
Safe Open-Nested Transactions Through Ownership

Kunal Agrawal I-Ting Angelina Lee Jim Sukha
MIT Computer Science and Artificial Intelligence Laboratory

{kunal ag, angelee, sukhaj}@mit.edu

ABSTRACT
Researchers in transactional memory (TM) have proposed open
nesting as a methodology for increasing the concurrency of trans-
actional programs. The idea is to ignore “low-level” memory oper-
ations of an open-nested transaction when detecting conflicts for its
parent transaction, and instead perform abstract concurrency con-
trol for the “high-level” operation that the nested transaction rep-
resents. To support this methodology, TM systems use an open-
nested commit mechanism that commits all changes performed by
an open-nested transaction directly to memory, thereby avoiding
low-level conflicts. Unfortunately, because the TM runtime is un-
aware of the different levels of memory, unconstrained use of open-
nested commits can lead to anomalous program behavior.

We describe the framework of ownership-aware transactional
memory which incorporates the notion of modules into the TM
system and requires that transactions and data be associated with
specific transactional modules or Xmodules. We propose a new
ownership-aware commit mechanism, a hybrid between an open-
nested and closed-nested commit which commits a piece of data
differently depending on which Xmodule owns the data. Moreover,
we provide a set of precise constraints on interactions and sharing
of data among the Xmodules based on familiar notions of abstrac-
tion. The ownership-aware commit mechanism and these restric-
tions on Xmodules allow us to prove that ownership-aware TM has
clean memory-level semantics. In particular, it guarantees serial-
izability by modules, an adaptation of the definition of multilevel
serializability from database systems. In addition, we describe how
a programmer can specify Xmodules and ownership in a Java-like
language. Our type system can enforce most of the constraints re-
quired by ownership-aware TM statically, and can enforce the re-
maining constraints dynamically. Finally, we prove that if transac-
tions in the process of aborting obey restrictions on their memory
footprint, then ownership-aware TM is free from semantic dead-
lock.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications — Methodologies; D.3.3 [Pro-

This research was supported in part by NSF Grants NSF Grants CNS-
0615215 and CNS-0540248 and a grant from Intel corporation.
A preliminary version of this paper appeared as a poster at PPoPP 2008

and as a brief announcement at SPAA 2008.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright c© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00.

gramming Languages]: Language Constructs and Features — Con-
current programming structures

General Terms Design, Languages

Keywords Abstract Serializability, Open-nested Transactions,
Ownership-aware Transactions, Ownership Types, Safe Nesting,
Semantic Deadlock, Serializability by Modules, Transactional
Memory, Transactional Memory Semantics, XModules.

1. INTRODUCTION
Transactional memory (TM) [6] is meant to simplify concurrency
control in parallel programming by providing a transactional inter-
face for accessing memory; the programmer simply encloses the
critical region inside an atomic block, and the TM system ensures
that this section of code executes atomically. A TM system enforces
atomicity by tracking memory locations accessed by transactions
(using read sets and write sets), finding transactional conflicts, and
aborting transactions that conflict. TM guarantees that transactions
are serializable [12]; that is, transactions affect global memory as
if they were executed one at a time in some order, even if in reality,
several executed concurrently.

Transactions may be nested. If a transaction Y is closed nested
[8] inside another transaction X , then for the purpose of detecting
conflicts, the TM system considers any memory locations accessed
by Y as conceptually also being accessed by its parent X . Thus,
when Y commits, the TM system merges Y ’s read and write sets
into the read and write sets of X . TM with closed-nested trans-
actions guarantees that transactions are serializable at the level of
memory. Researchers have observed, however, that closed nesting
might unnecessarily restrict concurrency in programs because it
does not allow two “high-level” transactions to ignore conflicts due
to “low-level” memory accessed by nested transactions.

Researchers have proposed the methodology of open-nested
transactions to increase concurrency in transactional programs
by breaking serializability at the memory level. The open-nesting
methodology incorporates the open-nested commit mechanism
[7, 10]. When an open-nested transaction Y (nested inside trans-
action X) commits, Y ’s changes are committed to memory and
Y ’s read and write sets are discarded. Thus, the TM system no
longer detects conflicts with X due to memory accessed by Y . In
this methodology, the programmer considers Y ’s internal mem-
ory operations to be at a “lower level” than X ; thus X should not
care about the memory accessed by Y when checking for conflicts.
Instead, Y must acquire an abstract lock based on the high-level
operation that Y represents and propagate this lock to X , so that the
TM system can perform concurrency control at an abstract level.
Also, if X aborts, it may need to execute compensating actions
to undo the effect of its committed open-nested subtransaction Y .
Moss [9] illustrates the use of open nesting with an application that
employs a B-tree. Ni et al. [11] describe a software TM system that
supports the open-nesting methodology.

151

An unconstrained use of the open-nested commit mechanism
can lead to anomalous program behavior that can be tricky to rea-
son about [2]. We believe that one reason for the apparent com-
plexity of open nesting is that the mechanism and the methodology
make different assumptions about memory. Consider a transaction
Y open nested inside transaction X . The open-nesting methodology
requires that X ignore the “lower-level” memory conflicts gener-
ated by Y , while the open-nested commit mechanism will ignore
all the memory operations inside Y . Say Y accesses two memory
locations ℓ1 and ℓ2, and X does not care about changes made to
ℓ2, but does care about ℓ1. The TM system cannot distinguish be-
tween these two accesses, and will commit both in an open-nested
manner, leading to anomalous behavior.

Researchers have demonstrated specific examples [4, 11] that
safely use an open-nested commit mechanism. These examples
work, however, because the inner (open) transactions never write to
any data that is accessed by the outer transactions. Moreover, since
these examples require only two levels of nesting, it is not obvious
how one can correctly use open-nested commits in a program with
more than two levels of abstraction. The literature on TM offers
relatively little in the way of formal programming guidelines which
one can follow to have provable guarantees of safety when using
open-nested commits.

Contributions
In this paper, we bridge the gap between memory-level mechanisms
for open nesting and the high-level view by explicitly integrating
the notions of transactional modules (Xmodules) and ownership
into the TM system. We believe the ownership-aware TM sys-
tem allows the programmer to safely use the methodology of open
nesting, because the runtime’s behavior more closely reflects the
programmer’s intent. In addition, the structure imposed by owner-
ship allows a compiler and runtime to enforce properties needed to
provide provable guarantees of “safety” to the programmer. More
specifically, the contributions of this paper are as follows:

1. We suggest a concrete set of guidelines for sharing of data and
interactions between Xmodules.

2. We describe how the Xmodules and ownership can be specified
in a Java-like language and propose a type system that enforces
most of the above-mentioned guidelines in the programs written
using this language extension.

3. We formally describe the operational model for ownership-
aware TM, called the OAT model, which uses a new ownership-
aware commit mechanism. The ownership-aware commit
mechanism is a compromise between an open-nested and a
closed-nested commit; when a transaction T commits, access
to a memory location ℓ is committed globally if ℓ belongs to the
same Xmodule as T ; otherwise, the access to ℓ is propagated to
T ’s parent transaction. Unlike an ordinary open-nested commit,
the ownership-aware commit treats memory locations differ-
ently depending on which Xmodule owns the location. Note
that the ownership-aware commit is still a mechanism; pro-
grammers must still use it in combination with abstract locks
and compensating actions to implement the full methodology.

4. We prove that if a program follows the proposed guidelines
for Xmodules, then the OAT model guarantees serializability
by modules, which is a generalization of “serializability by
levels” used in database transactions. Ownership-aware commit
is the same as open-nested commit if no Xmodule ever accesses
data belonging to other Xmodules. Thus, one corollary of our
theorem is that open-nested transactions are serializable when
Xmodules do not share data. This observation explains why
researchers [4, 11] have found it natural to use open-nested

transactions in the absence of sharing, in spite of the apparent
semantic pitfalls.

5. We prove that under certain restricted conditions, a computa-
tion executing under the OAT model can not enter a semantic
deadlock.

In later sections, we distinguish between the variations of nested
transactions as follows. We say that a transaction Y is vanilla open
nested when referring to a TM system which performs the open-
nested commit of Y . We say that Y is safe nested when referring
to the ownership-aware TM system which performs the ownership-
aware commit of Y . Finally, we say that a transaction Y is an open-
nested transaction when we are referring to the abstract methodol-
ogy, rather than a particular implementation with a specific commit
mechanism.

Outline
The paper is organized as follows. In Section 2 we present an
overview of ownership-aware TM and highlight key features using
an example application. Section 3 describes language constructs for
specifying Xmodules and ownership. In Section 4, we review the
transactional computation framework [2], and extend this frame-
work to formally incorporate Xmodules and ownership. Section 5
describes the OAT model, and Section 6 gives a formal defini-
tion of serializability by modules, and a proof sketch that the OAT
model guarantees this definition. Section 7 provides conditions un-
der which the OAT model does not exhibit semantic deadlocks.
Section 8 concludes with a discussion of some related work.

