
The following paper was originally published in the
Proceedings of the USENIX 2nd Symposium on
Operating Systems Design and Implementation

Seattle, Washington, October 1996

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Safe Kernel Extensions Without Run-Time Checking

George C. Necula and Peter Lee
Carnegie Mellon University

Safe Kernel Extensions Without Run-Time CheckingGeorge C. Necula Peter LeeSchool of Computer ScienceCarnegie Mellon UniversityPittsburgh, Pennsylvania 15213{3891fnecula,petelg@cs.cmu.eduAbstractThis paper describes a mechanism by which an oper-ating system kernel can determine with certaintythat it is safe to execute a binary supplied by anuntrusted source. The kernel �rst de�nes a safetypolicy and makes it public. Then, using this pol-icy, an application can provide binaries in a spe-cial form called proof-carrying code, or simply PCC.Each PCC binary contains, in addition to the nativecode, a formal proof that the code obeys the safetypolicy. The kernel can easily validate the proof with-out using cryptography and without consulting anyexternal trusted entities. If the validation succeeds,the code is guaranteed to respect the safety policywithout relying on run-time checks.The main practical di�culty of PCC is in gener-ating the safety proofs. In order to gain some prelim-inary experience with this, we have written severalnetwork packet �lters in hand-tuned DEC Alpha as-sembly language, and then generated PCC binariesfor them using a special prototype assembler. ThePCC binaries can be executed with no run-time over-head, beyond a one-time cost of 1 to 3 millisecondsfor validating the enclosed proofs. The net result isthat our packet �lters are formally guaranteed to besafe and are faster than packet �lters created usingBerkeley Packet Filters, Software Fault Isolation, orsafe languages such as Modula-3.1 IntroductionIn this paper we address the problem of how an op-erating-system kernel or a server can determine withThis research was sponsored in part by the AdvancedResearch Projects Agency CSTO under the title \The FoxProject: Advanced Languages for Systems Software," ARPA Or-der No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050. The views and conclusions contained in this documentare those of the authors and should not be interpreted as repre-senting the o�cial policies, either expressed or implied, of theAdvanced Research Projects Agency or the U.S. Government.

absolute certainty that it is safe to execute code sup-plied by an application or other untrusted source.We propose a mechanism that allows a kernel orserver|from now on referred to as the code con-sumer|to de�ne a safety policy and then verify thatthe policy is respected by native-code binaries sup-plied to it by an untrusted code producer.In contrast to some previous approaches, we donot rely on the usual authentication or code-editingmechanisms. Instead, we require that the code pro-ducer creates its binaries in a special form, whichwe call proof-carrying code, or simply PCC. A PCCbinary contains an encoding of a formal proof thatthe enclosed native code respects the safety policy.The proof is structured in such a way that makesit easy and foolproof for any agent (and in particu-lar, the code consumer) to verify its validity withoutusing cryptographic techniques or consulting withexternal trusted entities; there is also no need forany program analysis, code editing, compilation, orinterpretation. Besides being safe, PCC binaries arealso extremely fast because the safety check needs tobe conducted only once, after which the consumerknows it can safely execute the binary without anyfurther run-time checking.In a PCC binary, the proof is linked with the na-tive code so that its validity guarantees the code'ssafety. Furthermore, proof-carrying code is tamper-proof; the consumer can easily detect most attemptsby any malicious agent to forge a proof or modifythe code. Tampering can go undetected only if theadulterated code is still guaranteed to respect theconsumer-de�ned safety policy. Another feature ofthe PCC method is that the proof checking algo-rithm is very simple, allowing fast and easy-to-trustimplementations.The safety policy is de�ned and published bythe code consumer and comprises a set of proof-formation rules, along with a set of preconditions.Safety policies can be de�ned to stipulate standard

requirements such as memory safety, as well as moreabstract and �ne-grained guarantees about the in-tegrity of data-abstraction boundaries. To take asimple example, consider the abstract type of �ledescriptors. In this case, a client is said to preservethe abstraction boundaries if it does not exploit thefact that �le descriptors are represented as integers(by incrementing a �le descriptor, for example).Although we have worked out many of the theo-retical underpinnings for PCC (and indeed, most ofthe theory is based on old and well-known principlesfrom logic, type theory [4, 11], and formal veri�ca-tion [5, 6, 8]), there are many di�cult problems thatremain to be solved. In particular we do not knowat this point the most practical way to generate theproofs. We have thus set out to gain some prelim-inary experience, both to measure the bene�ts andto identify the practical problems.In the experiments reported in this paper, wehave in fact achieved fully automatic proof genera-tion. In general, however, this problem is similar toprogram veri�cation and is not completely automat-able. Actually, the problem is somewhat easier thanveri�cation because we have the option of insertingextra run-time checks (as is done in Software FaultIsolation), which would have the e�ect of simplifyingthe proving process at the cost of reducing perfor-mance. By \extra", we mean run-time checks thatare not intrinsically a part of the algorithm of theextension code. (For example, SFI will actually editthe code and insert \extra" checks; PCC does notnormally do this.) Fortunately, we have not yet hadany need or desire to insert extra run-time checksin any of our PCC examples. Still, automation ofproof generation remains as one of the most seri-ous obstacles to widespread practical application ofPCC.In our main experiment, we implemented severalnetwork packet �lters [12, 15] in DEC Alpha assem-bly language [19] and then used a special prototypeassembler to create PCC binaries for them. We weremotivated to use an unsafe assembly language in or-der to place equal emphasis on both performanceand safety, as well as to demonstrate the generalityof the PCC approach. In addition to the assem-bler, we implemented a proof validator that acceptsa PCC binary, checks its safety proof, and if it isfound to be valid, loads the enclosed native codeand sets it up for execution.The results of this and other experiments are en-couraging. For our collection of packet �lters, weare able to automate completely the generation ofthe PCC binaries. The one-time cost of loading andchecking the validity of the safety proofs is between

1 and 3 milliseconds. Because a safety proof guar-antees safety, our hand-tuned packet �lters can beexecuted safely in the kernel address space withoutadding any run-time checks. Predictably, they aremuch faster than safe packet �lters produced by anyother means with which we are familiar.We believe that our early results show that proof-carrying code is a new point in the design space thatis worthy of further attention and study. This pa-per presents an overview of the approach. We beginwith a brief overview of the process of generatingand validating the safety proofs. Then, we makethis more concrete by showing how a safety policycan be de�ned and proofs created for a generic as-sembly language. This is followed by a description ofour main experiment involving safe network packet�lters. The benchmark results provide some prelim-inary indication that the PCC methodology has thepotential to surpass traditional approaches from asafety point of view while maintaining or improv-ing performance. In particular, we show that PCCleads to faster and safer packet �lters than previousapproaches to code safety in systems software, in-cluding Berkeley Packet Filters [12], Software FaultIsolation [23], and programming in the safe subsetof Modula-3 [1, 9, 17]. Finally, we conclude with adiscussion of the remaining di�culties and speculateon what might be necessary to make the approachwork on a practical scale.

CPU

CODE PRODUCER
USER PROCESS
UNTRUSTED CLIENT

CODE CONSUMER
OS KERNEL
NETWORK SERVER

SAFETY

POLICY

PROOF

ENABLE VALIDATION

SOURCE PROGRAM

COMPILATION
&

CODE

SAFETY
BINARY

SCC

NATIVE

CERTIFICATION

PROOF

Figure 1: Overview of Proof-Carrying Code.

