
Journal of Artificial Intelligence Research 45 (2012) 515-564 Submitted 8/12; published 12/12

Safe Exploration of State and Action Spaces in

Reinforcement Learning

Javier Garćıa fjgpolo@inf.uc3m.es

Fernando Fernández ffernand@inf.uc3m.es

Universidad Carlos III de Madrid,

Avenida de la Universidad 30,

28911 Leganés, Madrid, Spain

Abstract

In this paper, we consider the important problem of safe exploration in reinforcement
learning. While reinforcement learning is well-suited to domains with complex transition
dynamics and high-dimensional state-action spaces, an additional challenge is posed by
the need for safe and efficient exploration. Traditional exploration techniques are not
particularly useful for solving dangerous tasks, where the trial and error process may lead
to the selection of actions whose execution in some states may result in damage to the
learning system (or any other system). Consequently, when an agent begins an interaction
with a dangerous and high-dimensional state-action space, an important question arises;
namely, that of how to avoid (or at least minimize) damage caused by the exploration of the
state-action space. We introduce the PI-SRL algorithm which safely improves suboptimal
albeit robust behaviors for continuous state and action control tasks and which efficiently
learns from the experience gained from the environment. We evaluate the proposed method
in four complex tasks: automatic car parking, pole-balancing, helicopter hovering, and
business management.

1. Introduction

Reinforcement learning (RL) (Sutton & Barto, 1998) is a type of machine learning whose
main goal is that of finding a policy that moves an agent optimally in an environment, gen-
erally formulated as a Markov Decision Process (MDP). Many RL methods are being used
in important and complex tasks (e.g., robot control see Smart & Kaelbling, 2002; Hester,
Quinlan, & Stone, 2011, stochastic games see Mannor, 2004; Konen & Bartz-Beielstein,
2009 and control optimization of complex dynamical systems see Salkham, Cunningham,
Garg, & Cahill, 2008). While most RL tasks are focused on maximizing a long-term cu-
mulative reward, RL researchers are paying increasing attention not only to long-term
reward maximization, but also to the safety of approaches to Sequential Decision Problems
(SDPs) (Mihatsch & Neuneier, 2002; Hans, Schneegass, Schäfer, & Udluft, 2008; Mart́ın H.
& Lope, 2009; Koppejan & Whiteson, 2011). Well-written reviews of these matters can also
be found (Geibel & Wysotzki, 2005; Defourny, Ernst, & Wehenkel, 2008). Nevertheless,
while it is important to ensure reasonable system performance and consider the safety of
the agent (e.g., avoiding collisions, crashes, etc.) in the application of RL to dangerous
tasks, most exploration techniques in RL offer no guarantees on both issues. Thus, when
using RL techniques in dangerous control tasks, an important question arises; namely, how
can we ensure that the exploration of the state-action space will not cause damage or injury

c©2012 AI Access Foundation. All rights reserved.

Garćıa & Fernández

while, at the same time, learning (near-)optimal policies? The matter, in other words, is
one of ensuring that the agent be able to explore a dangerous environment both safely and
efficiently. There are many domains where the exploration/exploitation process may lead
to catastrophic states or actions for the learning agent (Geibel & Wysotzki, 2005). The
helicopter hovering control task is one such case involving high risk, since some policies
can crash the helicopter, incurring catastrophic negative reward. Exploration/exploitation
strategies such as ǫ−greedy may even result in constant helicopter crashes (especially where
there is a high probability of random action selection). Another example can be found in
portfolio theory where analysts are expected to find a portfolio that maximizes profit while
avoiding risks of considerable losses (Luenberger, 1998). Since the maximization of expected
returns does not necessarily prevent rare occurrences of large negative outcomes, a different
criteria for safe exploration is needed. The exploration process in which new policies are
evaluated must be conducted with extreme care. Indeed, for such environments, a method is
required which not only explores the state-action space, but which does so in a safe manner.

In this paper, we propose the Policy Improvement through Safe Reinforcement Learning
(PI-SRL) algorithm for safe exploration in dangerous and continuous control tasks. Such a
method requires a predefined (and safe) baseline policy which is assumed to be suboptimal
(otherwise, learning would be pointless). Predefined baseline policies have been used in
different ways by other approaches. In the work of Koppejan and Whiteson (2011), single-
layers perceptrons are evolved, albeit starting from a prototype network whose weights corre-
spond to a baseline policy provided by helicopter control task competition software (Abbeel,
Coates, Hunter, & Ng, 2008). This approach can be viewed as a simple form of popu-
lation seeding which has proven to be advantageous in numerous evolutionary methods
(e.g. see Hernández-Dı́az, Coello, Perez, Caballero, Luque, & Santana-Quintero, 2008; Poli
& Cagnoni, 1997). In the work of Mart́ın and de Lope (2009), the weights of neural net-
works are also evolved by inserting several baseline policies (including that provided in the
helicopter control task competition software) into the initial population. To minimize the
possibility of evaluating unsafe policies, their approach prevents crossover and mutation
operators from permitting anything more than tiny changes to the initial baseline policies.
In this paper, we present the PI-SRL algorithm, a novel approach to improving baseline
policies in dangerous domains using RL. The PI-SRL algorithm is composed of two dif-
ferent steps. In the first, baseline behavior (robust albeit suboptimal) is approximated
using behavioral cloning techniques (Anderson, Draper, & Peterson, 2000; Abbott, 2008).
In order to achieve this goal, case-based reasoning (CBR) techniques (Aamodt & Plaza,
1994; Bartsch-Sprl, Lenz, & Hbner, 1999) were used which have been successfully applied
to imitation tasks in the past (Floyd & Esfandiari, 2010; Floyd, Esfandiari, & Lam, 2008).
In the second step, the PI-SRL algorithm attempts to safely explore the state-action space
in order to build a more accurate policy from previously-learned behavior. Thus, the set
of cases (i.e., state-action pairs) obtained in the previous phase is improved through the
safe exploration of the state-action space. To perform this exploration, small amounts of
Gaussian noise are randomly added to the greedy actions of the baseline policy approach.
The exploration strategy has been used successfully in previous works (Argall, Chernova,
Veloso, & Browning, 2009; Van Hasselt & Wiering, 2007).

The novelty of the present study is in the use of two new, main components: (i) a risk
function to determine the degree of risk of a particular state and (ii) a baseline behavior

516

Safe Exploration of State and Action Spaces in Reinforcement Learning

capable of producing safe actions in supposedly risky states (i.e., states that can lead to
damage or injury). In addition, we present a new definition of risk based on what for the
agent is unknown and known space. As will be described in Section 5 in greater detail, this
new definition is completely different from traditional definitions of “risk” found in the liter-
ature (Geibel, 2001; Mihatsch & Neuneier, 2002; Geibel & Wysotzki, 2005). The paper also
reports the experimental results obtained from the application of the new approach in four
different domains: (i) automatic car parking (Lee & Lee, 2008), (ii) pole-balancing (Sutton
& Barto, 1998), (iii) 2009 RL Competition helicopter hovering (Ng, Kim, Jordan, & Sastry,
2003) and (iv) business management (Borrajo, Bueno, de Pablo, Santos, Fernández, Garćıa,
& Sagredo, 2010). In each domain, we propose the learning of a near-optimal policy which,
in the learning phase, will minimize car crashes, pole disequilibrium, helicopter crashes and
company bankruptcies, respectively. It is important to note that the comparison of our
approach with an agent with an optimal exploration policy is not possible since, in the
proposed domains (each with a high-dimensional and continuous state and action space, as
well as complex stochastic dynamics), we do not know what the optimal exploration policy
is.

Regarding the organization of the remainder of the paper, Section 2 introduces key
definitions, while Section 3 describes in detail the learning approach proposed. In Section 4,
the evaluation performed in the four above mentioned domains is presented. Section 5
discusses related work and Section 6 summarizes the main conclusions of our study. In
these sections, the term return is used to refer to the expected cumulative future discounted
reward R =

∑∞
t=0 γ

trt, while the term reward is used to refer to a single real value used to
evaluate the selection of an action in a particular state and it is denoted by r.

2. Definitions

To illustrate the concept of safety used in our approach, a navigation problem is presented
below in Figure 1. In the navigation problem presented in Figure 1, a control policy must
be learned to get from a particular start state to a goal state, given a set of demonstration
trajectories. In this environment, we assume the task to be difficult due to a stochastic
and complex dynamic of the environment (e.g., an extremely irregular surface in the case
of a robot navigation domain or wind effects in the case of the helicopter hover task). This
stochasticity makes it impossible to complete the task using exactly the same trajectory
every time. Additionally, the problem supposes that a set of demonstrations from a baseline
controller performing the task (the continuous black lines) are also given. This set of
demonstrations is composed of different trajectories covering a well-defined region of the
state space (the region within the rectangle).

Our approach is based on the addition of small amounts of Gaussian noise or pertur-
bations to the baseline trajectories in order to find new and better ways of completing the
task. This noise will affect the baseline trajectories in different ways, depending on the
amount of noise added which, in turn, depends on the amount of risk to be taken. If no risk
is desired, the noise added to the baseline trajectories will be 0 and, consequently, no new
or improved behavior will be discovered (nevertheless, the robot will never fall off the cliff
and the helicopter will never crash). If, however, an intermediate level of risk is desired,
small amounts of noise will be added to the baseline trajectories and new trajectories (the

517

Garćıa & Fernández

Figure 1: Exploration strategy based on the addition of small amounts of noise to baseline
policy behavior. Continuous lines represent the baseline behavior, while newly
explored behaviors are indicated by the dotted and dashed lines.

dotted blue lines) to complete the task are discovered. In some cases, the exploration of new
trajectories leads the robot to unknown regions of the state space (the dashed red lines).
The robot is assumed to be able to detect such situations with a risk function and use the
baseline behavior to return to safe, known states. If, instead, a very high risk is desired,
large amounts of noise will be added to the baseline trajectories, leading to the discovery
of new trajectories (but also to a higher probability that the robot gets damaged). The
iteration of this process leads the robot to progressively and safely explore the state and
action spaces in order to find new and improved ways to complete the task. The degree of
safety in the exploration, however, will depend on the risk taken.

2.1 Error and Non-Error States

In this paper, we follow as far we can the notation presented in Geibel et al. (2005) for
the definition of our concept of risk. In their study, Geibel et al. associate risk with error
states and non-error states, with the former understood as a state in which it is considered
undesirable or dangerous to enter.

Definition 1 Error and non-error states. Let S be a set of states and Φ ⊂ S the set
of error states. A state s ∈ Φ is an undesirable terminal state where the control of the
agent ends when s is reached with damage or injury to the agent, the learning system or
any external entities. The set Γ ⊂ S is considered a set of non-error terminal states with
Γ ∩ Φ = ∅ and where the control of the agent ends normally without damage or injury.

In terms of RL, if the agent enters an error state, the current episode ends with damage
to the learning system (or other systems); whereas if it enters a non-error state, the episode
ends normally and without damage. Thus, Geibel et al. define the risk of s with respect
to policy π, ρπ(s), as the probability that the state sequence (si)i≥0 with s0 = s, generated
by the execution of policy π, terminates in an error state s′ ∈ Φ. By definition, ρπ(s) = 1
if s ∈ Φ. If s ∈ Γ, then ρπ(s) = 0 because Φ ∩ Γ = ∅. For states s /∈ Φ ∪ Γ, the risk
taken depends on the actions selected by the policy π. With these definitions, we have the

518

Safe Exploration of State and Action Spaces in Reinforcement Learning

theoretical framework with which to introduce our own definition of the risk associated with
known and unknown states.

2.2 Known and Unknown States in Continuous Action and State Spaces

We assume a continuous, n-dimensional state space S ⊂ ℜn where each state s = (s1, s2, . . . ,
sn) ∈ S is a vector of real numbers and each dimension has an individual domain Ds

i ⊂ ℜ.
Similarly, we assume a continuous and m-dimensional action space A ⊂ ℜm where each
action a = (a1, a2, . . . , am) ∈ A is a vector of real numbers and each dimension has an
individual domain Da

i ⊂ ℜ. Additionally, the agent considered here is endowed with a
memory, or case-base B, of the size η. Each memory element represents a state-action pair,
or case, the agent has experienced before.

Definition 2 (Case-base). A case-base is a set of cases B = {c1 . . . , cη}. Every case
ci consists of a state-action pair (si, ai) the agent has experienced in the past and with an
associated value V (si). Thus, ci =< si, ai, V (si) >, where the first element represents the
case’s problem part and corresponds to the state si, the following element ai depicts the case
solution (i.e., the action expected when the agent is in the state si) and the final element
V (si) is the value function associated with the state si. Each state si is composed of n
continuous state variables and each action ai is composed of m continuous action variables.

When the agent receives a new state sq, it first retrieves the nearest neighbor of sq in
B according to a given similarity metric and then performs the associated action. In this
paper, we use Euclidean distance as our similarity metric (Equation 1).

d(sq, si) =

√

√

√

√

n
∑

j=0

(sq,j − si,j)2 (1)

The Euclidean distance metric is useful when the value function is expected to be contin-
uous and smooth throughout the state space (Santamaŕıa, Sutton, & Ram, 1998). However,
since the value function is unknown a priori and the Euclidean distance metric is not par-
ticularly suitable for many problems, many researchers have begun to ask how the distance
metric itself can learn or adapt in order to achieve better results (Taylor, Kulis, & Sha,
2011). While the use of distance metric learning techniques would certainly be desirable in
order to induce a more powerful distance metric for a specific domain, such a consideration
lies outside the scope of the present study. In this paper, therefore, we have focused only on
domains in which Euclidean distance has been proven successful (i.e., it has been success-
fully applied to car parking (Cichosz, 1995), pole-balancing (Martin H & de Lope, 2009),
helicopter hovering control (Martin H & de Lope, 2009) and SIMBA (Borrajo et al., 2010).

Traditionally, case-based approaches use a density threshold θ in order to determine when
a new case should be added to the memory. When the distance of the nearest neighbor to
sq is greater than θ, a new case is added. In this sense, the parameter θ defines the size
of the classification region for each case in B (Figure 2). If a new case sq is within the
classification region of a case ci, it is considered to be a known state. Hence, the cases in
B describe a case-based policy of the agent πθ

B and its associated value function V πθ
B .

519

Garćıa & Fernández

Figure 2: Known and Unknown states.

Definition 3 (Known/Unknown states). Given a case-base B = {c1 . . . , cη} composed
of cases ci = (si, ai, V (si)) and a density threshold θ, a state sq is considered known when
min1≤i≤η d(sq, si) ≤ θ and unknown in all other cases. Formally, Ω ⊆ S is the set of known
states, while Υ ⊆ S is the set of unknown states with Ω ∩Υ = ∅ and Ω ∪Υ = S.

With Definition 3, states can be identified as known or unknown. When the agent
receives a new state s ∈ Ω, it performs the action ai of the case ci for which d(s, si) =
min1≤j≤η d(s, sj). However, if the agent receives a state s ∈ Υ where, by definition, the
distance to any state in B is larger than θ, no case is retrieved. Consequently, the action
to be performed from that state is unknown to the agent.

Definition 4 (Case-Based risk function). Given a case base B = {c1 . . . , cη} composed
of cases ci = (si, ai, V (si)), the risk for each state s is defined as Equation 2.