2. OWNERSHIP-AWARE TRANSACTIONS
In this section, we give an overview of ownership-aware TM. To
motivate the need for the concept of ownership in TM, we first
present an example application which might benefit from open
nesting. We then introduce the notion of an Xmodule and infor-
mally explain the programming guidelines when using Xmod-
ules. Finally, we highlight some of the key differences between
ownership-aware TM and a TM with vanilla open nesting. In this
section, we present the intuitive descriptions of the concepts in
ownership-aware TM; we defer formal definitions until later sec-
tions.

Example Application
We describe an example application for which one might use open-
nested transactions. This example is similar to the one described by
Moss [9], but it includes data sharing between nested transactions
and their parents, and has more than two levels of nesting.

Since the open-nesting methodology is designed for programs
that have multiple levels of abstraction, we choose a modular ap-
plication. Consider a user application which concurrently accesses
a database of many individuals’ book collections. The database
stores records in a binary search tree, keyed by name. Each node
in the binary search tree corresponds to a person, and stores a list
of books in his/her collection. The database supports queries by
name, as well as updates that add a new person or a new book to a
person’s collection. The database also maintains a private hashmap,
keyed by book title, to support a reverse query; given a book title,
it returns a list of people who own the book. Finally, the user ap-
plication wants the database to log changes on disk for recoverabil-
ity. Whenever the database is updated, it inserts metadata into the
buffer of a logger to record the change that just took place. Period-
ically, the user application is able to request a checkpoint operation
which flushes the buffer to disk.

This application is modular, with five natural modules — the
user application (UserApp), the database (DB), the binary search

152

tree (BST), the hashtable (Hashtable), and the logger (Logger).
The UserApp module calls methods from the DB module when
it wants to insert into the database, or query the database. The
database in turn maintains internal metadata and calls the BST
module and the Hashtable module to answer queries and insert
data. Both user application and the database may call methods from
the Logger module.

If the modules use open-nested transactions, a TM system with
vanilla open-nested commits can result in non-intuitive outcomes.
Consider the example where a transactional method A from the
UserApp module tries to insert a book b into the database, and the
insert is an open-nested transaction. The method A (which corre-
sponds to transaction X) calls an insert method in the DB module
and passes b (the Book object) to be inserted. This insert method
generates an open-nested transaction Y . Suppose Y writes to some
field of the book b (memory location ℓ1), and also writes some in-
ternal database metadata (location ℓ2). After a vanilla open-nested
commit of Y , the modifications to both ℓ1 and ℓ2 become visible
globally. Assuming the UserApp does not care about the internal
state of the database, committing the internal state of the DB (ℓ2) is a
desirable effect of open nesting; this commit increases concurrency,
because other transactions can potentially modify the database in
parallel with X without generating a conflict. The UserApp does,
however, care about changes to the book b; thus, the commit of
ℓ1 breaks the atomicity of transaction X . A transaction Z in paral-
lel with transaction X can access this location ℓ1 after Y commits,
before the outer transaction X commits.1 To increase concurrency,
we want the method from DB to commit changes to its own internal
data; we do not, however, want it to commit the data that UserApp
cares about.

To enforce this kind of restriction, we need some notion of
ownership of data: if the TM system is aware of the fact that the
book object “belongs” to the UserApp, then it can decide not to
commit DB’s change to the book object globally. For this purpose,
we introduce the notion of transactional modules, or Xmodules.
When a programmer explicitly defines Xmodules and specifies the
ownership of data, the TM system can make the correct judgement
about which data to commit globally.

Xmodules and the Ownership-Aware Commit Mechanism
The ownership-aware TM system requires that programs be orga-
nized into Xmodules. Intuitively, an Xmodule M is as a stand-alone
entity that contains data and transactional methods; an Xmodule
owns data that it privately manages, and uses its methods to pro-
vide public services to other Xmodules. During program execution,
a call to a method from an Xmodule M generates a transaction in-
stance (e.g., X). If this method in turn calls another method from
an Xmodule N, an additional transaction Y , safe nested inside X , is
created only if M 6= N. Therefore, defining an Xmodule automati-
cally specifies safe-nested transactions.

In the ownership-aware TM system, every memory location is
owned by exactly one Xmodule. If a memory location ℓ is in a
transaction T ’s read or write set, the ownership-aware commit of a
transaction T commits this access globally only if T is generated
by the same Xmodule that owns ℓ; in this case, we say that T is
“responsible” for that access to ℓ. Otherwise, the read or write to ℓ
is propagated up to the read or write set of T ’s parent transaction;
that is, the TM system behaves as though T was a closed-nested
transaction with respect to location ℓ.

We wish to guarantee that ownership-aware TM behaves “nicely”.
For example, in the TM system, some transaction must be “respon-

1 Note that abstract locks [9] do not address this problem. Abstract locks
are meant to disallow other transactions from noticing the fact that the book
was inserted into the DB. They do not usually protect the individual fields of
the book object itself.

sible” for committing every memory access. Similarly, the TM
system should guarantee some form of serializability. To guarantee
these properties, we must restrict interactions between Xmodules;
if Xmodules could arbitrarily call methods from or access mem-
ory owned by other Xmodules, then these properties might not be
satisfied.

Rules for Xmodules
Ownership-aware TM uses Xmodules to control both the structure
of nested transactions, and the sharing of data between Xmodules
(i.e., to limit which memory locations a transaction instance can
access). In our system, Xmodules are arranged as a module tree,
denoted as D . In D , an Xmodule N is a child of M if N is “encap-
sulated by” M. The root of D is a special Xmodule called world.
Each Xmodule is assigned an xid by visiting the nodes of D in a
left-to-right depth-first search order, and assigning ids in increasing
order, starting with xid(world) = 0. Therefore world has the min-
imum xid, and “lower-level” Xmodules have larger xid numbers.

DEFINITION 1. We impose two rules on Xmodules based on the
module tree:

1. Rule 1: A method of an Xmodule M can access a memory
location ℓ directly only if ℓ is owned by either M or an ancestor
of M in the module tree. This rule means that an ancestor
Xmodule N of M may pass data down to a method belonging
to M, but a transaction from module M cannot directly access
any “lower-level” memory.

2. Rule 2: A method from M can call a method from N only if
N is the child of some ancestor of M, and xid(N) > xid(M)
(i.e., if N is “to the right” of M in the module tree). This rule
requires that an Xmodule can call methods of some (but not all)
lower-level Xmodules.2

The intuition behind these rules is as follows. Xmodules have
methods to provide services to other higher-level Xmodules, and
Xmodules maintain their own data in order to provide these ser-
vices. Therefore, a higher-level Xmodule can pass its data to a
lower-level Xmodule and ask for services. A higher-level Xmodule
should not directly access the internal data belonging to a lower-
level Xmodule.

If Xmodules satisfy Rules 1 and 2, TM can have a well-defined
ownership-aware commit mechanism; some transaction is always
“responsible” for every memory access (proved in Section 5). In
addition, these rules and the ownership-aware commit mechanism
guarantee that transactions satisfy the property of “serializability
by modules” (proved in Section 6).

One potential limitation of ownership-aware TM is that some
“cyclic dependencies” between Xmodules are prohibited. The abil-
ity to define one module as being at a lower level than another is
fundamental to the open-nesting methodology. Thus, our formal-
ism requires that Xmodules be partially ordered; if an Xmodule M
can call Xmodule N, then conceptually M is at a higher level than N
(i.e., xid(M) < xid(N)), and thus N cannot call M. If two compo-
nents of the program call each other, then, conceptually, neither of
these components is at a higher-level than the other, and we would
require that these two components be combined into one Xmodule.

Xmodules in the Example Application
Consider a Java implementation of the example application de-
scribed earlier. It may have the following classes: UserApp as the
top-level application that manages the book collections, Person

2 An Xmodule can, in fact, call methods within its own Xmodule or from its
ancestor Xmodules, but we model these calls differently. We explain these
cases at the end of this section.

153

world!

UserApp!

DB! Logger!

BST! Hashmap!

xid:3 xid:4

xid:0

xid:1

xid:2 xid:5

Figure 1. A module tree D for the program described in Sec-
tion 2. The xid’s are assigned according to a left-to-right depth-
first tree walk, numbering Xmodules in increasing order, starting
with xid(world) = 0.

and Book as the abstractions representing book owners and books,
DB for the database, BST and Hashmap for the binary search tree
and hashmap maintained by the database, and Logger for logging
the metadata to disk. In addition, there are some other auxiliary
classes: tree node BSTNode for the BST, Bucket in the Hashmap,
and Buffer used by the Logger.

For ownership-aware TM, not all of a program’s classes are
meant to be Xmodules; some classes only wrap data. In our ex-
ample, we identified five Xmodules– UserApp, DB, BST, Hashmap,
and Logger; these classes are stand-alone entities which have en-
capsulated data and methods. Classes such as Book and Person, on
the other hand, are data types used by UserApp. Similarly, classes
like BSTNode and Bucket are data types used by BST and Hashmap
to maintain their internal state.

We organize the Xmodules of the application into the module
tree shown in Figure 1. UserApp is encapsulated by world, DB
and Logger are encapsulated under UserApp; BST and Hashmap
are encapsulated under DB. By dividing Xmodules this way, the
ownership of data falls out naturally, i.e., an Xmodule owns certain
pieces of data if the data is encapsulated under the Xmodule. For
example, the instances of Person or Book are owned by UserApp
because they should only be accessed by either UserApp or its
descendants.

