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Safe Operation of a Batch Reactor: 

Safe Storage of Organic Peroxides in Supply Vessels 
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Dedicated to Professor Dr. Kurt Dialer on the occasion of his 70th birthday 

In this study, we investigated the limits of safe operation for a cooled reactor, operated batch- 

wise. As an example of a single-phase reaction, we studied the decomposition of t-butyl perox- 
ypivalate, a well-known organic peroxide, undergoing self-heating at relatively low tempe- 

ratures. If sufficiently diluted, it can be supplied to a polymerization process from large, cooled 
but unstirred vessels. We present a number of extensions to the existing homogeneous explosion 

theory, namely a practical definition of the critical condition, its calculation, and expressions for 
the available time before runaway in the case of a supercritical condition, taking into account 

the effects of natural convection inside the vessel and the reactant conversion. The extensions 
of the theory were confirmed by adiabatic and non-adiabatic runaway experiments on bench 
scale, and natural convection cooling experiments with liquids in various packages. 

1 Introduction 

Organic peroxides are widely used in the polymer industry as 

initiators of polymerization reactions. Their application re- 
quires skilful engineering to prevent violent decompositions. 

For safe storage of bulk quantities, these peroxides must be 

diluted with a phlegmatizing agent, usually an inert, organic 
solvent. This reduces the sometimes violent effect of a runaway 
reaction, caused by the self-heating properties of the organic 
peroxide. The dilution also reduces the decomposition rate of 
the peroxide, and the maximum temperature rise resulting from 

decomposition. The large cooled vessel for storage of a diluted 
peroxide can be regarded as a batch reactor in which all the 

reactants are present at the start of the batch. Although the 

operational goals of a batch reactor and of a cooling vessel for 
peroxides are different, namely a high and safe conversion of 
reactants for the batch reactor, as opposed to a low conversion 

without excessive cooling costs for a cooled storage vessel for 
peroxides, basically the same evaluation of the cooling system 
must be performed. Two possible outcomes of such an evalua- 

tion are observed in industrial practice: the cooled reactor is 
either subcritical, implying that there will be no runaway, or it 
is supercritical which means that the runaway cannot be ar- 
rested by the cooling system and will occur after a finite time 
interval. At critical conditions, this interval is infinitely long. 
The assessment whether such storage is subcritical or super- 
critical demands a thorough knowledge of the peroxide's ther- 

mal properties and heat transfer conditions. 

The theoretical aspects of thermal explosions of unstable 
substances have been reviewed by Merzhanov and Abramov 
[I]. In the simplest model of a homogeneous explosion, the 
following assumptions are made: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- A uniform temperature exists throughout the unstable 

substance. 

- There is no consumption of the unstable substance, i.e. the 

reaction is of zero order with respect to the concentration of 

the unstable substance. 

- The physical parameters relevant to the runaway process are 
constant. 

The temperature variation of such an unstable substance, sub- 
jected to external cooling, can be derived from the heat 
balance, expressed as heat flow rate per unit volume (W/m3):') 

The first term of Eq. (1) is the rate of heat absorption or ac- 

cumulation by the test sample, the second term expresses the 

heat production rate due to self-heating of the substance while 

the third represents the heat exchange with the surroundings. 

Initial temperature To of the unstable substance is assumed to 
be the same as that of the surroundings which, e.g. could be a 
hot room, a cold storage room, a cooling jacket or a 
refrigerator. 

Qm is the heat production rate per unit mass at T = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 K and 
zero conversion, known in the parlance of thermal explosion 
science as the heat production factor. Appendix 3 lists the equa- 

tions for converting the parameters used in the thermal explo- 
sion science to their equivalents in the chemical reaction 
engineering science. For a generally applicable evaluation, 
Eq. (1) must be first converted into dimensionless form: 

de 
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E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6-  To) 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ~ (T- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo) = ~ 

RT; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP TO 

u t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e c p r  

7 = -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

rn = r -  
V 

dimensionless 
temperature difference, 

reciprocal dimensionless 
activation energy, 

dimensionless time, 

dimensionless heat pro- 
duction rate. 

geometric constant. 

The geometric constant rn can adopt values between 1 and 3: 

rn = 1 for a slab, 

rn = 2 for an infinitely long cylinder, 

rn = 3 for a sphere. 

