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Safe Off-policy Deep Reinforcement Learning

Algorithm for Volt-VAR Control in Power

Distribution Systems
Wei Wang, Student Member, IEEE, Nanpeng Yu, Senior Member, IEEE, Yuanqi Gao, Student Member, IEEE,

Jie Shi, Student Member, IEEE

Abstract—Volt-VAR control is critical to keeping distribution
network voltages within allowable range, minimizing losses, and
reducing wear and tear of voltage regulating devices. To deal
with incomplete and inaccurate distribution network models, we
propose a safe off-policy deep reinforcement learning algorithm
to solve Volt-VAR control problems in a model-free manner.
The Volt-VAR control problem is formulated as a constrained
Markov decision process with discrete action space, and solved
by our proposed constrained soft actor-critic algorithm. Our
proposed reinforcement learning algorithm achieves scalability,
sample efficiency, and constraint satisfaction by synergistically
combining the merits of the maximum-entropy framework, the
method of multiplier, a device-decoupled neural network struc-
ture, and an ordinal encoding scheme. Comprehensive numerical
studies with the IEEE distribution test feeders show that our pro-
posed algorithm outperforms the existing reinforcement learning
algorithms and conventional optimization-based approaches on
a large feeder.

Index Terms—Deep reinforcement learning, model-free, off-
policy, safe reinforcement learning, Volt-VAR control.

I. INTRODUCTION

TO tackle the challenge of managing distribution system-

wide voltage levels and reactive power flows, Volt-VAR

control (VVC) has been developed and integrated into the

distribution management system. VVC determines the best set

of control actions for all voltage regulating and VAR control

devices (voltage regulators, on-load tap changers, and switch-

able capacitor banks) to reduce system losses and equipment

operating costs without violating operation constraints such as

voltage limits and line flow limits.

The existing VVC algorithms deployed by electric utilities

mainly adopt the physical model-based control approach,

which relies heavily on accurate knowledge of distribution

grid topologies and parameters. However, it is difficult for

regional electric utilities to maintain reliable network models

[1], [2], which often involve millions of buses in the primary

and secondary feeders [3]. To cope with incomplete models,

one could learn which VVC actions yield the most reward by

trying them. Moreover, the model-based control approaches

are not always scalable and may not be applicable in real-

time control environment. It has been shown that the deep
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award DE-OE000840 and California Energy Commission (CEC) under award
EPC-15-090. (Corresponding author: Nanpeng Yu).

The authors are with the Department of Electrical and Computer Engi-
neering at University of California, Riverside. (email: wwang031@ucr.edu;
nyu@ece.ucr.edu; ygao024@ucr.edu; jshi005@ucr.edu).

reinforcement learning (DRL) approach could overcome this

problem in emergency system control [4], [5]. In this paper, we

propose a safe off-policy DRL algorithm to learn and execute

VVC actions in a model-free manner.

The majority of the existing work on VVC adopt a physical

model-based optimization/control approach. Due to space limi-

tation, we focus on summarizing recent advancements of VVC

technology, which can be separated into three groups. The

first group of literature formulates VVC as deterministic opti-

mization problems. The VVC problem is extended to consider

voltage-dependent loads [6] and formulated as a mixed-integer

quadratically constrained programming problem. A power

electronic device, called soft open point [7], is introduced to

achieve real-time VVC together with conventional voltage reg-

ulation devices. The coordinated control problem is formulated

as a mixed-integer second-order conic programming problem.

The VVC problem is formulated as a non-cooperative mixed

strategy game [8], which considers flexible loads, electric

vehicles, and renewable energy sources. The limit on the

number of switching operations of voltage regulating devices

is considered in the VVC [9], which is formulated as a mixed-

integer nonlinear programming problem.

The second group of literature explicitly incorporates the

uncertainties of DERs in the VVC problem formulation. A

dual time-scale coordination scheme for slow and fast control-

ling devices is proposed for the VVC problem, which is solved

with stochastic [10] and robust [11] optimization algorithms.

The model predictive control (MPC) based VVC algorithms

are proposed to reduce network losses [12], voltage deviations

and excessive wear and tear of voltage regulating devices [13].

To address the algorithm scalability problem and the com-

munication delay issue of the centralized optimization and

control approach for VVC, the third group of literature de-

velops non-centralized control schemes, which can be fur-

ther divided into three subgroups, local VVC algorithms,

distributed VVC algorithms, and decentralized VCC algo-

rithms [14]. The local VVC algorithms use only locally

available information such as bus voltages to design control

strategies. Fully decentralized disturbance-feedback controller

[15], gradient-projection algorithm [16], and asynchronous

gradient-project algorithm are developed [17] for local voltage

controls. The distributed VVC algorithms allow neighboring

agents to communicate and share information to cooperatively

reach global objectives of VVC. Distributed algorithms such

as the alternating direction method of multipliers [18], the
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dual decomposition method [19], the integral-control-like up-

date scheme [20], and the local optimization and consensus

approach [21] are developed to solve VVC problems. The

decentralized algorithms are developed with ǫ-decomposition

in [22], [23], where centralized control is only needed within

the isolated sub-areas.