Let us consider the implications of Definition 1 for the exam-
ple. Due to Rule 1, all of DB, BST, Hashmap, and Logger can di-
rectly access data owned by UserApp, but the UserApp cannot di-
rectly access data owned by any of the other Xmodules. This rule
corresponds to standard software-engineering rules for abstraction;
the “high-level” Xmodule UserApp should be able to pass its data
down, allowing lower-level Xmodules to access that data directly,
but UserApp itself should not be able to directly access data owned
by lower-level Xmodules. Due to Rule 2, the UserApp may invoke
methods from DB, DB may invoke methods from BST and Hashmap,
and every other Xmodule may invoke methods from Logger. Thus,
Rule 2 allows all the operations required by the example applica-
tion. As expected, the UserApp can call the insert and search
methods from the DB and can even pass its data to the DB for in-
sertion. More importantly, notice the relationship between BST and
Logger. The BST Xmodule can call methods from Logger, but the
BST cannot pass data it owns directly into the Logger. It can, how-
ever, pass data owned by the UserApp to the logger, which is all
this application requires.

Advantage of Ownership-Aware Transactions
One of the major problems with vanilla open nesting is that some
transactions can see inconsistent data. Say a transaction Y is open
nested inside transaction X . Let v0 be the initial value of location

ℓ, and suppose Y writes value v1 to location ℓ and then commits.
Now a transaction Z in parallel with X can read this location ℓ,
write value v2 to ℓ, and commit, all before X commits. Therefore, X
can now read this location ℓ and see the value v2, which is neither
the initial value v0 (the value of ℓ when X started), nor v1 which
was written by X’s inner transaction, Y . This behavior might seem
counterintuitive.

Now consider the same example for ownership-aware transac-
tions. Say X is generated by a method of Xmodule M and Y is
generated by a method of Xmodule N. If N owns ℓ, X cannot ac-
cess ℓ, since xid(M) < xid(N) (by Definition 1, Rule 2), and no
transaction from a higher-level module can access data owned by
a lower-level module (by Definition 1, Rule 1). Thus, the problem
does not arise. If N does not own ℓ, the ownership-aware commit
of Y will not commit the changes to ℓ globally and ℓ will be prop-
agated to X’s write set. Therefore, if Z tries to access ℓ before X
commits, the TM system will detect a conflict. Thus X cannot see
an inconsistent value for ℓ.3

Callbacks
At first glance, the assumptions we have made regarding methods
of Xmodules seem somewhat restrictive. In the description thus
far, we prohibit an Xmodule M from calling another transactional
method from M or a proper ancestor of M. In particular, it appears
as though our model disallows callbacks. Our model, however, does
permit both these cases; we simply model these calls differently.

If a method X from Xmodule M calls another method Y from
an ancestor Xmodule N, this call does not generate a new safe-
nested transaction instance. Instead, Y is subsumed in X using flat
(or closed) nesting. Recall that Rule 1 in Definition 1 allows X to
access data belonging to N or any of its ancestors directly. Thus,
we can treat any data access by a flat (or closed) nested transaction
Y as being accessed by X directly, provided that Y and its nested
transactions access only memory belonging to N or N’s ancestors.
We say that Y is a proper callback method for Xmodule N if its
nested calls are all proper callback methods belonging to Xmodules
which are ancestors of N. In our formal model in Section 4, we
assume that we only have proper callbacks and model them as
direct memory accesses, allowing us to ignore them in the formal
definitions.

Closed-Nested Transactions
In our model, every method call that crosses an Xmodule bound-
ary automatically generates a safe-nested transaction. Ownership-
aware TM can effectively provide closed-nested transactions, how-
ever, with appropriate specifications of ownership. If an Xmodule
M owns no memory, but only operates on memory belonging to its
proper ancestors, then transactions of M will effectively be closed
nested. In the limit, if the programmer specifies that all memory
is owned by the world Xmodule, then all changes in any transac-
tion’s read or write set are propagated upwards; thus all ownership-
aware commits behave exactly as closed-nested commits.

3. OWNERSHIP TYPES FOR XMODULES
When using ownership-aware transactions, the Xmodules and data
ownership in a program must be specified for two reasons. First, the
ownership-aware commit mechanism depends on these concepts.
Second, we can guarantee some notion of serializability only if a
program has Xmodules which conform to the rules in Definition 1.
In this section, we describe language constructs and a type system
that can be used to specify Xmodules and ownership in a Java-like

3 For simplicity, we have described the case where Y is directly nested inside
X . The case where Y is more deeply open nested inside X behaves in a
similar fashion.

154

language. Our type system — the OAT type system — statically
enforces some of the restrictions described in Definition 1.

The OAT type system extends the ownership types of Boyapati
et al. [3], which is described first in this section. We then describe
extensions to this type system to enforce some of the restrictions
in Definition 1. Next, we present code for parts of the example ap-
plication described in Section 2. Finally, we discuss some restric-
tions required by Definition 1 which the OAT type system does not
enforce statically. The type system’s annotations, however, enable
dynamic checks for these restrictions.

Boyapati et al.’s Parametric Ownership Type System
The type system of Boyapati et al. provides a mechanism for speci-
fying ownership of objects. The type system enforces the properties
stated in Lemma 1.

LEMMA 1. Boyapati et al.’s type system enforces the following
properties:

1. Every object has a unique owner.
2. The owner can be either another object, or world.
3. The ownership relation forms an ownership tree (of objects)

rooted at world.
4. The owner of an object does not change over time.
5. An object a can access another object b directly only if b’s

owner is either a, or one of a’s proper ancestors in the own-
ership tree.

Boyapati et al.’s type system requires ownership annotations to
class definitions and type declarations to guarantee Lemma 1. Ev-
ery class type T1 has a set of associated ownership tags, denoted
T1〈 f1, f2, . . . fn〉. The first formal f1 denotes the owner of the cur-
rent instance of the object (i.e., this object). The remaining for-
mals f2, f3, . . . fn are additional tags which can be used to instan-
tiate and declare other objects within the class definition. The for-
mals get assigned with actual owners o1,o2, . . .on when an object
a of type T1 is instantiated. By parameterizing class and method
declarations with ownership tags, this type system permits owner
polymorphism. Thus, one can define a class type (e.g. a generic
hash table) once, but instantiate multiple instances of that class with
different owners in different parts of the program.

The type system enforces the properties in Lemma 1 by per-
forming the following checks:

1. Within the class definition of type T1, only the tags { f1, f2, . . . fn}∪
{this,world} are visible. The this ownership tag represents
the object itself.

2. A variable c2 with type T2〈 f2, . . .〉 can be assigned to a variable
c1 with type T1〈 f1, . . .〉 if and only if T2 is a subtype of T1 and
f1 = f2.

3. If an object a’s tags are instantiated to be o1,o2, . . .on when a is
created, then in the ownership tree, o1 must be a descendant of
oi, ∀i ∈ 2..n, (denoted by o1 � oi henceforth).

Boyapati et al. show that these type checks guarantee the properties
of Lemma 1.

In some cases, to enable the type system to perform check 3
locally, the programmer may need to specify a where clause in
a class declaration. For example, suppose the class declaration of
type T1 has formal tags 〈 f1, f2, f3〉, and inside T1’s definition, some
type T2 object is instantiated with ownership tags 〈 f2, f3〉. The type
system cannot determine whether or not f2 � f3. To resolve this
ambiguity, the programmer must specify where (f2 <= f3) at the
class declaration of type T1. When an instance of type T2 object is
instantiated, the type system then checks that the where clause is
satisfied.

The OAT Type System
The ownership tree described by Boyapati et al. exhibits some of
the same properties as the module tree we described in Section 2;
however, this ownership scheme does not enforce two major re-
quirements of our system.
• In [3], any object can own other objects. Our rules, however,

require that only Xmodules own other objects.
• In [3], an object can call any of its ancestor’s siblings. Our rules

(namely Definition 1), however, dictate that an Xmodule M can
only call its ancestor’s siblings to the right.

With these requirements in mind, we extend Boyapati et al.’s type
system to create the OAT type system.

The extensions to handle the first requirement are straight-
forward. The OAT type system explicitly distinguishes objects
and Xmodules by requiring that Xmodules extend from a spe-
cial Xmodule class. The OAT type system only allows classes that
extend Xmodule to use this as an ownership tag. In the context
of the Boyapati et al.’s ownership tree, this restriction creates a
tree where all the internal nodes are Xmodules and all leaves are
non-Xmodule objects. If we ignore any order imposed on the chil-
dren of an Xmodule, for ownership-aware TM, the module tree (as
described in Section 2) is essentially the ownership tree with all
non-Xmodule objects removed.

The second requirement is more complicated to enforce. First,
we extend each owner instance o to have two fields: name, repre-
sented by o.name; and index, represented by o. index. The name
field is conceptually the same as an ownership instance in Boyapati
et al.’s type system. The index field is added to help the compiler to
infer ordering between children of the same Xmodule in the module
tree. The OAT type system allows the programmer to pass this[i]
as the ownership tag (i.e., with an index i) instead of this. Simi-
larly, one can use world[i] as an ownership tag. Indices enable
the type system to infer an ordering between two sibling Xmodules
M and N; for instance, if an Xmodule L instantiates M and N with
owners this[i] and this[i+1], respectively, then M appears to
the left of N in the module tree.

