which

the extra cost of having a punctuation for every tuple is
negligible. As the number of punctuations in the stream
decreases, the performance approaches the same as in the
Stateless scalability benchmark.

6.3 Application Kernels

This section further explores performance using five real-
world application kernels shown in Fig. 12. All of these
application kernels have selective or stateful parallel regions,
which require the techniques presented in this paper to be
parallelized.

The Network monitoring kernel monitors multiple servers,
looking for suspicious user behavior. The filters remove
values belowa “suspicious” threshold. The left parallel region
is partitioned by the server, while the right parallel region is
partitioned by users, with a shuffle in the middle. Note,
however, that because there are parallel sources on the left
and parallel sinks on the right, tuples are not ordered in this
application. The compiler recognizes this and informs the
runtime that it has only routing responsibilities.

The PageRank kernel uses a feedback loop to iteratively
rank pages in a web graph [15]. This application is typically
associated with MapReduce, but is also easy to express in a
streaming language. Each iteration multiplies the rank vector
with the web graph adjacency matrix. In the first iteration,
MulAdd reads the graph from disk. Each iteration uses the
parallel channels of MulAdd to multiply the previous rank
vectorwith some rowsof thematrix, andusesAdd to assemble
the next rank vector. The input consists of a synthetic graph of
2 million vertices with a sparsity of 0.001, in other words,
4 billion uniformly distributed edges.

The Twitter NLP kernel uses a natural language processing
engine [16] to analyze tweets. The input is a stream of tweet
contents, and the output is a list of tuples containing thewords
used in the message, their lengths, and their frequencies. The
stream graph has a parallel region with a single, stateless,
prolific operator. The NLP engine is implemented in Java, so
tuples that enter the NLP operator must be serialized, copied
into the JVM, processed, then deserialized and copied out of
the JVM.

The Twitter CEP kernel uses complex event processing to
detect patterns across sequences of tweets [17]. The Parse

Fig. 11. Punctuation overhead.
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operator turns an XML tweet into a tuple with author, con-
tents, and timestamp. The Match operator detects sequences
of five consecutive tweets by the same author with identical
hash-tags. This pattern is a pathological case for this input
stream,which causes the finite statemachine that implements
the pattern matching to generate and check many partial
matches for most tuples. Both Parse and Match are paralle-
lized, with a shuffle to partition by author before Match. The
topology is similar to that of theNetworkmonitoringkernel, but
since there is no parallel source or sink, ordering matters.

The Finance kernel detects bargains when a quote exceeds
the VWAP (volume-weighted average price) of its stock
symbol. The graph has three parallelizable operators. Only
the Combine operator, which merges its two input streams
in timestamp order, is not parallel.

Fig. 13 shows the parallel speedups of the five application
kernels on a cluster of 4 machines with 8 cores each, for a total
of 32 cores. In these experiments, all parallel regions are
replicated to the same number of parallel channels. For
example, when the number of channels is 32, Twitter CEP
has a total of 64 operator instances, thus over-subscribing the
cores. Most of the kernels have near-perfect scaling up to 8
channels. The exception is Finance, which tops out at a speed-
up of with 4 channels, at which point the Combine

operator becomes the bottleneck. The other application ker-
nels scale well, topping out at either 16 or 32 channels, with
speedups between and over sequential.

Table 2 shows the average time it takes for all operators in
parallel regions to process tuples. The average timings in-
cludes a mix of integer and floating point operations that
could potentially include cache misses and branch
mispredictions.

7 RELATED WORK

The StreamIt compiler auto-parallelizes operators using
round-robin to guarantee ordering [4]. The StreamIt language
supports stateful and dynamic operators, but StreamIt fission
only works for stateless operators with static selectivity. We
treat it as a special case of ourmore general framework,which
also fisses operators with partitioned state and dynamic
selectivity. Furthermore, unlike StreamIt, we support more
general topologies that eliminate bottle-necks, including par-
allel sources, shuffles, and parallel sinks.