To remove the dependency on complete and accurate dis-

tribution network topology and parameter information, a few

researchers have developed reinforcement learning (RL) based

algorithms for VVC. The tabular Q-learning algorithm [24]

is used to learn the setting of control variables which satisfy

operation constraints in power systems. The tabular Q-learning

method with the global reward recovered from the consensus-

based algorithm [25] is proposed to solve the optimal reactive

power dispatch problem. Radial basis functions are used to

approximate Q-function in [26] to find the optimal tap settings

of the voltage regulation devices. In the existing RL-based

algorithms, the VVC problems are always modeled as Markov

decision process (MDP) and solved with Q-learning algorithm,

which is a commonly used action-value method in RL. The

action-value methods [27] learn to approximate the action-

value functions and then select actions based on the estimated

action-value functions and the ǫ-greedy algorithm [28].

In this paper, we propose a safe off-policy deep rein-

forcement learning algorithm to solve the VVC problem

with voltage regulating devices. Unlike the existing RL-based

VVC algorithms, we formulate the VVC problems as a con-

strained MDP (CMDP) and propose a novel policy gradient

method, called constrained soft actor-critic (CSAC), to solve

the CMDP. In contrast to action-value methods, policy gradient

methods [29], [30] learn a parameterized control policy that

directly selects actions. For VVC problems, it is much simpler

to approximate the control policy functions than to approxi-

mate the action-value functions for action taking. This is one

of the major advantages of adopting policy parameterization,

which will be shown in the numerical study.

Compared to the existing RL-based VVC algorithms, our

proposed CSAC algorithm is safe, scalable, and, sample effi-

cient. The main contributions of this paper and the technical

advancements are summarized as follows:

• Instead of penalizing constraints violation in the reward

function of MDP, we propose a CMDP formulation for

the VVC problem, which explicitly models the physical

operation constraints. By synergistically combining the

merits of the method of multipliers and soft actor-critic

(SAC) [31] algorithm, our proposed CSAC algorithm

can better satisfy the operation constraints in power

distribution systems.

• Compared to tabular Q-learning and deep Q-network

(DQN) [32], [33], our proposed CSAC algorithm has

significantly improved scalability. By designing the policy

neural network with a device-decoupled structure, the

number of parameters in our proposed method increases

linearly with the number of voltage regulating devices.

On the other hand, in Q-learning based approach, the

number of parameters increases exponentially with the

number of voltage regulating devices.

• Our proposed CSAC is an off-policy method, which is

more sample efficient than state-of-the-art DRL algo-

rithms for CMDP such as constrained policy optimization

(CPO) [34], [35]. This is because, our proposed method

can effectively reuse historical operational data for train-

ing purpose. Furthermore, by using an ordinal network

structure to encode the natural ordering between discrete

actions of voltage regulating devices, the inductive bias

can be introduced to further accelerate the learning pro-

cess.

• In contrast to physical model-based VVC algorithms, our

proposed DRL approach is model-free and does not rely

on complete and accurate distribution network topology

models or parameters.

The remainder of the paper is organized as follows. Section

II provides the formulation of the VVC problem as a CMDP.

The proposed safe off-policy DRL algorithm is presented in

Section III. Section IV shows the results of our numerical

study. Section VI states the conclusions.

II. PROBLEM FORMULATION

In this section, we first introduce the preliminaries for

CMDP and then formulate the VVC problem as a CMDP.

A. Preliminaries of Constrained Markov Decision Process

As a formalization of sequential decision making, CMDP

is defined by a tuple of a state space S , an action space A, a

reward function R, a cost function Rc, a transition probability

function Pr, and a discount factor γ ∈ (0, 1).

In a CMDP, a learner and decision maker, also called an

agent, interacts with the environment at each of a sequence

of discrete time steps, t = 0, 1, 2, 3, . . . , T . At each time step

t, the agent observes the state of the environment st ∈ S
and selects an action at ∈ A. One time step later, the agent

receives a numerical reward R(st,at, st+1) ⊂ R and a numer-

ical cost Rc(st,at, st+1) ⊂ R. The state of the environment

becomes st+1 according to the transition probability function

Pr(st+1|st,at).

The goal of the agent is to find a control policy π that

maximizes the expected discounted return with respect to

reward function J subject to a budget constraint for the

expected discounted return with respect to cost function Jc:

max
π

J(π) s.t. Jc(π) ≤ J (1)

where π is a mapping from a state space S to a action space

A for a deterministic policy or a mapping from states to

probabilities of selecting different actions for a probabilistic

policy. The expected discounted return of policy π with

respect to the reward is defined as: J(π) = E
τ∼π

[
∑T
t=0 γ

tRt],

where τ is a trajectory or sequence of states and actions,

{s0,a0, s1,a1, ..., sT−1,aT−1, st}. Rt is the short name for

R(st,at, st+1). Similarly, the expected discounted return of

policy π with respect to cost function is defined as Jc(π) =
E
τ∼π

[
∑T
t=0 γ

tRct ], where Rct is Rc(st,at, st+1) for short.
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Finally, we define two important value functions, state-

value function V π(s) and action-value function Qπ(s,a), as

follows:

V π(s) = E
τ∼π

[

T
∑

t=0

γtRt|s0 = s] (2)

Qπ(s,a) = E
τ∼π

[

T
∑

t=0

γtRt|s0 = s,a0 = a] (3)

V π(s) represents the expected discounted return starting from

state s and taking actions following policy π thereafter.