2 Proof-Carrying CodeFigure 1 depicts the process of generating and usinga PCC binary. The process begins with the code con-sumer de�ning and publicizing a safety policy. Thispolicy de�nes formally what is meant by \safety"and also speci�es the interface between the consumerand any binary provided by the producer. Takingthe policy into account, the code producer compiles(or assembles) and proves the safety of a source pro-gram, through a process which we call certi�cation.This results in a PCC binary that can be delivered tothe code consumer. Upon receipt, the consumer val-idates the safety proof enclosed in the PCC binary.Finally, if the proof is found to be valid, the codeconsumer can safely execute the native-code part ofthe PCC binary.The following subsections describe each of thesephases in more detail. The whole process is based onconcepts from logic, semantics, and type theory, andso the rest of this section is necessarily somewhattechnical, with most details beyond the scope of thispaper. We will thus attempt to explain only thebasic technicalities and key intuitions here. Thosereaders who would like more details on the under-lying theory can �nd them in a separate technicalreport [16]. The impatient reader may want to skipahead to Section 3 where we show, for the case ofnetwork packet �lters, that proof-carrying code sur-passes previous approaches in both safety and per-formance.2.1 De�ning a Safety PolicyThe �rst order of business is to de�ne precisely whatconstitutes safe code behavior. We do this by spec-ifying a safety policy in three parts:1. A Floyd-style veri�cation-condition generator(also referred to as the VC generator) [6], whichis a procedure that computes a predicate in�rst-order logic based on the code to be cer-ti�ed. We will refer to this predicate as thesafety predicate.2. A set of axioms that can be used to validatethe safety predicate.3. The precondition, which is essentially a \call-ing convention" that de�nes how the code con-sumer will invoke the PCC binaries.It is the job of the designer of the code consumer(e.g., the operating system designer) to de�ne thesafety policy. In practice, several di�erent safety

policies might be used, each one tailored to the needsof speci�c tasks or services.We obtain the VC generator by �rst specifying anabstract machine (also called the operational seman-tics), that simulates the execution of safe programs.The abstract machine is not strictly required but itsimpli�es the design of the safety policy and pro-vides a basis for proving the soundness of the wholeapproach.In order to make all of this more concrete, wewill now present an example of an abstract machinethat speci�es a general form of memory safety forthe DEC Alpha processor, and then show how thesafety policy of a simple resource access service canbe de�ned by a precondition. The VC generator andaxioms will then be given in the next subsection.An abstract machine for memory-safeDEC Alpha machine codeBecause the experiments in this paper use the DECAlpha assembly language, our abstract machine isessentially a high-level formal description of the Al-pha architecture [19]. To see how this is done, con-sider the subset of the Alpha instruction set shownin Figure 2. (Actually, we use a larger subset of theDEC Alpha assembly language in our experiments,but this smaller subset will su�ce for presentationpurposes.) In this table, n denotes an integer con-stant and ri refers to machine register i. All in-structions operate on 64-bit values. For simplicitywe allow the use of only 11 temporary and caller-save machine registers (which, for the purpose of thispresentation, we rename r0 through r10). The con-sequence of this is that programs cannot write intoreserved and callee-save registers (according to thestandard C calling convention for the DEC Alpha ar-chitecture), and are thus trivially safe with respectto these registers.To de�ne how programs are executed, we de�nean abstract machine as a state-transition function,the essential core of which is shown in Figure 3. Inthis speci�cation, the DEC Alpha program is a vec-tor of instructions, �, and the current instruction is�pc , where pc is the program counter. The variable �denotes the state of the machine registers and mem-ory. The state-transition function maps a machinestate (�; pc) into a new state (�0; pc0) by executingthe current instruction �pc .The notation �[ri] (often abbreviated as ri) refersto the value of register ri in state �.1 The expres-1Valid register values are positive integers in the range 0 to264 � 1. This constraint is expressed formally by the equa-tion \ri mod 264 = ri", which is applied to all register val-

op ::= n j ri i 2 0 : : : 10al ::= ADDQ j SUBQ j AND j OR j SLL j SRLbr ::= BEQ j BNE j BGE j BLTinstr ::= LDQ rd; n(rs) j STQ rs; n(rd) j al rs; op; rd j br rs; n j RETFigure 2: The subset of DEC Alpha assembly language.sion �[rd rd � 1] denotes the new state obtainedfrom state � by incrementing the value of registerrd. So, for example, the Alpha \ADDQ rs; op; rd"instruction is de�ned by Figure 3 to have the follow-ing semantics:(�[rd rs � op]; pc + 1)where � is the current register and memory state.This speci�cation states that the ADDQ instructionupdates register rd with the sum of rs and op, andalso increments the program counter. We use the\circled" operation � to denote two's-complementaddition on 64 bits. This operation is de�ned interms of the usual integer arithmetic operations ase1 � e2 = (e1 + e2) mod 264To model the state of memory, we use a pseudoregister, called rm, that gives the content of eachmemory location. We write sel(rm; a) for the con-tents of memory address a, and upd(rm; a; rs) forthe new memory state resulted from writing registerrs to address a. Memory operations work on 64-bitsand the addresses involved must be aligned on an8-byte boundary.In the de�nition of the load and store instruc-tions, there is a crucial di�erence between the DECAlpha processor and our abstract machine. Thedi�erence is that our abstract machine performsthe safety checks that are shown in boxes in Fig-ure 3. For example, consider the de�nition of the\LDQ rd; n(rs)" instruction:(�[rd sel(rm; rs � n)]; pc + 1); if rd(rs � n)The predicate rd(a) is true when it is safe to readthe word at memory address a, which for the DECAlpha implies that a is aligned on an 8-byte bound-ary. Similarly, the predicate wr(a) is true when theaddress a denotes an aligned location that can besafely read or written. In essence, these checks de-�ne what is meant by safety, and more speci�callyfor this example, memory safety. For the purpose ofthis paper, the predicates rd(a) and wr(a) are de-�ned by the safety policy through the precondition,as shown in the next subsection.ues. Negative values are represented using two's-complementrepresentation.

Mathematically, the abstract machine does notreturn errors when a rd(a) or wr(a) check fails.Instead, the execution blocks because there are notransition rules covering the error cases. In this set-ting, a program is safe if and only if it runs withoutblocking on the abstract machine. Of course, thepresence of these safety checks means that the ab-stract machine is not a faithful abstraction of theDEC Alpha processor. However, the purpose of cer-ti�cation is to prove that all safety checks alwayssucceed. If we have a valid safety proof for a pro-gram, we know that we can safely execute it on areal DEC Alpha and get the same behavior as onour abstract machine, even though the Alpha doesnot implement the safety checks.There are other notable di�erences between ourabstract machine and a real DEC Alpha. For ex-ample, to simplify the presentation in this paper,we have restricted all branches to be only forward.Allowing backward branches and loops introduces anumber of complications, but is handled in a con-ceptually straightforward manner through the addi-tion of explicit loop invariants. As it turns out, thepacket �lter examples we use in our experiments donot have any loops, and so it is not inconvenient toeliminate them here. In a later section we will brieydescribe our experiments with looping programs, in-cluding a safe IP-header checksum routine.Another interesting aspect of the abstract ma-chine is the level of abstraction of our speci�cation.We might try to be ambitious and make a completespeci�cation of the DEC Alpha processor. How-ever, this would be extremely complex and proba-bly di�cult to trust. And, as a practical matter,for speci�c tasks such as the ones we are consid-ering, many details and features of the Alpha areirrelevant. This justi�es working at a higher level ofabstraction above the details of the pipeline, cache,timing, and interrupt behavior.We can also consider encoding other kinds ofsafety checks into our abstract machine. For thesake of simplicity, we have speci�ed only a notion of�ne-grained memory safety. With some ingenuity,an abstract machine designer can de�ne safety poli-cies involving other kinds of safety, like control overresource usage or preservation of data-abstraction