In order to find induction times to explosion, Eq. (2) must be 
integrated: 

d0 

6 exp(01(1+p0)-m0 
7expl = f 

0 

(3) 

2 Evaluation of the Simplest Model 

To find induction times, we simplify Eq. (3) by declaring that 
00 is negligible, compared to unity. Further, the upper limit of 
the integral is taken as Bad = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00. Only then is an analytical solu- 
tion of Eq. (3) possible, as shown in appendix 1: 

In Eq. (4a), two crucial parameters appear, namely the 
adiabatic induction time tad which is the time to explosion in the 
absence of cooling: 

and the Semenov number Se describing the ratio of heat pro- 
duction rate to cooling rate, according to: 

In Eq. (4a), a convergence limit emerges, namely Secr = lle', 
explained in appendix 1. Fig. 1, a plot of Eq. (4a), reveals two 
asymptotes, namely: 

texp l  

tad 

~- - a for Se = Se,, 

number o f  te rms i n  1 1\90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+Eq.(4aj such t h a t  l a s t  t e r m  (rn"-'(n-l)! - , o.g si zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 
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Fig. 1. Generalized representation of induction time under supercritical 
conditions. 

and 

__ = 1 for Se = 00 
texpl 

tad 

For Se < Seer, the conditions are no longer supercritical and 
a runaway will not occur. Analysis of the solution of Eq. (4a) 
by several approximative correlations led to one particularly 
accurate expression: 

+ Se/Se,,- A I 1" 
The parameters A and B in Eq. (5) are constants, as yet without 
physical meaning. A and B can be derived from a somewhat 
unusual linear regression analysis, aimed at obtaining a slope 
of exactly - 1 for a function of the type 

log(y''B - 1) = log A + log (x- 1) 

by varying B, even though this does not produce the highest 
possible regression coefficient. Nevertheless, the regression 
coefficient remains very close to unity. Such an analysis of the 
exact solution of Eq. (4a) yields the following approximative 
correlation. 

+ 

Se/Se,,- 1 

with a regression coefficient r = 0.999984 for 1.1 < SelSe,, 
< 15. There is only a small deviation between the exact and 
approximative curves, very close to the critical condition Se = 
Seer, see Fig. 2. 

Correlations of the type of Eq. (5) will be used whenever explo- 
sion times must be correlated with the distance from the critical 
condition. It should be noted that, even in a laboratory experi- 
ment, the critical condition, which is a function of kinetic and 
heat transfer parameters, is very sensitive to small measure- 
ment errors, as shown in Table 1. 

Adiabatic induction times of self-heating substances as 
measured in a laboratory set-up, usually a Dewar vessel kept 
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e x a c t  so lu t ion  
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Fig. 2. Exact solution of Eq. (4a) and the approximative function, Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3, 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = 1.134 and B = 0.6038. 

Table 1. Accuracy of critical condition measurement. 

Temperature accuracy Error in the Semenov number 

[Kl [ % I  

f0 .25  

f0 .50 

k1.00 

5 
10 

20 

in an oven, maintained at the same temperature as the sample, 

are also subject to inaccuracies when a small but constant 

temperature gradient exists between the oven and the sample, 
e.g. due to calibration errors. This will be discussed later. 

3 Definitions of “Explosion” and “Critical Conditions” 

The two states, i.e. of explosion and of critical condition in the 
numerical solution of Eqs. (1) or (2) are interrelated: if a state 
is judged as just critical, then the induction time to explosion, 

corresponding to that state, must be just infinite. In such a 
situation, the temperature ranges between runaway and 

stabilization, as seen in Fig. 3. For a better indication of the dif- 
ference between supercritical and subcritical conditions, we 

have taken the conversion of the self-heating substance into ac- 
count in Fig. 3. This resulted in a temperature-time curve 
asymptotically approaching a horizontal for one value of 6. 

There is a maximum stable difference Ocr between the ambient 
temperature and that of the unstable substance. Ocr is referred 

to as the “maximum pre-explosive temperature rise” or, more 
accurately, “maximum subcritical temperature excess” (Merz- 
hanov and Abramov, [ 11). 

For a zero order runaway reaction, and under the limiting 
assumption of /36 = 0, solution of Eq. (2) for d6ld.r = 0 and 
d26/d?=0, which are the limiting conditions for stable 
temperature behaviour, yields: 

BC, = 1 or AT,, = RTilE, based upon 6,, = mle if p6 = 0 

approx imate  

/ 
I I 

2 I 
d imens ion less  t ime zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr - - - 
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Fig. 3. Indicative temperature profiles as functions of time, for 6 = &. 
Conversion of reactant taken into account. 