Finally, for technical reasons, the OAT system prohibits all
Xmodules M from declaring primitive fields. If M had primitive
fields, then by Boyapati et al.’s type system, these fields are owned
by the M’s parent. Since this property seems counter-intuitive, we
opted to disallow primitive fields for Xmodules.

In summary, the OAT type system performs these checks:

1. Within the class definition of type T1, only the tags { f1, f2, . . . fn}∪
{this,world} are visible.

2. A variable c2 with type T2〈 f2, . . .〉 can be assigned to a variable
c1 with type T1〈 f1, . . .〉 if and only if T2 = T1, and all the for-
mals are initialized to the same owners with the same indices,
if indices are specified.

3. For a type T〈o1,o2, . . .on〉, we must have, for all i ∈ {2, . . .n},
either o1.name≺ oi.name or o1.name = oi.name and o1. index <
oi. index (if both indices are known).4

4. The ownership tag this can only be used within the definition
of a class that extends Xmodule.

5. Xmodule objects cannot have primitive-type fields.

The first three checks are analogous to the checks in Boyapati
et al.’s type system. The last two checks are added to enforce the
additional requirements of Xmodules.

4 In the ownership tree, for any Xmodule M, the OAT type system implic-
itly assigns non-Xmodule children of M higher indices than the Xmodule
children of M, unless the user specifies otherwise.

155

1 public class UserApp<appO> extends Xmodule<appO> {
2 private Logger<this[1], this[2]> logger;
3 private DB<this[0], this[1], this[2]> db;

...
4 public UserApp() {
5 logger = new Logger<this[1], this[2]>();
6 db = new DB<this[0], this[1], this[2]>(logger);
7 }
8 }

9 public class DB<dbO, logO, dataO>
10 extends Xmodule<dbO> where (logO < dataO) {
11 private Logger<logO, dataO> logger;
12 private BST<this[0], logO, dataO> bst;
13 private Hashmap<this[1], logO, dataO> hashmap;
14 public DB(Logger<logO, dataO> logger) {
15 this.logger = logger;

...
16 }
17 }

Figure 2. Specifying Xmodules and ownership for the example
application described in Section 2.

The OAT type system supports where clauses of the form where
(fi < f j); when fi and f j are instantiated with oi and o j , the
type system ensures that either oi.name ≺ o j.name, or oi.name =
o j.name and oi. index < o j. index. The detailed type rules for the
OAT type system are described in [1].

Example Application Using the OAT Type System
Figure 2 illustrates how one can specify Xmodules and ownership
using ownership types. The programmer specifies an Xmodule by
creating a class which extends from a special Xmodule class. The
DB class has three formal owner tags – dbO which is the owner of
the DB Xmodule instance, logO which is the owner of the Logger
Xmodule instance that the DB Xmodule will use, and dataO which
is the owner of the user data being stored in the database. When an
instance of UserApp initializes Xmodules in lines 5–6, it declares
itself as the owner of the Logger, the DB, and the user data being
passed into DB. The indices on this are declaring the ordering of
Xmodules in the module tree, i.e., the user data is lower-level than
the Logger, and the Logger is lower level than the DB. lines 11–13
illustrate how the DB class can initialize its Xmodules and propagate
the formal owner tags (i.e., logO and dataO) down.

Note that in order for this code to type check, the DB class must
declare logO < dataO using the where clause in line 10, otherwise
the type check would fail at line 11, due to ambiguity of their
relation in the module tree. The where clause in line 10 is checked
whenever an instance of DB is created, i.e. at line 6.

The OAT Type System’s Guarantees
The following lemma about the OAT type system can be proved in
a reasonably straightforward manner using Lemma 1.

LEMMA 2. The OAT type system guarantees the following proper-
ties.

1. An Xmodule M can access a (non-Xmodule) object b with own-
ership tag ob only if M � ob.name.

2. An Xmodule M can call a method in another Xmodule N with
owner oN only if one of the following is true:
(a) M = oN .name (i.e. M owns N);
(b) The least common ancestor of M and N in the module tree

is oN .name.
(c) N �M (i.e. N is an ancestor of M).

Lemma 2 does not, however, guarantee all the properties we
want from Xmodules (i.e., Definition 1). In particular, Lemma 2
does not consider any ordering of sibling Xmodules. The OAT type
system can, however, provide stronger guarantees for a program
which satisfies what we call the unique owner indices assumption:
for all Xmodules M, all children of M in the module tree are instan-
tiated with ownership tags with unique indices that can be statically
determined. For such a program, the type system can order the chil-
dren of every Xmodule M from smallest to largest index, and assign
the xid to each Xmodule as described in Section 2. Then, the fol-
lowing result holds:

THEOREM 3. For a program with unique owner indices, in ad-
dition to Lemma 2, the OAT type system guarantees that if the
least common ancestor of Xmodules M and N in the module tree is
oN .name, then M can call a method in N only if xid(M) < xid(N).

PROOF SKETCH.
We prove (by contradiction) that if the least common ancestor

of M and N in the module tree is oN .name, and xid(M) > xid(N),
then M cannot have a formal tag with value oN . Therefore, it cannot
declare a type with owner tag oN , and cannot access N. We only
sketch the proof here. For the details, please see [1].

Let L be the least common ancestor of M and N, let Q be the
ancestor of M which is N’s sibling, and let oQ be Q’s ownership
tag (i.e., the tag with which Q is instantiated). Since N and Q have
the same parent (i.e. L) in the module tree, we have oN .name =
oQ.name = L. Since xid(M) > xid(N), M is to the right of N
in the ownership tree. Therefore, Q, which is an ancestor of M,
is to the right of N in the ownership tree. Therefore, we have
oQ. index > oN . index.

Assume for contradiction that M does have oN as one of its tags.
Using Lemma 1, one can show that the only way for M to receive
tag oN is if Q also has a formal tag with value oN . Thus, Q’s first
formal owner tag has value oQ and another one of its formals has
value oN . Therefore, the type system fails to type check, either
at the point where Q is instantiated due to oQ. index > oN . index
(check 3), or at some other place where a disambiguating where
clause is used.

Theorem 3 only modifies the Condition 2b of Lemma 2. There-
fore, Lemma 2 along with Theorem 3 imposes restrictions on every
Xmodule M which are only slightly weaker than the restrictions
required by Definition 1. Condition 1 in Lemma 2 corresponds to
Rule 1 of Definition 1. Conditions 2a and 2b are the cases permitted
by Rule 2. Condition 2c, however, corresponds to the special case
of callbacks or calling a method from the same Xmodule, which is
not permitted by Definition 1. This case is modeled differently, as
we explained in Section 2.

The OAT type system is a best-effort type system to check for
the restrictions required by Definition 1. The OAT type system can-
not fully guarantee, however, that a type-checked program does not
violate Definition 1. Specifically, the OAT type system can not al-
ways detect the following violations statically. First, if the program
does not have unique owner indices, then L may instantiate both M
and N with the same index. Then, by Lemma 2, M and N, can call
each other’s methods, and we can get cyclic dependencies between
Xmodules.5 Second, the program may perform improper callbacks.
Say a method from M calls back to method B from L. An improper
callback B can call a method of N, even though the type system
knows that M is to the right of N. In both cases, the type system al-

5 Since all non-Xmodule objects are implicitly assigned higher indices than
their Xmodule siblings, these non-Xmodule objects cannot introduce cyclic
dependencies between Xmodules.

156

lows a program with cyclic dependency between Xmodules to pass
the type checks, which is not allowed by Definition 1.

To have an ownership-aware TM which guarantees exactly Def-
inition 1, one needs to impose additional dynamic checks. The run-
time system can use the ownership tags to build a module tree dur-
ing runtime, and use this module tree to perform dynamic checks to
verify that every Xmodule has unique owner indices and contains
only proper callbacks. The runtime system can do this by dynam-
ically inferring indices according to which Xmodule calls which
other Xmodule, and reporting an error if there is any circular call-
ing.6

4. COMPUTATIONS WITH Xmodules
In this section, we formally define the structure of transactional pro-
grams with Xmodules. This section converts the informal explana-
tion from Section 2 into a formal model that we later use to prove
properties of ownership-aware TM. We briefly review the transac-
tional computation framework [2] and add Xmodules and owner-
ship to this framework, finally providing the formal statement of
Definition 1.

Transactional Computations
In our framework [2], the execution of a program is modeled using
a “computation tree” C that summarizes the information about both
the control structure of a program and the nesting structure of
transactions, and an “observer function” F which characterizes the
behavior of memory operations. A program execution is assumed
to generate a trace (C ,F).

A computation tree C is defined as an ordered tree with two
types of nodes: memory-operation nodes memOps(C) as leaves and
control nodes spNodes(C) as internal nodes. A memory operation
v either reads from or writes to a memory location. Control nodes
are either S (series) or P (parallel) nodes. Conceptually, the children
of an S-node must be executed serially, from left to right, while
the children of P node can be executed in parallel. Some S nodes
are labeled as transactions; define xactions(C) as the set of these
nodes.