̺π
θ
B (s) =

{

0 if min1≤j≤η d(s, sj) < θ
1 otherwise

(2)

Thus, ̺π
θ
B (s) = 1 holds if s ∈ Υ (i.e., s is unknown), such that the state s is not

associated with any case and, hence, the action to be performed in the given situation is
unknown. If s ∈ Ω, then ̺π

θ
B (s) = 0.

Definition 5 (Safe case-based policy). The case-based policy πθ
B derived from a case-

base B = {c1. . . . , cη} is safe when, from any initial known state s0 with respect to B, the
execution of πθ

B always produces known non-error states with respect to B.

∀s0 | ̺π
θ
B (s0) = 0, then ∀(si)

πθ
B

i>0 ̺π
θ
B (si) = 0 (3)

Additionally, it is assumed here that the probability that the state sequence (si)i≥0 from
any known state s0 ∈ Ω, generated by executing policy πθ

B, terminates in an error state

s ∈ Φ is ρπ
θ
B (s0) = 0 (i.e., Ω ∩ Φ = ∅).

520

Safe Exploration of State and Action Spaces in Reinforcement Learning

Definition 6 (Safe case-based coverage). The coverage of a single state s with respect
to a safe case-base B = {c1. . . . , cη} is defined as the state si for which min1≤i≤η d(s, si) ≤ θ.
Therefore, we assume that the safe case-based does not provide actions for the entire state
space, but rather only for known states s ∈ Ω.

Figure 3 graphically represents the relationship between known/unknown and error/non-
error states. The green area in the image denotes the safe case-based policy πθ

B learnt, an
area of the state space corresponding to the initial known space. An agent following the
policy πθ

B will always be in the green area and all resulting episodes will end without
damages. Consequently, a subset of non-error states will also form part of the known space.
Formally, let ΓΩ and ΓΥ be subsets of non-error states belonging to the known and unknown
spaces, respectively, with ΓΩ ∪ ΓΥ = Γ. Then ΓΩ ⊂ Ω. The yellow area in the Figure, by
contrast, represents the unknown space Υ. In this space will be found all error states, as
well as a subset of remaining non-error states. Formally, ΓΥ ⊂ Υ and Φ ⊂ Υ.

Understood in this way, the PI-SRL algorithm can be summed up as follows:

• As a first step, learn the known space (green area) from the safe case-based policy πθ
B.

• As a second step, adjust the known space (green area) and unknown space (yellow
area) in order to explore new and improved behaviors while avoiding error states (red
area). During this process of adjusting the known space to the space used for safe and
better policies, the algorithm can “forget” ineffectual known states, as will be shown
in Section 4.

Figure 3: Known/unknown and error/non-error states given the Case Base B.

2.3 The Advantages of Using Prior Knowledge and Predetermined
Exploration Policies

In the present subsection, the advantages of using teacher knowledge in RL, namely (i) to
provide initial knowledge about the task to be learned and (ii) to support the exploration
process, are highlighted. Furthermore, we explain why we believe this knowledge to be

521

Garćıa & Fernández

indispensable in RL for tackling highly complex and realistic problems with large, continuous
state and action spaces and in which a particular action may result in an undesirable
consequence.

2.3.1 Providing Initial Knowledge about the Task

Most RL algorithms begin learning without any previous knowledge about the task to be
learnt. In such cases, exploration strategies such as ǫ − greedy are used. The application
of this strategy results in the random exploration of the state and action spaces to gather
knowledge about the task. Only when enough information is discovered from the environ-
ment does the algorithm’s behavior improve. Such random exploration policies, however,
waste a significant amount of time exploring irrelevant regions of the state and action
spaces in which the optimal policy will never be encountered. This problem is compounded
in domains with extremely large and continuous state and action spaces in which random
exploration will never likely visit the regions of the spaces necessary to learn (near-)optimal
policies. Additionally, in many real RL tasks with real robots, a random exploration to
gather information from the environment cannot even be applied. With real robots, what
is considered to be sufficient information can be much more information than a real robot
can gather from the environment. Finally, as it is impossible to avoid undesirable situations
in high-risk environments without a certain amount of prior knowledge about the task, the
use of random exploration would require that an undesirable state be visited before it can
be labeled as undesirable. However, such visits to undesirable states may result in damage
or injury to the agent, the learning system or external entities. Consequently, visits to these
states should be avoided from the earliest steps of the learning process.

Mitigating the difficulties described above, finite sets of teacher-provided examples or
demonstrations can be used to incorporate prior knowledge into the learning algorithm.
This teacher knowledge can be used in two general ways, either (i) to bootstrap the learn-
ing algorithm (i.e., a sort of initialization procedure) or (ii) to derive a policy from such
examples. In the first case, the learning algorithm is provided with examples or demonstra-
tions from which to bootstrap the value function approximation and lead the agent through
the more relevant regions of the space. The second way in which teacher knowledge can
be used refers to Learning from Demonstration (LfD) approaches in which a policy is de-
rived from a finite set of demonstrations provided by a teacher. The principal drawback
to this approach, however, is that the performance of the derived policy is heavily limited
by teacher ability. While one way to circumvent the difficulty and improve performance is
by exploring beyond what is provided in the teacher demonstrations, this again raises the
question of how the agent should act when it encounters a state for which no demonstration
exists (an unknown state).

2.3.2 Supporting the Exploration Process

While furnishing the agent with initial knowledge helps mitigate the problems associated
with random exploration, this alone is not sufficient to prevent the undesirable situations
that arise in the subsequent explorations undertaken to improve learner ability. An addi-
tional mechanism is necessary to guide this subsequent exploration process in such a way
that the agent may be kept far away from catastrophic states. In this paper, a teacher,

522

Safe Exploration of State and Action Spaces in Reinforcement Learning

rather than the policy derived from the current value function approximation is used for
the selection of actions in unknown states. One way to prevent the agent from encountering
unknown states during the exploration process would be by requesting from the beginning
a teacher demonstration for every state in the state space. However, such a strategy is not
possible due to (i) its computational infeasibility given the extremely large number of states
in the state space and (ii) the fact that the teacher should not be forced to give an action
for every state, given that many states will be ineffectual for learning the optimal policy.
Consequently, PI-SRL requests teacher action only when such action is actually required
(i.e., when the agent is in an unknown state).

As this paper supposes that such a teacher is available for the task to be learned, the
teacher is taken as the baseline behavior. Although some studies have examined the use of
robotic teachers, hand-written control policies and simulated planners, the great majority
to date have made use of human teachers. This paper uses suboptimal automatic controllers
as teachers, with πT taken as the teacher’s policy.

Definition 7 (Baseline behavior). Policy πT is considered the baseline behavior about
which three assumptions are made: (i) it is able to provide safe demonstrations of the
task to be learnt from which prior knowledge can be extracted; (ii) it is able to support the
subsequent exploration process, advising suboptimal actions in unknown states to reduce the
probability of entering into error states and return the system to a known situation; and
(iii) its performance is far from optimal.

While optimal baseline behaviors are certainly ideal to behave safely, non-optimal be-
haviors are often easy (or easier) to implement or generate than optimal ones. The PI-SRL
algorithm uses the baseline behavior πT in two different ways. First, it uses the safe demon-
strations of πT to provide prior knowledge about the task. In this step, the algorithm builds
the initial known space of the agent derived from the safe case-based policy πθ

B with the
purpose of mimicking πT through πθ

B. In the second step, PI-SRL uses πT to support the
subsequent exploration process conducted to improve the abilities of the previously-learnt
πθ
B. As the exploration process continues, an action of πT is requested only when required,

that is, when the agent is in an unknown state (Figure 4). In this step, πT acts as a backup
policy in the case of an unknown state with the intention of guiding the learning away from
catastrophic errors or, at least, reducing their frequency. It is important to note that the
baseline behavior cannot demonstrate the correct action for every possible state. However,
while the baseline behavior might not be able to indicate the best action in all cases, the
action it supplies should, at the very least, be safer than that obtained through random
exploration.

2.4 The Risk Parameter

In order to maximize exploration safety, it seems advisable that movement through the
state space not be arbitrary, but rather that known space be expanded only gradually by
starting from a known state. Such an exploration is carried out through the perturbation
of the state-action trajectories generated by the policy πθ

B. Perturbation of the trajectories
is accomplished by the addition of Gaussian random noise to the actions in B in order
to obtain new ways of completing the task. Thus, the Gaussian exploration takes place

523

Garćıa & Fernández

Figure 4: The exploration process in PI-SRL requests actions of the baseline behavior, πT ,
when it is really required.

around the current approximation of the action ai for the current known state sc ∈ Ω, with
ci = (si, ai, V (si)) and d(sc, si) = min1≤j≤η d(s, sj). The action performed is sampled from
a Gaussian distribution with the mean at the action output given by the instance selected
in B. When ai denotes the algorithm action output, the probability of selecting action a′i,
π(s, a′i) is computed using Equation 4.

π(s, a′i) =
1√
2πσ2

e−(a
′
i−ai)2/2σ2

if σ2 > 0. (4)

The shape of the Gaussian distribution depends on parameter σ (standard deviation).
In this study, σ is used as a width parameter. While large σ values imply a wide bell-
shaped distribution, increasing the probability of selecting actions a′i very different from
the current action ai, a small σ value implies a narrow bell-shaped distribution, increasing
the probability of selecting actions a′i very similar to the current action ai. When σ2 = 0,
we assume π(s, ai) = 1. Hence, the σ value is directly related to the amount of perturbation
added to the state-action trajectories generated by the policy πθ

B. Higher σ values imply
greater perturbations (more Gaussian noise) and a greater probability of visiting unknown
states.

Definition 8 (Risk Parameter). The parameter σ is considered a risk parameter. Large
values of σ increase the probability of visiting distant unknown states and, hence, increase
the probability of reaching error states.

These exploratory actions drive the agent to the edge of the known space and force it
to go slightly beyond, into the unknown space, in search of better, safer behaviors. After
a period of time, the execution of these exploratory actions increases the known space
and improves the abilities of the previously-learned safe case-based policy πθ

B. The risk
parameter σ, as well as θ, are design parameters that must be selected by the user. In
Section 3.3, guidelines for this selection are offered.

It is important to note that the approach proposed in this study is based on two logical
assumptions in RL derived from the following generalization principles (Kaelbling, Littman,
& Moore, 1996; Sutton & Barto, 1998):

524

Safe Exploration of State and Action Spaces in Reinforcement Learning

(i) Nearby states have similar optimal actions. In continuous state spaces, it is
impossible for the agent to visit every state and store its value (or optimal action) in a
table. This is why generalization techniques are needed. In large, smooth state spaces,
similar states are expected to have similar values and similar optimal actions. Therefore,
it is possible to use experience gathered from the environment with a limited subset of the
state space and produce a reliable approximation over a much larger subset (Boyan, Moore,
& Sutton, 1995; Hu, Kostiadis, Hunter, & Kalyviotis, 2001; Fernández & Borrajo, 2008).
One must also note that, in the proposed domains, an optimal action is also considered to
be a safe action in the sense that it never produces error states (i.e., no action is considered
optimal that leads the agent to a catastrophic situation).

(ii) Similar actions in similar states tend to produce similar effects. Consid-
ering a deterministic domain, the action at performed in state st always produces the same
state st+1. In a stochastic domain, it is understood intuitively that the execution of the
action at in state st will produce similar effects (i.e., it produces states {s1t+1, s

2
t+1, s

3
t+1, . . .}

where ∀i, j i 6= j dist(sit+1, s
j
t+1) ≈ 0). Additionally, the execution of the action a′t ∼ at

in a state s′t ∼ st produces states {s′1t+1, s
′2
t+1, s

′3
t+1, . . .} where ∀i, j dist(s′it+1, s

j
t+1) ≈ 0.

As explained earlier, the present study uses Euclidean distance as a similarity metric, as
it has been proven successful in the proposed domains. As a result of this assumption,
approximation techniques can be used, such that actions that generate similar effects can
be grouped together as one action (Jiang, 2004). In continuous action spaces, the need
for generalization techniques is even greater (Kaelbling et al., 1996). In this paper, the
assumption also allows us to assume that low values of σ increase the probability of visiting
known states and, hence, of exploring less and taking less risks, while greater values of σ
increase the probability of reaching error states.

3. The PI-SRL Algorithm

The PI-SRL algorithm is composed of two main steps described in detail below.

3.1 First Step: Modeling Baseline Behaviors by CBR

The first step of PI-SRL is an approach for behavioral cloning, using CBR to allow a software
agent to behave in a similar manner to a teacher policy (baseline behavior) πT (Floyd et al.,
2008). Whereas LfD approaches are named differently according to what is learned (Ar-
gall et al., 2009), to prevent terminological inconsistencies here, we consider behavioral
cloning (also known as imitation learning) to be an area of LfD whose goal is the repro-
duction/mimicking of the underlying teacher policy πT (Peters, Tedrake, Roy, & Morimoto,
2010; Abbott, 2008).

When using CBR for behavioral cloning, a case can be built using the agent’s state
received from the environment, as well as the corresponding action command performed by
the teacher. In PI-SRL, the objective of the first step is to properly imitate the behavior of
πT using the cases stored in a case-base. At this point, an important question arises; namely,
how a case-base πB can be learnt using the sample trajectories provided by πT such that, at
the end of the learning process, the resulting policy derived from πB mimics the behavior
of πT ? Baseline behavior is a function that maps states to actions πT : S → A or, in other

525

Garćıa & Fernández

words, a function that, given a state si ∈ S, provides the corresponding action ai ∈ A. In
this paper, we want to build a policy πB derived from a case-base composed of cases (sj , aj)
such that, for a new state sq, the case with the minimum Euclidean distance dist(sq, sj) is
retrieved and the corresponding action aj is returned. Intuitively, it can be assumed that
πB can be built simply by storing all cases (si, ai) gathered from one interaction between
πT and the environment during a limited number of episodes K. At the end of K episodes,
one expects the resulting πB to be able to properly mimic the behavior of πT . However,
informal experimentation in the helicopter hovering domain shows this not to be the case
(Section 4.3). In helicopter hovering, after K = 100 episodes and the prohibitive number
of 600,000 cases stored, the policy derived from the case-base πB is unable to correctly
imitate the baseline behavior πT and, instead, continuously crashes the helicopter. Indeed,
in order for πB to mimic πT in large continuous and stochastic domains, the approach
requires a larger number of episodes and, consequently, a prohibitive number of cases. In
fact, to perfectly mimic πT in these domains, an infinite number of cases would be required.
Figure 5 attempts to explain why we believe that this learning process does not work. In
it, the region of the space represented by simply storing cases derived from πT in the form
c = (s, a) is shown. Each stored case (red circles) covers an area of the space and represents
the centroid of a Voronoi region.

Figure 5: Effects of storing all training cases.

If the previously-learned policy πB is used when a new state sq is presented, the ac-
tion aj is performed, corresponding to the case cj = (sj , aj) where the Euclidean distance
dist(sq, sj) is less than that with all other stored cases. However, if we use the policy πT to
provide an action in the situation sq, the action ai is provided which is different than aj .
At this point, the policy πB can be said to classify the state sq as the obtained class aj ,
while the policy πT can be said to classify the state sq as the desired class ai (insofar as
πT is the policy to be mimicked), with |ai − aj | > 0. Furthermore, |ai − aj | is understood
as the classification error. If the case-base stored all the possible pairs (si, ai) that πT
were able to generate in the domain, the actions aj and ai would always be identical, with
dist(sq, sj) = 0 and |ai− aj | = 0. However, in a stochastic and large, continuous domain, it
is impossible to store all such cases. The sum of all such classification errors in an episode

526

Safe Exploration of State and Action Spaces in Reinforcement Learning

leads to the visiting of unexplored regions of the case space (i.e., regions where the new
state sq received from the environment has a Euclidean distance dist(sq, sj) >> θ with
respect to the closest case cj = (sj , aj) in B). When these unexplored regions are visited,
the difference between the obtained class derived from πB and the desired class derived
from πT is large (i.e., |ai − aj | >> 0) and the probability that error states might be visited
greatly increases.