For a reaction with infinitely large reaction heat, but with a 

realistic value of /3, we will soon find that Bcr is still very close 

to unity. This means that the maximum stable difference be- 
tween ambient temperature and that of an undiluted organic 

peroxide is between 6 and 9 “C because, as a rule, 12000 < 
EIR < 18OOO K and 273 < To,,, < 353 K for organic perox- 

ides. If 6 is taken as slightly above 6,,, the temperature will rise 

steadily and between 6 = 5 and 6 really start to run away. In 
appendix 2, we give an approximate time-temperature profile 
near the runaway point. 

The definition of explosion is essentially arbitrary although, for 
a highly exothermic system, it will hardly be ambiguous. 
Bowes 121 considers that “an explosion, like an elephant, is 

easier to recognize than to define, and hence we may press our 
stopwatch as soon as we are convinced that we have seen one. 

The only necessary requirement is consistency”. 

The problem now is to find a reasonable value for 6exp,. For 
diluted unstable substances, the adiabatic temperature rise AT,, 
is rather low and the effect of concentration on the rate of reac- 
tion must be taken into account. We find that the maximum 
stable 6,,, albeit very difficult to establish, increases gradually 

at small AT,,, and the jump in temperature at 6 = 5 ,  under 

supercritical conditions, becomes less pronounced. Values for 

BCr, as used by several investigators, range from 6 = 2 to 6 = 
5 (Bowes, [2]). Own calculations point to values around BCr = 

5 for diluted organic peroxides with concentrations of approx- 
imately 40%, for which ATad is 250 to 300 K. This definition 

obviates the numerical difficulties of finding accurately the real 
explosion point, which corresponds to 6,d = 25 - 200. For a 

highly exothermic system given by e.g. 6,d = 200, it hardly 
matters whether 6 = 5 or above is adopted as the explosion 

point. Taking a much lower value of 6 as the explosion point, 
for instance 6 = 1.5, would be against our finding that less ex- 
othermic systems may “recover” from such a temperature 
deviation, but not from a 6 = 5 temperature deviation (see ap- 

pendix 2). Hence, for consistency reasons, we have used the 
following definitions: 

6 = 5 signifies explosion: the induction time to explosion is the 
time from 6 = 0 to 6 = 5. 
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6,, is the value of 6 at which the temperature profile no longer 
stabilizes. The maximum subcritical temperature excess is 
assumed to be less than or equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOcr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5. Only very diluted 
systems reach O,,-values slightly above 5 and subsequently still 
undergo temperature stabilization. 

The above definitions lead to a small reduction of the adiabatic 
induction time as given by Eq. (4b), which assumes 6 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco as 
the explosion point: 

The above expression contains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArexp16 rather than rexpl because, 
according to Eq. (4b): 

Adiabatic or strongly supercritical conditions yield an explo- 
sion at rexp16 = 1 but, under conditions close to criticality, 
rexp16 can attain much higher values. Transposition of the ex- 
pression for reXpl6 yields: 

R T , ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, 
tad = 0.993 __ - exp 

E Qm 

The time interval from 6 = Oexp l  to 6 = 
neglected. 

can normally be 

4 The &Correction 

4. I Influence of 0 on Maximum Subcritical Temperature 
Excess and Critical Value of 6 

The effect of cooling, on the one hand, and self-heating of the 
unstable substance, on the other hand, as described by Eq. (l), 
can be illustrated in a Semenov diagram (Merzhanov and 
Abramov, [l]), see Fig. 4. Fig. 4 represents a critical balance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 
heat 
generation 

o r  

remova I 
r a t e  

0 

generotion 

T 8 . m  T cr- 
t empera tu re  - 

Fig. 4. Critical cooling condition represented in a Semenov diagram. 
Simplest case. 

between cooling and self-heating. The heat balance at the 
critical temperature T,, of the self-heating substance reads: 

in which M is the mass of the above substance and Q the heat 

production rate per unit mass, according to QT = Q, x 
x exp x ( -E /R7)  

Evaluation of the heat balance at T,, yields: 

To,,, is the well-known Self-Accelerating Decomposition 
Temperature SADT, i.e. the lowest ambient temperature at 
which a self-heating compound will undergo a runaway reac- 
tion. Transposition yields: 

(7) 

We see that OCr attains values above unity if p is no longer zero. 
Fig. 5 shows that, at two temperatures (1) and (Z), the net heat 
production rate of the system becomes zero, since the self- 
heating effect is balanced by cooling. The first intersection 
point represents a stable operating condition while the second 
one corresponds to a state of high starting temperatures 
whereby the reaction system will either run away at a marginal- 
ly higher temperature or move to the first, stable point. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn the 
critical case, these two points merge. In the supercritical case, 
these two intersection points cease to exist. 