Instead of specifying the value that an operation reads or writes
to a memory location ℓ, we abstract away the values by using an
observer function F . For a memory operation v that accesses a
memory location ℓ, the node F (v) is defined to be the operation
that wrote the value of ℓ that v sees.

We define several structural notations on the computation tree
C . Denote the root of C as root(C). For any tree node X , let
ances(X) denote the set of all X’s ancestors (including X itself)
in C . Denote the set of proper ancestors of X by pAnces(X). For
any tree node X , we define the transactional parent of X , denoted
by xparent(X), as parent(X) if parent(X) ∈ xactions(C),
or xparent(parent(X)) if parent(X) 6∈ xactions(C). Define
the transactional ancestors of X as xAnces(X) = ances(X)∩
xactions(C). Denote the least common ancestor of two nodes
X1,X2 ∈C by LCA(X1,X2). Define xLCA(X1,X2) as Z = LCA(X1,X2)
if Z ∈ xactions(C), and as xparent(Z) otherwise.

A computation can also be represented as a computation
dag (directed acyclic graph). Given a tree C , the dag G(C) =
(V (C),E(C)) corresponding to the tree is constructed recursively.
Every internal node X in the tree appears as two vertices in the
dag. Between these two vertices, the children of X are connected
in series if X is an S node, and are connected in parallel if X is a
P node. Figure 3 show a computation tree and its corresponding
computation dag.

6 It is possible to statically check for unique owner indices by imposing
additional restrictions on the program. We opted, however, to describe a
more flexible programming model with weaker static guarantees.

u
1

w
1

w
2

v
2

v
1

T
2!

T
1!

T
3!

T
5!

(b) Transaction!

u
2

T
4!

x
1

x
2

Figure 3. A sample (a) computation tree C and (b) its correspond-
ing dag G(C).

Classical theories on serializability refer to a particular execu-
tion order for a program as a history [12]. In our framework, a
history corresponds to a topological sort S of the computation dag
G(C). We define our models of TM using these sorts. Reordering a
history to produce a serial history is equivalent to choosing a differ-
ent topological sort S ′ of G(C) which has all transactions appearing
contiguously, but which is still “consistent” with the observer func-
tion associated with S .

Xmodules and Computation Tree
As mentioned in Section 2, in this paper, we consider programs
that contain Xmodules. In our theoretical framework, we consider
traces generated by a program which is organized into a set N of
Xmodules. Each Xmodule M ∈ N has some number of methods
and a set of memory locations associated with it.

We partition the set of all memory locations L into sets of
memory owned by each Xmodule. Let modMemory(M)⊆ L denote
the set of memory locations owned by M. For a location ℓ ∈
modMemory(M), we say that owner(ℓ) = M. When a method of
Xmodule M is called by a method from a different Xmodule,
a safe-nested transaction T is generated.7 We use the notation
xMod(T) = M to associate the instance T with the Xmodule M.
We also define the instances associated with M as

modXactions(M) = {T ∈ xactions(C) : xMod(T) = M} .

As mentioned in Section 2, Xmodules of a program are ar-
ranged as a module tree, denoted by D . Each Xmodule is as-
signed an xid according to a left-to-right depth-first tree walk,
with the root of D being world with xid = 0. Denote the par-
ent of Xmodule M in D as modParent(M), the ancestors of M as
modAnces(M), and the descendants of M as modDesc(M). We say
that xMod(root(C)) = world, i.e., the root of the computation tree
is a transaction associated with the world Xmodule.

We use the module tree D to restrict the sharing of data between
Xmodules and to limit the visibility of Xmodule methods according
to the rules given in Definition 2.

DEFINITION 2 (Formal Restatement of Definition 1). A program
with a module tree D should generate only traces (C ,F) which
satisfy the following rules:

7 As we explained in Section 2, callbacks are handled differently.

157

1. For any memory operation v which accesses a memory location
ℓ, let T = xparent(v). Then owner(ℓ)∈ modAnces(xMod(T)).

2. Let X ,Y ∈ xactions(C) be transaction instances such that
xMod(X)= M and xMod(Y)= N. We can have X = xparent(Y)
only if modParent(N)∈ modAnces(M), and xid(M)< xid(N).

5. THE OAT MODEL
In this section, we informally sketch the OAT model, an abstract
execution model for TM with ownership and Xmodules. The novel
feature of the OAT model is that it uses the structure of Xmodules
to provide a commit mechanism which can be viewed as a hybrid
of closed- and open-nested commits. The OAT model presents an
operational semantics for TM, and is not intended to describe an
actual implementation. For the full formal description of the model,
see [1].

Basic Operation
The TM system is modeled as a nondeterministic state machine
with two components: a program and a runtime system. The run-
time system, which we call the OAT model, dynamically constructs
a computation tree C as it executes instructions generated by the
program. This sequence of instructions is a valid topological sort S
of G(C). During execution, each transaction T in the tree maintains
a status field, which can be one of COMMITTED, ABORTED, PENDING,
or PENDING ABORT. The OAT model maintains a set of ready nodes,
denoted by ready(C), and at every step, the OAT model nonde-
terministically chooses one of these ready nodes to issue the next
instruction. The program then issues an instruction on this node’s
behalf.

To detect conflicts, the OAT model maintains a read set R(T)
and a write set W(T) for all T ∈ xactions(C). The read set R(T)
is a set of pairs (ℓ,v), where ℓ ∈ L is a memory location, and
v ∈ memOps(C) is a memory operation that reads from ℓ. We define
W(T) similarly. We also assume that a write is implicitly a read as
well; thus, W(T)⊆ R(T).

The OAT model performs eager conflict detection; whenever
a memory operation v accesses a location ℓ, the OAT model
checks to see if v creates any conflicts. Informally, a v which
is a read (write) generates a conflict if there is another active
transaction T 6∈ xAnces(v) (T is active if its status is PENDING or
PENDING ABORT) which has ℓ in its write (read) set. If v gener-
ates a conflict, then some transaction must be aborted, using the
mechanism explained at the end of this section.

If v does not generate a conflict, then v succeeds and observes
the value ℓ from R(Y), where Y is the closest transactional ancestor
of v with ℓ in its read set (i.e., (ℓ,u) ∈ R(Y)). Let X = xparent(v).
Then, if v is a read, (ℓ,v) is added to R(X). If v is a write, (ℓ,v) is
added to both R(X) and W(X).

Ownership-Aware Commit
The OAT model implements an ownership-aware commit mech-
anism for nested transactions which contains elements of both
closed-nested and open-nested commits. A PENDING transaction
Y issues an xend instruction to commit Y into X = xparent(Y).
This xend commits locations from its read and write sets which are
owned by xMod(Y) in an open-nested fashion to the root of the tree,
while it commits locations owned by other Xmodules in a closed-
nested fashion, by merging those reads and writes into X’s read and
write sets.

Unique Committer Property
Definition 2 guarantees certain properties of the computation tree
which are essential to the ownership-aware commit mechanism.
Theorem 5 proves that every memory operation has one and only

one transaction that is responsible for committing the memory
operation. The proof of the theorem requires the following lemma
(stated without proof). One can prove the lemma by induction on
the nesting depth of transactions.

LEMMA 4. Given a computation tree C , consider any transaction
T ∈ xactions(C). Let ST = {xMod(T ′) : T ′ ∈ xAnces(T)}. Then
modAnces(xMod(T))⊆ ST .

PROOF. We prove this fact by induction on the nesting depth
of transactions T in the computation tree. In the base case, the
lemma holds trivially, since the top-level transaction T = root(C),
and xMod(root(C)) = world. For the inductive step, assume that
modAnces(xMod(T)) ⊆ ST holds for any transaction T at depth d.
We show that the fact holds for any T ∗ ∈ xactions(C) at depth
d +1.

For any such T ∗, we know T = xparent(T ∗) is at depth d.
Then, by Rule 2 of Definition 2, we have modParent(xMod(T ∗))∈
modAnces(xMod(T)). Thus, we know that modAnces(xMod(T ∗))⊆
modAnces(xMod(T))∪{xMod(T ∗)}. By construction of the set ST ,
we have ST ∗ = ST ∪ {xMod(T ∗)}. Therefore, using the inductive
hypothesis, we have modAnces(xMod(T ∗))⊆ ST ∗ .

THEOREM 5. If a memory operation v accesses a memory loca-
tion ℓ, then there exists a unique transaction T ∗ ∈ xAnces(v), such
that

1. owner(ℓ) = xMod(T ∗), and
2. For all transactions X ∈ pAnces(T ∗)∩ xactions(C), X can-

not directly access location ℓ.

This transaction T ∗ is the committer of memory operation v, de-
noted by committer(v).

PROOF. This result follows from the properties of the module tree
and computation tree stated in Definition 2.