It may be concluded, therefore, that simply storing the pairs c = (s, a) generated by πT
is not sufficient to properly mimic its behavior. For this reason, the algorithm in Figure 6
below has been proposed.

CBR Approach for Behavioral Cloning

00 Given the baseline behavior πT

01 Given the density threshold θ

02 Given the maximum number of cases η

03 1. Set the case-base B = ∅
04 2. Repeat

05 Set k = 0

06 while k < maxEpisodeLength do

07 Compute the case < sc, ac, 0 > closest to the current state sk

08 if ̺π
θ

B (sk) = 0 then // By equation 2

09 Set ak = ac

10 else

11 Set ak using the baseline behavior πT

12 Create a new case cnew = (sk, ak, 0)

13 B := B ∪ cnew

14 Execute ak, and receive sk+1

15 Set k = k + 1

16 end while

17 if ‖B‖ > η then

18 Remove the η − ‖B‖ least-frequently-used cases in B

19 until stop criterion becomes true

20 3. Return B performing the safe case-based policy πθ
B

Figure 6: CBR algorithm for behavioral cloning.

In the first step of the algorithm, the state-value function V πθ
B (si) is initialized to 0 (see

line 07). The value V πθ
B (si) for each case is computed in the second step of the algorithm

in Section 3.2. Additionally, this step uses the case-based risk function (Equation 2) to
determine whether a new state sk should be considered risky (line 08). If the new state is
not risky (i.e., it is a known state sk ∈ Ω), a 1-nearest neighbor strategy is followed (line
09). Otherwise, the algorithm performs the action ak using the baseline behavior πT and a
new case cnew = (sk, ak, 0) is built and added to the case-base B (line 13). Starting with an
empty case-base, the learning algorithm continuously increases its competence by storing
new experiences. However, there are a number of reasons why the inflow of new cases should
be limited. Large case-bases increase the time required to find the closest cases to a new
example. While this may be partially solved using techniques to reduce the retrieval time
(e.g., k-d trees that have been used in this work), they nevertheless do not reduce the storage

527

Garćıa & Fernández

requirements. Several approaches to the removal of ineffectual cases during training exist,
including Aha’s IBx algorithms (Aha, 1992) or any nearest prototype approach (Fernandez
& Isasi, 2008). When the number of cases stored in B exceeds a critical value ‖B‖ > η such
that the realization of a retrieval within a certain amount of time cannot be guaranteed,
the removal of some cases is inevitable. An efficient approach to such a problem is through
the removal of the least-frequently-used elements of B (line 18).

The result of this step is a constrained case-base B describing the safe case-based policy
πθ
B that mimics the baseline behavior πT , though perhaps with some deviation (line 20).

Formally, let U(πT) be an estimate of the utility of the baseline behavior πT computed by
averaging the sum of rewards accumulated in each of NT trials. Then, U(πθ

B) ≤ U(πT).

3.2 Second Step: Improving the Learned Baseline Behavior

In this step of the PI-SRL algorithm, the safe case-based policy πθ
B learned in the previous

step is improved by the safe exploration of the state-action space. First, for each case ci ∈
B, the state-value function V πθ

B (si) is computed following a Monte Carlo (MC) approach
(Figure 7).

MC Algorithm Adapted to CBR

00 Given the case-base B

01 1. Initialize, for each ci ∈ B

02 V (s) ← arbitrary

03 Returns(s) ← empty list

04 2. while k < maxNumberEpisodes

05 Generate an episode using πθ
B

06 for each s appearing in the episode with < s, a, V (s) > ∈ B

07 R ← return following the first occurrence of s

08 Append R to Returns(s)

09 V(s) ← average(Returns(s))

10 Set k = k + 1

11 3. Return B

Figure 7: Monte Carlo algorithm for the computation of state-value function for each case.

This algorithm is similar in spirit to a first-visit MC method for V π (Sutton & Barto,
1998), adapted in this paper to work with a policy given by a case-base. In the algorithm
shown in Figure 7, all returns for each state si ∈ B are accumulated and averaged, following
the policy πθ

B derived by the case base B (see line 09). It is important to note that in the
algorithm the term return following the first occurrence of s refers to the expected return of
s (i.e., the expected cumulative future discounted reward starting from that state), whereas
Returns refers to a list composed of each return of s in different episodes. One of the
principal reasons for using the MC method is that it allows us to quickly and easily estimate
state values V πθ

B (si) for each case ci ∈ B. In addition, MC methods have been shown to
be successful in a wide variety of domains (Sutton & Barto, 1998). Once the state-value

function V πθ
B (si) is computed for each case ci ∈ B, small amounts of Gaussian noise are

randomly added to the actions of the policy πθ
B in order to obtain new and improved ways

528

Safe Exploration of State and Action Spaces in Reinforcement Learning

to complete the task. The algorithm used to improve the baseline behavior learned in the
previous step is depicted in Figure 8. The algorithm is composed of four steps performed
in each episode.

- (a) Initialization step. The algorithm initializes the list used to store cases occurring
during an episode and sets the cumulative reward counter of the episode to 0.

- (b) Case Generation. The algorithm builds a case for each step of an episode.
For each new state sk, the closest case < s, a, V (s) >∈ B is computed using the Euclidean
distance metric from Equation 1 (see line 09 in algorithm of Figure 8). In order to determine
the perceived degree of risk of the new state sk, the case-based risk function is used (line

10). If ̺π
θ
B (sk) = 0, then sk ∈ Ω (known state). In this case, the action ak performed is

computed using Equation 4 and a new case cnew =< s, ak, V (s) > is built to be added to
the list of cases having occurred in the episode (line 13). It is important to note that the
new case < s, ak, V (s) > is built replacing the action a corresponding to the closest case
in < s, a, V (s) >∈ B, with the new action ak resulting from the application of random
Gaussian noise to a in the Equation 4. Thus, the algorithm only produces smooth changes
in the cases of B where ak ∼ a. If, however, ̺π

θ
B (sk) = 1, the state sk ∈ Υ (i.e., unknown

state [line 14]). In unknown states, the action ak performed is suggested by the baseline
behavior πT which defines safe behavior (line 15). A new case < sk, ak, 0 > is built and
added to the list of cases in the episode and actions will be performed using πT until the
agent is not in a known state. Finally, the reward obtained in the episode is accumulated,
where r(sk, ak) is the immediate reward obtained when action ak is performed in state sk
(line 18).

- (c) Computing the state-value function for the unknown states. In this step,
the state-value function of the states considered to be unknown in the previous step is
computed. In the previous step (line 17), the state-value function for these states is set at
0. The algorithm proceeds in a manner similar to the first-visit MC algorithm in Figure 7.
In this case, the return for each unknown state si is computed, but not averaged since only
one episode is considered (line 24 and 25). The return for each si is computed, taking into
account the first visit of the state si in the episode (each occurrence of a state in an episode
is called a visit to si), although the state si could appear multiple times in the rest of the
episode.

- (d) Updating the cases in B using experience gathered. Updates in B are
made with the cases gathered from episodes with a cumulative reward similar to that of the
best episode found to that point using the threshold Θ (line 27). In this way, good sequences
are provided for the updates since it has been shown that such sequences of experiences can
cause an adaptive agent to converge to a stable and useful policy, whereas bad sequences may
cause an agent to converge to an unstable or bad policy (Wyatt, 1997). This also prevents
the degradation of the initial performance of B as computed in the first step of the algorithm
through the use of bad episodes, or episodes with errors, for updates. In this step, two types
of updates appear, namely, replacements and additions of new cases. Again, the algorithm
iterates for each case ci = (si, ai, V (si)) ∈ listCasesEpisode (line 29). If si is a known state
(line 30), we compute the case < si, a, V (si) >∈ B corresponding to the state si (line 31).
One should note that the case ci = (si, ai, V (si)) ∈ listCasesEpisode was built in line 13 of
the algorithm, replacing the action a corresponding to the case < si, a, V (si) >∈ B with the
new action ai and resulting from the application of random Gaussian noise to the action a

529

Garćıa & Fernández

Policy Improvement Algorithm

00 Given the case-base B, and the maximum number of cases η

01 Given the baseline behavior πT

02 Given the update threshold Θ

03 1. Set maxTotalRwEpisode = 0, the maximum cumulative reward reached in an episode

04 2. Repeat

05 (a) Initialization step:

06 set k = 0, listCasesEpisode ← ∅, totalRwEpisode = 0

07 (b) Case generation :

08 while k < maxEpisodeLength do

09 Compute the case < s, a, V (s) >∈ B closest to the current state sk

10 if ̺π
θ

B (sk) = 0 then // known state

11 Chose an action ak using equation 4

12 Perform action ak

13 Create a new instance cnew := (s, ak, V (s))

14 else // unknown state

15 Chose an action ak using πT

16 Perform action ak

17 Create a new instance cnew := (sk, ak, 0)

18 totalRwEpisode := totalRwEpisode+ r(sk, ak)

19 listCasesEpisode := listCasesEpisode ∪ cnew

20 Set k = k + 1

21 (c) Computing the state-value function for the unknown states:

22 for each instance ci in listCasesEpisode

23 if ̺π
θ

B (si) = 1 then // unknown state

24 return(si) :=
∑k

j=n γj−nr(sj , aj) // n is the first ocurrence of si in the episode

25 V (si) := return(si)

26 (d) Updating the cases in B using the experience gathered :

27 if totalRwEpisode > (maxTotalRwEpisode−Θ) then

28 maxTotalRwEpisode := max (maxTotalRwEpisode, totalRwEpisode)

29 for each case ci =< si, ai, V (si) > in listCasesEpisode

30 if ̺π
θ

B (si) = 0 then // known state

31 Compute the case < si, a, V (si) >∈ B corresponding to the state si

32 Compute δ = r(si, ai) + γV (si+1)− V (si)

33 If δ > 0 then

34 Replace the case < si, a, V (si) >∈ B with the case < si, ai, V (si) >∈ listCasesEpisode

35 V (si) = V (si) + αδ

36 else // unknown state

37 B := B ∪ ci

38 if ‖B‖ > η then

39 Remove the η − ‖B‖ least-frequently-used cases in B

40 until stop criterion becomes true

41 3. Return B

Figure 8: Description of step two of PI-SRL algorithm.

by the Equation 4. Then, the temporal distance (TD) error δ is computed (line 32). If δ > 0,
performing the action ai results in a positive change for the value of a state. The action, in

530

Safe Exploration of State and Action Spaces in Reinforcement Learning

turn, could potentially lead to a higher return and, thus, to a better policy. Van Hasselt and
Wiering (2007) also update the value function using only the actions that potentially lead
to a higher return. If the TD error δ is positive, ai is considered to be a good selection and is
reinforced. In the algorithm, this reinforcement is carried out by updating the output of the
case < si, a, V (si) >∈ B at ai (line 34). Therefore, an update to the case-base only occurs
when the TD error is positive. This is similar to a linear reward-inaction update for learning
automata (Narendra & Thathachar, 1974, 1989) in which the sign of the TD error is used
as a measure of success. PI-SRL only updates the case-base when actual improvements
have been observed, thus avoiding slow learning when there are plateaus in the value space
and TD errors are small. It has been shown empirically that this procedure can result in
better policies than when step size depends on the size of the TD error (Van Hasselt &
Wiering, 2007). It is important to note that these replacements produce smooth changes in
the case-base B since an action a is replaced only if ai results in a higher V (si) and ai ∼ a.
This form of updating can be understood as a risk-seeking approach, overweighting only
transitions to successor states that promise an above-average return (Mihatsch & Neuneier,
2002). Additionally, it prevents the degradation of B, ensuring that replacements are made
only when an action can potentially lead to a higher V (si).

If, instead, si is not a known state, the case ci is added to B (line 37). Finally, the
algorithm removes cases from B if necessary (line 39). Complex scoring metrics to calculate
which cases are to be removed for a given moment have been proposed by several authors.
Forbes and Andres (2002) suggest the removal of cases that contribute least to the overall
approximation, while Driessens and Ramon (2003) pursue a more error-oriented view and
propose the deletion of cases that contribute most to the prediction error of other examples.
The principal drawback of these more sophisticated measures is their complexity. The
determination of the case(s) to be removed involves the computation of a score value for
each ci ∈ B, which in turn requires at least one retrieval and regression, respectively, for
each cj ∈ B (j 6= i). Such entire repeated sweeps through the case-base entail an enormous
computational load. Gabel and Riedmiller (2005) compute a different score metric for
each ci ∈ B, requiring the computation of the set of the k-nearest neighbors around ci.
Such approaches are not well-suited to systems learning with adjusted time requirements
and with a high-dimensional state space, requiring the use of larger case-bases than those
proposed here. Rather, in this paper, we propose the removal of the least-frequently-used
cases. The idea seems intuitive insofar as the least-frequently-used cases usually contain
worse estimates of a corresponding state’s value; although the strategy might lead to a
function approximator that “forgets” some of the valuable experience made in the past
(e.g., corner cases). Despite this, PI-SRL performs successfully in all domains proposed
using the strategy, as demonstrated in Section 4. Thus, the ability to forget ineffectual
known states described in Section 2 is a result of the algorithm removing ‖B‖ − η cases
from the least-frequently-used cases of B.

3.3 Parameter Setting Design

One of the main difficulties of applying the PI-SRL algorithm to a given problem is to
decide on an appropriate set of parameter values for the threshold θ, the risk parameter σ,
the update threshold Θ and the maximum number of cases η. An incorrect value for the

531

Garćıa & Fernández

parameter θ can lead to mislabeling a state as known when it is really unknown, potentially
leading to damage or injury in the agent. In the case of the risk parameter σ, high values
can continuously result in damage or injury; while low values are safe, but do not allow for
exploration of the state-action space sufficient for reaching a near-optimal policy. Unlike
θ and σ, the parameter Θ is not related to risk, but instead is directly related to the
performance of the algorithm. Parameter Θ is used to determine how good an episode
must be with respect to the best episode obtained, since only the best episodes are used to
update the case-base B. If the Θ value is too large, bad episodes may be used to update B
(influencing the convergence and performance of the algorithm). If, instead, Θ is too low,
the number of updates in B may be insufficient for improving the baseline behavior. Finally,
a very high η value allows for large case-bases, increasing the computational effort during
retrieval and degrading the efficiency of the system. By contrast, a very low η value might
excessively restrict the size of the case-base and thus negatively affect the final performance
of the algorithm. In this subsection, a solid perspective is given on the automatic definition
of these parameters. The parameter setting proposed here are taken as a suitable set of
heuristics tested successfully in a wide variety of domains (Section 4).

• Parameter θ: The parameter is domain-dependent and related to the average size
of the actions. In this paper, the value for this parameter has been established by
computing the mean distance between states during an execution of the baseline
behavior πT . Expressed in another way, the execution of the policy πT provides a
state-action sequence of the form s1 → a1 → s2 → a2 → . . . → sn. Thus, the value of
θ is computed using Equation 5.