(�; pc)! 8>>>>>>>><>>>>>>>>:
(�[rd rs � op]; pc + 1); if �pc = ADDQ rs; op; rd(�[rd sel(rm; rs � n)]; pc + 1); if �pc = LDQ rd; n(rs) and rd(rs � n)(�[rm upd(rm; rd � n; rs)]; pc + 1); if �pc = STQ rs; n(rd) and wr(rd � n)(�; pc + n+ 1); if �pc = BEQ rs; n and rs = 0(�; pc + 1); if �pc = BEQ rs; n and rs 6= 0Figure 3: The Abstract Machine.VCpc = 8>>>>>>><>>>>>>>:VCpc+1[rd rs � op]; if �pc = ADDQ rs; op; rdrd(rs � n) ^ VCpc+1[rd sel(rm; rs � n)]; if �pc = LDQ rd; n(rs)wr(rd � n) ^ VCpc+1[rm upd(rm; rd � n; rs)]; if �pc = STQ rs; n(rd)(rs = 0) VCpc+n+1) ^ (rs 6= 0) VCpc+1); if �pc = BEQ rs; nPost ; if �pc = RETFigure 4: The Veri�cation-Condition Generator.boundaries. Once a safety policy is de�ned, applica-tion writers are free to use it to create PCC binariesthat guarantee safety.A sample application and its preconditionThe abstract machine as given above describes safetyin terms of the abstract notions of readable andwritable memory locations. For this to be useful, thecode consumer must specify an interface to PCC bi-naries that identi�es the readable and writable mem-ory locations. We do this by specifying a precondi-tion, which is a predicate in �rst-order logic that thecode consumer guarantees to be valid when the PCCbinary is invoked.Consider the following simple example. Supposean operating-system kernel maintains an internal ta-ble with data pertaining to various user processes.Each table entry consists of two consecutive mem-ory words|a tag and a data word. The tag describeswhether the data word is user writable or not. Thekernel also provides a resource access service throughwhich user processes are given permission to accesstheir table entry by installing native code in the ker-nel. To make this possible the kernel invokes theuser-installed code with the address of the table en-try corresponding to the parent process in machineregister r0. This address is guaranteed by the kernelto be valid and aligned on an 8-byte boundary.Although this example is somewhat contrived, wecan imagine that entries in the table represent capa-bilities (perhaps �le descriptors), and so we would

like to provide user-installed code with full access tothe correct table entries, while maintaining the in-tegrity of the rest of the table and other parts of thekernel state.Informally, the safety policy for the resource ac-cess service requires that: (1) the user code cannotaccess other table entries besides the one pointed toby r0, (2) the tag is read only, (3) the data word isalso read only unless the tag value is non zero, and,(4) the code does not modify reserved and callee-saves registers. The last condition ensures that thekernel can safely invoke the user code using a normalC function call.More formally, the kernel speci�es a preconditionPrer , which states that it is safe to read the tagpointed to by r0, and that it is also safe to write thedata at o�set 8 from r0 if the contents of the tag isnot 0. In formal notation, this is written as follows:Prer = r0 mod 264 = r0 ^ rd(r0) ^ rd(r0 � 8)^ sel(rm; r0) 6= 0) wr(r0 � 8)What remains now is to prove for a particularclient of the resource access service that all rd(a)andwr(a) checks will always succeed, given this pre-condition and abstract machine. In general, we canalso specify a postcondition as part of the safety pol-icy, which would require particular invariants to bevalid when the user code terminates. Conceptually,in our example the postcondition is the predicatetrue, meaning that no additional conditions are im-posed on the �nal machine state.Before moving on to a discussion of the proof

generation process, we note that the safety policywe have described here can be thought of as enforc-ing �ne-grained memory protection. In general, onecould imagine having much more involved safety re-quirements. For example, we could change the tagword in the table entry to be a semaphore that theuser code must acquire (e.g., atomically test-and-setto zero) before trying to write the data word; fur-thermore, we could also require (via a simple post-condition) that the code releases the semaphore be-fore returning. Again, for purposes of the currentpresentation, we stick to the simpler memory-safetyrequirements.2.2 Certifying the Safety of ProgramsTo create safety proofs for a program, we must provethat executing it does not violate any of the safetychecks (and the postcondition, if one is given, isalso satis�ed). Standard techniques exist for build-ing such proofs. Our technique is based on Floyd'sveri�cation conditions [6], because they are powerfulenough to deal with unstructured assembly-languageprograms and a broad range of safety invariants.Similar techniques have been used before to verifyassembly-language programs [2, 3].Certi�cation of programs involves two steps:1. Compute the safety predicate for the program.This essentially encodes the semantic meaningof the program in logical form and constitutesa formal statement that the program, when ex-ecuted, will not violate any safety checks.2. Generate a proof of the safety predicate, writ-ten out in a checkable form.Both these steps are described in the following sub-sections.Computing the safety predicateTo compute the safety predicate, we �rst generatea vector VC of predicates, one for each instructionas speci�ed by the rules in Figure 4. The nota-tion VCpc denotes the predicate for the current in-struction. Since the rules specify VCpc in terms ofVCpc+1, the veri�cation-condition VC0 for the be-ginning of the program can be computed by startingat the end of the program and working back towardsthe beginning.22This simple approach works because all branches are re-stricted to be forward-only. We discuss later what happens inthe presence of loops.

The rules in Figure 4 are derived in a straight-forward manner from the abstract machine speci�-cation of Figure 3; in fact, we imagine that experi-enced kernel and safety policy designers would skipthe abstract machine speci�cation and give only theVC generator rules. The notation P [rd rs � op]stands for the predicate obtained from P by substi-tuting rs � op for rd.After computing the vector VC, the safety pred-icate is computed simply by plugging the program�, precondition Pre , and postcondition Post intothe following formula:SP(�;Pre ;Post) = 8r0 : : :8r108rm:Pre) VC0The intuition behind a valid safety predicate is thatfor any initial state that satis�es the preconditionPre , the code � starting at the �rst instruction ex-ecutes without failure and, if it terminates, the �nalstate satis�es the postcondition Post .%Address of tag in r01 ADDQ r0, 8, r1 %Address of data in r12 LDQ r0, 8(r0) %Data in r03 LDQ r2, -8(r1) %Tag in r24 ADDQ r0, 1, r0 %Increment Data in r05 BEQ r2, L1 %Skip if tag == 06 STQ r0, 0(r1) %Write back dataL1 RET %DoneFigure 5: DEC Alpha assembly code for resourceaccess. Initially register r0 holds the address of thetag. The data is at the o�set 8 from r0.For a concrete example of client code for the re-source access service, consider the small programin Figure 5. The overall e�ect of this program isto increment the data word if it is writable. We�rst compute VC0 for this program using the rulesin Figure 4; then we compute the safety predicateSPr using the above formula with the preconditionPrer and the postcondition true. After a few trivialsimpli�cations, the resulting safety predicate is thefollowing:SPr = 8r0:8rm:Prer) rd(r0 � 8) ^ rd(r0 � 8	 8)^ sel(rm; r0 � 8	 8) = 0) true^ sel(rm; r0 � 8	 8) 6= 0) wr(r0 � 8)Informally, the SPr predicate says that for all val-ues of register r0 and states of memory rm satisfyingthe precondition Prer , the memory locations r0 � 8and r0 � 8 	 8 must be readable and if the tag (ataddress r0 � 8	 8) is non zero, the data (at addressr0 � 8) must be writable. All these conditions mustbe true for the code to be safe with respect to theresource access safety policy.