Let T = xparent(v). First, by Rule 1, we know owner(ℓ) ∈
modAnces(xMod(T)). We know modAnces(xMod(T)) ⊆ ST by
Lemma 4. Thus, there exists some transaction T ∗ ∈ xAnces(T)
such that owner(ℓ) = xMod(T ∗). We can use Rule 2 to show that the
T ∗ is unique. Let Xi be the chain of ancestor transactions of T , i.e.,
let X0 = T , and let Xi = xparent(Xi−1), up until Xk = root(C). By
Rule 2, we know xid(xMod(Xi)) < xid(xMod(Xi−1)), that is, the
xids strictly decrease walking up the tree from T . Thus, there can
only be one ancestor transaction T ∗ of T with xid(xMod(T ∗)) =
xid(owner(ℓ)).

For any X ∈ pAnces(T ∗)∩ xactions(C), we can check the
second condition. By Rule 1, X can access ℓ directly only if
owner(ℓ)∈ modAnces(xMod(X)); thus, we have xid(owner(ℓ))≤
xid(xMod(X)). But we know that owner(ℓ) = xMod(T ∗) and
xid(xMod(T ∗)) > xid(xMod(X)).

Intuitively, T ∗ = committer(v) is the transaction which “be-
longs” to the same Xmodule as the location ℓ which v accesses, and
is “responsible” for committing v to memory and making it visible
to the world. The second condition of Theorem 5 states that no an-
cestor transaction of T ∗ in the call stack can ever directly access ℓ;
thus, it is “safe” for T ∗ to commit ℓ.

Transaction Abort
When the OAT model detects a conflict, it aborts one of the
conflicting transactions by changing its status from PENDING to
PENDING ABORT. In the OAT model, a transaction X might not
abort immediately; instead, it might continue to issue more in-
structions after its status has changed to PENDING ABORT. The
set of operations issued by X or its descendants after X’s status
changes to PENDING ABORT are called X’s abort actions, denoted
by abortactions(X). This condition allows X to compensate for

158

the safe-nested transactions that may have committed; if trans-
action Y is nested inside X , then the abort actions of X contain
the compensating action of Y . Eventually a PENDING ABORT trans-
action issues an xend instruction, which changes its status from
PENDING ABORT to ABORTED.

If a potential memory operation v generates a conflict with Tu,
and Tu’s status is PENDING, then the OAT model can nondetermin-
istically choose to abort either xparent(v), or Tu. In the latter case,
v waits for Tu to finish aborting (i.e., change its status to ABORTED)
before continuing. If Tu’s status is PENDING ABORT, then v just waits
for Tu to finish aborting before trying to issue read or write again.

This operational model uses the same conflict detection algo-
rithm as TM with ordinary closed-nested transactions does; the
only subtleties are that v can generate a conflict with a PENDING ABORT
transaction Tu, and that transactions no longer abort instantaneously
because they have abort actions. Some restrictions on the abort ac-
tions of a transaction may be necessary to avoid deadlock, as we
describe later in Section 7.

6. SERIALIZABILITY BY MODULES
In this section, we define serializability by modules, a definition
inspired by the database notion of multilevel serializability (e.g.,
as described in [13]). We then provide a proof sketch that the OAT
model from Section 5 guarantees serializability by modules. For
more details about the proof, see [1].

Notation and Definitions
We first describe some notation needed to formally describe serial-
izability by modules. All definitions in this section are a posteriori,
i.e., they are defined on the computation tree after the program has
finished executing.

We define “content” sets for every transaction T by partition-
ing memOps(T) (all the memory operations enclosed inside T
including those belonging to its nested transactions) into three
sets: cContent(T), oContent(T) and aContent(T). For any
u ∈ memOps(T), we define the content sets based on the final status
of transactions in C that one visits when walking up the tree from
u to T .

DEFINITION 3. For any transaction T and memory operation u,
define the sets cContent(T), oContent(T), and aContent(T)
according the ContentType(u,T) procedure:

ContentType(u,T) � For any u ∈ memOps(T)
1 X ← xparent(u)
2 while (X 6= T)
3 if (X is ABORTED) return u ∈ aContent(T)
4 if (X = committer(u)) return u ∈ oContent(T)
5 X ← xparent(X)
6 return u ∈ cContent(T)

Recall that in the OAT model, the safe-nested commit of T
commits some memory operations in an open-nested fashion,
to root(C), and some operations in a closed-nested fashion, to
xparent(T). Informally, oContent(T) is the set of memory op-
erations that are committed in an “open” manner by T ’s subtrans-
actions. Similarly, aContent(T) is the set of operations that are
discarded due to the abort of some subtransaction in T ’s subtree.
Finally, cContent(T) is the set of operations that are neither com-
mitted in an “open” manner, nor aborted.

Transactional semantics dictate that memory operations belong-
ing to an aborted transaction T should not be observed by (i.e., are
hidden from) memory operations outside of T .

DEFINITION 4. For u ∈ memOps(C),v ∈V (C), let X =
xLCA(u,v). We say that u is hidden from v if u ∈ aContent(X).

Our notion of serializability requires sequential consistency.
Without transactions, a trace (C ,F) is said to be sequentially con-
sistent if there exists a topological sort S of the computation dag
G(C) in which a memory operation u that accesses ℓ observes the
value written by the last writer to ℓ in S ; that is, the observer func-
tion F is the same as the last writer function. For transactional
sequential consistency, we define the transactional last writer of
memory operation u as a memory operation v that is the last write
in the order S before u, skipping over nodes w which are hidden
from (i.e., aborted with respect to) u. Henceforth, we say that a
sort order S is sequentially consistent with respect to F if F is the
transactional last writer.

Defining Serializability by Modules
In [2], a trace (C ,F) was said to be serializable if there exists a
topological sort S of G(C) such that S is sequentially consistent
with respect to F , and all transactions appear contiguous in S . Se-
rializability in this context can be thought of as sequential consis-
tency plus the requirement that transactions are atomic. This defi-
nition of serializability is the “correct definition” for flat or closed-
nested transactions. This definition of serializability is too strong,
however, for ownership-aware transactions. A TM system that en-
forces this definition of serializability cannot ignore lower-level
memory accesses when detecting conflicts for higher-level trans-
actions.

Instead, we describe a definition of serializability by modules
which checks for correctness of one Xmodule at a time. Given a
trace (C ,F), for each Xmodule M, we transform the tree C into
a new tree mTree(C ,M). The tree mTree(C ,M) is constructed in
such a way as to ignore memory operations of Xmodules which
are lower-level than M, and also to ignore all operations which are
hidden from transactions of M. For each Xmodule M, we check that
the transactions of M in the trace (mTree(C ,M),F) is serializable.
If the check holds for all Xmodules, then trace (C ,F) is said to be
serializable by modules.

Definition 5 formalizes the construction of mTree(C ,M).

DEFINITION 5. For any computation tree C , let mTree(C ,M) be
the result of modifying C as follows:

1. For all memory operations u ∈ memOps(C) with u accessing ℓ,
if owner(ℓ) = N for some xid(N) > xid(M), convert u into a
nop.

2. For all transactions T ∈ modXactions(M), convert all u ∈
aContent(T) into nops.

The intuition behind Condition 1 of Definition 5 is the following.
When looking at Xmodule M, we throw away memory operations
belonging to a lower-level Xmodule N, since by Theorem 5, trans-
actions of M can never directly access the same memory as those
operations anyway. In Condition 2, we ignore the content of any
aborted transactions nested inside transactions of M; those transac-
tions might access the same memory locations as operations which
we did not turn into nops, but those operations are aborted with
respect to transactions of M.

Lemma 6 argues that if a trace (C ,F) is sequentially consistent,
then (mTree(C ,M),F) is a valid trace; an operation u that remains
in the trace never attempts to observe a value from a memory
operation v = F (u) which was turned into a nop due to Definition 5.
In addition, the transformed trace is also sequentially consistent.

LEMMA 6. Let (C ,F) be any sequentially consistent trace. Then
for any Xmodule M, (mTree(C ,M),F) is a valid trace. If u ∈
memOps(mTree(C ,M)), then we have F (u)∈ memOps(mTree(C ,M)).
Furthermore, any S which is sequentially consistent for F in (C ,F)
is also sequentially consistent for F in (mTree(C ,M),F).

159

PROOF. In the new tree mTree(C ,M), pick any memory operation
u ∈ memOps(mTree(C ,M)) which remains. Assume for contradic-
tion that v = F (u) was turned into a nop in one of Steps 1 and 2.

If v was turned into a nop in Step 1 of Definition 5, then we
know that v accessed a memory location ℓ where xid(owner(ℓ)) >
xid(M). Since u must access the same location ℓ, u must also
be converted into a nop. If v was turned into a nop in Step 2 of
Definition 5, then v ∈ aContent(T) for some xMod(T) = M. Then
we can show that either vHu, or u should have also been turned into
a nop. Let X = xLCA(v,u). Since X and T are both ancestors of v,
either X is an ancestor of T or T is a proper ancestor of X .
1. First, suppose T is a proper ancestor of X . Consider the path

of transactions Y0,Y1, . . .Yk, where Y0 = xparent(v), for each
0 < i < k, we have xparent(Yi) =Yi+1, and xparent(Yk) = T .
Since v ∈ aContent(T), for some Y j for 0 ≤ j ≤ k must have
status[Y j] = ABORTED. Since T is a proper ancestor of X ,
X = Yx for some x satisfying 0≤ x≤ k.
(a) If status[Y j] = ABORTED for any j satisfying 0 ≤ j < x,

then we know v ∈ aContent(X), and thus vHu. Since we
assumed (C ,F) is sequentially consistent and F (u) = v, we
know ¬vHu, leading to a contradiction.