θ =
dist(s1, s2) + . . .+ dist(sn−1, sn)

n− 1
(5)

• Parameter σ: Several authors agree that it is impossible to completely avoid all
accidents (Moldovan & Abbeel, 2012; Geibel & Wysotzki, 2005). It is important to
note that PI-SRL is completely safe only if the first step of the algorithm is executed.
However, by proceeding in this way, the performance of the algorithm is heavily
limited by the abilities of the baseline behavior. The running of the subsequent
exploratory process is inevitable if learner performance is to be improved beyond that
of the baseline behavior. Since the agent operates in a state of incomplete knowledge
of the domain and its dynamic, it is inevitable during the exploratory process that
unknown regions of the state space will be visited where the agent may reach an error
state. However, it is possible to adjust the risk parameter σ to determine the level
of risk assumed during this exploratory process. In this paper, we start with low σ
values (low risk) which we gradually increase. Specifically, we propose beginning with
σ = 9 × 10−7 and increasing this value iteratively until either an accurate policy is
obtained or the amount of damage or injury is high.

• Parameter Θ: The value of this parameter is set relative to the best episode obtained.
In this paper, the Θ value is set to 5% of the cumulative reward of the best episode
obtained.

532

Safe Exploration of State and Action Spaces in Reinforcement Learning

Figure 9: Trajectories generated by the baseline policy πT in a deterministic, slightly
stochastic and highly stochastic domain.

• Parameter η: Previously, we estimated the maximum number of cases η to be stored
in the case-base as being the estimated maximum number of cases required to prop-
erly mimic the baseline behavior πT . What follows is a description of how this value is
computed. Figure 9 presents the trajectories (sequences of states) followed by the base-
line policy πT in three different domains: deterministic, slightly stochastic and highly
stochastic. For each domain, different sequences of the states produced by πT are
represented {s00, s01, s02, . . . , s0n}, {s00, s11, s12, . . . , s1n},. . ., {s00, sm1, sm2, . . . , smn},
where sji is the i-th state, s00 the initial state and sjn the final state of the resulting
trajectory in episode j. In the deterministic domain, the m different executions of πT
always result in the same trajectory. In this case, we set the maximum number of
cases to η = n with all the cases computed in the episode being stored.

In the slightly stochastic domain, the trajectories produced in m different episodes
are different, but only slightly so. Here, we suppose the case-base at the beginning to
be empty. Additionally, we assume that all states {s00, s01, s02, . . . , s0n} correspond-
ing to the first trajectory produced in the domain will be stored in the case-base.
Furthermore, for each domain we execute m different episodes, obtaining m different
trajectories. Following the execution of them episodes, we compute the maximum dis-
tance between the i-th state of the first trajectory (previously added to the case-base)
and the i-th state produced in the trajectory j such that max1≤j≤m d(s0i, sji). In the
slightly stochastic domain, this maximum distance does not exceed the threshold θ in
any case such that max1≤j≤m d(s0i, sji) < θ. At this point, we assume the i-th state in
trajectory j to have at least one neighbor with a distance less than θ (corresponding
to the state s0i). Thus, the i-th state in j is not added to the case-base.

By contrast, in a highly stochastic domain, this maximum distance greatly exceeds the
threshold θ in all the cases such that max1≤j≤m d(s0i, sji) >> θ. In this domain, we
estimate the total number of cases that will be added to the case-base in the following

533

Garćıa & Fernández

way. For each i-th state in the sequence of the first trajectory, we estimate the number

of cases to be added to the case-base as
⌊

max1≤j≤m d(s0i,sji)
θ

⌋

or, in other words, we

compute the number of intervals in the range [0,max1≤j≤m d(s0i, sji)] with a width of
θ (the threshold used to decide whether a new case is to be added or not to the case-
base). Consequently, the estimated number of cases added to the case-base, taking into

account all states in the sequence, is computed as
∑n

i=0

⌊

max1≤j≤m d(s0i,sji)
θ

⌋

. Finally,

the estimated maximum number of cases is computed as shown in Equation 6.

η = n+

(

n
∑

i=0

⌊

max1≤j≤m d(s0i, sji)

θ

⌋

)

(6)

It is important to remember that in a deterministic domain, the summation in equa-
tion 6 is equal to 0 and that, therefore, η = n. The increase of the value of this element
is related to the increase of stochasticity of the environment, insofar as the greater
stochasticity of the environment increases the number of cases required. Finally, if
the number of cases is very large or nearly infinite, the threshold θ can be increased
to make more restrictive the addition of new cases to the case-base. However, this
increase may also adversely affect the final performance of the algorithm.

4. Experimental Results

This section presents the experimental results collected from the use of PI-SRL for policy
learning in four different domains presented in order of increasing complexity (i.e., increas-
ing number of variables describing states and actions): the car parking problem (Lee &
Lee, 2008), pole-balancing (Sutton & Barto, 1998), helicopter hovering (Ng et al., 2003)
and the business simulator SIMBA (Borrajo et al., 2010). For each of these domains,
we have proposed the learning of a near-optimal policy which minimizes car accidents,
pole disequilibrium, helicopter crashes and company bankruptcies, respectively, during the
learning phase. All four of the domains are stochastic in our experimentation. While both
helicopter hovering and the business simulator SIMBA are, in themselves, stochastic and,
additionally, generalized domains, we have made the car parking and pole-balancing do-
mains stochastic with the intentional addition of random Gaussian noise to the actions and
reward function. The results of PI-SRL in the four domains are compared to those yielded
by two additional techniques, namely, the evolutionary RL approach selected winner of the
helicopter domain in the 2009 RL Competition (Mart́ın H. & Lope, 2009) and Geibel and
Wysotzki’s risk-sensitive RL approach (Geibel & Wysotzki, 2005). In the evolutionary ap-
proach, several neural networks cloning error-free teacher policies are added to the initial
population (guaranteeing rapid convergence of the algorithm to a near-optimal policy and,
indirectly, minimizing agent damage or injury). Indeed, as the winner of the helicopter
domain is the agent with the highest cumulative reward, the winner must also indirectly
minimize helicopter crashes insofar as these incur large catastrophic negative rewards. On
the other hand, the risk-sensitive approach defines risk as the probability ρπ(s) of reaching
a terminal error state (e.g., a helicopter crash ending agent control), starting at some initial

534

Safe Exploration of State and Action Spaces in Reinforcement Learning

state s. In this case, a new value function with the weighted sum of the risk probability,
ρπ, and value function, V π, is used (Equation 7).

V π
ξ (s) = ξV π(s)− ρπ(s) (7)

The parameter ξ ≥ 0 determines the influence of the V π(s)-values compared to the ρπ(s)-
values. For ξ = 0, V π

ξ corresponds to the computation of minimum risk policies. For large ξ
values, the original value function multiplied by ξ dominates the weighted criterion. While
Geibel and Wysotzki (2005) consider only finite (discretized) action sets in their study,
their algorithm has been adapted here for continuous action sets. We use CBR for value
and risk function approximation and a Gaussian exploration around the current action. In
the experiments, for each domain, three different ξ values are used, modifying the influence
of the V -values compared to the ρ-values. In all cases, the goal is to improve the control
policy while, at the same time, minimizing the number of episodes with agent damage or
injury. In each domain, we establish different risk levels by modifying risk parameter σ
values according to the procedure described in subsection 3.3. It is important to note that
one baseline behavior used to initialize the evolutionary RL approach is exactly the same as
that used subsequently in the first and second step of PI-SRL. Furthermore, the case-base
in the risk-sensitive approach does not begin from scratch since it is initialized with the safe
case-based policy πθ

B. This makes the comparison of performances as fair as possible, but
taking into account that the different techniques make its own use of the baseline behaviors.

4.1 Car Parking Problem

The car parking problem is represented in Figure 10 and originates from the RL litera-
ture (Cichosz, 1996). A car, represented as the rectangle in Figure 10, is initially located
inside a bounded area, represented by the dark solid lines, referred to as the driving area.
The goal for the learning agent is to navigate the car from its initial position into the garage,
such that the car is entirely inside, in a minimum number of steps. The car cannot move
outside of the driving area. Figure 10 (b) shows the two possible paths the car can take from
the starting point to the garage with an obstacle in between in order to correctly perform
the task. We consider the optimal policy for the domain to be that which reaches the goal
state in the shortest time and which, at the same time, is free of failures.

The state space of the domain is described by three continuous variables, namely, the
coordinates of the center of the car xt and yt and the angle θt between the car’s axis and
the X of the coordinate system. While the car can be modeled essentially with two control
inputs, speed v and steering angle φ, let us suppose here that the car is controlled only by the
steering angle (i.e., it moves at a constant speed). Thus, the action space is described by one
continuous variable at ∈ [−1, 1] corresponding to the turn radius, as used in the equations
below. The agent receives a positive reward value of r = (1 − ς(dist(Pt, Pg))) × 10, where
Pt = (xt, yt) is the center of the car, Pg = (xg, yg) is the center of the garage (i.e., the goal
position) and ς is a normalizing function scaling the Euclidean distance dist(Pt, Pg) between
Pt and Pg to a range [0, 1] when the car is inside the garage (i.e., the reward value is greater
if the car is parked correctly in the center of the garage). The agent receives a reward of
-1 whenever it hits the wall or obstacle. All other steps receive a reward of -0.1. Thus, the
difficulty of the problem lies not only in the reinforcement delay, but also in the fact that

535

Garćıa & Fernández

Figure 10: Car Parking Problem: (a) Model of the car parking problem. (b) Examples of
trajectories generated by the agent to park the car in the garage.

punishments are much more frequent than positive rewards (i.e., it is much easier to hit
a wall than park the car correctly). The motion of the car is described by the following
equations (Lee & Lee, 2008)

θt+1 = θt + vτ/(l/2) tan(φ× at), (8)

xt+1 = xt + vτ cos(θt+1), (9)

yt+1 = yt + vτ sin(θt+1), (10)

where v is the linear velocity of the car (assumed to be a constant value), φ is the
maximum steering angle (i.e., the car can change its position by a maximum angle of φ
in both directions) and τ is the simulation time step. Gaussian noise was added to the
actions and rewards with a standard deviation of 0.1, since noisy interactions are inevitable
in most real-world applications. Adding this noise to the actuators and the environment,
we transform the deterministic domain into a stochastic domain. It is important to note
that the noise added to transform the domain into a stochastic domain is independent of
the Gaussian noise with standard deviation σ (risk parameter) used to explore the state and
action space in the second step of the PI-SRL algorithm. In this case, the Gaussian noise
with standard deviation σ used for exploration will be added to the noise previously added
to the actuators. In this paper, l = 4 (m), v = 1.0 (m/s), φ = 0.78 (rad) and τ = 0.5 (s)
(the driving area and obstacle dimensions are detailed in Figure 10 [a]). The initial position
of the car is fixed at xs = 4.0, ys = 4.0 and θs = 0.26 (rad), while the goal position is
xg = 22.5 and yg = 13.5. For this domain, we have designed a baseline behavior πT with
an average cumulative reward per trial of 4.75.

In order to perform the PI-SRL algorithm, the modeling baseline behavior step is exe-
cuted. The result of this step is the safe case-based policy πθ

B learned from demonstrations
provided by the baseline behavior πT (see subsection 3.1). θ and η were computed following
the procedure described in subsection 3.3 with resulting values of 0.01 and 207, respectively.

536

Safe Exploration of State and Action Spaces in Reinforcement Learning

Figure 11: Car Parking Task Modeling Baseline Behavior Step: (a) Number of steps per
trial executed by Case Base B and the baseline behavior πT . (b) Cumulative
reward per trial by the baseline behavior πT , the learned Safe Case Based Policy
πθ
B and an IBL approach.

Figure 11 (a) graphically represents the execution of the modeling baseline behavior step. In
it, two different learning processes are presented and, for each one, the number of steps per
trial executed by the baseline behavior πT (continuous red lines) and the cases in B (dashed
green lines) is shown. At the beginning of the learning process with an empty case-base B,
all steps are performed using the baseline behavior πT . As the learning process continues,
new cases are added to B and the safe case-based policy πθ

B is learned. At around the trials
40-50, practically all steps are performed using the cases in B and πT is rarely used, that
means that a safe case-based policy has been learned. In the two learning processes shown
in Figure 11 (a), the modeling baseline behavior step is performed without collisions with
the wall or the obstacle. In other words, the baseline behavior πT is cloned safely without
errors. Figure 11 (b) shows the cumulative reward for three different execution processes:
the first (continuous red lines) corresponding to the performance of the baseline behavior
πT , the second (dashed green lines) corresponding to the previously-learned safe case-based
policy πθ

B (derived from B) and the third (dashed blue lines) corresponding to an instance-
based learning (IBL) approach consisting of storing cases in memory. In the IBL approach,
new items are classified by examining the cases stored in memory and determining the most
similar case(s) given a particular similarity metric (Euclidean distance is used in this pa-
per). The classification of that nearest neighbor (or those nearest neighbors) is taken as the
classification of the new item using a 1-nearest neighbor strategy (Aha & Kibler, 1991). For
each approach, two different executions are carried out. In the IBL approach, the training
process is performed saving all training cases produced by the baseline behavior πT during
50 trials (so we consider this approach an IB1 algorithm in the sense that it saves every
case during the training phase, see Aha & Kibler, 1991). Figure 11 (b) shows that the safe
case-based policy πB almost perfectly mimics the behavior of the baseline behavior πT . In
the domain, the performance of the IB1 approach is also similar.

Figure 12 (a) shows the results for different risk configurations obtained by the improving
the learned baseline behavior step. For each risk configuration, two different learning pro-

537

Garćıa & Fernández

Figure 12: Improving the learned baseline behavior step in car parking problem: (a) Cu-
mulative reward per episode for different risk configurations (σ) obtained by
PI-SRL. (b) Cumulative reward per episode by the evolutionary RL and risk-
sensitive RL approaches. In all cases, any episode ending in failure is marked.

cesses are performed. All trials ending in failure (car hits the wall or obstacle) are marked
(blue triangles). The learning processes in Figure 12 (a) demonstrate that the number of
failures increases with an increase in the parameter σ. For a low level of risk (σ = 9×10−4),
although no failures are produced, the performance is nevertheless weak (around the base-
line behavior πT) and constant throughout the whole of the learning process. Additional
experiments have demonstrated that increasing the σ value above σ = 9×10−2 increases the
number of failures without improving performance. Figure 12 (b) shows the results for the
evolutionary and risk-sensitive RL approaches for different ξ values. Regarding the former,
the number of failures is higher than that obtained by the PI-SRL approach, while its final
performance is similar. In the case of the latter, performance is higher when ξ = 1.0 (value
maximization), yet the agent consistently crashes the car into the wall.