An analysis of such criticality data, carried out for organic 
peroxides, with the following typical properties (Akzo 
Chemicals, brochure, [3]): 

critical ambient temperatures ranging from 0 to 70 "C, 

activation energy EIR between 12.000 and 18.000 K, 

T 
I T I  

0 

t empera tu re  - 
Fig. 5. Representation of net heat production rate of a self-heating 

substance under cooling f(7) = Q,exp( - E / R n  - UA/M(T- To). 
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heat production rate from 0.01 to 0.1 Wlkg at the critical 

ambient temperature (these values represent good estimates 
for bulk storage and packages of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 to 50 kg respectively), 

yields a linear relationship between T&, and T z  according to: 

Tc',/T&,= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOCr = 1 + 2.10 (8) 

with a regression coefficient of r = 0.9994. BCr is independent 

of the heat production factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, and the applied cooling intensi- 
ty UAIM. 

A purely mathematical approach is described by Gray and Lee 
(in Tipper (ed.), [4]). They solve Eq. (7), regarded as a 

quadratic equation in T,,, directly and find for the intersection 
point: 

(9) 

The square root can be expanded into a binomial series as 
follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
OCr = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + 2 p + 5 0 2 + 1 4 0 3 + .  

This is somewhat similar to Eq. (8), derived indirectly for a 
more limited range of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 and Tc,. Substitution of the stability 

criterion d8id7 = 0 and Eq. (8) into Eq. (2) results in the cor- 
relation 6,, = (mle)f(P). 

Numerical evaluation yields an accurate expression for f (@), 
namely the p-correction to the original critical value of 6: 

m 
A,, = - e exp (A) . 
The correction term exp(Pl(1 - 0)) in Eq. (10) comes close to 
the correction term (1 + @) proposed by Parks (in Merzhanov 
and Abramov [l]). 

4.2 0-Correction for Adiabatic Induction Time 

By taking 6 = 1 and m = 0 for the simulation of adiabatic con- 

ditions, and 0 = 5 as the explosion criterion, we find after 
regression analysis of the numerical data: 

7e,p,6=0.993(1+1.83@) or: texPl=(1+1.83P)tad (11) 

where tad is given by Eq. (6) .  The 0-correction of the adiabatic 
induction time is obviously (1 + 1.83 p), close to the term (1 
+ 2p) ,  proposed by Barzykin (in: Merzhanov and Abramov, 

111). 

4.3 Induction Times for Supercritical Conditions 6 > 6,, 

Eq. (2) can be solved numerically for 6 > 6,,, to calculate ex- 
plosion times under supercritical conditions. 0-values range 
from 0 to 0.075. For organic peroxides, 0 does not exceed 
0.03. The results are plotted in Fig. 6. 

O L  I I , , I I  I I I L 
a 1 6e-  

rn 

Fig. 6. Explosion times under supercritical conditions. Influence of activa- 
tion energy. 

No correction is applied for conversion. 

A correlation between explosion time and critical &value in the 
form of Eq. (5) yields the following expression, with r = 
0.9999 for the given range of @-values: 

In the application of this approximative equation, 6,, and tad 
must be calculated using Eqs (10) and (11), respectively. 

5 The Conversion Correction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. I Incorporation of Conversion in the Model 

Until now, we neglected the role of conversion which 
automatically reduces the heat production rate, extends the time 

to explosion, and increases the critical Semenov number. 

The adiabatic temperature rise for organic peroxides, diluted to 
40% with an inert phlegmatizer, is between 250 and 300 K. 