Proving the safety predicateWe have intentionally written the program in Fig-ure 5 in a slightly complicated way, to show that low-level optimizations do not pose signi�cant problemsin generating and validating safety proofs. Threeof the interesting properties of this program are (1)the instructions are somewhat scheduled, includingspeculative execution of the load in line 2 and of theaddition in line 4, to accommodate the DEC Alphapipeline latency3, (2) register r0 is reused in line 2 tohold the data word instead of the tag address, and(3) even though the precondition is expressed as afunction of the value in register r0, some of the ac-tual memory accesses are done through register r1.In general, we expect scheduling and register alloca-tion to have no e�ect on the safety predicate and itsproof.It is a simple exercise for the reader familiar withassembly-language programming to verify that thiscode is indeed correct with respect to the safety pol-icy. The problem, of course, is how to convince eventhe most suspicious kernel that this code is abso-lutely safe. To do this, we must prove the safetypredicate according to the rules of �rst-order predi-cate calculus extended with two's-complement inte-ger arithmetic. We refer to this set of proof rulesas � and we write �̀ SP when the safety predicateSP can be proved according to the rules in the set�. Most of the rules in � are simple. Below weshow two of the rules we use, the �rst being a clas-sical implication-elimination rule from the predicatecalculus, and the second a rule about arithmetic:�̀ Q; if �̀ P) Q and �̀ P�̀ e1 � e2 	 e2 = e1; if �̀ e1 mod 264 = e1The second rule is perhaps a bit surprising be-cause e1 + e2 � e2 = e1 is unconditionally true ininteger arithmetic. However, for the machine imple-mentation of arithmetic, this statement is true onlyif the original value of e1 is a valid register value.A large fragment of the proof of the safety pred-icate for our example program is shown in a proof-tree form in Figure 6. This proof was generatedautomatically by our PCC system, which incorpo-rates a simple theorem prover. We use vertical dotsto stand for extractions of a conjunct from the pre-condition. You can read the proof tree from top tobottom, interpreting every node as a valid inferenceof the predicate below the line using the assumptionsabove the line. For example, in the upper-right cor-ner of the �gure the predicate r0 = r0 � 8 	 8 is3These operations are speculative because they are not re-quired if the branch in line 5 is taken.

proved using the arithmetic rule we discussed withthe assumption r0 mod 264 = r0 extracted from theprecondition. Then wr(r0 � 8) is proved using theimplication-elimination rule and the hypothesis u ofthe predicate sel(rm; r0 � 8	 8) 6= 0. This hypoth-esis is introduced at a lower level in the proof tree,at the node labeled u, for the purpose of proving thepredicate sel(rm; r0 � 8	 8) 6= 0) wr(r0 � 8).The guarantee of safetyWe use the proof of the safety predicate, written outin an appropriate language (to be described in thenext section), as the proof that the code obeys thesafety policy. This is justi�ed formally by the safetytheorem, stated below:Theorem 2.1 (Safety) For any program �, pre-condition Pre and postcondition Post, if�̀ SP(�; P re; Post) then for any initial state �0 thatsatis�es the precondition and for any abstract ma-chine state (�; pc) originating from the initial state(�0; 0), one of the following is true:1. The state (�; pc) is a �nal state (i.e. �pc =RET) satisfying the postcondition Post, or2. The execution is not stuck, i.e., there exists anew state (�0; pc0) such that (�; pc)! (�0; pc0).Since the abstract machine gets stuck when thereis any violation of an rd(a) or wr(a) safety check,this theorem provides an absolute guarantee that acerti�ed program will not have such violations, aslong as its execution is started in a state that satis�esthe precondition.The proof of the Safety Theorem is beyond thescope of this paper, but can be found in a separatetechnical report [16].2.3 Validating the Safety ProofsA PCC binary consists of the assembled native codetogether with an encoding of the proof of its safetypredicate. To validate the binary, the code consumer�rst extracts the native code and then computes itssafety predicate using the VC rules. Then, it checksthat the safety proof is a valid proof of the safetypredicate.This method ensures safety even if the nativecode or the proof in the PCC binary is tamperedwith. If the code is modi�ed, then in all likelihoodits safety predicate changes, so the given proof willnot correspond to it. If the proof is modi�ed, theneither it will be invalid, or else not correspond tothe safety predicate. If the code is modi�ed in such

Prer...Prer Prer u r0 mod 264 = r0Prer sel(rm; r0 � 8	 8) 6= 0 r0 = r0 � 8	 8... r0 mod 264 = r0 sel(rm; r0) 6= 0) wr(r0 � 8) sel(rm; r0) 6= 0rd(r0) r0 = r0 � 8	 8 wr(r0 � 8) urd(r0 � 8	 8) sel(rm; r0 � 8	 8) 6= 0) wr(r0 � 8) : : :rd(r0 � 8	 8) ^ (sel(rm; r0 � 8	 8) 6= 0) wr(r0 � 8)) ^ : : : PrerPrer) rd(r0 � 8	 8) ^ (sel(rm; r0 � 8	 8) 6= 0) wr(r0 � 8)) ^ : : :8r0:8rm:Prer) rd(r0 � 8	 8) ^ (sel(rm; r0 � 8	 8) 6= 0) wr(r0 � 8)) ^ : : :Figure 6: A Fragment of the formal safety proof of SPr.a way that the safety predicate is unchanged (forexample, instruction scheduling and register alloca-tion might do this in typical circumstances), or ifboth the code and the proof are modi�ed so that westill have a valid proof of the new safety predicate,the validation succeeds and we continue to retain aguarantee of safety.To automate the validation process, we must�rst choose a concrete representation language forpredicates and their proofs. From the many avail-able choices, we have selected the Edinburgh LogicalFramework [7] (also called LF) as the representationframework for predicates and proofs. LF is an ex-tension of the simply typed lambda calculus and wasdesigned as a meta language for high-level speci�ca-tion of languages in logic and computer science. Themost attractive property of LF is that it has a pow-erful yet simple typechecking algorithm, which weuse to check the validity of proofs.We represent the predicates and the proofs in LFin such a way that the validity of a proof is im-plied by the well typedness of the proof representa-tion. Thus, proof validation amounts to typecheck-ing. Also, LF allows us to represent in an elegantway a few key issues in logical proof correctness,such as the manipulation of logical parameters andassumptions. It is well beyond the scope of this pa-per to discuss in detail LF and the typechecking al-gorithm, however it is worth mentioning that type-checking is decidable and is described by a few sim-ple rules. Indeed, typechecking is so simple that anyprogrammers who do not trust the publicly availableimplementation can implement it easily themselves.Our implementation has about �ve pages of C code,even though it incorporates a few optimizations tothe basic algorithm. With this implementation, ittakes 1.4 milliseconds to validate the proof of the

SPr predicate.For exibility and to allow easy exchange ofproofs between system components, we have de-signed a binary encoding of LF representations.Thus, a typical PCC binary contains a section withthe native code ready to be mapped into memoryand executed, followed by a symbol table used toreconstruct the LF representation at the code con-sumer site, and the binary encoding of the LF repre-sentation of the safety proof. The latter componentis the safety proof. Figure 7 shows the sizes of thesesections for the PCC binary corresponding to theresource access example.
SECTION

NATIVE CODE

SECTION

220

RELOCATION

PROOF

45

0

340

SECTIONFigure 7: The layout of the PCC binary for the re-source access example. The o�sets are in bytes.Currently, PCC binaries for standard packet �l-ters, including the native code, safety proof, and re-location section, are about 400 to 1200 bytes in size,with the proof about 3 times larger than the code.The size of the relocation section increases linearlywith the number of distinct proof rules used in theproof. In the case of packet �lter safety proofs, therelocation section is a third of the binary but weexpect this ratio be much smaller for larger proofs.