Figure 13 shows the mean number of failures (i.e., car collisions) and cumulative reward
for each approach over 500 trials with the red circles corresponding to the PI-SRL algorithm,
the black triangles to the risk-sensitive approach and the blue square to the evolutionary
RL approach. Additionally, Figure 13 shows two asymptotes. The horizontal asymptote
is established according to the cumulative reward obtained by the highest σ value. The
horizontal asymptote indicates that higher σ values increase the number of failures without
improving the cumulative reward (which may, in fact, get worse). The vertical asymptote
at Failures = 0 indicates that reducing the risk parameter σ does not reduce the number
of failures. Figure 13 also shows the performance for two additional risk levels, a very
high level of risk (σ = 9 × 10−1) and very low level of risk (σ = 0), with respect to
Figure 12. When using a very low level of risk σ = 0, no additional random Gaussian
noise is added to the actions and the algorithm is free of failures, although performance
does not improve with respect to the safe case-based policy πθ

B learned in the first step
of the algorithm. PI-SRL with a medium level of risk (σ = 9 × 10−4) also is free of
failures, yet performance is also slightly improved. The PI-SRL algorithm with high level
of risk (σ = 9 × 10−2) obtains the highest cumulative reward, 3053.37, with a mean of

538

Safe Exploration of State and Action Spaces in Reinforcement Learning

Figure 13: Mean number of failures (car collisions) and cumulative reward over 500 trials
for each approach in car parking task. The means have been computed from 10
different executions.

78.8 failures. However, when using a very high level of risk (σ = 9× 10−1), the number of
failures greatly increases and, consequently, the cumulative reward decreases. As shown in
Figure 12, PI-SRL with high risk (σ = 9× 10−2) and the evolutionary RL approach obtain
a similar performance, while PI-SRL demonstrates a faster convergence (thus, in Figure 13,
the cumulative reward obtained by PI-SRL is higher). The Pareto comparison criterion can
be used to compare the solutions in Figure 13. Using this principle, one solution y∗ strictly
dominates (or “is preferred to”) a solution y if each parameter of y∗ is not strictly worse
than the corresponding parameter of y and at least one parameter is strictly better. This
is written as y∗ ≻ y, indicating that y∗ strictly dominates y. In accordance with the Pareto
principle, we can assume the points in Figure 13 corresponding to the PI-SRL solutions,
save PI-SRL with very high level of risk, to be on the Pareto frontier, since these points are
not strictly dominated by any other solution (i.e., no other solution has, at the same time, a
higher cumulative reward and a lower number of failures than PI-SRL). In this domain, the
solution of the PI-SRL with a medium level of risk strictly dominates (or “is preferred to”)
the risk-sensitive solutions (PI-SRL σ = 9× 10−3 ≻ risk-sensitive) and the solution PI-SRL
with a high level of risk strictly dominates the solution of the evolutionary RL solution
(PI-SRL σ = 9× 10−2 ≻ evolutionary RL).

Nevertheless, it is important to note that any ultimate decision about which approach
in Figure 13 is best depends on the criteria of the researcher. If, for instance, the min-
imization of the number of failures is deemed the most important optimization criterion
(independently of the improvement obtained with respect to the baseline behavior πT), the
best approach will be PI-SRL with a low level of risk (σ = 9 × 10−4). Similarly, if the
maximization of the cumulative reward is instead judged to be the most important opti-
mization criterion (independently of the number of failures generated), the best approach
will be PI-SRL with a high level of risk (σ = 9× 10−2).

Figure 14 shows the evolution of the cases in the case-base B (known space) in different
trials for a high-risk learning process. Each graph presents the set of known states Ω (green

539

Garćıa & Fernández

Figure 14: Car parking problem: Evolution of the known space for different trials T = 0
(a), T = 50 (b), T = 100 (c) and T = 200 (d) in a high-risk learning process
(σ = 9 × 10−2). Each graph corresponds to the situation of the state space in
accordance with the case-base B in trial T .

area), error states Φ (red area), unknown states Υ (yellow area) and non-error states ΓΩ

(orange circles). PI-SRL adapts the known space in order to find safer and better policies
to complete the task. Figure 14 (a) shows the initial situation of B (corresponding to the
previously-learned safe case-based policy πθ

B). It is robust in the sense that it never results in
any collisions, but suboptimal (it selects the longest parking path driving around the upper
side of the obstacle). As the learning process progresses (Figure 14 (b)), PI-SRL finds a
shorter path to park the car in the garage along the upper side of the obstacle (increasing the
performance), but which comes closer to the obstacle than before (increasing the probability
of collisions). In Figure 14 (c), PI-SRL finds a new and even shorter path, this time along
the lower side of the obstacle. However, there are still cases in the case-base B corresponding
to the older path along the upper side of the obstacle (so Figure 14 (c) indicates two paths
to park the car). Finally, in Figure 14 (d), the cases corresponding to the suboptimal path
along the upper side of the obstacle have been removed from B and replaced by new cases
corresponding to the safe and improved path along the lower side of the obstacle. In other
words, PI-SRL adapts the known space through the exploration of the unknown space in
order to find new and improved behaviors. During this process of adjusting the known space

540

Safe Exploration of State and Action Spaces in Reinforcement Learning

to safe and better policies, the algorithm “forgets” the previously-learned, yet ineffective
known states.

In the following experiment, it becomes apparent that if the domain is noisy enough, even
when taking no risk at all (i.e., no further noise added to the actuator for exploration), the
agent could nevertheless perform poorly and constantly produce collisions. The experiment
also serves to explain why domain noise can never be sufficient for the efficient exploration
of the space without action selection noise. In the experiment, we have intentionally added
more noise to the actuators and have performed second step of PI-SRL again, however this
time taking no risk (i.e., σ = 0). In this test, we have added random Gaussian noise with
a standard deviation of 0.3, rather than the standard deviation of 0.1 used previously, to
the actuators. Figure 15 shows two executions of the second step (improving the learned
baseline policy) of the PI-SRL algorithm with the x-axis indicating the number of trials,
the y-axis the cumulative reward per episode and failures (i.e., collisions) marked as blue
triangles. In the experiments in Figure 12 (b), the case-based policy πB with low level
of risk (σ = 9 × 10−4) never produces failures. In contrast, in the experiments shown in
Figure 15, the same case-based policy πB continually collides with the wall although the
risk parameter is set to 0 (σ = 0). Furthermore, an increase in the performance can also be
detected.

Figure 15: Improving the learned baseline behavior step of car parking task: Two learn-
ing processes for risk configuration σ = 0 and an increase in the noise in the
actuators.

The increase of noise in the actuators in the second step of the algorithm with respect
to the first step (the case-based policy πB is learned in the first step using Gaussian random
noise in the actuator with a standard deviation of 0.1, while the second step is performed
using Gaussian random noise in the actuator with a standard deviation of 0.3) takes the
agent beyond the known space of the case-base B learnt in the first step of PI-SRL and
allows it to find new trajectories for parking the car in the garage. In this new situation, the
exploration process is guided as follows. If a known state is reached, the agent performs the
action a retrieved from B without the addition of Gaussian noise, since the risk parameter
σ = 0 (see line 11 in Figure 8 algorithm). If an unknown state is reached, the agent performs

541

Garćıa & Fernández

the action a advised by the baseline behavior πT (see line 15). Using this exploration
process, if a new and better trajectory is found for parking the car in the garage, the
resulting cases in the episode corresponding to unknown states are added to the case-base
(see line 37), slightly improving the performance in Figure 15. It is important to note that
the replacements of cases (see line 34) does not change the actions in B, since these are
replaced by the same action previously retrieved from B plus a certain amount of Gaussian
noise with standard deviation σ (see line 11). Nevertheless, given that the risk parameter σ
has been set to 0, the actions retrieved from the case-base are not replaced. This exploration
process, however, with σ = 0 (i.e., taking no risk) does not lead to optimal behavior since:

• The actions performed in unknown situations and added to the case-base B are per-
formed using the baseline behavior πT which is supposed perform suboptimal actions
(see definition of baseline behavior).

• The actions in the cases of B are not replaced with improved actions. The Gaussian
noise with standard deviation σ is used to explore different and better actions than
those provided by B and πT ; however, in this case, the risk parameter is set to σ = 0
and new and better actions are not discovered.

Additional experiments demonstrate that PI-SRL behaves much worse when a higher
value of noise is used in the actuators (with collisions in all episodes). We assume that taking
no risk (i.e., σ = 0) implies always performing the same actions while not discovering any
newer or better actions than those provided by the learned case-base B and the baseline
behavior πT . In PI-SRL, the replacements in the case-base are executed towards the more
promising action which, in our case, is that which guarantees a higher return. This is
why exploration is necessary in order to obtain (near-)optimal behavior, since without
exploration, new and better actions are not discovered and PI-SRL performance is limited
by that of the case-based policy learned in the first step πB and the baseline behavior πT
which, one must remember, is intended to perform suboptimal policies.

4.2 Pole-Balancing

As the name suggests, the objective in the pole-balancing problem is to balance a pole
vertically on top of a moving cart (Sutton & Barto, 1998). The state description consists
of a four-dimensional vector containing the angle φ, the radial speed φ′, the cart position
x and the speed x′. The action consists of a real-valued force that is used to push the cart.
In this study, the reward is computed to encourage actions that keep the pole as upright as
possible on the cart and the cart as centered as possible on the track. Thus, the reward in
step t is computed as rt = 1 − (ς(φt) + ρ(xt))/2, where ς and ρ are normalizing functions
scaling the angle φt and the position xt to a range [0, 1]. An episode is composed of 10,000
steps, although it may nevertheless end prematurely if the pole becomes unbalanced (i.e.,
if it has an inclination of more than twelve degrees in either direction) or the cart falls off
the track (i.e., if it is more than 2.4m from the center of the track), both of which being
considered failures. As in the car parking problem, Gaussian noise was added to the actions
and rewards, this time with a standard deviation of 10−4. The pole-balancing domain
becomes stochastic through the addition of this noise to the actuators and reward function.

542

Safe Exploration of State and Action Spaces in Reinforcement Learning

Figure 16: Modeling baseline behavior step in pole-balancing task: (a) Number of steps per
trial executed by case-base B and baseline behavior πT . (b) Cumulative reward
per trial for πT , the learned safe case-based policy πθ

B and an IBL approach.

The hand-made baseline behavior πT demonstrates the execution of a safe, yet suboptimal
policy, with an average cumulative reward per episode/trial of 9292.

In the modeling baseline behavior step of PI-SRL, the safe case-based policy πθ
B is learnt

from demonstrations provided by the baseline behavior πT . θ and η were computed following
the procedure described in subsection 3.3, with values of 0.02 and 12572, respectively.
Figure 16 (a) shows two different learning processes for the modeling baseline behavior step.
For each learning process, Figure 16 (a) shows the number of steps per trial executed by
baseline behavior πT (continuous red lines) and by the case-base B (dashed green lines). At
the beginning of the learning process, the case-base B is empty and all steps are performed
using the baseline behavior πT . As the learning process progresses, however, B is filled and
the safe case-based policy πθ

B is learnt. At the end of the learning process (after around
45-50 trials), almost all steps are performed using the cases in B and πT is rarely used. It
is important to note that the modeling baseline behavior step has been performed without
failures (i.e., pole disequilibrium or cart off the track) in each case. As with the previous
task, Figure 16 (b) represents three independent execution processes using the previously-
learned safe case-based policy πθ

B (derived from B and indicated with dashed green lines),
the baseline behavior πT (indicated with continuous red lines) and an approach based on
IBL (indicated with dashed blue lines) (Aha & Kibler, 1991). The average cumulative
reward per episode in πθ

B is 9230 (Figure 16 [b]). While πθ
B almost perfectly clones πT , the

IB1 approach which, in most cases, results in pole disequilibrium or the cart falling off the
track averages a cumulative reward per episode of 8055.

Figure 17 (a) shows the results of PI-SRL for different risk configurations. For each
configuration, the learning curves are shown for two different learning processes performed.
Additionally, any episode ending in failure is marked (blue triangles). While an increase in
risk increases the probability of failure, the policy obtained is nevertheless better in terms of
the cumulative reward. Nevertheless, much greater risk values (σ = 9×10−5) produce more
failures without an accompanying increase in the cumulative reward. Figure 17 (b) shows
the results for the evolutionary and risk-sensitive RL approaches, the former of which being

543

Garćıa & Fernández

Figure 17: Improving the learned baseline behavior step of pole-balancing task: (a) Cumu-
lative reward per episode for different risk configurations (σ) obtained by PI-
SRL. (b) Cumulative reward per episode obtained by the evolutionary and risk-
sensitive RL approaches. In all cases, any episode ending in failure is marked.

clearly the algorithm with the greatest number of failures. In the risk-sensitive approach,
for ξ = 2.0 (value maximization), the agent selects actions that result in a higher value,
but also in a higher risk. On the contrary, for ξ = 0 (risk minimization), when the agent
learns the risk function (at around episode 6000), it selects actions with a lower risk (and a
lower number of failures), but also with considerably weak performance. The value ξ = 0.1
produces an intermediate policy. Consequently, it can be concluded that PI-SRL with a high
level of risk obtains better policies and less failures than the evolutionary or risk-sensitive
RL approaches. Figure 18 reinforces the previous conclusions.

Figure 18: Mean number of failures (pole disequilibrium or cart off the track) and cumula-
tive reward during 500 trials for each approach in the pole-balancing task. The
means have been computed from 10 different executions.

544

Safe Exploration of State and Action Spaces in Reinforcement Learning

In it, the mean number of failures and cumulative reward during 12,000 trials are shown,
with the red circles corresponding to PI-SRL, the black triangles corresponding to the risk-
sensitive approach and the blue square corresponding to the evolutionary RL approach.
The figure also shows performance for two additional risk levels, a very high level of risk
(σ = 9×10−4) and very low level of risk (σ = 0), with respect to Figure 17. The cumulative
reward and number of failures increase with the high level of risk (σ = 9 × 10−5). This
risk level represents an inflection point at which higher levels of risk produce more failures
without an accompanying improvement in the cumulative reward. In fact, the very high level
of risk (σ = 9× 10−4) results in a reduction in the cumulative reward when compared with
the high level of risk (σ = 9× 10−5). Again, the Pareto comparison criterion may be used
to compare the solutions from Figure 18. In this domain, the solution from PI-SRL with
a low level of risk strictly dominates the risk-sensitive solutions with ξ = 0.0 and ξ = 0.1,
such that PI-SRL σ = 9× 10−7 ≻ risk-sensitive with ξ = 0.0 and ξ = 0.1. Additionally, the
solution from PI-SRL with a high level of risk strictly dominates evolutionary RL solution,
such that PI-SRL σ = 9× 10−5 ≻ evolutionary RL.

Lastly, Figure 19 shows the evolution of the known space derived from the case-base
B in different trials for a high-risk learning process. For each graph, error states Φ (red
area), the set of unknown states Υ (yellow area), the set of known states Ω (green area) and
the set of non-error states ΓΩ (orange circles) are represented. The known space Ω in each
graph has been computed taking cases from B in the trials T = 0, 3000, 6000 and 8000. For
each graph, non-error states ΓΩ have been computed from 10 different executions of B in
the trial T (the orange circles representing the terminal states for each of these executions).
The first graph (Figure 19 [a]) presents the initial known space resulting from the modeling
baseline behavior step. The evolution in Figure 19 demonstrates two different points. First,
PI-SRL progressively adapts the known space in order to encounter better behavior such
that the known space tends to be compressed toward the center of the coordinates. This
is so due to the fact that the reward is greater if the angle φ of the pole and the cart
position x are 0 (i.e., the pole is as upright as possible on the cart and the cart is centered
on the track). Second, the risk of failure in the pole-balancing domain is greater during
early trials of the learning process. At the beginning of the learning process (Figure 19 [a]),
T = 0), some regions of the known space are close to the error space. In this situation,
slight modifications of the actions consistently produce visits to the states in Φ (i.e., pole
disequilibrium or cart falling off the track). As the learning process advances (Figure 19
[b], [c] and [d]), the known space is compressed toward the origin of coordinates and away
from the error space. Consequently, the probability of visiting error states decreases. For
example, returning to Figure 17 (a), in the high-risk learning processes, 52% of the failures
(126) occur in the first 4000 trials, while the remaining 48% (117) occur in the last 8000
trials.