This implies that, at the 0 = 5 point, corresponding to a 
temperature increase of 30 to 45 K, the conversion is at least 

10 to 20%. At near-critical conditions, the conversion is con- 
siderably higher because the decomposing peroxide loses heat 
for a relatively long time without undergoing a runaway reac- 

tion. The result of conversion { for an nth-order reaction is a 

fall in the heat production rate by a factor of (1 - {)". Conver- 
sion { can be derived from the temperature rise since the onset 

of the runaway reaction and the heat dissipated to the surroun- 
dings: 

The heat of reaction AH,,, (for thermal explosion phenomena 
always based on mass, Jlkg) is equal to the heat of decomposi- 
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e , ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, we can now rearrange Eq. (12) into a dimensionless dB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
form: - d r  = “P(=) (l-yHe) . 

( 1 4 )  Analysis of the data from solution of Eq. (17) yields the equa- 
tion for tad as: 

c R T ~  parameter for reactant R T , ~  c ( R:i) (1 + 1.830) (1 + 1.62 yL’) . 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 To 

where yH = ~ - - . 
A Tad A HI,,, E consumption. tad=0.993-  Lexp - 

(18) 
E Qm 

The dimensionless group yH is the usual parameter, describing 
the influence of conversion (Gray, Sherrington, [5]) .  Correc- 
tions arising from this influence are referred to as the yH-cor- 
rections. 

Eq. (14) is solved simultaneously with the modified Eq. (2)  and 
reads as follows for the decomposition of a diluted organic 
peroxide, with assumed first order kinetics: 

5.4 Influence of Reactant Consumption on Explosion Time 

Having derived the correlations for 6,, and tad, we can now 
deduce the influence of reactant consumption on explosion time 
under supercritical conditions, and set the results in the 
mathematical form of Eq. (5 ) .  Fig. 7 gives the data for explo- 
sion times under supercritical conditions for three selected 
values of AT,,, namely 250, 600 and 1200 K. The approx- 
imative correlations of the form of Eq. (5 )  are again valid with 
an excellent fit. 

The values A = 1.6 and B = 0.4 in Eq. (5 )  are adequate for 
all realistic conditions in storage of diluted organic peroxides. 

5.2 Influence of Conversion on Critical &Value 

Analysis of the critical &values as functions of A Tad above 250 
K and /3 in the range between 0 and 0.03 indicates that the in- 
fluence of the parameter yH is the most significant while the ef- 
fect of /3 as a separate parameter for activation energy is very 

small. The following expression results from a regression an- 
alysis: 

6 Natural Convectjon Correction 

6. I ~ncorporation ofNarural convection Effects 

It follows from the theory of natural (free) convection that the 
heat transfer coefficient for a flow of heat from a body to a stag- 
nant medium depends slightly on the temperature difference, 

6,,/6, = 1 +4.33 y y 5  ( 1 5 )  

in which 6, = (m/e) exp(/3/( 1 - 0)) is the reference state. 

The influence of reactant consumption is also tested for a se- 
cond order runaway reaction, e.g. a batch reaction with com- 
ponents in stoichiometric quantities, and this yields the follow- 
ing expression: 

t 

6,,/6, = 1 +4.29 (2yH)o.75 

with accuracy given by r = 0.9996. We now postulate, in ac- I 
cordance with Frank-Kamenetskii (Merzhanov and Abramov, 
[ 1 3 )  for heterogeneous self-heating processes, that under condi- 
tions of reactant consumption 6,, can be expressed as follows: 

6,,/6, = 1 +4.3  (n yH)0,75 

where n is the order of reaction. 

m 
(16) 

Fig. 7. Explosion times under supercritical conditions. Correction for con- 

version is applied. To = 293 K and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP = 0.025. 
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making the heat flow rate proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAT'.,' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.33 (Beek 

and Muttzall, [6]). Also other parameters relevant to the 

runaway process are slightly dependent on temperature or 
temperature difference. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- The specific heat capacity is a function of temperature, 

especially for alcohols, which are common decomposition 

products of most organic peroxides (Perry, [7]); 

- Some solvents used for phlegmatization of peroxides, 
notably phthalic esters, have viscosities strongly dependent 
on temperature. As a result, the heat transfer coefficient is 

also considerably affected by temperature, with a significant 
influence on criticality (Moise, Pritchard, [S]). 

- The radiative heat transfer coefficient is nearly proportional 
to A T 3  (Beek and Muttzall, [6]). 