(b) If Y j is ABORTED for any j satisfying x ≤ j ≤ k, then
status[Y j] = ABORTED implies that u ∈ aContent(X), and
thus, u should have been turned into a nop, contradicting the
original setup of the statement.

2. Next, consider the case where X is an ancestor of T . Since
v ∈ aContent(T), we have v ∈ aContent(X). Therefore, this
case is analogous to Case 1a above.
Finally, if F is the transactional last writer according to S for

(C ,F), it is still the transactional last writer for (mTree(C ,M),F)
because the memory operations which are not turned into nops re-
main in the same relative order. Thus, the last condition is satisfied.

Note that Lemma 6 depends on the restrictions on Xmodules
described in Definition 2. Without this structure of modules and
ownership, the construction of Definition 5 is not guaranteed to
generate a valid trace.

Finally, we can define serializability by modules.
DEFINITION 6. A trace (C ,F) is serializable by modules if it is
sequentially consistent, and if for all Xmodule M in D , there exists
a topological sort S of CM = mTree(C ,M) such that:
1. S is sequentially consistent with respect to F , and
2. For the tree CM, ∀T ∈ modXactions(M) and ∀v ∈ V (CM), if

we have xbegin(T)≤S v≤S xend(T), then v ∈V (T).
Informally, a trace (C ,F) is serializable by modules if it is sequen-
tially consistent, and if for every Xmodule M, there exists a sequen-
tially consistent order S for the trace (mTree(C ,M),F) which has
all transactions of M contiguous.

OAT Model Guarantees Serializability by Modules
We can show that the OAT model described in Section 5 generates
traces that satisfy Definition 6.

THEOREM 7. Any trace (C ,F) generated by the OAT model is
serializable by modules.

PROOF SKETCH. The proof consists of three steps. First, we
generalize the notion of “prefix race freedom” [2] to computations
with Xmodules. Second, we prove that the OAT model guarantees
that a program execution is prefix race free. Finally, we argue that
any trace which is prefix race free is also serializable by modules.
See [1] for details.

Abstract Serializability
By Theorem 7, the OAT model guarantees serializability by mod-
ules. We now relate this definition to the notion of abstract seri-
alizability used in multilevel database systems [13]. As we men-
tioned in Section 1, the ownership-aware commit mechanism is a
part of a methodology which includes abstract locks and compen-
sating actions. In this section we argue that OAT model provides
enough flexibility to accommodate abstract locks and compensat-
ing actions. In addition, if a program is “properly locked and com-
pensated,” then serializability by modules guarantees abstract seri-
alizability.

The definition of abstract serializability in databases [13] as-
sumes that the program is divided into levels, and that a transaction
at level i can only call a transaction at level i+1.8 In addition, trans-
actions at a particular level have predefined commutativity rules,
i.e., some transactions of the same Xmodule can commute with
each other and some cannot. The transactions at the lowest level
(say k) are naturally serializable; call this schedule Zk. Given a se-
rializable schedule Zi+1 of level-i +1 transactions, the schedule is
said to be serializable at level i if all transactions in Zi+1 can be
reordered, obeying all commutativity rules, to obtain a serializable
order Zi for level-i transactions. The original schedule is said to be
abstractly serializable if it is serializable for all levels.

These commutativity rules might be specified using abstract
locks [11]: if two transactions cannot commute, then they grab
the same abstract lock in a conflicting manner. In the application
described in Section 2, for instance, transactions calling insert
and remove on the BST using the same key do not commute and
should grab the same write lock. Although abstract locks are not
explicitly modeled in the OAT model, we can model transactions
acquiring the same abstract lock as transactions writing to a com-
mon memory location ℓ.9 Locks associated with an Xmodule M
are owned by modParent(M). A module M is said to be prop-
erly locked if the following is true for all transactions T1,T2 with
xMod(T1) = xMod(T2) = M: if T1 and T2 do not commute, then they
access some ℓ∈ modMemory(modParent(M)) in a conflicting man-
ner.

If all transactions are properly locked, then serializability by
modules implies abstract serializability (as defined above) in the
special case when the module tree is a chain (i.e., each non-leaf
module has exactly one child). Let Si be the sort S in Definition 6
for Xmodule M with xid(M) = i. This Si corresponds to Zi in the
definition of abstract serializability.

In the general case for ownership-aware TM, however, by Rule
2 of Definition 1, we know a transaction at level i might call trans-
actions from multiple levels x > i, not just x = i+1. Thus, we must
change the definition of abstract serializability slightly; instead of
reordering just Zi+1 while serializing transactions at level-i, we
have to potentially reorder Zx for all x where transactions at level
i can call transactions at level x. Even in this case, if every module
is properly locked (by the same definition as above), one can show
serializability by modules guarantees abstract serializability.

The methodology of open nesting often requires the notion of
compensating actions or inverse actions. For instance, in a BST, the
inverse of insert is remove with the same key. When a transac-
tion T aborts, all the changes made by its subtransactions must be
inverted. Again, although the OAT model does not explicitly model
compensating actions, it allows an aborting transaction with status
PENDING ABORT to perform an arbitrary but finite number of opera-

8 We assume level number increases as you go from a higher level to a
lower-level to be consistent with our numbering of xid. In the literature,
levels typically go in the opposite direction.
9 More complicated locks can be modeled by generalizing the definition of
conflict.

160

tions before changing the status to ABORTED. Therefore, an aborting
transaction can compensate for all its aborted subtransactions.

7. DEADLOCK FREEDOM
In this section, we argue that the OAT model described in Sec-
tion 5 can never enter a “semantic deadlock” if we impose suitable
restrictions on the memory accessed by a transaction’s abort ac-
tions. In particular, an abort action generated by transaction T from
xMod(T) should read (write) from a memory location ℓ belonging
to modAnces(xMod(T)) only if ℓ is already in R(T) (W(T)). Under
these conditions, we show that the OAT model can always “finish”
reasonable computations.

An ordinary TM without open nesting and with eager conflict
detection never enters a semantic deadlock because it is always
possible to finish aborting a transaction T without generating addi-
tional conflicts; a scheduler in the TM runtime can abort all transac-
tions, and then complete the computation by running the remaining
transactions serially. Using the OAT model, however, a TM system
can enter a semantic deadlock because it can enter a state in which it
is impossible to finish aborting two parallel transactions T1 and T2
which both have status PENDING ABORT. If T1’s abort action gen-
erates a memory operation u which conflicts with T2, then u will
wait for T2 to finish aborting (i.e., when the status of T2 becomes
ABORTED). Similarly, T2’s abort action can generate an operation v
which conflicts with T1 and waits for T1 to finish aborting. Thus
T1 and T2 can both wait on each other, and neither transaction will
ever finish aborting.

Defining Semantic Deadlock
Intuitively, we want to say that a TM system exhibits a semantic
deadlock if it might enter a state from which it is impossible
to “finish” a computation because of transaction conflicts. This
section defines semantic deadlock precisely and distinguishes it
from these other reasons for noncompletion, such as livelock or
infinite loop.

Recall that our abstract model has two entities: the program, and
a generic operational model F representing the runtime system. At
any time t, given a ready node X ∈ ready(C), the program chooses
an instruction and has X issue the instruction. If the program issues
an infinite number of instructions, then F cannot complete the
program no matter what it does. To eliminate programs which have
infinite loops, we only consider bounded programs.
DEFINITION 7. We say that a program is bounded for an opera-
tional model F if any computation tree that F generates for that
program is of a finite depth, and there exists a finite number K such
that at any time t, every node B ∈ nodes(t)(C) has at most K chil-
dren with status PENDING or COMMITTED.

Even if the program is bounded, it might still run forever if it
livelocks. We use the notion of a schedule to distinguish livelocks
from semantic deadlocks.
DEFINITION 8. A schedule G on some time interval [t0,t1] is
the sequence of nondeterministic choices made by an operational
model in the interval.
An operational model F makes two types of nondeterministic
choices. First, at any time t, F nondeterministically chooses which
ready node X ∈ ready(C) executes an instruction. This choice
models nondeterminism in the program due to interleaving of the
parallel executions. Second, while performing a memory operation
u which generates a conflict with transaction T , F nondetermin-
istically chooses to abort either xparent(u) or T . This nondeter-
ministic choice models the contention manager of the TM runtime.
A program may livelock if F repeatedly makes “bad” scheduling
choices.

Intuitively, an operational model deadlocks if it allows a bounded
computation to reach a state where no schedule can complete the
computation after this point.

DEFINITION 9. Consider an F executing a bounded computation.
We say that F does not exhibit a semantic deadlock if for all finite
sequences of t0 instructions that F can issue that generates some
intermediate computation tree C0, there exists a finite schedule G
on [t0,t1] such that F brings the computation tree to a rest state C1,
i.e., ready(C1) = {root(C1)}.