To achieve our scaling results for stateful operators, we
adapt an idea from distributed databases [18], [19]: we parti-
tion the state by keys. This same technique is also the main
factor in the success of the MapReduce [20] and Dryad [21]

batch processing systems. However, unlike parallel data-
bases, MapReduce, and Dryad, our approach works in a
streaming context. This requiredus to invent novel techniques
for enforcing output ordering. For instance, MapReduce uses
a batch sorting stage for output ordering, but that is not an
option in a streaming system. Furthermore, whereas parallel
databases rely on relational algebra to guarantee that data
parallelism is safe,MapReduce andDryad leave this up to the
programmer. Our system, on the other hand, uses static
analysis to infer sufficient safety preconditions.

There are several efforts, including Hive [22], Pig [23] and
FlumeJava [24], that provide higher-level abstractions for
MapReduce. These projects provide a programming model
that abstracts away the details of using a high performance,
distributed system. Since these languages and libraries are
abstractions for MapReduce, they do not work in a streaming
context, and do not have the ordering guarantees that our
systemdoes. Efforts onmakingbatchdata processing systems
more incremental include MapReduce Online, which reports
approximate results early [25], and the Percolator which
allows observers to trigger when intermediate results are
ready [26].Unlike these hybrid systems,which still experience
high latencies, our system is fully streaming.

Spark Streaming is a stream processing framework de-
signed to deal with fault tolerance and load balancing in a
distributed system [27]. The model, called discretized
streams, divides a continuous streaming computation into
stateless, deterministic transformations on batches. These
transformations are inherently data parallel, as they are state-
less and apply to distributed data sets. However, Spark
Streaming does not enforce ordering on their records, nor
does it have to do any analysis to determine if a transforma-
tion can be parallelized.

Storm is an open-source project for distributed stream
computing [3]. The programming model is similar to ours—
programmers implement asynchronous bolts which can have
dynamic selectivity. Developers can achieve data parallelism
on any bolt by requesting multiple copies of it. However,
such data parallelism does not enforce sequential semantics;
safety is left entirely to the developers. S4 is another open-
source streaming system [2], which was inspired by both
MapReduce and the foundational work behind Streams [28].
In S4, the runtime dynamically instantiates replica PEs for each
new value of a key. Creating replica PEs enables data parallel-
ism, but S4 has no mechanisms to enforce tuple ordering.
Again, safety is left to developers.

There are extensions to the prior work on data-flow par-
allelization that are complementary to our work. River [29]
and Flux [30], part of the adaptive query processing line of
work, perform load-balancing for parallel flows. Both of these
leave safety to developers. Microsoft StreamInsight uses a

Fig. 13. Performance results for the application kernels.

TABLE 2
Average Processing Time per Tuple
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group-and-apply operator for partitioning [31]. All its opera-
tors derive output corrections when input tuples arrive out-
of-order. This gives StreamInsightmoreorderingflexibility, at
the cost of more complicated operators; the paper focuses on
relational algebra operators only. Elastic operators [32], flexi-
blefilters [33], and feedback-directedpipelining [34] adapt the
degree of parallelismdynamically, but do not address stateful
operators in a distributed system or safety analysis. Finally,
Brito et al. describes how to parallelize stateful operators with
STM (software transactional memory) [5], but only ifmemory
is shared and operator selectivity is exactly one.

8 CONCLUSION

We have presented a compiler and runtime system that are
capable of automatically extracting data parallelism from
streaming applications. Our work differs from prior work by
being able to extract such parallelism with safety guarantees
in the presence of operators that can be stateful, selective, and
user-defined. We have demonstrated that these techniques
can scalewith available resources and exploitable parallelism.
The result is a programming model in which developers
can naturally express task and pipeline parallelism, and
let the compiler and runtime automatically exploit data
parallelism.
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