- We assumed a constant ambient temperature at a relatively 
high external heat transfer coefficient. This can be achieved 

by a cooling jacket but not by the relatively gentle air mo- 
tion, such as in cold storage. As a result, the external heat 
transfer coefficient may depend slightly on the temperature 

difference between the self-heating sample and the surroun- 

dings. 

It is seen that the cooling curves for cases of natural convection, 
or other temperature effects which are similarly described, can 

be easily mistaken for Newtonian cooling curves based on a 
perfect proportionality between the heat flow rate and the 

temperature gradient. 

Cooling curves are routinely recorded for measurement of ther- 
mal half-life, t,,,, of the small 0.5 dm3 Dewar vessels filled 

with 0.4 dm3 self-heating material for the SADT-test. It is im- 

practical to perform this standard test in the usual maximum 
package size of 50 kg and a simulation test in a Dewar vessel 
with the same thermal characteristics since the package size of 

50 kg is universally accepted. The UNO handbook (UNO, [ 1 I]) 
prescribes that Dewar vessels must be used for this simulation 
test with a t , , ,  of not less than 5 h,  using 400 ml of dimethyl 

phthalate as the calibration substance. The exact procedure for 
the calculation of t,,, is not prescribed but, evidently, warm 

dimethyl phthalate is poured into the Dewar vessel, which is 

then placed in a thermostat. The temperature is recorded and 
the time, at which the original temperature difference is halved, 

is taken as r , , , .  Occasionally, hot tap water is used instead of 

dimethyl phthalate and the required t,,, is corrected to compen- 
sate for higher density and specific heat capacity of water. 

Cooling of a hot mass in a constant temperature environment 
can be approximated by: 

dT 
( c w  + ~ c p )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~dt = - [ (UA) ' ( T -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA constant)^-'] ( T -  Tconstani) 

(19) 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = 1 represents Newton's cooling law. C, is the heat 
capacity of the vessel in J/K and (UA) = (UA)' for A T  = 1 "C. 

Integration of Eq. (19) from T ,  to T and 0 to t yields: 

Hence, regression analysis of the cooling curve in the form y 

= const t should yield a straight line. In the analysis, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq can be 
varied till the maximum value of the regression coefficient is 

obtained. If q = 1 ,  the usual logarithmic equation results: 

Computed data of a non-Newtonian cooling curve, on which we 
will demonstrate various regression analysis techniques, are 
given in Table 2. 

Analysis of data in Table 2 according to the transformed Eq. 

(20) for q = 1.3333.. . naturally yields the value (UA) '/(Cw + 
Mcp) = 0.03 h - '  0C-1/3 and the regression coefficient is 1. 
However, the problem is that other values of q also yield 

regression coefficients very close to unity. For example, q = 

1.3 results in r = 0.999874, while q = 1.4 yields r = 0.9995. 
The small deviations of the regression line from a straight line, 

if q is not optimal, are only perceptible in an accurate plot of 
the transformed data. Even for q = 1 ,  the Newtonian case, us- 

ing the logarithmic transformation Eq. (2 l), seemingly straight 
lines are obtained but their slopes appear to depend on the 

respective temperature range, see Table 3. The value of t,,, for 
a Newtonian-type cooling curve can be derived from Eq. (21) 

as t,,, = In 2/slope of the regression line. 

The analysis in Table 3 shows that the value of t,,,, derived 

from an actual cooling curve, may increase rapidly if a small 
initial temperature difference is set. This is not only inconven- 

ient for the calibration of Dewar vessels for the SADT-tests 
but, what is more important, it raises the question as to how im- 
portant are the natural convection effects at near-critical condi- 

Table 2. Calculated data for cooling of a nowNewtonian liquid. To = 

60 "C, T,,,,, = 20 "C, q = 1.3333 ._., (UA)'I(C, + Mcp) = 

0.0300 h - '  oC-''3. 

Time 
[hl 

Temperature 
["CI 

0 
0.5 

1 .o 
1.5 
2.0 

2.5 

3.0 
4.0 

5.0 

6.0 

8.0 
10.0 
12.0 

14.0 

16.0 
18.0 

20.0 

25.0 
30.0 
40.0 

50.0 
60.0 
m 

60.00 

58.02 

56. I6 

54.40 
52.80 

51.27 

49.84 
47.23 

44.91 

42.85 
39.36 

36.55 

34.26 
32.37 

30.80 
29.49 

28.33 

26.23 
24.79 
23.00 
22.00 
21.40 
20.00 
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Table 3. Values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(UA)’/(Mc, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,.,) and t,,, determined from the non- 

Newtonian cooling curve, given by data in Table 2, by dividing it into 

temperature intervals with assumed Newtonian behaviour. 