There is a considerable amount of design latitudein the encodings of the proofs, and we have barelyscratched the surface on what can be done to reducethe size of the binaries as well as the time requiredfor validation. But already, with relatively little ef-fort, we have achieved acceptably small binaries andlow validation times.3 Application: Network Packet FiltersIn order to gain more experience with PCC and tocompare it with other approaches to code safety, wehave performed a series of experiments with safe net-work packet �lters. We describe in this section theparticulars of the PCC approach to network packet�lters. Then in Section 3.1, we compare it with otherapproaches including interpreted packet �lters (asexempli�ed by the BSD Packet Filter), code editing(through Software Fault Isolation), and using a safeprogramming language (the approach taken in theSPIN kernel).A packet �lter is an application-provided subrou-tine that scans each incoming network packet anddecides whether the user application is interestedin receiving it or not. Packet �lters are supportedby most of today's workstation operating systems.Since their �rst introduction in [15], packet �ltershave been used successfully in network monitoringand diagnosis.In the PCC approach the packet �lter is a PCCbinary whose native code component is invoked bythe kernel on each incoming network packet. Kernelsafety is ensured by validating the safety proof.Following the procedure described in Section 2we �rst establish a safety policy. To allow for a faircomparison we follow the BSD Packet Filter modelof safety. The packet �lter code can examine thepacket at will and can also write to a statically allo-cated scratch memory. Informally, the safety policyrequires that: (1) memory reads are restricted to thepacket and the scratch memory; (2) memory writesare limited to the scratch memory; (3) all branchesare forward; and (4) reserved and callee-saves reg-isters are not modi�ed. These rules establish mem-ory safety and termination assuming that the kernelcalls the packet �lter with valid packet and scratchmemory addresses.We write the packet �lter code assuming that thereturn value must be in r0, the aligned address andthe length of the packet �lter are given in r1 andr2 respectively, and the address of a 16-byte alignedscratch memory is given in r3. Moreover the packet'slength is positive and at least 64-bytes (the mini-

mum length of an Ethernet packet). Formally thisis expressed as the precondition:Pre = r1 mod 264 = r1 ^r2 mod 264 = r2 ^ r2 < 232 ^ r2 � 64 ^r3 mod 264 = r3 ^8i:(i � 0 ^ i < r2 ^ (i & 7) = 0)) rd(r1 � i) ^8j:(j � 0 ^ j < 16 ^ (j & 7) = 0)) wr(r3 � j) ^8i:8j:(i � 0 ^ i < r2 ^ j � 0 ^ j < 16)) (r1 � i 6= r3 � j)The �rst few conjuncts of the precondition restrictthe values of input registers to valid machine wordvalues. The last term of the precondition rules outthe possibility of memory aliasing between packetsand the scratch memory. This is useful when reason-ing about �lters that write to the scratch memory.The postcondition in our packet �lter experimentis the predicate true, meaning that no additionalconditions are placed on the �nal state.We have implemented four typical packet �ltersin assembly language and certi�ed their safety withrespect to the packet �lter safety policy. Filter 1accepts all IP packets. This is done by comparinga 16-bit word in the packet to a given value. Fil-ter 2 accepts IP packets originating from a givennetwork. This involves checking a 24-bit value inaddition to the work done by Filter 1. Filter 3 ac-cepts IP or ARP packets exchanged between twogiven networks. This includes all the work done byFilter 2 with the addition of checking the destina-tion network address. Extra complexity is requiredbecause of di�erent header layout of IP and ARPpackets. Filter 4 accepts all TCP packets with agiven destination port. This �lter has to check thatthe Ethernet packet is an IP packet, then that it isa TCP packet, and lastly that the destination portmatches a given value. The o�set of the TCP desti-nation port is computed based on a byte in the IPheader (the length of the IP header).The e�ort involved in hand-coding packet �ltersin assembly language is repaid in increased perfor-mance, because packet �lters are usually small andvery frequently executed. Hand-coding provides theopportunity to perform optimizations that are dif-�cult to obtain from an optimizing compiler. Theimportant point is that these optimizations are notan impediment to generation and validation of safetyproofs. Here are a few optimizations that we incor-porated in our packet �lters:� The number of memory operations is mini-mized by using the DEC Alpha 64-bit load fol-

lowed by byte extraction.� The TCP port number can be found at packeto�set ([14]8 & 15) � 4+ 16, where [14]8 denotesthe byte at o�set 14. If loading 64 bits at atime on a little-endian machine, the formulabecomes ((([8]64 � 48) & 255) & 15) � 4 + 16.With further simpli�cation we reduce this to(([8]64 � 46) & 60) + 16, which is exactly howwe coded Filter 4.After we write a packet �lter, our prototypeassembler produces its safety predicate using theveri�cation-condition method presented in Section 2.The safety predicate is then proved using a theoremprover. We currently use our own theorem prover,which is admittedly a toy. When it gets stuck, itrequires intervention from the programmer, mainlyto learn new axioms about arithmetic (for example,to know that r1 > 0) r1 � 0). The process iseasy, and because user-provided axioms are remem-bered for future sessions, by now our system worksautomatically for most practical packet �lters. Withstate-of-the-art theorem proving technology we ex-pect to be able to prove completely automaticallymost arithmetic facts involved in certifying packet�lters.With our primitive theorem-prover we can gen-erate safety proofs for packet �lters in about 5 to10 seconds, in the cases when no user-intervention isrequired.3.1 Performance ComparisonsAll performance measurements were done on a DECAlpha 3000/600 with a 175-MHz processor, a 2-MByte secondary cache and 64-MByte main mem-ory, running OSF/1. All measurements were per-formed o�-line using a 200,000-packet trace from abusy Ethernet network at Carnegie Mellon Univer-sity.We measured the average per-packet run timeof the four PCC packet �lters and of function-ally equivalent �lters implemented using alterna-tive approaches: the BSD Packet Filter architec-ture, Software Fault Isolation and programming inthe safe subset of Modula-3. In our experimentswith Modula-3 packet �lters we use the VIEW ex-tension [9] for pointer-safe casting. The result ofthe measurements are shown in Figure 8. From aper-packet latency point of view, the PCC packet�lters outperform �lters developed using any otherconsidered approach. However, the PCC methodhas a startup cost signi�cantly larger than the otherapproaches. This cost is the proof validation time,