Qπ(s,a) represents the expected discounted return starting

from state s, taking action a, and thereafter following policy

π. The value functions satisfy the Bellman equations:

V π(st) = E
at∼π

st+1∼Pr

[Rt + γV π(st+1)] (4)

Qπ(st,at) = E
at+1∼π
st+1∼Pr

[

Rt + γQπ(st+1,at+1)
]

(5)

B. Formulating VVC Problem as a CMDP

In the VVC problem, the distribution system operator or

controller is treated as the agent who interacts with the

distribution grid. In this paper, the primary controllable devices

for the VVC task are selected to be voltage regulators, on-load

tap changers, and switchable capacitor banks. The state of the

environment is defined as s = (P ,Q,Tap, t). P and Q are

the vectors of nodal real and reactive power injections. Tap

is the vector of the current tap/on-off positions of controllable

devices. The action taken by a VVC agent at each time step

is changing the tap/on-off positions of controllable devices to

Tap′. The size of the action space is ΠNc

i=1|Ai|, where Nc
is the number of controllable devices and |Ai| denotes the

number of tap/on-off positions of device i.

The VVC agent aims at reducing the distribution network

losses and the operating costs of the controllable devices.

Thus, the reward function Rt of the VVC agent can be defined

as the negative of the total operational costs, which includes

the cost of real power losses and the device switching cost:

Rt = −
[

CePloss(t) +

Nc
∑

j=1

CTj |Tapj(t+ 1)− Tapj(t)|
]

(6)

The switching cost of a device is calculated as the product of

the absolute change in tap positions between consecutive time

steps and the per tap position change cost CTj for device j.
Ce and Ploss(t) denote the electricity price and the total real

power loss at time step t respectively. The total real power

loss is defined as the summation of real power losses of all

lines and devices in the distribution network.

To maintain nodal voltage profiles within a desirable range,

the cost function is chosen as the number of voltage constraint

violations across all the nodes:

Rct =

N
∑

i=1

[✶(|V t+1
i | > V ) + ✶(|V t+1

i | < V )] (7)

where ✶(·) is the indicator function. V t+1
i is the voltage of

node i at hour t+1; V and V are the upper and lower limits

for voltage magnitudes. N is the total number of nodes.

By evaluating the feedback in the form of rewards and

costs defined above via past and/or future interactions with

the physical environment, the VVC agent tries to learn a

control policy that minimizes the total operational cost while

satisfying the voltage constraints.

III. SAFE OFF-POLICY DEEP RL ALGORITHM

In this section, we develop an innovative DRL algorithm

named constrained soft actor-critic (CSAC) to solve the VVC

problem, which is formulated as a CMDP. A suitable RL

algorithm for solving the VVC problem should be sample

efficient, scalable, and safe to implement in the real world.

Sample efficiency: Unlike the domain of computer games,

we can not repeatedly generate a tremendous amount of

operation experiences for VVC in real world distribution

feeders with low cost. Thus, it is crucial for us to develop

off-policy RL algorithms, where the learned control policy

(target policy) and the policy that generated control behaviors

(behavior policy) are different. Being able to reuse the histor-

ical operational experiences, the off-policy RL algorithms are

much more sample efficient than the on-policy ones.

Scalability: In a VVC problem, the network loss is deter-

mined by the tap positions of all controllable devices together.

The number of feasible control actions increases exponentially

with the number of controllable devices. Thus, in order to

solve a large-scale VVC problem, it is important to learn a

control policy whose number of parameters increases approx-

imately linearly with the number of controllable devices.

Constraint satisfaction: In RL, agents are often given

complete freedom to learn a control policy by trial and error.

However, in a real-world VVC problem, this is unacceptable.

Certain exploratory control actions may lead to significant

voltage violations in the distribution network causing equip-

ment damage and undermining the reliability of the network.

Thus, we want to develop a RL algorithm, which can achieve

near constraint satisfaction at all times.

In the following subsections, we first introduce the actor-

critic method, which is a widely used policy gradient method.

Next, we present the state-of-the-art maximum-entropy based

off-policy RL algorithm, soft actor-critic (SAC). We then

propose an innovative off-policy RL algorithm called CSAC

to solve the VVC problem. This is followed by a presentation

of the detailed algorithm design for CSAC. At last, we derive

the policy gradient for discrete actions and describe the device-

decoupled policy network structure and ordinal encoding for

discrete actions.

A. Actor-Critic Method

The basic policy gradient method is an actor-only method,

where the actor refers to the policy function. Actor-only meth-

ods typically learn parameters for the approximated policy

function based on episodic gains from Monte-Carlo sample

trajectories. This often leads to high variance and slow learning

[28]. To overcome these shortcomings, the actor-critic method
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is proposed to update policy function parameters based on

the approximated value function that is a synonym for the

critic. The iterative framework for a typical actor-critic method

is shown in Algorithm 1. At each iteration, the actor first

generates samples by taking actions according to the current

policy. Then, the critic evaluates the quality of the current

policy by adjusting the value function estimates based on the

temporal difference [28] according to (5). At last, the actor is

updated by using the information from the critic.

Algorithm 1 Actor-Critic Algorithm

1: Initialize policy and value function parameters

2: repeat

3: Generate samples by taking actions according to the

current policy

4: Update value function parameters according to (5)

5: Update policy parameters based on value function

6: until converge

B. Soft Actor-Critic

The commonly used actor-critic algorithms such as

PPO [36] and A3C [37] are notoriously sample inefficient,

because they require new samples to be generated according

to the latest policy at each gradient step. Although off-policy

policy gradient algorithms such as DDPG [29] were introduced

to improve sample efficiency, they are often brittle with respect

to their hyperparameters. To address these challenges, the off-

policy maximum-entropy deep RL algorithm, SAC [31], is

developed to provide a robust and sample-efficient learning,

which achieves the state-of-the-art performance.