4.3 Helicopter Hovering

As suggested by its name, the objective of this domain is to make a helicopter hover as close
as possible to a defined position for a duration established by an episode. The task is chal-
lenging for two main reasons. Firstly, both the state and action spaces are high-dimensional
and continuous (more specifically, the state space is 12-dimensional and the action space

545

Garćıa & Fernández

Figure 19: Pole-balancing task: Evolution of the known space for different trials T = 0 (a),
T = 3000 (b), T = 6000 (c) and T = 8000 (d) in a high-risk learning process
(σ = 9 × 10−5). Each graph corresponds to the situation of the state space
according to the case-base B in trial T .

4-dimensional). Secondly, it is a generalized domain whose behavior is modified by the wind
factor. A helicopter episode is composed of 6000 steps, although it may end prematurely if
the helicopter crashes. The first step of PI-SRL is performed in order to imitate the baseline
behavior πT . θ and η were computed following the procedure described in subection 3.3
with values of 0.3 and 49735, respectively. Once this step has been performed, the resulting
safe case-based policy πθ

B is able to properly imitate the baseline behavior πT .

Figure 20 (a) shows two learning processes of the modeling baseline behavior step.
Similar to previous tasks, as the learning processes progress, the number of steps executed
by the baseline behavior πT is reduced while the number of steps using the case-base B
increases. By the end of the learning process, the case-base B stores the safe case-based
policy πθ

B. Figure 20 (b) compares the performance (in terms of cumulative reward per
episode) of πT , the learned case-based policy πθ

B and the IB1 approach. Regarding the
first two, the average cumulative reward per episode of πT is -78035.93, while that obtained
by πθ

B is -85130.11. Although the πθ
B does not perfectly mimic the baseline behavior πT ,

546

Safe Exploration of State and Action Spaces in Reinforcement Learning

Figure 20: Modeling baseline behavior step of helicopter hovering task: (a) Number of
steps per trial executed by case-base B and baseline behavior πT . (b) Cumula-
tive reward per trial by πT , the learned safe case-based policy πθ

B and an IBL
approach.

it nevertheless performs a safe policy without crashing the helicopter. With regard to the
training process of the IB1 approach, every case produced during 15 episodes by the baseline
behavior πT is stored. Figure 20 (b) demonstrates that the IB1 approach consistently results
in helicopter crashes, with a performance extremely far from that of the learned safe case-
based policy πθ

B. Improvement of the policy πθ
B begins when the state-action space is safely

explored through the execution of step two of PI-SRL.

Figure 21 (a) shows the results for different risk levels. While PI-SRL low and medium
levels of risk levels do not produce helicopter crashes in PI-SRL, performance is nevertheless
quite weak.

Figure 21: Improving the learned baseline behavior step in helicopter hovering task: (a)
Cumulative reward per episode for different risk configurations obtained by PI-
SRL. (b) Cumulative reward per episode obtained by evolutionary and risk-
sensitive RL approaches. In all cases, any episode ending in failure is marked.

547

Garćıa & Fernández

Conversely, the high level of risk established produces a near-optimal policy with a
low number of collisions. Extensive experimentation demonstrates that increasing the risk
parameter σ = 9 × 10−3 also increases the number of crashes without an accompanying
improvement in the cumulative reward. Figure 21 (b) shows the results of the evolutionary
RL approach which, it should be remembered, was selected winner of the RL Competition
2009 in the same domain (Mart́ın H. & Lope, 2009), as well as the risk-sensitive RL algorithm
for different ξ values. A comparison of the results between the evolutionary RL approach
and PI-SRL shows a similar cumulative reward, while also a significantly higher number
of crashes from the former than from the latter. In the evolutionary approach, all crashes
occur in the early steps of the learning process; while in PI-SRL, accidents occur at more
advanced steps of the learning process. In the case of the risk-sensitive RL algorithm, for
ξ = 0 and ξ = 0.01 the risk function is learned at around episode 3000. At this point, the
agent selects lower-risk actions and the number of crashes is considerably reduced. When
ξ = 0.4 and the agent selects actions resulting in higher values without taking risk into
account, performance improves, but at the expense of an increased number of accidents.
Nevertheless and whatever the ξ value, the number of crashes is higher and the performance
is worse than with PI-SRL.

Figure 22: Mean number of failures (helicopter crashes) and cumulative reward during 5000
episodes for each approach to the helicopter hovering task. The means have been
computed from 10 different executions.

The information from Figure 22, indicating the mean number of failures and cumulative
reward over 5000 episodes for each approach, complements the conclusions made above.
The data has been computed from 10 independent executions of each approach. As in
previous domains, PI-SRL is indicated by red circles, the risk-sensitive approach by the
black triangles and the evolutionary RL approach by the blue square. Figure 22 also shows
the performance for two additional risk levels, a very high level of risk (σ = 9 × 10−2)
and a very low level risk (σ = 0), with respect to Figure 21. Figure 22 demonstrates
that the evolutionary RL approach obtains the highest cumulative reward (−7.13 × 107),
followed closely by PI-SRL (−7.57× 107). The other approaches are far from these results.
Regarding the number of failures (i.e., helicopter crashes), as PI-SRL with a very low level
of risk (σ = 0), a low level of risk (σ = 9× 10−5) and a medium level of risk (σ = 9× 10−4)

548

Safe Exploration of State and Action Spaces in Reinforcement Learning

produces no collisions, the PI-SRL algorithm with medium risk is preferable inasmuch as
the cumulative reward is higher (−18.01 × 107). Using the Pareto comparison criterion,
the PI-SRL solution with a high level of risk strictly dominates the solutions of the risk-
sensitive approach (PI-SRL σ = 9×10−3 ≻ risk-sensitive). Moreover, PI-SRL is not strictly
dominated by any other solution.

Figure 23: Evolution of the known space for different episodes in the helicopter hovering
task. (a) Example of representation of a single known state in a radar chart. (b),
(c), and (d) Known states in episodes T = 0, T = 500 and T = 4000, respectively,
in a high-risk learning process (σ = 9 × 10−3). Each graph corresponds to the
situation of the known space according to the case-base B in episode T .

As with the pole-balancing domain, Figure 23 shows the evolution of the known space
according to the case-base B in different episodes for a high-risk learning process. In this
case, radar charts are used due to the high number of features describing the states. A
radar chart is a graphical method for displaying multivariate data two-dimensionally. In the
Figure, each axis represents one of the features of the state and, to preserve the simplicity of
the representation, the charts are generated normalizing the absolute values of the features
between 0 and 1. Figure 23 (a) is an example of a representation of a single known state.

549

Garćıa & Fernández

The value of each axis corresponds to the value of an individual feature in a state and a
line is drawn connecting the feature values for each axis. While the line in Figure 23 (a)
represents a single state, Figures 23 (b), (c) and (d) show the known space according to the
case-base B in episodes 0, 500 and 4000, respectively. These three charts do not represent
a single state, but rather all the states in B for the corresponding episode. Thus, for each
graph, the set of known states is marked Ω (green area). A state is considered an error state
if a single feature value for that state is greater than 1. The limits (marked by a red line in
the graphs) have been computed taking into account that the helicopter crashes if (i) the
velocity along any of the main axes exceeds 5 m/s, (ii) the position of the helicopter is off by
more than 20 m, (iii) the angular rate around any of the main axes exceeds 2× 2π rad/s or
(iv) the orientation is more than 30 degrees from the target orientation. As with previous
tasks, Figure 23 indicates two different matters. First, as the learning proceeds, the known
space derived from B is adjusted to the space used for better and safer policies. In the
helicopter domain, the agent tries to hover the helicopter as close as possible to a target
position (i.e., the origin of coordinates), since the immediate rewards are greater the closer
the helicopter hovers to the origin. Thus, the known space starts to expand (Figure 23
[b]) and, progressively, is concentrated at the origin of coordinates (Figure 23 [c] and [d]).
With regard to the second matter, the probability of crashing is very low since, from the
very beginning, the known space already appears concentrated at the origin and far from
the error space (Figure 23 [b]). In other words, from the very beginning, all features of the
known space (i.e., forward, sideways and downward velocities; x, y, and z coordinates; x,
y and z angular-rates; and x, y and z quaternation) are very far from error space limits,
decreasing the probability of visiting an error state.

In the previous experiments, the second step of PI-SRL has been performed using an
initial case-base B free of failures that is built into the first step of the algorithm. The
following experiments show the performance of the second step of PI-SRL when different
initial policies are used. Figure 24 (a) shows the performance of these policies used as initial
policies. The continuous black line indicates the performance of the initial safe case-based
policy πB, with an average cumulative reward per episode of -85,130.11, used in the previous
experiments prior to the execution of step two in the algorithm. The remaining lines in the
Figure correspond to the performance of three different initializations of the case-base B
used in the new experiments, prior to the execution of step two of the algorithm. Using a
very poor initial policy (dashed green lines) with which the helicopter crashed in nearly all
of the episodes, the average cumulative reward per episode was calculated at -108,548.03.
Using a different poor (albeit less poor) initial policy (continuous red lines) with which the
helicopter crashed occasionally, the average cumulative reward per episode was -91,723.89.
Finally, a near-optimal policy (dashed blue lines) whereby helicopter hovering is free of
failures yields an average cumulative reward per episode of -13,940.1.

The Figure 24 (b) shows performance in the second step (improving the baseline behavior
step) of PI-SRL, starting from a case-base B corresponding to the very poor, poor and the
near-optimal policies presented in Figure 24 (a). In Figure 24 (b), the dashed blue lines
correspond to the use of a case-base B containing the near-optimal policy, the continuous
red lines correspond to the use of a case-base B containing the poor policy and the dashed
green lines correspond to the use of a case-base B containing the very poor policy. All the
experiments in the Figure have been conducted using a high level of risk in the domain

550

Safe Exploration of State and Action Spaces in Reinforcement Learning

Figure 24: (a) The performance of different initial policies in the helicopter hovering task.
(b) The performance of different executions of the second step of PI-SRL, each
starting from a case-base B containing a policy of three different types: very
poor, poor and near-optimal.

(σ = 9×10−3). The graph indicates that with the use of a near-optimal policy for an initial
policy and a high level of risk level, the case-base does not worsen performance which, in
fact, appears to improve slightly. The second step of PI-SRL prevents the degradation of
the initial performance of B, since no updates of cases in the case-base are made using bad
episodes. In other words, the updates in B are made with the cases gathered from episodes
with a cumulative reward similar to that of the best episode found at a particular point and
using a threshold Θ (whose value is set to 5% of the cumulative reward of the best episode).
For example, if the cumulative reward of the best episode is -13,940.1, only the episodes
with a cumulative reward higher than -14,637 are used to update the case-base (discarding
the bad episodes or other episodes with failures). In this way, good sequences of experiences
are provided to the updates, since it has been proven that good sequences of experiences
can cause an adaptive agent to converge to a stable and useful policy, while bad sequences
may cause an agent to converge to an unstable or poor policy (Wyatt, 1997). The solid red
lines in Figure 24 (b) show that using a poor policy with failures as initial policy produces
a higher number of failures than using an initial policy that is free of failures. However and
despite the poor initialization, PI-SRL is nevertheless able to learn a near-optimal policy as
well as when a policy free of failures is used to initialize B (see lines corresponding to a high
level of risk, σ = 9 × 10−3, in Figure 21 (a)). Finally, the dashed green lines in Figure 24
(b) show that the use of a very poor initial policy with many failures results in decreased
performance and a higher number of failures produced, even though it is nevertheless able
to learn better behavior. In this case, the algorithm falls into a local minimum, probably
biased by the very poor initialization. In both cases with poor policies, the number of
failures is higher at the beginning of the learning process and decreases as the learning
process proceeds. While both the poor and very poor initial policies are very close to the
error space, this is in stark contrast to the initial policy shown in Figure 23 which, from
the very beginning, already appears concentrated at the origin, far from the error space.

551

Garćıa & Fernández

As the learning process proceeds, the different policies are compressed away from the error
space and the number of failures decreases.

4.4 SIMBA

Business simulators are powerful tools for improving management decision-making pro-
cesses. An example of such a tool is the SIMulator for Business Administration (SIMBA)
(Borrajo et al., 2010). SIMBA is a competitive simulator, since agents can compete against
other agents through their management of different virtual companies. The simulator,
the result of over twenty years of experience both with university students and business
executives, emulates business realities using the same variables, relationships and events
present in the business world. Its objective is to provide users with an integrated vision
of a company, using basic techniques of business management, simplifying complexity and
emphasizing the content and principles with the greatest educational value (Borrajo et al.,
2010). In the experiments performed here, the learning agent competes against five hand-
coded agents (Borrajo et al., 2010). Decision-making in SIMBA is an episodic task where
decisions are made sequentially. To make a business decision, the state must be studied
and 10 continuous decision variables (e.g., selling price, advertising expenses, etc.) must
be set, followed by the study of a state composed of 12 continuous variables (e.g., material
costs, financial expenses, economic productivity, etc.) (Borrajo et al., 2010). Each episode
is composed of 52 steps, although it may prematurely if the company goes bankrupt (i.e.,
its losses are higher than 10% of its net assets).

Figure 25: Modeling baseline behavior step in SIMBA Task: (a) Number of steps per trial
executed by case-base B and baseline behavior πT . (b) Cumulative reward per
trial by πT , the learned safe case-based policy πθ

B and an IBL approach.

Figure 25 (a) shows the evolution of the number of steps executed by the baseline behav-
ior πT and the case-base B during two learning processes performing the modeling baseline
behavior step. θ and η were computed following the procedure described in subsection 3.3
and have values of 1 × 102 and 513, respectively. In few episodes (approximately 25), the
safe case-based policy πθ

B is learned. Figure 25 (b) shows the performance of the previously-
learned πθ

B, πT and the IB1 approach. In this study, the mean profits per episode of πT

552

Safe Exploration of State and Action Spaces in Reinforcement Learning

Figure 26: Improving the learned baseline behavior step in SIMBA task: (a) The mean
profits per episode for different risk configurations obtained by the PI-SRL agent
against five hand-coded agents. (b) The mean profits per episode obtained by
the evolutionary and risk-sensitive RL agent against five hand-coded agents. In
each cases, any episode ending in failure (bankruptcy) is noted.

are 5.24 million Euros, while those obtained for πθ
B are 4.02 million Euros. In the IB1

approach, all cases generated using the baseline behavior πT during 25 episodes are stored.
The experiments demonstrate that in SIMBA, in contrast with the previous domains, stor-
ing all cases is sufficient for obtaining a safe policy with a performance similar to that using
the modeling baseline behavior step (with mean profits per episode of 3.98 million Euros).
Once the safe case-based policy πθ

B is learned, we execute the improving the learned baseline
behavior step.