2.0

1.5

PCC

1.0

0.5

Filter 1 Filter 2 Filter 3 Filter 4

us

0.78

1.92

0.11 0.08

1.46

0.18 0.15

0.24
0.17

0.23
0.17

1.71

0.20
0.25

0.31 0.33

BPF

SFI

M3-VIEW

Figure 8: Comparison of average per-packet runtime.which is presented in Table 1 together with the PCCbinary size for all four �lters and maximum heapspace used for validation. The maximum depth ofthe stack during validation was under 4 Kbytes.Packet Filter 1 2 3 4Instructions 8 15 47 28Binary Size (bytes) 385 516 1024 814Validation Time (�s) 780 1070 2350 1710Cost Space (KB) 5.5 8.7 24.6 15.1Table 1: Proof size and validation cost for PCCpacket �lters.Despite the relatively high validation cost, therun-time bene�ts of PCC packet �lters are largeenough to amortize the startup cost after process-ing a reasonable number of packets. Figure 9 showsthe overall running time, including startup cost, as afunction of the number of packets processed, for Fil-ter 4. In this particular case, the cost of proof valida-tion is amortized after 1200 packets when comparedto the BPF version of the �lter, after 10500 packetswhen compared to the Modula-3 version and after28,000 packets when compared to the SFI packet �l-ter. Note that at the time we collected the packettrace used for the experiments we counted about1000 Ethernet packets per second on the average.We proceed now to describe in more detail eachconsidered approach focusing on how it relates toPCC from the safety point of view, and how we setup the performance measurements.The standard way to ensure safe execution ofpacket �lters is to interpret the �lter and performextensive run-time checks. This approach is best ex-empli�ed by the BSD Packet Filter architecture [13],

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

m
s

thousands of packets

BPF
M3-VIEW

SFI
PCC

Figure 9: Startup cost amortization for Filter 4.commonly referred to as BPF. In the BPF approachthe �lter is encoded in a restricted accumulator-based language. According to the BPF semantics,a �lter that attempts to read outside the packet orthe scratch memory, or to write outside the scratchmemory, is terminated and the packet rejected.The BPF interpreter makes a simple static checkof the packet �lter code to verify that all instruc-tion codes are valid and all branches are forwardand within code limits. We measured this one-timeoverhead to be a few microseconds, which is negligi-ble. BPF packet �lters, however, are about 10 timesslower than our PCC �lters. In the PCC approachall checks are moved to the validation stage, allowingfor much faster execution.In order to collect data for the BPF packet �lters,we extracted the BPF interpreter as implemented bythe OSF/1 kernel and compiled it as a user library.It is possible, of course, to eliminate the need forinterpretation. For example, we could replace thepacket-�lter interpreter with a compiler. This ap-proach is taken by several researchers [10, 24]. Theproblem here is the startup cost and complexity ofcompilation, especially if serious optimizations areperformed.Another approach to safe code execution is Soft-ware Fault Isolation (SFI) [23]. SFI is an inexpensivemethod for parsing binaries and inserting run-timechecks on memory operations. There are many a-vors of SFI depending on the desired level of memorysafety. If the entire code runs in a single protectiondomain whose size is a power of 2, and if only mem-ory writes are checked, then the run-time cost ofSFI is relatively small. If, on the other hand, theuntrusted code interacts frequently with the codeconsumer or other untrusted components residing indi�erent protection domains and the read operations

must be checked also, the overhead of the run-timechecks can amount to 20% [23]. A more serious dis-advantage of SFI is that it can only ensure memorysafety. We believe that this level of safety is notenough in general, and that it is important to beable to check abstraction boundaries and represen-tation invariants, as shown by the resource accessexample in Section 2.In order to accommodate SFI for packet �lters,we allowed some concessions to the packet �lter se-mantics. For example, we assumed that the kernelallocates the packets on a 2048-byte boundary. Fur-thermore, we assume that the �lter can safely accessthe entire segment of 2048 bytes, independently ofthe packet size. Note that the BPF packet �lter se-mantics, which we followed for all other experiments,speci�es that a �lter should be terminated if it triesto access beyond the packet boundary. This meansthat some working packet �lters in the BPF seman-tics will not behave as expected in the SFI semanticsfor packet �lters, and vice-versa.One common way of performing SFI is at the codeproducer site, usually as part of the code-generationphase in a compiler. In this case, the code consumerperforms a load-time checking that SFI was donecorrectly. The load-time SFI validator is reportedlysimple if it must deal only with binaries for whichrun-time checks have been inserted on every poten-tially dangerous memory operation [23]. On theother hand, in the case where the validator mustaccept binaries for which the number of run-timechecks has been optimized through program analy-sis, the validator itself has to redo the analysis thatled to the optimization. This means a more com-plex and slower validation, and in fact such an SFIvalidator does not presently exist.We inserted run-time checks for the memory op-erations in the assembly language packet �lters im-plemented for the PCC experiment. This processcan be done by a simple and easy-to-trust imple-mentation of SFI. In our experiments, PCC packet�lters run about 25% faster than SFI �lters.As part of our SFI experiment, we producedsafety proofs attesting that the resulting SFI packet�lter binaries are safe with respect to the packet �l-ter safety policy. We achieve the same e�ect as anSFI load-time validator but using the universal type-checking algorithm and a few application-dependentproof rules. The precondition for this experimentsays that it is safe to read from any aligned ad-dress that is in the same 2048-byte segment withthe packet start address. Proof sizes and validationtimes are very similar to those for plain PCC pack-ets.

Another approach to safe code is to use a type-safe programming language. This approach is takenby the SPIN extensible operating system [1], andthe language used is Modula-3 [17] extended withpointer-safe casting (VIEW). SPIN allows applica-tions to install extensions in the kernel but onlyif they are written in the safe subset of Modula-3. The extensions are compiled by a trusted com-piler and the resulting executable code is then be-lieved to be safe (at least according to the Modula-3model of safety). Note that such extensions writtenin Modula-3 are intrinsically safe, as anyone who be-lieves in the safety of Modula-3 can check their com-pliance with Modula-3 syntactic and typing rules.We believe that encoding kernel extensions asPCC binaries instead of Modula-3 source code canprovide important bene�ts. One such bene�t is theincreased exibility for extension writers becauseany native code extension can be accepted, inde-pendent of the original source language or even thecompiler used, as long as a valid safety proof accom-panies it. Another potential bene�t is overcomingthe limitations of the Modula-3 safety model: thePCC safety proof should be able to express proper-ties such as disciplined use of locks or array boundscompliance with no need for run-time checks.We wrote the four packet �lters in the safe sub-set of Modula-3 and compiled them with the ver-sion 3.5 of the DEC SRC compiler extended withthe VIEW operation [24]. VIEW is used to safelycast the packet �lter to an array of aligned 64-bitwords allowing fewer memory operation for access-ing packet �elds. In contrast, in plain Modula-3 thepacket �elds must be loaded a byte at a time, anda safety bounds check is performed for each suchoperation. The compiler tries to eliminate some ofthese checks statically but it is not very successfulfor packet �lters. The main reason is that a criti-cal piece of information, the fact that packets are atleast 64 bytes long, cannot be communicated to thecompiler through the Modula-3 type system.We measured a 20% improvement in the Modula-3 packet �lter performance when using VIEW. Sim-ilar performance improvements over the DEC SRCModula-3 compiler have been reported [18] for themore recent Vortex compiler. However, since wehave not conducted any experiments with the Vor-tex compiler on our packet �lters, it is not clear whatkind of improvements we would realize in practice.In an alternate implementation of untrusted codecerti�cation using Modula-3, the source code is com-piled by a trusted and secure compiler that signs theexecutable for future use. Validation then meanscryptographic signature checking and like in the