The SAC is built on the maximum-entropy RL frame-

work [38], [39], which maximizes not only the expected

return but also the entropy of the policy. The entropy for a

probabilistic policy at state st is defined as H(π(·|st)) =
−
∑

a
π(a|st) lnπ(a|st).

In the maximum-entropy RL framework, we typically work

with the regularized value functions [40] defined as:

V πh (s) = E
τ∼π

[

T
∑

t=0

γt
(

Rt + αH(π(·|st))
)∣

∣s0 = s
]

(8)

Qπh(s,a) = E
τ∼π

[

T
∑

t=0

γtRt + α

T
∑

t=1

γtH(π(·|st))
∣

∣s0 = s,

a0 = a
]

(9)

The corresponding entropy-regularized Bellman equations are:

V πh (st) = E
at∼π

st+1∼Pr

[

Rt + αH(π(·|st)) + γV πh (st+1)
]

(10)

Qπh(st,at) = E
at+1∼π
st+1∼Pr

[

Rt + γ
(

Qπh(st+1,at+1) + αH(π(·|

st+1))
)

]

(11)

The two regularized value functions have the following rela-

tionship:

V πh (st) = E
at∼π

[Qπh(st,at)] + αH(π(·|st)) (12)

Equation (12) allows us to derive the closed-form solution [40]

of the policy π†(·|s) = argmaxπ∈∆{V
π
h (s)}, where ∆ =

{π|π ≥ 0, 1 · π = 1}, as:

π†(·|s) =
eQ

π
h(s,·)/α

∑

a
eQ

π
h
(s,a)/α

(13)

When Qπh converges to Q∗
h, the optimal policy π∗(·|s) also

achieves optimal value V ∗
h (s) for all states s. By using the

closed-form solution, the updating schema of Q-function could

be realized in an off-policy fashion.

Algorithm 2 Soft Actor-Critic

1: Initialize policy and regularized value function parameters

2: repeat

3: Sample from data buffer

4: Update parameters of value functions according to (11)

5: Update policy parameters according to (13)

6: until converge

The overall framework of SAC is summarized in Algorithm

2. The implementation details such as the clipped double-Q

learning [41], the baseline value function [28], and the delayed

update of value function [31] are omitted here.

C. Constrained Soft Actor-Critic

Although SAC has been successfully demonstrated on a

range of challenging control tasks, it is designed to solve

MDPs and cannot handle CMDPs with physical constraints. If

one simply augments the reward with the product of a fixed

penalty factor and constraint violation, then the learned policy

will be either too conservative or infeasible. In this subsection,

we propose CSAC by extending SAC algorithm to satisfy the

operational constraints in CMDPs.

The goal of the SAC algorithm is to find an optimal

policy, which maximizes the regularized state-value function,

maxπ E
s∼D

[V πh (s)], where D is the historical operation data

buffer, i.e., the set of experience tuple (st,at, st+1, Rt, R
c
t).

Moreover, in real-world control problems, it is necessary

to enforce operational constraints. For the VVC problem, we

need to limit the number of total voltage constraint violations

at each time step, i.e., Rct ≤ Rc. Rct is defined in (7),

and Rc is the upper bound. For a finite horizon CMDP, the

corresponding limit V c for the state-value function associated

with the operation constraint can be set as V c,π(s) ≤ V c =
(1 − γT )/(1 − γ)Rc, where T is the episode length. Note

that other types of operational constraints can be enforced in

a similar manner.

Within the maximum-entropy RL framework, the optimal

policy of CMDP can be obtained by solving:

max
π

E
s∼D

[V πh (s)], s.t E
s∼D

[V c,π(s)] ≤ V c (14)

The Lagrange function of the constrained optimization prob-

lem can be written as:

L(π, λ) = E
s∼D

[V πh (s)] + λ(V c − E
s∼D

[V c,π(s)])

= E
s∼D

[V l,πh (s)] + λV c (15)
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where

V l,πh (s) = E
τ∼π

[

T
∑

t=0

γt
(

R(st,at, st+1)− λR
c(st,at, st+1)

+ αH(π(·|st)
)∣

∣s0 = s
]

(16)

The method of multipliers can be used to solve the constrained

optimization problem. At k-th iteration , given a multiplier

λk ≥ 0, we can maximize L(·, λk), over policy domain

thereby obtaining a policy πk. We then set

λk+1 = [λk − δλ∇λL]
+ = [λk + δλ( E

s∼D
[V c,πk(s)]− V c)]+

(17)

and repeat the process. δλ is the step size for the λ update

process. [ ]+ is the projection to non-negative real numbers.

With a small α and H(π) ≈ 0 at convergence, V c,πh (s) ≈
V c,π(s). To have consistent forms of value functions, the

update of the Lagrange multiplier can be redesigned as:

λk+1 = [λk + δλ( E
s∼D

[V c,πk

h (s)]− V c)]+ (18)

where V c,πk

h (s) is the state-value function associated with the

operation constraint at k-th iteration.