Similar to the findings in earlier tasks, Figure 26 (a) indicates that while low and medium
levels of risk do not produce bankruptcies, performance is nevertheless weak. The highest
level of risk produces a near-optimal policy with a low number number of failures. By
contrast, Figure 26 (b) presents the results for the evolutionary and risk-sensitive RL ap-
proaches, with the former being clearly that which yields the highest number of failures.
In the risk-sensitive case, the number of bankruptcies in all cases is insufficient for learn-
ing the risk function ρ. The comparative results in Figure 26 show that PI-SRL with
σ = 9 × 101 obtains better policies and less failures than the evolutionary or risk-sensitive
RL approaches.

Figure 27 shows a graphical representation of the different solutions in this domain. It
shows the mean number of failures and cumulative reward for the different approaches over
100 episodes, with data computed from 10 independent executions of each approach. In the
Figure, red circles correspond to the PI-SRL algorithm, black triangles correspond to the
risk-sensitive approach and the blue square corresponds to the evolutionary RL approach.
Figure 27 also shows the performance for two additional risk levels, very high (σ = 9× 102)
and very low (σ = 0), with respect the Figure 26. The experiments in Figure 27 demonstrate
that PI-SRL with a high level of risk (σ = 9× 101) obtains the highest cumulative reward,
6693.58. Additionally, PI-SRL with a very low level of risk (σ = 0), a low level of risk
(σ = 9× 10−1) and a medium level of risk (σ = 9× 100) are the approaches with the lowest

553

Garćıa & Fernández

Figure 27: Mean number of failures (company bankruptcies) and the cumulative reward
over 100 episodes for each approach to the SIMBA task. The means have been
computed from 10 different executions.

mean number of failures, 0.0. However, PI-SRL with a medium level of risk is preferred
inasmuch as its performance is superior in terms of cumulative reward. PI-SRL with a very
high level risk (σ = 9×102) increases the number of failures and obtains a lower cumulative
reward when compared to PI-SRL with a high level of risk. Using the Pareto comparison
criterion, PI-SRL with a high level of risk strictly dominates all other solutions (PI-SRL
σ = 9×101 ≻ risk-sensitive and PI-SRL σ = 9×101 ≻ evolutionary RL), while the approach
is not strictly dominated by any other solution.

Due to the difficulty of representing the high-dimensional state and action space of the
SIMBA domain, no graphs are provided with the evolution of the known space.

5. Related Work

Reinforcement learning (RL) and case-based reasoning (CBR) techniques have been com-
bined in the literature in different ways. In the work of Bianchi et al. (2009), a new approach
is presented permitting the use of cases as heuristics to speed up RL algorithms. Addition-
ally, Sharma et al. (2007) use a combination of CBR and RL (called CARL) to achieve
transfer while playing against the Game AI across a variety of scenarios in MadRTS TM,
a commercial Real Time Strategy game. CBR has also been used for state value function
approximation in RL (Gabel & Riedmiller, 2005). However, the present study is, to our
knowledge, the first time that CBR and RL have been used in conjunction for safe explo-
ration in dangerous domains. In the field of safe reinforcement learning, three principal
trends can be observed: (i) approaches based on return and its variance, (ii) risk-sensitive
approaches based on the definition of error states and (iii) approaches using teachers.

5.1 Approaches Based on the Return and its Variance

In the literature, it has long been known that the optimal policy and the optimal expected
return of an MDP are quite sensitive to parameter variations (even an optimal policy may

554

Safe Exploration of State and Action Spaces in Reinforcement Learning

perform badly in some cases due to the stochastic nature of the problem). To mitigate this
problem, the agent can try to maximize the return associated with the worst-case scenario,
even though the case may be highly unlikely. Thus, in this trend, the risk refers to the worst
outcomes of the return R =

∑∞
t=0 γ

trt or its variance. An example of such an approach
is worst-case control where the worst possible outcome of R is to be optimized (Coraluppi
& Marcus, 1999; Heger, 1994). In worst case control strategies, the optimality criterion
is exclusively focused on risk-avoiding policies. A policy is considered to be optimal if its
worst-case return is superior. The approach, however, is too restrictive inasmuch as it takes
very rare scenarios fully into account.

The α− value of the return m̂α introduced by Heger (1994) can be seen as an extension
of the worst case control of MDPs. This concept establishes that the returns R < m̂α of
a policy that occur with a probability lower than α are neglected. The algorithm is less
pessimistic than pure worst case control, given that extremely rare scenarios have no effect
on the policy. In the work of Heger et al., the idea of weighting return and risk, namely the
expected value-variance criterion, is also introduced.

In risk-sensitive control based on the use of exponential utility functions, the return R is
transformed to reflect a subjective measure of utility. Instead of maximizing the expected
value of R, the objective here is to maximize U = β−1logE(eβR), where β is a parameter
and R is the usual return. It can be shown that, depending on the parameter β, policies
with a high variance V (R) are penalized (β < 0) or enforced (β > 0). Instead, Neuneier
and Mihatsch (2002) consider the worst-case-outcomes of a policy, (i.e., risk related to the
variability of the return). In the study, the authors demonstrate that the learning algorithm
interpolates between risk-neutral and the worst-case criterion and has the same limiting
behavior as exponential utility functions. It should be noted that these approaches based
on the variability of the return or its worst possible outcomes are not suited for problems
where a policy with a small variance can produce a large risk (Geibel & Wysotzki, 2005).
Our view of risk in the present study, however, is not concerned with the variance of the
return or its worst possible outcome, but instead with the fact that processes generally
possess unsafe states that should be avoided. Consequently, we address a different class of
problems than those dealt with by approaches focusing on the variability of the return.

5.2 Risk-sensitive Approaches based on Error States.

In this second trend of approaches, the concept of risk is based on the definition of error
states or fatal transitions. Thus, Geibel et al. (2005) , for instance, establish the risk
function as the probability of entering in an error state. Instead, Hans et al (2008) consider
a transition to be fatal if the corresponding reward is less than a given threshold τ . In
the first case and as demonstrated in Section 4, ρ is learned by TD methods which require
that error states (i.e., car collisions, pole-balancing disequilibrium, helicopter crashes and
company bankruptcies) be visited repeatedly in order to approximate the risk function
and, subsequently, avoid dangerous situations. In the second case, the concept of risk is
again joined with that of reward. Moreover, the above mentioned studies either (i) assume
that the system dynamics are known, (ii) tolerate undesirable states during exploration
or, in contrast with our paper, (iii) do not deal with problems with high-dimensional and
continuous state-action spaces. Regarding the latter, while Geibel et al. write that their

555

Garćıa & Fernández

approach can also be extended to continuous action sets (e.g., by using an actor-critic
method), they do not give any more details on how this may be done with entirely continuous
problems. In Section 4, we present an approach that solves the problem.

5.3 Approaches Using Teachers

The last trend in the approaches is based on the use of teachers in three different ways:
(i) to bootstrap the learning algorithm (i.e., as an initialization procedure), (ii) to derive a
policy from a finite demonstration set and (iii) to guide the exploration process.

5.3.1 Bootstrapping the Learning Algorithm

In the work of Driessens and Sžeroski (2004), a bootstraping procedure is used for rela-
tional RL in which a finite set of demonstrations are recorded from a human expert and
later presented to a regression algorithm. This allows the regression algorithm to build a
partial Q-function which can later be used to guide further exploration of the state space
using a Boltzmann exploration strategy. Smart and Kaelbling (2000) also use examples,
training runs to bootstrap the Q-learning approach for their HEDGER algorithm. The
initial knowledge bootstrapped into the Q-learning approach allows the agent to learn more
effectively and helps reduce the time spent with random actions. Teacher behaviors are
also used as a form of population seeding in neuroevolution approaches (Yao, 1999; Siebel &
Sommer, 2007). Evolutionary methods are used to optimize the weights of neural networks,
but starting from a prototype network whose weights correspond to a teacher (or baseline
policy). Using this technique, RL Competition helicopter hovering task winners Martin et
al. (2009) developed an evolutionary RL algorithm in which several teachers are provided in
the initial population. The algorithm restricts crossover and mutation operators, allowing
only slight changes to the policies given by the teachers. Consequently, the rapid conver-
gence of the algorithm to a near-optimal policy is ensured, as is the indirect minimization of
damage to the agent. However, the teachers included in the initial population resulting from
an ad-hoc training regimen conducted before the competition. Consequently, the proposed
approach seems somewhat ad-hoc and not easily generalizable to arbitrary RL problems.
In the work of Koppejan et al. (2009, 2011), neural networks are also evolved, beginning
with one whose weights corresponds to teacher behavior. While this approach has been
proven advantageous in numerous applications of evolutionary methods (Hernández-Dı́az
et al., 2008; Koppejan & Whiteson, 2009), Koppejan’s algorithm nevertheless also seems
somewhat ad-hoc and designed for a specialized set of environments.

5.3.2 Deriving a Policy from a Finite Set of Demonstrations

All approaches falling under this category are framed according to the field of Learning from
Demonstration (LfD) (Argall et al., 2009). Highlighting the study by Abbeel et al. (2010)
based on apprenticeship learning, the approach is composed of three distinct steps. In the
first, a teacher demonstrates the task to be learned and the state-action trajectories of the
teacher’s demonstration are recorded. In the second step, all state-action trajectories seen
to that point are used to learn a dynamics model for the system. For this model, a (near-
)optimal policy is to be found using any reinforcement learning (RL) algorithm. Finally, the
policy obtained should be tested by running it on the real system. In the work of Tang et

556

Safe Exploration of State and Action Spaces in Reinforcement Learning

al. (2010), an algorithm based on apprenticeship learning is also presented for automatically-
generating trajectories for difficult control tasks. The proposal is based on the learning of
parameterized versions of desired maneuvers from multiple expert demonstrations. Despite
each approach’s potential strengths and general interest, all are inherently linked to the
information provided in the demonstration dataset. As a result, learner performance is
heavily limited by the quality of the teacher’s demonstrations.

5.3.3 Guiding the Exploration Process

Driessens and Sžeroski (2004), in the context of relational RL, also use a given teacher’s
policy, rather than a policy derived from the current Q-function hypothesis (which is not
informative in the early learning stages), for the selection of actions. In this approach,
episodes performed by a teacher are interleaved with normal exploration episodes. This
mixture of teacher and normal exploration make it easier for the regression algorithm to
distinguish between beneficial and poor actions. In the context of LfD, there are other
approaches which include teacher advice (Argall et al., 2009). This advice is used to improve
learner performance, offering information beyond that which is provided by a demonstration
dataset. In this approach, following an initial task demonstration by the teacher, the agent
directly requests additional demonstration from the teacher in very different states from
those previously demonstrated or in states in which a single action cannot be selected with
certainty (Chernova & Veloso, 2007, 2008).

In all works mentioned for this trend, no explicit definition of risk is ever given.

6. Conclusions

In this work, PI-SRL, an algorithm for policy improvement through safe reinforcement
learning in high-risk tasks, is described. The main contributions of this algorithm are the
definitions of a novel case-based risk function and a baseline behavior for the safe exploration
of the state-action space. The use of the case-based risk function presented is possible
inasmuch as the policy is stored as a case-base. This represents a clear advantage over
other approaches, e.g., evolutionary RL (Mart́ın H. & Lope, 2009; Koppejan & Whiteson,
2011) where the extraction of knowledge about the known space by the agent is impossible
using the weights of the neural-networks. Additionally, a completely different notion of
risk from others found in the literature is presented. According to our notion, risk is
independent of the variance of the return and the reward function, and does not require
the identification of error states or the learning of risk functions. Rather, the concept of
risk described in this paper is based on the distance between the known and unknown
space and, therefore, is a domain-independent parameter (in this sense, our proposal allows
for the application of a parameter-setting method as described in subsection 3.3). While
Koppejan et al. (2011) also use a function to identify dangerous states, in contrast with our
approach, the definition of their function requires strong previous knowledge of the domain.
Furthermore, most of the approaches to risk found in the literature only tackle problems
that are not entirely continuous (Geibel & Wysotzki, 2005) or that only report results on
one continuous domain (Koppejan & Whiteson, 2011). Consequently, it is difficult to know
for certain if these approaches from the literature generalize easily to arbitrary domains.

557

Garćıa & Fernández

This paper presents the PI-SRL algorithm in great detail and demonstrates its effective-
ness in four entirely different continuous domains: the car parking problem, pole-balancing,
helicopter hovering and business management (SIMBA). The experiments presented in this
paper demonstrate different characteristics about the learning capabilities of the PI-SRL
algorithm.

(i) PI-SRL obtains higher quality solutions. The experiments in Section 4 demonstrate
that, save in the helicopter hovering task, PI-SRL obtains in all cases the best cumulative
reward per episode and the least number of failures. Additionally, using the Pareto com-
parison criterion it can be said that, save the very high risk configuration in the car parking
problem, our approach is not strictly dominated by any other approach.

(ii) PI-SRL adjusts the initial known space to safe and better policies. The initial known
space resulting from the first step of PI-SRL, modeling baseline behavior, is adjusted and
improved in the second step of the algorithm, improving the learned baseline behavior.
Additionally, the experiments demonstrate that the adjustment process can compress the
known space away from the error space (e.g., pole-balancing domain, subsection 4.2, and
helicopter hovering domain, subsection 4.3) or, on other occasions, can require the known
space to move closer to the error space (e.g., car parking problem, subsection 4.1) in the
event that better policies are be found there.

(iii) PI-SRL works well in domains with differently structured state-action spaces and
where the value function can vary sharply. Although the car parking problem, the pole-
balancing domain, the helicopter hovering task and the business simulator all represent
very differently structured problems, experiments in the study nevertheless demonstrate
that PI-SRL performs well in each. Furthermore, even in such domains as the car parking
problem in which the value function varies sharply due to the presence of an obstacle,
experimental results demonstrate that PI-SRL can nevertheless successfully handle this
difficulty. However, it is impossible to avoid all failures if the “known space” edge is the
same as the edge to error states the algorithm would often ’explore’ into error states.

(iv) The number of failures depends on the distance between the known space and the
error space. The experiments in the pole-balancing and helicopter hovering domains demon-
strate that the number of failures depends on how close the known space is to the error
space. Due to the structure of these domains, the improving the learned baseline behavior
step in the algorithm tends to concentrate the known space at the origin of coordinates
away from the error space. The greater the distance between the known space and the error
space, the lower the number of failures. Additionally, in helicopter hovering, the known
space is, from the beginning, far from the error space (consequently, the number of fail-
ures is also low from the beginning). Therefore, the initial distribution of the known space
learned from the baseline policy πT later influences the number of failures obtained by the
second step of PI-SRL.

(v) PI-SRL is completely safe if only the first step of the algorithm is executed. However,
by proceeding only in this way, algorithm performance would be heavily limited by the
capabilities of the baseline behavior. If learner performance is to be improved beyond
the performance of this baseline behavior, the subsequent exploratory process from the
second step of PI-SRL must be carried out. Since complete knowledge of the domain and
its dynamic is not possessed, however, it is also inevitable that, during this exploratory

558

Safe Exploration of State and Action Spaces in Reinforcement Learning

process, unknown regions of the state space will be visited where the agent may reach error
states.

(vi) The risk parameter allows the user to configure the level of risk assumed. In our
algorithm, the user can gradually increase the value of the risk parameter σ in order to
obtain better policies, but also assuming a greater likelihood of damage in the learning
system.