PCC approach there is no run-time cost associatedwith it. We do not have a complete implementa-tion of such a cryptographic validation, so we do notknow exactly how large is the startup cost for thedigital signature approach. It is likely however thata good implementation of digital signatures wouldachieve faster validation and signi�cantly faster gen-eration of certi�cates. The essential drawback ofcryptographic techniques over PCC is that valida-tion establishes only a trusted origin of the code andnot its absolute safety relative to the safety policy.In particular, a digital signature can be ascribed toan unsafe program just as easily as to a safe one.Also, the cost of managing and transmitting encryp-tion keys is not incurred by PCC.We should mention here one more approach tosafe code execution, although we do not have anactual quantitative comparison. The Java VirtualMachine [21] is a proposed solution to safe interac-tion of distributed, untrusted agents. Mobile codeis encoded in the Java Virtual Machine Language(also referred to as Java Bytecode), which is basi-cally a safe low-level imperative language. Safety isachieved through a combination of static typecheck-ing and run-time checking.However, the Java Bytecode safety model is rel-atively limited as a result of limitations of the typesystem. For example the Java Bytecode type infor-mation encoded in the instruction codes can onlyexpress a few basic abstract types (e.g., integers,objects) and has no provisions for expressing safetypolicies like the one for the resource access exam-ple in Section 2. Also, invariants involving arraybounds compliance cannot be expressed in the JavaBytecode type system and must be checked at runtime.Although Java Bytecode is a low-level language,it still requires substantial processing before it canbe executed on a general-purpose processor. In con-trast, PCC segregates the safety proof from the pro-gram code, allowing for the code portion to be en-coded in a variety of languages, including nativecode, without any safety loss.4 Practical Problems and Future WorkIn order to create a safety proof, the code producermust prove a predicate in �rst-order logic. In gen-eral, this problem is undecidable. However, as wementioned in Section 1, the code producer can re-sort to \extra" run-time checks inserted in strategiclocations, which have the tendency to simplify thecerti�cation.

Fortunately, in the packet-�lter experiments, thecerti�cation process is nearly automatic, and wehave not been forced to insert any extra run-timechecks into the code. In fact, we �nd that safetypredicates for packet �lters are fairly easy handledby existing theorem-proving technology.One of the simpli�cations in the packet �lters isto restrict programs so that they do not containloops. Although the general framework presentedin this paper is easily extended to accommodateloops [5], this introduces a number of complications.One experiment we conducted involves an IP-headerchecksum routine, which is hand-coded in 39 DECAlpha instructions. The core loop contains 8 instruc-tions, and is optimized by computing the 16-bit IPchecksum using 64-bit additions followed by a fold-ing operation. The resulting PCC binary for thisroutine is, as expected, quite fast, beating the stan-dard C version in the OSF/1 kernel by a factor oftwo. The PCC binary itself is 1610 bytes in size andproof validation takes 3.6 milliseconds.This experiment brought to light several com-plications. For example, the standard approach ofverifying loops using Floyd-style veri�cation condi-tions involves introducing loop invariants explicitly,which is a challenge for any theorem-proving tech-nology and ofter requires user intervention. In fact,for general assembly-language programs this repre-sents the most important problem to be solved, asit is the main obstacle in automating the genera-tion of proofs. Since this is beyond the capabilitiesof our system, we are forced to write the invariantsout by hand. This also means that the native codemust be accompanied by a loop invariant for everyloop. Thus, the PCC binary contains a mapping be-tween each loop and its invariant. Our convention isto have the PCC binary contain a table that mapseach backward-branch target to a loop invariant.Besides the problem of how to generate theproofs, there is also the matter of their size. In prin-ciple, the proofs can be exponentially large (in thesize of the program). This has not been a prob-lem for any of the examples we have tried thus far,however. The blowup would tend to occur in pro-grams that contain long sequences of conditionals,with no intervening loops. Perhaps we have not yetseen the problem in a serious way because such pro-grams tend to be hard for humans to understand,and we are writing the programs by hand. But asa general matter, the size of the PCC binaries isan issue that must be addressed carefully. We haveimplemented several optimizations in the represen-tation of the proofs, and much more is possible here.But ultimately, we need more practical experience to

know if this is a serious obstacle for PCC in practice.For programs with loops, the loop invariantsbreak a program with cycles into a set of acycliccode fragments. We treat each code fragment as aseparate program, using the invariants as precon-ditions for each. This has the bene�cial e�ect ofpartitioning the safety predicate and its proof intosmaller pieces, and overall tends to reduce the sizeof the proof dramatically. For this reason, even forsections of programs that do not contain loops, itmay be bene�cial to introduce invariants, as a wayof controlling the growth of the PCC binaries.In addition to developing better certi�cationtechnology, we see several other interesting direc-tions for further research. One possibility that weintend to explore is the application of PCC to moredynamic properties, such as resource-usage guaran-tees. One example would be to certify that spe-ci�c synchronization locks are always released priorto some action. The framework we have presentedin this paper is already expressive enough to de�nesuch safety policies, and so what remains now is totry some experiments.Another possibility is to allow the consumer andproducer to \negotiate" a safety policy at run time.This would work by allowing the producer to sendan encoding of a proposed safety policy (includingthe VC-generation rules, proof rules, and precon-ditions) to the consumer. If the consumer deter-mines that the proposed policy implies some basicnotion of safety, then it can allow the producer toproduce PCC binaries using the new policy. Thismight be useful in distributed systems, in which oneagent wants to de�ne a language and then transmitto other agents code written in that language.Finally, we believe there would be advantagesto starting with a safe programming language andthen implementing a certifying compiler that pro-duces PCC binaries as target programs. For thesafety properties that are implied by the source lan-guage, construction of the proofs is, in principle, amatter of having the compiler prove the correctnessof the translation to target code. We have alreadyexperimented with a toy compiler of this sort for asmall type-safe programming language, and hope toexpand on this in the near future.5 ConclusionsWe have described proof-carrying code, a mechanismthat allows a kernel or server to interact safely withbinaries supplied by an untrusted source. PCC doesnot incur any run-time overhead for the kernel. In-

stead, the code producer is required to generate aformal proof that the code obeys the safety policy.The kernel can easily check the proofs for validity,after which it is absolutely certain that the code re-spects the safety policy. Furthermore, PCC binariesare completely tamper-proof; any attempt to altereither the native code or safety proof in a PCC bi-nary is either detected or harmless. Our experimentswith network packet �lters show that PCC can leadto signi�cant performance advantages over existingapproaches to safe code, including code-editing tech-niques such as Software Fault Isolation.Proof-carrying code has the potential to free thesystem designer from relying on run-time checkingas the sole means of ensuring safety. Traditionally,system designers have always viewed safety simplyin terms of memory protection, achieved through theuse of rather expensive run-time mechanisms such ashardware-enforced memory protection and extensiverun-time checking of data. By being limited to mem-ory protection and run-time checking, the designermust impose substantial restrictions on the structureand implementation of the entire system, for exam-ple by requiring the use of a restricted application-kernel interaction model (such as a �xed system callor application-program interface.)Proof-carrying code, on the other hand, allowsthe safety policy to be de�ned by the kernel designerand then certi�ed by each application. Not only doesthis provide greater exibility for designers of boththe system and applications, but also allows safetypolicies to be used that are more abstract and �ne-grained than memory protection. We believe thatthis has the potential to lead to great improvementsin the robustness and end-to-end performance of sys-tems.6 Final ThoughtsThe inspiration for proof-carrying code comes fromthe realm of static type systems, especially as em-bodied by the language Standard ML (SML). Inthe formal de�nition of SML [14], a formal theoremguarantees the safety of any type-correct SML pro-gram, for a rigorously de�ned notion of safety. Thereare, of course, many other type-safe programminglanguages, for example Modula-3 [17] and Java [20],but the use of mathematical formalism sets SMLapart from the these languages, and as a practicalmatter this rigor provides the basic conceptual andtechnical foundations that we need to create check-able proofs.With type-safe languages like SML in mind, wecan get an intuitive idea about how proof-carrying