It has been shown that the iterative approach for updating

the parameters of control policy and Lagrange multiplier will

guarantee the convergence to a local optimal and feasible

solution when the following three assumptions hold [42], [43].

First, V πh (s) is bounded for all policies π ∈ Π. Second,

every local minima of Jc(π) is a feasible solution. Third,
∑∞
k=0 δθ =

∑∞
k=0 δλ = ∞,

∑∞
k=0 δ

2
θ +

∑∞
k=0 δ

2
λ < ∞,

and limk→∞ δλ/δθ = 0. δθ is the step size for updating the

parameters θ of the policy neural network.

Note that for finite episodic cases, δλ can be set to be smaller

than δθ in practice. If the local optimal solution is not feasible,

then the algorithm can be restarted with a larger initial value

for λ.

D. Algorithm Design for CSAC

The proposed CSAC is an off-policy RL algorithm, which

allows the offline training of control policy in an iterative

manner. The overall framework of the CSAC is summarized

in Algorithm 3. In each iteration, we first perform stochastic

gradient descent to update the parameters of neural networks,

which approximate the value functions and policy function.

Then, we update the Lagrange multiplier of the constrained

optimization problem as shown in (18).

Two sets of neural networks are used to approximate the

action-value functions Qψ and state-value functions Vφ. The

first set of value functions, parameterized with ψl and φl, are

associated with the value functions in the Lagrange function

(15). The second set of value functions, parameterized with ψc

and φc, are associated with the constraint. The policy function

is approximated by a neural network πθ parameterized by θ.

The parameters of the action-value neural networks, Qψ ,

are updated by minimizing the mean-square-error (MSE),

1/|B|
∑

B(Qψ − Q̂)2, where B is a randomly selected

mini-batch of samples, i.e., a set of transition tuples

{(st,at, st+1, Rt, R
c
t)}. |B| denotes the size of the min-

batch. The training target Q̂ is calculated as Q̂(st,at) =
rt+ γVψ(st+1), where rt is Rt−λR

c
t for the neural network

associated with the Lagrange function and Rct for the neural

network associated with the constraint. Similarly, the state-

value networks, Vφ, are updated by minimizing the MSE,

1/|B|
∑

B(Vφ− V̂ )2, where the target V̂ (st) = Qψ(st,at)−
α lnπθ(at|st). The parameters of the policy neural network

is updated by minimizing the loss,

1

|B|

∑

B

lnπθ(ât|st)(α lnπθ(ât|st)−Qψl(st, ât) + Vφl(st))

(19)

where ât is the sampled action from πθ(·|st). The derivation

for the policy gradient is provided in the subsection III-E.

Algorithm 3 CSAC Algorithm

1: Initialize network parameters and Lagrange multiplier λ
2: repeat

3: for each sample step do

4: at ∼ π(·|st)
5: D ← D ∪ (st,at, st+1, Rt, R

c
t)

6: end for

7: for each gradient step with sample batch B do

8: Update action value networks Qψ
9: Update state value networks Vφ

10: Update policy network πθ
11: λ← [λ+ δλ

∑

B(Vφc − V c)/|B|]+

12: end for

13: until converge

The neural networks approximating V and Q functions use

the state vector s and the state action pair s,a as inputs,

where a is treated as a vector of ordinal variables. The outputs

of these two networks are the corresponding target state and

action values. The policy network has a special design, which

will be described in subsection III-F.

In order to stabilize the training process, the delayed update

of value function [31] is adopted in our algorithm. The

training labels for Q networks are modified as Q̂(st,at) =
rt + γVψtarg

(st+1), where Vψtarg
are the extra copies of

V networks, whose parameter ψtarg updates are delayed at

each gradient step by φtarg = (1 − ρ)φtarg + ρφ, where

ρ ∈ (0, 1). To mitigate the positive bias in the policy

update step, the clipped double Q-learning technique [41] is

adopted. The training labels for V networks are modified as

V̂ (st) = mini=1,2Qψi
(st,at) − α lnπθ(at|st), where two

sets of Q networks, Qψ1
= {Qψl

1
, Qψc

1
}, Qψ2

= {Qψl
2
, Qψc

2
},

are maintained and trained separately. The implementation

details of the CSAC algorithm is provided in the Appendix.

E. Policy Gradient for Discrete Action

Discrete control variables are needed to represent the control

actions in the VVC problem such as changing the tap/on-

off positions of voltage regulators, on-load tap changers,

and switchable capacitor banks. The policy gradient of the

SAC algorithm designed for a continuous control problem
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can not be directly applied for our proposed CSAC. Specif-

ically, in SAC, the sampled actions are reparameterized with

âθ = µθ + vθN (0, 1), where µθ and vθ are the outputs of

mean values and variances from the Gaussian policy network.

N (0, 1) is the standard normal distribution. Therefore, the âθ
is differentiable with respect to θ. However, it is no longer

true for the discrete actions which are sampled with the output

distribution of the policy network. For discrete action space,

the policy gradient can be derived in a similar fashion to the

policy gradient theorem [28], [44] to maximize the state-value

function:

∇θV
π
h (s) ≈ ∇θ

∑

a

πθ(a|s)(Q
π
h(s,a)− α lnπθ(a|s)

)

= E
a∼πθ

[∇θ lnπθ(a|s)(Q
π
h(s,a)− α lnπθ(a|s))]

= E
a∼πθ

[

∇θ lnπθ(a|s)
(

Qπh(s,a)− V
π
h (s)− α lnπθ(a|s)

)

]

(20)

The regularity condition,
∑

a πθ(a|s)∇θ lnπθ(a|s) = 0, is

used for the derivation of the second line. Note that the loss

function for updating the parameters θ of the policy neural

network is chosen as (19), whose partial derivative is the

negative of (20).