(vii) PI-SRL performs successfully even when a poor initial policy with failures is used.
The experiments in Figure 24 from the helicopter hovering domain demonstrate that PI-SRL
is able to learn a near-optimal policy despite poor initialization, just as it can when a policy
free of failures is used to initialize the case-base B. However, the Figure also shows that if
a very poor initial policy with many failures is used, PI-SRL decreases in performance and
produces a higher number of failures, although some better behavior is still learnt. In this
case, the algorithm falls into a local minimum, likely biased by the very poor initialization.

In what follows, the applicability of the method is discussed, allowing the reader to more
clearly understand the scenarios in which the proposed PI-SRL approach may be applicable.
This applicability is restricted to domains having the following characteristics.

(i) It is mandatory that the scenario satisfy the two assumptions described in Section 2.
According to the first assumption, nearby states in the domain must necessarily have simi-
lar actions. According to the other, similar actions in similar states should produce similar
effects. This fact that similar actions lead to similar states assumes some degree of smooth-
ness in the dynamic behavior of the system which, in certain environments, may not hold.
However, as we clearly explain in Section 2, we consider both assumptions to be logical
assumptions derived from generalization principles in the RL literature (Kaelbling et al.,
1996; Jiang, 2004).

(ii) The applicability of the method is limited by the size of the case-base B required to
mimic the baseline behavior. It is not possible to apply the proposed approach to tasks when,
in the first step of the PI-SRL algorithm, modeling baseline behavior, a prohibitively large
number of cases are required to properly mimic complex baseline behaviors. In this case,
the threshold θ can be increased to further restrict the addition of new cases to the case-
base. However, this increase may adversely affect the final performance of the algorithm.
Nevertheless, the experiments performed in Section 4 demonstrate that relatively simple
baseline behaviors are mimicked almost perfectly using a manageable number of cases.

(iii) The PI-SRL algorithm requires the presence of a baseline behavior. The proposed
method requires the presence of a baseline behavior that safely demonstrates the task to
be learned. This baseline behavior can be conducted by a human teacher or a hand-coded
agent. It is important to note, nevertheless, that the presence of such a baseline behavior
is not guaranteed in all domains.

Finally, a logical continuation of the present study would take into account the automatic
graduation of the risk parameter along the learning process. For example, it would be
particularly interesting to exploit the fact that the known space is far away from the error
space in order to increase the risk parameter or, on the contrary, to reduce it when it is
close. Other future work aims to deploy the algorithm in real environments, inasmuch
as the uncertainty of the real environments presents the biggest challenge to autonomous
robots. Autonomous robotic controllers must deal with a large number of factors such
as the robotic mechanical system and electrical characteristics, as well as environmental

559

Garćıa & Fernández

complexity. However, the use of the PI-SRL algorithm (or other risk-sensitive approaches)
for learning processes in real environments could reduce the amount of damage incurred
and, consequently, allow the lifespan of the robots to be extended. It might be worthwhile
add a mechanism to the algorithm to detect when a known state can lead directly to an
error state. All such problems are currently being investigated.

Acknowledgments

This study has been partially supported by Spanish MICIIN projects TIN2008-06701-C03-
03, TRA2009-0080 and CCG10-UC3M/TIC-5597. We offer our gratitude and special thanks
to Raquel Fuentetaja Pizán, Assistant Professor at Universidad Carlos III de Madrid in the
Planning & Learning Group (PLG), for her generous and invaluable comments during the
revision of this paper. We would also like to thank to José Antonio Mart́ın, Assistant
Professor at Universidad Complutense de Madrid, for his invaluable comments regarding
his evolutionary RL algorithm.

References

Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning; Foundational Issues, Methodolog-
ical Variations, and System Approaches. AI Communications, 7 (1), 39–59.

Abbeel, P., Coates, A., Hunter, T., & Ng, A. Y. (2008). Autonomous Autorotation of an
RC Helicopter. In ISER, pp. 385–394.

Abbeel, P., Coates, A., & Ng, A. Y. (2010). Autonomous helicopter aerobatics through
apprenticeship learning. I. J. Robotic Res., 29 (13), 1608–1639.

Abbott, R. G. (2008). Robocup 2007: Robot soccer world cup xi.. chap. Behavioral Cloning
for Simulator Validation, pp. 329–336. Springer-Verlag, Berlin, Heidelberg.

Aha, D. W. (1992). Tolerating Noisy, Irrelevant and Novel Attributes in Instance-Based
Learning Algorithms. International Journal Man-Machine Studies, 36 (2), 267–287.

Aha, D. W., & Kibler, D. (1991). Instance-based learning algorithms. In Machine Learning,
pp. 37–66.

Anderson, C. W., Draper, B. A., & Peterson, D. A. (2000). Behavioral cloning of student
pilots with modular neural networks. In Proceedings of the Seventeenth International
Conference on Machine Learning, pp. 25–32. Morgan Kaufmann.

Argall, B., Chernova, S., Veloso, M., & Browning, B. (2009). A Survey of Robot Learning
from Demonstration. Robotics and Autonomous Systems, 57 (5), 469–483.

Bartsch-Sprl, B., Lenz, M., & Hbner, A. (1999). Case-based reasoning: Survey and future
directions.. In Puppe, F. (Ed.), XPS, Vol. 1570 of Lecture Notes in Computer Science,
pp. 67–89. Springer.

Bianchi, R., Ros, R., & de Mántaras, R. L. (2009). Improving reinforcement learning by
using case-based heuristics.. Vol. 5650, pp. 75–89. Lecture Notes in Artificial Intelli-
gence, Springer, Lecture Notes in Artificial Intelligence, Springer.

560

Safe Exploration of State and Action Spaces in Reinforcement Learning

Borrajo, F., Bueno, Y., de Pablo, I., Santos, B. n., Fernández, F., Garćıa, J., & Sagredo, I.
(2010). SIMBA: A Simulator for Business Education and Research. Decission Support
Systems, 48 (3), 498–506.

Boyan, J., Moore, A., & Sutton, R. (1995). Proceedings of the workshop on value function
approximation, machine learning conference 1995... Technical Report CMU-CS-95-
206.

Chernova, S., & Veloso, M. (2007). Confidence-based policy learning from demonstration
using gaussian mixture models. In Joint Conference on Autonomous Agents and
Multi-Agent Systems.

Chernova, S., & Veloso, M. (2008). Multi-thresholded approach to demonstration selection
for interactive robot learning. In Proceedings of the 3rd ACM/IEEE international
conference on Human robot interaction, HRI ’08, pp. 225–232, New York, NY, USA.
ACM.

Cichosz, P. (1995). Truncating temporal differences: On the efficient implementation of
td(lambda) for reinforcement learning. Journal of Artificial Intelligence Research
(JAIR), 2, 287–318.

Cichosz, P. (1996). Truncated temporal differences with function approximation: Success-
ful examples using cmac. In Proceedings of the Thirteenth European Symposium on
Cybernetics and Systems Research (EMCSR-96).

Coraluppi, S. P., & Marcus, S. I. (1999). Risk-Sensitive and Minimax Control of Discrete-
Time, Finite-State Markov Decision Processes. AUTOMATICA, 35, 301–309.

Defourny, B., Ernst, D., & Wehenkel, L. (2008). Risk-aware decision making and dynamic
programming. In NIPS 2008 Workshop on Model Uncertainty and Risk in RL.

Driessens, K., & Ramon, J. (2003). Relational instance based regression for relational rl.
In International Conference of Machine Learning (ICML), pp. 123–130.

Driessens, K., & Džeroski, S. (2004). Integrating guidance into relational reinforcement
learning. Machine Learning, 57 (3), 271–304.

Fernandez, F., & Isasi, P. (2008). Local feature weighting in nearest prototype classification.
Neural Networks, IEEE Transactions on, 19 (1), 40–53.

Fernández, F., & Borrajo, D. (2008). Two steps reinforcement learning. International
Journal of Intelligent Systems, 23 (2), 213–245.

Floyd, M. W., & Esfandiari, B. (2010). Toward a domain-independent case-based reasoning
approach for imitation: Three case studies in gaming. In Workshop on Case-Based
Reasoning for Computer Games at the 18th International Conference on Case-Based
Reasoning (ICCBR), pp. 55–64.

Floyd, M. W., Esfandiari, B., & Lam, K. (2008). A Case-Based Reasoning Approach to
Imitating Robocup Players. In Proceedings of the 21st International Florida Artificial
Intelligence Research Society Conference, pp. 251–256.

Forbes, J., & Andre, D. (2002). Representations for learning control policies. In The
University of New South, pp. 7–14.

561

Garćıa & Fernández

Gabel, T., & Riedmiller, M. (2005). Cbr for state value function approximation in rein-
forcement learning. In Proceedings of the 6th International Conference on Case-Based
Reasoning (ICCBR 2005, pp. 206–221. Springer.

Geibel, P. (2001). Reinforcement Learning with Bounded Risk. In Proceedings of the 18th
International Conference on Machine Learning, pp. 162–169. Morgan Kaufmann.

Geibel, P., &Wysotzki, F. (2005). Risk-sensitive Reinforcement Learning Applied to Control
under Constraints. Journal of Artificial Intelligence Research (JAIR), 24, 81–108.

Hans, A., Schneegass, D., Schäfer, A. M., & Udluft, S. (2008). Safe Exploration for Re-
inforcement Learning. In European Symposium on Artificial Neural Network, pp.
143–148.

Heger, M. (1994). Consideration of Risk in Reinforcement Learning. In 11th International
Conference on Machine Learning, pp. 105–111.

Hernández-Dı́az, A. G., Coello, C. A. C., Perez, F., Caballero, R., Luque, J. M., & Santana-
Quintero, L. V. (2008). Seeding the initial population of a multi-objective evolution-
ary algorithm using gradient-based information. In IEEE Congress on Evolutionary
Computation, pp. 1617–1624. IEEE.

Hester, T., Quinlan, M., & Stone, P. (2011). A real-time model-based reinforcement learning
architecture for robot control. Tech. rep. arXiv e-Prints 1105.1749, arXiv.

Hu, H., Kostiadis, K., Hunter, M., & Kalyviotis, N. (2001). Essex wizards 2001 team
description. In Birk, A., Coradeschi, S., & Tadokoro, S. (Eds.), RoboCup, Vol. 2377
of Lecture Notes in Computer Science, pp. 511–514. Springer.

Jiang, A. X. (2004). Multiagent reinforcement learning in stochastic games with continuous
action spaces..

Kaelbling, L., Littman, M., & Moore, A. (1996). Reinforcement learning: A survey. Journal
of Artificial Intelligence Research (JAIR), 4, 237–285.

Konen, W., & Bartz-Beielstein, T. (2009). Reinforcement learning for games: failures and
successes. In Proceedings of the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late Breaking Papers, GECCO ’09, pp. 2641–
2648, New York, NY, USA. ACM.

Koppejan, R., & Whiteson, S. (2009). Neuroevolutionary reinforcement learning for general-
ized helicopter control. In GECCO 2009: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 145–152.

Koppejan, R., & Whiteson, S. (2011). Neuroevolutionary reinforcement learning for gener-
alized control of simulated helicopters. Evolutionary Intelligence, 4, 219–241.

Lee, J.-Y., & Lee, J.-J. (2008). Multiple Designs of Fuzzy Controllers for Car Parking Using
Evolutionary Algorithm, pp. 1–6. No. May.

Luenberger, D. G. (1998). Investment science. Oxford University Press.

Mannor, S. (2004). Reinforcement learning for average reward zero-sum games. In Shawe-
Taylor, J., & Singer, Y. (Eds.), COLT, Vol. 3120 of Lecture Notes in Computer Science,
pp. 49–63. Springer.

562

Safe Exploration of State and Action Spaces in Reinforcement Learning

Martin H, J., & de Lope, J. (2009). Exa: An effective algorithm for continuous actions
reinforcement learning problems. In Industrial Electronics, 2009. IECON ’09. 35th
Annual Conference of IEEE, pp. 2063 –2068.

Mart́ın H., J. A., & Lope, J. (2009). Learning Autonomous Helicopter Flight with Evo-
lutionary Reinforcement Learning. In 12th International Conference on Computer
Aided Systems Theory (EUROCAST), pp. 75–82.

Mihatsch, O., & Neuneier, R. (2002). Risk-Sensitive reinforcement learning. Machine Learn-
ing, 49 (2-3), 267–290.

Moldovan, T. M., & Abbeel, P. (2012). Safe exploration in markov decision processes.
CoRR, abs/1205.4810.

Narendra, K. S., & Thathachar, M. A. L. (1974). Learning automata - a survey. Ieee
Transactions On Systems Man And Cybernetics, SMC-4 (4), 323–334.

Narendra, K. S., & Thathachar, M. A. L. (1989). Learning automata: an introduction.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Ng, A. Y., Kim, H. J., Jordan, M. I., & Sastry, S. (2003). Autonomous Helicopter Flight
via Reinforcement Learning. In Thrun, S., Saul, L. K., & Schölkopf, B. (Eds.), NIPS.
MIT Press.

Peters, J., Tedrake, R., Roy, N., & Morimoto, J. (2010). Robot learning. In Sammut, C.,
& Webb, G. I. (Eds.), Encyclopedia of Machine Learning, pp. 865–869. Springer.

Poli, R., & Cagnoni, S. (1997). Genetic programming with user-driven selection: Experi-
ments on the evolution of algorithms for image enhancement. In Genetic Programming
1997: Proceedings of the Second Annual Conference, pp. 269–277. Morgan Kaufmann.

Salkham, A., Cunningham, R., Garg, A., & Cahill, V. (2008). A collaborative reinforce-
ment learning approach to urban traffic control optimization. In Web Intelligence
and Intelligent Agent Technology, 2008. WI-IAT ’08. IEEE/WIC/ACM International
Conference on, Vol. 2, pp. 560–566.

Santamaŕıa, J. C., Sutton, R. S., & Ram, A. (1998). Experiments with reinforcement
learning in problems with continuous state and action spaces. Adaptive Behavior, 6,
163–218.

Sharma, M., Holmes, M., Santamaria, J., Irani, A., Isbell, C., & Ram, A. (2007). Transfer
learning in real-time strategy games using hybrid cbr/rl. In In Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence.

Siebel, N. T., & Sommer, G. (2007). Evolutionary reinforcement learning of artificial neural
networks. International Journal of Hybrid Intelligent Systems, 4, 171–183.

Smart, W. D., & Kaelbling, L. P. (2000). Practical reinforcement learning in continuous
spaces. In Artificial Intelligence, pp. 903–910. Morgan Kaufmann.

Smart, W. D., & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots.
In ICRA, pp. 3404–3410. IEEE.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. The MIT
Press.

563

Garćıa & Fernández

Tang, J., Singh, A., Goehausen, N., & Abbeel, P. (2010). Parameterized maneuver learn-
ing for autonomous helicopter flight. In International Conference on Robotics and
Automation (ICRA).

Taylor, M. E., Kulis, B., & Sha, F. (2011). Metric learning for reinforcement learning agents.
In Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS).

Van Hasselt, H., & Wiering, M. A. (2007). Reinforcement Learning in Continuous Action
Spaces. In Approximate Dynamic Programming and Reinforcement Learning, 2007.
ADPRL 2007. IEEE International Symposium on, pp. 272–279.

Wyatt, J. (1997). Exploration and Inference in Learning from Reinforcement. University of
Edinburgh.

Yao, X. (1999). Evolving artificial neural networks. PIEEE: Proceedings of the IEEE, 87,
1423–1447.

564