code works. Consider a compiler for SML. Agent Awrites an SML program and compiles it to a native-code target program. If we then throw away thesource program, how can we later convince an agentB that the target program is safe? (We are assum-ing that agent B does not trust agent A.) One wayto do this is to have the compiler prove that the tar-get code correctly corresponds to the source code.4Now, as it turns out, in the type theory of SML, notonly can such a proof be written out formally, but infact it can be written in a typed language with theproperty that any well-typed proof is guaranteed tobe valid.Proof-carrying code is thus an application ofideas from programming-language theory, in thiscase used for de�ning notions of safety that are use-ful for operating systems, and exible enough to ac-commodate both high-level and low-level languages.With the growth of interest in highly distributedcomputing, web computing, and extensible kernels,it seems clear to us that ideas from programminglanguages are destined to become increasingly criti-cal for robust and good-performing systems.7 AcknowledgementsWe thank Robert Harper, Brian Noble, Daniel Jack-son, Edo Biagioni, Greg Morrisett, Scott Draves,Chris Colby, Martin Abadi and Dave Detlefs forreading previous versions of this paper and for sug-gesting many improvements. We also thank CharlesGarrett, Brian Bershad, Wilson Hsieh for suggest-ing many improvements to the methodology for theModula-3 performance measurements. Finally, wethank the anonymous reviewers for their many sug-gestions for improving this paper. In particular wethank our shepherd, Jay Lepreau, who also sug-gested the PCC name.References[1] Bershad, B., Savage, S., Pardyak, P.,Sirer, E. G., Becker, D., Fiuczynski, M.,Chambers, C., and Eggers, S. Extensibil-ity, safety and performance in the SPIN operat-ing system. In Symposium on Operating SystemPrinciples (Dec. 1995), pp. 267{284.4This is essentially the same as having a compiler translate thetypes as well as the code, so that the target program will havetypes that can be checked. In fact, this approach to compiling istaken by the SML/TIL compiler [22].

[2] Boyer, R. S., and Yu, Y. Automated proofsof object code for a widely used microprocessor.J. ACM 43, 1 (Jan. 1996), 166{192.[3] Clutterbuck, D., and Carr�e, B. The ver-i�cation of low-level code. IEEE Software En-gineering Journal 3, 3 (May 1988), 97{111.[4] Constable, R. L., Allen, S. F., Bromley,H. M., Cleaveland, W. R., Cremer, J. F.,Harper, R. W., Howe, D. J., Knoblock,T. B., Mendler, N. P., Panangaden, P.,Sasaki, J. T., and Smith, S. F. Implement-ing Mathematics with the Nuprl Proof Develop-ment System. Prentice-Hall, 1986.[5] Dijkstra, E. W. Guarded commands, nonde-terminancy and formal derivation of programs.Communications of the ACM 18 (1975), 453{457.[6] Floyd, R. W. Assigning meanings to pro-grams. In Mathematical Aspects of ComputerScience, J. T. Schwartz, Ed. American Mathe-matical Society, 1967, pp. 19{32.[7] Harper, R., Honsell, F., and Plotkin,G. A framework for de�ning logics. Journal ofthe Association for Computing Machinery 40, 1(Jan. 1993), 143{184.[8] Hoare, C. A. R. An axiomatic basis for com-puter programming. Communications of theACM 12 (1969), 567{580.[9] Hsieh, W. C., Fiuczynski, M. E., Gar-rett, C., Savage, S., Becker, D., andBershad, B. N. Language support for extensi-ble operating systems. In The Inaugural Work-shop on Compiler Support for Systems Software(Feb. 1996), pp. 127{133.[10] Lee, P., and Leone, M. Optimizing ML withrun-time code generation. In PLDI'96 Confer-ence on Programming Language Design and Im-plementation (May 1996), pp. 137{148.[11] Martin-L�of, P. A theory of types. Techni-cal Report 71{3, Department of Mathematics,University of Stockholm, 1971.[12] McCanne, S. The Berkeley Packet Fil-ter man page. BPF distribution available atftp://ftp.ee.lbl.gov, May 1991.[13] McCanne, S., and Jacobson, V. The BSDpacket �lter: A new architecture for user-levelpacket capture. In The Winter 1993 USENIXConference (Jan. 1993), USENIX Association,pp. 259{269.

[14] Milner, R., Tofte, M., and Harper, R.The De�nition of Standard ML. MIT Press,Cambridge, Massachusetts, 1990.[15] Mogul, J. C., Rashid, R. F., and Accetta,M. J. The packet �lter: An e�cient mechanismfor user-level network code. In ACM Symposiumon Operating Systems Principles (Nov. 1987),ACM Press, pp. 39{51. An updated version isavailable as DEC WRL Research Report 87/2.[16] Necula, G. C., and Lee, P. Proof-carryingcode. Technical Report CMU-CS-96-165, Com-puter Science Department, Carnegie MellonUniversity, Sept. 1996. Also appeared as FOXmemorandum CMU-CS-FOX-96-03.[17] Nelson, G. Systems Programming withMODULA-3. Prentice-Hall, 1991.[18] Sirer, E. G., Savage, S., Pardyak, P., De-Fouw, G. P., and Bershad, B. N. Writingan operating system with Modula-3. In TheInaugural Workshop on Compiler Support forSystems Software (Feb. 1996), pp. 134{140.[19] Sites, R. L. Alpha Architecture ReferenceManual. Digital Press, 1992.[20] Sun Microsystems. The Java language spec-i�cation. Available asftp://ftp.javasoft.com/docs/javaspec.ps.zip,1995.[21] Sun Microsystems. The Java Virtual Ma-chine speci�cation. Available asftp://ftp.javasoft.com/docs/vmspec.ps.zip,1995.[22] Tarditi, D., Morrisett, J. G., Cheng, P.,Stone, C., Harper, R., and Lee, P. TIL:A type-directed optimizing compiler for ML.In PLDI'96 Conference on Programming Lan-guage Design and Implementation (May 1996),pp. 181{192.[23] Wahbe, R., Lucco, S., Anderson, T. E.,and Graham, S. L. E�cient software-basedfault isolation. In 14th ACM Symposium on Op-erating Systems Principles (Dec. 1993), ACM,pp. 203{216.[24] Wallach, D. A., Engler, D., andKaashoek, M. F. ASHs : Application-speci�c handlers for high-performance messag-ing. In ACM SIGCOMM'96 (Oct. 1996),vol. 26, ACM.