F. Device-Decoupled Policy Network Structure and Ordinal

Encoding for Discrete Actions

Since only a single tap position can be chosen by each

of the remotely controllable devices for VVC problems, we

design the policy neural network with a device-decoupled

structure. The input of the policy neural network is the state

vector s and the outputs are the probabilities of selecting a tap

position for each of the Nc devices. Thus, the dimensionality

of the output layer is
∑Nc

i=1 |Ai|, where |Ai| denotes the

number of tap positions for device i. In this way, the network

size only increases linearly with Nc. The j-th action of the

i-th device corresponds to the logit output lij of the last

hidden layer of the neural network. The probability pij of

choosing j-th action for the i-th device can be calculated

by combining lij , 1 ≤ j ≤ |Ai| via a softmax function,

pij = exp(lij)/
∑

j exp(lij). The final probability of a tap

position combination of all the devices is equal to the product

of the probability of each individual device taking its own

action, p(a) = ΠNc

i=1pi(ai), where a is the vector of chosen

actions across all the devices and ai is the chosen action of

i-th device.

Note that the discrete controls actions of each remotely

controllable device can be represented by an ordinal variable.

For example, the control actions of an on-load tap changer with

3 tap positions that correspond to turns ratios of 0.95, 1, and

1.05 can be deemed as a discretization of an ordinal variable

of turns ratio. Thus, we adopt an ordinal representation [45]

for all the discrete actions of a device to encode the natural

ordering between the discrete actions.

Specifically, each subset of the logit outputs corresponding

to a device is first pre-processed as follows:

l′ij =
∑

m≤j

ln oim +
∑

m>j

ln(1− oim), i = 1, 2..., Nc (21)

where the sigmoid function is first applied to the logits, oij =
sigmoid(lij), and l′ij is the transformed logit after the ordinal

encoding. Then the probability of device i taking action j can

be calculated via p′ij = exp(l′ij)/
∑

j exp(l
′
ij).

Hidden layersInput

Device 1 

(softmax)

Device n 

(softmax)

(sigmoid)

Fig. 1. Device-decoupled structure of the policy neural network

The device-decoupled structure of the policy neural network

is depicted in Fig.1, where the long-dashed lines denote the

connections associated with ln(x) and the short-dashed lines

denote the connections associated with ln(1 − x). Note that

(21) is equivalent to encoding the j-th action of a control

device as a vector, [1, ...1, 0...], where the first j elements are

set as 1s and the rest of the elements are set as 0s. By intro-

ducing an inductive bias which appropriately distinguishes the

dissimilarity among the discrete actions, the ordinal encoding

further improves the learning efficiency of our proposed CSAC

algorithm.

IV. NUMERICAL STUDY

Numerical studies are carried out on distribution test feeders

to validate the sampling efficiency, scalability, optimality, and

safety of the proposed CSAC algorithm for solving VVC

problems. We also performed a comprehensive comparison

between the proposed algorithm and four benchmark algo-

rithms including three RL algorithms and two optimization-

based algorithms.

A. Simulation Setup

The IEEE 4-bus, 34-bus and 123-bus distribution test feed-

ers [46] are used in the numerical simulations. In the 4-bus

feeder, a voltage regulator is located at node 1 and an on-load

tap changer connects node 2 and 3. We add a capacitor bank

with 200 kVar rating to node 4. In the 34-bus test feeder, a

voltage regulator is at node 800. There are two transformers

connecting node 814 to node 850 and node 852 to node 832

respectively. Two capacitors are placed at node 844 (100 kVar)

and node 847 (150 kVar). In the 123-bus test feeder, a voltage

regulator is at node 150. There are three on-load tap changers,

which connect node 10 to node 15, node 160 to node 67,

and node 25 to node 26 respectively. Four capacitors are

placed at node 83 (200 kVar), node 88 (50 kVar), node 90

(50 kVar), and node 92 (50 kVar). All voltage regulators and

on-load tap changers have 11 tap positions, which correspond
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to turns ratios ranging from 0.95 to 1.05. The capacitors can

be switched on/off remotely and the number of ‘tap positions’

is treated as 2.

In the initial state, the turns ratios of voltage regulators and

on-load tap changers are 1 and the capacitors are switched

off. The electricity price Ce is assumed to be $40/MWh.

The operating cost per tap change CTj is set to be $0.1 for all

devices. One year of hourly smart meter energy consumption

data [47] from London is used. The aggregated load data is

scaled and allocated to each node according to the existing

spatial load distribution of the IEEE standard test cases. 10

weeks of randomly selected data are used for out-of-sample

testing. The rest of the data are used for training purposes. For

DRL approaches, the reward and the cost are derived based on

the line losses and nodal voltages calculated from the power

flow simulations. For the three IEEE distribution test feeders,

when the nodal voltages are within appropriate bounds, the line

flow limits are also satisfied. Thus, only the voltage constraints

are explicitly stated in the problem formulation. The upper

limit for the number of voltage violations V c is set as 0. The

parameter settings for the reinforcement learning algorithms

are provided in Table I below.