This definition is sufficient, since once the computation tree is
at the rest state, and only the root node is ready, F can execute each
transaction serially and complete the computation.

Restrictions to Avoid Semantic Deadlock
The general OAT model described in Section 5 exhibits semantic
deadlock because it may enter a state where two parallel abort-
ing transactions T1 and T2 keep each other from completing their
aborts. For a restricted set of programs, where a PENDING ABORT
transaction T never accesses new memory belonging to Xmodules
at xMod(T)’s level or higher, however, we can show the OAT model
is free of semantic deadlock.

More formally, for all transactions T , we restrict the memory
footprint of abortactions(T).

DEFINITION 10. An execution (represented by a computation tree
C) has abort actions with limited footprint if the following con-
dition is true for all transactions T ∈ aborted(C). At time t, if
a memory operation v ∈ abortactions(T) accesses location ℓ
and owner(ℓ) ∈ modAnces(xMod(T)), then (1) if v is a read, then
ℓ ∈ R(T), and (2) if v is a write then ℓ ∈ W(T).

Intuitively, Definition 10 requires that once a transaction T ’s
status becomes PENDING ABORT, any memory operation v which
T or a nested transaction inside T performs to finish aborting T
cannot read from (write to) any location ℓ which is owned by any
Xmodules which are ancestors of xMod(T) (including xMod(T)
itself), unless ℓ is already in the read (or write set) of T .

First, we show that the properties of Xmodules from Theorem 5
in combination with the ownership-aware commit mechanism im-
ply that transaction read sets and write sets exhibit nice properties.
In particular, we have Corollary 8, which states that a location ℓ can
appear in the read set of a transaction T only if T ’s Xmodule is a
descendant of owner(ℓ) in the module tree D .

COROLLARY 8. For any transaction T if ℓ∈ R(T), then xMod(T)∈
modDesc(owner(ℓ)).

PROOF. Follows from Definition 1 and Theorem 5, and induction
on how a location ℓ can propagate into readsets and writsets using
the ownership-aware commit mechanism.

If all abort actions have a limited footprint, we can show that
operations of an abort action of an Xmodule M can only generate
conflicts with a “lower-level” Xmodule.

LEMMA 9. Suppose the OAT model generates an execution where
abort actions have limited footprint. For any transaction T , con-
sider a potential memory operation v ∈ abortactions(T). If v
conflicts with transaction T ′, then xid(xMod(T ′)) > xid(xMod(T)).

PROOF. Suppose v∈ abortactions(T) accesses a memory loca-
tion ℓ with owner(ℓ) = M. Since abortactions(T)⊆ memOps(T),
by the properties of Xmodules given in Definition 2, we know that
either M ∈ modAnces(xMod(T)), or xid(M) > xid(xMod(T)). If
M ∈ modAnces(xMod(T)), then by Definition 10, T already had ℓ
in its read or write set. Therefore, v can not generate a conflict with
T ′ because then T would already have had a conflict with T ′ before

161

v occurred, contradicting the eager conflict detection of the OAT
model.

Thus, we have xid(M) > xid(xMod(T)). If v conflicts with
some other transaction T ′, then T ′ has ℓ in its read or write set.
Therefore, from Corollary 8, xMod(T ′) is a descendant of M. Thus,
we have xid(xMod(T ′)) > xid(M) > xid(xMod(T)).

THEOREM 10. In the case where aborted actions have limited
footprint, the OAT model is free from semantic deadlock.

PROOF. Let C0 be the computation tree after any finite sequence
of t0 instructions. We describe a schedule G which finishes aborting
all transactions in the computation by executing abort actions and
transactions serially.

Without loss of generality, assume that at time t0, all active
transactions T have status[T] = PENDING ABORT. Otherwise, the
first phase of the schedule G is to make this status change for all
active transactions T .

For a module tree D with k = |D| Xmodules (including the
world), we construct a schedule G with k phases, k − 1,k −
2, . . .1,0. The invariant we maintain is that immediately before
phase i, we bring the computation tree into a state C (i) which
has no active transaction instances T with xid(xMod(T)) > i, i.e.,
no instances T from Xmodules with xid larger than i. During
phase i, we finish aborting all active transaction instances T with
xid(xMod(T)) = i. By Lemma 9, any abort action for a T , where
xid(xMod(T)) = i, can only conflict with a transaction instance T ′
from a lower-level Xmodule, where xid(xMod(T ′)) > i. Since the
schedule G executes serially, and since by the inductive hypothesis
we have already finished all active transaction instances from lower
levels, phase i can finish without generating any conflicts.

Restrictions on compensating actions
If transactions Y1,Y2, . . .Y j are nested inside transaction X and X
aborts, typically abort actions of X simply consists of compensating
actions for Y1,Y2, . . .Y j. Thus, restrictions on abort actions trans-
late in a straightforward manner to restrictions on compensating
actions: a compensating action for a transaction Yi (which is part of
the abort action of X), should not read (write) any memory owned
by xMod(X) or its ancestor Xmodules unless the memory location
is already in X’s read (write) set. Assuming locks are modeled as
accesses to memory locations, the same restriction applies, mean-
ing, a compensating action cannot acquire new locks that were not
already acquired by the transaction it is compensating for.

8. CONCLUSIONS
In this paper, we describe ownership-aware transactions, which
provide a disciplined methodology for open nesting while guaran-
teeing abstract serializability. In this section, we describe two other
approaches for improving open-nested transactions, and distinguish
them from our work.

Ni, et al. [11] propose using an open atomic class to specify
open-nested transactions in a Java-like language with transactions.
Since the private fields of an object with an open atomic class type
can not be directly accessed outside of that class, one can think of
the open atomic class as defining an Xmodule. This mapping is
not exact, however, because neither the language nor TM system
restrict exactly what memory can be passed into a method of an
open atomic class, and the TM system performs a vanilla open-
nested commit for a nested transaction, not a safe-nested commit.
Thus, it is unclear what exact guarantees are provided with respect
to serializability and/or deadlock freedom.

Herlihy and Koskinen [5] describe a technique of transactional
boosting which allows transactions to call methods from a non-
transactional module M. Roughly, as long as M is linearizable and

its methods have well-defined inverses, the authors show that the
execution appears to be “abstractly serializable.” Boosting does not,
however, address the cases when the lower-level module M writes
to memory owned by the enclosing higher-level module, or when
programs have more than two levels of modules.

Acknowledgements
We thank James Noble of Victoria University of Wellington, Derek
Rayside, Martin Rinard, Amy Williams, and Charles Leiserson and
other members of the Supercomputing Technologies Group at MIT
CSAIL for helpful discussions and comments on the paper. We also
thank all the reviewers of this and prior versions of the paper for
their comments. In particular, we are grateful to Bill Scherer for his
help in improving the paper.

REFERENCES
[1] K. Agrawal, I.-T. A. Lee, and J. Sukha. Safe open-nested transactions

through ownership (Technical report). Technical report, Laboratory of
Computer Science and Artificial Intelligence, Massachusetts Institute
of Technology, June 2008. Available at:
http://supertech.csail.mit.edu/papers/safe-tech.pdf.

[2] K. Agrawal, C. E. Leiserson, and J. Sukha. Memory models for open-
nested transactions. In Proceedings of the ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness (MSPC), October
2006. In conjunction ASPLOS.

[3] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object
encapsulation. In Proceedings of the ACM Symposium on Principles
of Programming Languages (POPL), New Orleans, Louisiana, Jan.
2003.

[4] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and
K. Olukotun. Transactional collection classes. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practices of Paral-
lel Programming (PPoPP), pages 56–67, New York, NY, USA, 2007.
ACM Press.

[5] M. Herlihy and E. Koskinen. Transactional boosting: a methodology
for highly-concurrent transactional objects. In Proceedings of ACM
SIGPLAN Symposium on Principles and Practices of Parallel Pro-
gramming (PPoPP), pages 207–216, New York, NY, USA, Feb 2008.
ACM.

[6] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA), pages 289–300,
2003.

[7] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural semantics for practical
transactional memory. In Proceedings of the International Symposium
on Computer Architecture (ISCA), June 2006.

[8] J. E. B. Moss. Nested Transactions: An Approach to Reliable Dis-
tributed Computing. MIT Press, Cambridge, MA, USA, 1985.

[9] J. E. B. Moss. Open nested transactions : Semantics and support.
In Proceedings of the Workshop on Memory Performance Issues
(WMPI), Austin, Texas, Feb 2006.

[10] J. E. B. Moss and A. L. Hosking. Nested transactional memory:
Model and architecture sketches. In Science of Computer Program-
ming, volume 63, pages 186–201. Elsevier, Dec 2006.

[11] Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hudson,
J. E. B. Moss, B. Saha, and T. Shpeisman. Open nesting in software
transactional memory. In Proceedings of ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming (PPoPP), Mar.
2007.

[12] C. H. Papadimitriou. The serializability of concurrent database up-
dates. Journal of the ACM, 26(4):631–653, 1979.

[13] G. Weikum. A theoretical foundation of multi-level concurrency
control. In Proceedings of the ACM SIGACT-SIGMOD symposium
on Principles of database systems (PODS), pages 31–43, New York,
NY, USA, 1986. ACM Press.

162