Temperature 
range of regres- 

sion analysis 

[“CI 

Best fit value 

(UA)’I(Mc, + 
C,.,) 

[h - ‘I 

Apparent value 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt1/2 

[hl 

Regression 
coefficient r 

60 ... 55 
60 ... 53 
60 ... 47 
60 ... 40 
60 ... 30 
47 ... 30 
34 _ _ _  25 
29 ... 25 

0.100 
0.0993 
0.0963 
0.0904 
0.0798 
0.075 
0.0614 
0.0587 

6.93 
6.98 
7.20 
7.67 
8.69 
9.24 

11.29 
11.81 

0.9999 
0.9999 
0.9999 
0.9994 
0.999 
0.9991 
0.9991 
0.9995 

tions with small temperature gradients. One approach of taking 

natural convection and other temperature effects into account in 
the criticality calculations is to assume the following dimen- 

sionless correlation: 

uiC, = (uIc,), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe q -  (22) 

in which (Ulc,), is the value of Ulc, at 0 = 1. As shown, the 
exponent q can be derived from a relatively simple cooling or 
heating experiment. The established theory about the influence 
of free convection on self-heating deals with the increase of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,, 
in oxidative self-heating of particulate solids or powders 
(Bowes, [2]). Merzhanov and Shtessel [9] studied the onset of 

motion in thin layers between 0.5 and 4 cm, at rather low 
temperature differences of 0.1 to 0.5 “C. Vasseur and 
Robillard [ 101 studied numerically the steady state natural con- 
vection patterns of a fluid in a rectangular cavity with uniform- 

ly decreasing wall temperature. They concluded that free con- 
vection occurs from a Grashof number Gr of approx. lo3 for 

a Prandtl number Pr of 73 to Gr = lo4 at Pr = 0.73. Further, 

a transition to a different flow regime occurs at Gr = 80 000. 
The common element in all these studies is the relationship be- 

tween the heat transfer coefficient and the temperature dif- 
ference, applied in Eq. (22). The effect of free convection on 
6,, in large scale, cooled storage tanks with self-heating 

materials has not yet been established. Substitution of Eq. (22) 
into the basic Eqs (2) and (14) yields, after a few rear- 

rangements: 

and 

r = yH (O+m Oqdr) . (23) 
0 .1: 

The definition of 6 is now based on U, rather than on U .  

6.2 Influence of Natural Convection on 6,, 

The influence of natural convection, characterized by exponent 
q, on the critical &value is shown in Fig. 8. The reference 

. .... 9 p.0.02 

0 I , , , , , ,  I L , ,  I ,  I I ,  

0 0.01 0.02 0.03 
Y H  - 

Fig. 8. Dependence of criticality on natural convection exponent q and con- 

version correction, for two dimensionless reciprocal activation energies p. 

value 6, corresponds to q = 1 ,  given by Eq. (15), which 

already includes the 0- and 7,-corrections. 

By smoothing the first part of the curves in Fig. 8 for yH < 
0.005 along the broken lines, justified since yH is always larger 

than 0.005, the following accurate expression can be derived 

for the critical value of 6: 

~ = 1 + (q4 - 1)  (0.024 + 0.60 + 257;) A,, 

60 
(24) 

where 6, corresponds to the conditions at which we apply the 
natural convection correction, namely 6, = (m/e)exp(~/( 1-0)) x 
X (1 + 4.33 (n7H)0”5). The result is a rather complex equation 

but it shows the separate effects of 0, yH, the order of reaction 
n and the natural convection exponent q. 

6.3 Influence of Natural Convection on Adiabatic 
Induction Time 

The definition of the adiabatic induction time implies no cool- 
ing at all. Hence, the correlation for tad, as given by Eq. (18), 
must be employed. 

6.4 Induction Times for Supercritical Conditions 

Calculations show that, for every specific condition given by a 
set of parameter values 0, yH and q,  a correlation of the type 
of Eq. (5) can be found with an excellent fit for the best choice 
of the adjustable constants A and B. This is exemplified in 
Table 4 for two extreme conditions for bulk storage of diluted 
organic peroxides. Table 4 also gives the accuracy of approx- 
imation of the critical &-value by Eqs (24) and (15), compared 
to the calculated values. 