TABLE I
PARAMETER SETTINGS FOR REINFORCEMENT LEARNING ALGORITHMS

Parameters 4-bus 34-bus 123-bus

Size of Hidden Layers (64, 32)

Activation Function of Hidden Layers relu

Batch Size 256

Initial Value of λ 0

Discount Factor γ 0.99

Temperature Parameter α 0.02 0.02 0.05

Step Size for Q Networks δψ 1e-3

Step Size for V Networks δφ 5e-4

Step Size for π Network δθ 1e-3

Step Size for λ Update δλ 1e-5

Delay Factor ρ 5e-4

B. Setup of the Benchmark and Our Proposed Algorithms

The deep Q-network (DQN) [32] algorithm, an extension of

the tabular Q-learning for the VVC [25], is chosen as the first

benchmark RL algorithm. DQN algorithm is one of the most

widely used off-policy RL algorithms for solving MDP. In

order to apply DQN for CMDP, a penalty term for the voltage

violation is added to the reward function as Rt−CVR
c
t , where

the penalty coefficient CV is set as $1 per voltage violation

per node. Constrained Policy Optimization (CPO) algorithm, a

state-of-the-art RL algorithm for solving CMDP, is chosen as

the second benchmark RL algorithm. CPO not only guarantees

monotonic policy improvement at each policy iteration step

but also ensures constraint satisfaction throughout the training

process given that a feasible policy is recovered.

Both our proposed CSAC and the DQN algorithm are

off-policy RL algorithms. A single sample is collected at

each training step for these two algorithms. On-policy RL

algorithms such as CPO typically require a large number of

new samples to be collected in order to accurately estimate

the state values. In this study, the sampling size of each

training step of CPO is set to be 5000, which is determined

by gradually increasing the sampling size until the algorithm

can achieve a stable and reasonable performance. The length

of each episode is set as a week, i.e., 168 hours. The weights

of the neural networks are randomly initialized and updated

with batch training. The batch size is set as 256.

To illustrate the effectiveness of proposed CSAC method,

the SAC algorithm with fixed penalty coefficients is chosen

as the third DRL benchmark. Except for removing the update

step for λ, the same parameters are chosen as that of the CSAC

algorithm. The parameters of neural networks are fine-tuned

based on the training performance.

Two benchmark optimization-based algorithms for VVC

problems are also implemented. The first benchmark opti-

mization algorithm is implemented based on the single period

(one hour) mixed-integer conic programming (MICP), which

is the same as the discrete control stage without the chance

constraints in [48]. Essentially, a multi-period VVC problem

is solved for one hour at a time with the MICP algorithm. The

second benchmark optimization algorithm is implemented by

extending the single period MICP to multiple periods with

model predictive control (MPC) framework as in [12] over a

planning horizon of 24 hours. Note that for the optimization-

based benchmarks, the actual future load is assumed to be

given. The commercial solver GUROBI is used for both

benchmark optimization algorithms.

C. Sample Efficiency

Evaluated based on the necessary number of samples to

reach a stable solution, the sample efficiency of the proposed

CSAC algorithm and the two benchmark RL algorithms is

analyzed for the three distribution test feeders in this sub-

section. The number of training samples collected versus the

average weekly return (AVR) on the testing weeks, i.e., the

negative of the total operational costs associated with real

power losses, tap changes, and voltage violations are shown in

the top subfigures of Fig.2-4. The number of weekly voltage

violations versus the number of training samples are shown in

the bottom subfigures of Fig.2-4. The dark-colored curves are

the average performances of 5 random experiments, and the

light-colored regions represent the error bounds.

As shown in Fig.2-4, to achieve the same level of perfor-

mance, our proposed CSAC algorithm needs the least amount

of training samples. The on-policy CPO algorithm needs a

much higher number of training samples than the off-policy

algorithms, CSAC and DQN. In the case of the 4-bus test

feeder, CSAC and DNQ only need about 10,000 training

samples to achieve stable performance, while CPO requires

about 500,000 training samples to achieve stable performance.

The off-policy nature of CSAC algorithm not only signifi-

cantly improves sample efficiency, but also allows us to reuse

historical operational data. In contrast, the on-policy algo-

rithms such as CPO need to generate new samples according

to the latest policy at every training step. Moreover, at each

step of CPO, a large number of samples need to be collected

to form an accurate estimate of the state values.
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Fig. 2. Average weekly return and voltage violation for 4-bus test feeder

Fig. 3. Average weekly return and voltage violation for 34-bus test feeder

TABLE II
PERFORMANCE COMPARISON OF VOLT-VAR CONTROL ALGORITHMS

Algorithm
AVR ($) AVV

4-bus 34-bus 123-bus 4-bus 34-bus 123-bus

DQN -140.22 -680.09 N/A† 10.6 630.40 N/A†

CPO -139.27 -71.78 -68.88 9.6 27.34 1.12

CSAC -126.58 -42.39 -57.43 0.18 0.06 0

MPC -122.86 N/A∗ N/A∗ 0 N/A∗ N/A∗

MICP -133.26 -44.51 -66.99 0 0 0

∗ can not find a solution of a rolling step in 4 hours.
† can not finish one epoch of training in 10 hours.

D. Optimality, Constraint Satisfaction, and Scalability

The AVRs and the number of weekly average voltage

constraints violations (AVVs) during the testing weeks of the

Fig. 4. Average weekly return and voltage constraints violation for 123-bus
test feeder

proposed CSAC algorithm, the two benchmark RL algorithms,

and the two benchmark optimization algorithms are shown in

Table II. The results of the RL algorithms are the averaged

performances of 5 experiments, each with a different random

seed.

As shown in the table, our proposed CSAC algorithm

achieves the highest return among all algorithms for the 34-

bus and 123-bus test feeders and the second highest return for

the 4-bus test feeder. As the size of the distribution feeder

increases, the advantage of our proposed CSAC algorithm

becomes more pronounced. Furthermore, our proposed CSAC

algorithm can satisfy the voltage constraints almost all the

time whereas the other benchmark RL algorithms may lead

to significant voltage violations. Minor voltage violations do

occur in the 4-bus and 34-bus test feeders when our proposed

CSAC algorithm is used. However, the average voltage viola-

tion magnitude is much smaller than 0.01 per unit.

Although the MPC extension of the MICP algorithm

achieves a better solution on the 4-bus test feeder, it is not

scalable and can not find a solution of a single rolling step with

4 hours of computation time for both the 34-bus and the 123-

bus systems. Similarly, the DQN algorithm is also not scalable

and can not obtain a solution for the 123-bus system within

a reasonable amount of time. This is because the number of

Q values which need to be calculated for each greedy action

selection, ΠNc

i |Ai|, increases quickly with the number of con-

trollable devices. In our proposed CSAC algorithm, the policy

function can be approximated with a neural network whose

size increases linearly with the number of devices as presented

in III-F. Therefore, our proposed device-decoupled encoding

approach has much better scalability. Note that the same

device-decoupled network structure was applied on the CPO

algorithm, where the trust region constraint is enforced to limit

the KL-divergence between the previous policy and the up-
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dated policy, KL(π′, π) =
∑

a π
′(a|s) ln(π′(a|s)/π(a|s)) ≤

δ. The total KL-divergence can be decomposed with respect

to each device as KL(π′, π) =
∑Nc

i KL(π′
i, πi).

TABLE III
COMPARISON BETWEEN CSAC AND SAC FOR VOLT-VAR CONTROL

Algorithm
AVRwV ($) AVV

4-bus 34-bus 123-bus 4-bus 34-bus 123-bus

CSAC -126.40 -42.33 -57.43 0.18 0.06 0

SAC (CV = 0) -112.92 -36.50 -53.67 1020 1815.20 340.80

SAC (CV = 0.1) -125.49 -39.92 -58.19 69.33 10.62 7.94

SAC (CV = 1) -128.03 -45.31 -59.10 0.27 0.58 0

The comparison between SAC with different penalty co-

efficients and CSAC is performed to further demonstrate the

effectiveness of the proposed method. The comparison results

are summarized in III. When the proposed CSAC is compared

to the SAC with a constraint violation penalty factor CV = 1,

it is very clear that our proposed algorithm not only produces a

higher weekly return without the penalty of voltage violations

(AVRwV) and a smaller AVV.

V. CONCLUSION

A model-free DRL algorithm is proposed to solve the VVC

problem without depending on accurate and complete distribu-

tion network topology and parameter information. The VVC

problem is formulated as a CMDP and solved by our proposed

CSAC algorithm, which is a safe off-policy DRL algorithm. In

the algorithm implementation, the policy network is specially

designed with a device-decoupled structure and an ordinal

encoding scheme. Numerical studies conducted on the 4-

bus, 34-bus, and 123-bus distribution test feeders demonstrate

that the proposed algorithm achieves better sample-efficiency,

scalability and constraint satisfaction than the state-of-the-

art reinforcement learning algorithms and the conventional

optimization-based algorithms.

APPENDIX

IMPLEMENTATION DETAILS OF THE CSAC ALGORITHM

The CSAC algorithm includes a total of 9 neural networks

including Qψl
1
, Qψl

2
, Vφl and Vφl

targ
associated with the

Lagrange function, Qψc
1
, Qψc

2
, Vφc and Vφc

targ
associated with

the constraint, and the policy neural network. δψ , δφ and δθ are

the corresponding updating step sizes. To update the network

parameters, the training targets for the Q and V networks are

first obtained according to (22) - (26). Note that double Q-

learning is used to mitigate the overestimation of Q values in

a maximization problem. The max operation is used in (25)

to reduce Qc. Then, the gradient descent update is performed

with Adam optimizer to minimize the MSE error with respect

to the training targets. The gradient of the loss function (29) is

the negative of (20) with expectation over the sampled batch.

The delayed update of target V networks is performed in (30).

Finally, the Lagrange multiplier λ is updated following (31)

Algorithm 4 CSAC Algorithm - implementation details

1: Initialize policy network parameters θ, state-value func-

tions V parameters, φl, φc, φltarg , φctarg , state-action value

functions Q parameters ψl1, ψl2, ψc1, ψc2, and Lagrange

multiplier λ
2: repeat

3: for each sample step do

4: Observe state st and take action at ∼ π(·|st)
5: Observe the next state st+1, reward Rt and cost Rct
6: Store data D = D ∪ (st,at, st+1, Rt, R

c
t)

7: end for

8: for each gradient step do

9: Sample a batch of transitions, B, randomly
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