Thus far, a number of combinations (A ,  B)  were found by linear 
regression analysis and it is therefore useful to check whether 
there is a significant correlation between them. 

Analysis of the data from this study yields A = 2.243- 
1.804 B ,  with r = 0.9882 and a standard deviation of 0.015, 
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Combination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAT,, P 4 (6e/m),, Regression 

exact Eq. (24)+ analysis 

Eq. (15) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA B r 

1 250 0.03 1.333 

2 400 0.02 1.25 

see Fig. 9. Increasing the order of the regression polynomial 

does not improve the accuracy of the correlation between A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Given the accuracy obtainable by using the two parameters 

A and B in Eq. (5) and similar equations, and the not 
understood physico-chemical meaning of parameters A and B,  
it is not justified to rearrange Eq. (5) and similar equations to 

ones with only one adjustable parameter. 

1.614 1.613 1.6889 0.2886 0.999 12 

1.276 1.279 1.5371 0.3713 0.99955 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7 The Generalized “&”-Diagram 

Fig. 10 is a generalized diagram showing explosion times as a 

function of the distance to the critical condition. Results of 
adiabatic and supercritical calculations are usually represented 
in a “&”-diagram as the dimensionless induction time 7,xpl 

plotted against the dimensionless heat production rate 6 at the 

initial temperature (van de Putte and Groothuizen, [12]). At 
critical values of 6,,, which are, depending on geometry, ap- 

proximately unity, vertical asymptotes are obtained because, at 
6 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,,, an explosion cannot develop. 

In our generalized approach, the x- and y-coordinates of the 
diagram are slightly adapted so that 6 is replaced by Se/Se,,. 

This reduces the number of asymptotes to only one, namely at 
Se = Seer. In addition, tad is not taken as a fixed constant, given 

by Eq. (4b), but corrected for the effects of 0, -yH and the order 
of reaction n. The x-coordinate is x = Se/Se,, instead of 6 and 
the y-coordinate is y = (texpl/tad)(Se/Secr) instead of (texplltad) 6. 

The adiabatic line is obtained as a straight line in a log-log plot 

as texpl = tad, which yields x y = 1. 

1.689 

? 
A 

1.134 

\ 
s i m p l e s t  c a s e -  

0.604 

B- 0.287 

Fig. 9. Linear regression analysis of a number of combinations (A,@ used 

It is seen from Fig. 10 that, if Se/Se,, > 5 ,  the conditions are 

practically adiabatic or, in other words, the time interval to the 

actual runaway is scarcely increased by cooling. The broken 
line in Fig. 10, referred to as “no corrections”, represents the 

exact solution of Eq. (4a), describing the simplest case with 0 
= 0, reaction order zero, and q = 1.00. The line “all correc- 
tions” applies to conditions of the highest dilution, A Tad = 250 

K, the highest conceivable value of 0, at least for organic 

peroxides, 0 = 0.03, the largest exponent in the natural con- 
vection correction q = 1.333 and a reaction order n = 1. In- 

termediate conditions can be represented by a line between 

these two extremes. 

8 Experiments 

8. I Adiabatic Runaway Experiment 

A 500 ml Dewar flask is filled with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA400 ml of peroxide, closed 

by a stopper with only one small hole for thermocouple leads 
and placed in a small oven without forced heat circulation. The 
PID-controller for the oven is calibrated with pure 
isododecane, which does not undergo self-heating. The oven 

temperature should remain constant in the entire range planned 
for the experiment if there is no additional heating. The PID- 

controller is set in such a way that the oven provides a little ex- 

Legend 

- a1 I corrections 

n o  c o r r e c t i o n s  

superc ri t i C d  I 
e x p e r i m e n t s  

10.‘ loB 10’ 10‘ 
__ 

5%- 

Fig. 10. Generalized 7 - 6  diagram, adapted to contain only one vertical 

in correlations similar to Eq. (5). asymptote 
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tra heat for the Dewar vessel, to compensate for its heat capaci- 
ty, should self-heating become perceptible. The set-up is placed 
in a concrete cell and remote-controlled, for the sake of person- 
nel safety. 

Fig. 11 presents a time profile of temperature. Using the data 
points, an Arrhenius plot of In (Q,), i.e. heat evolution per unit 
mass at zero conversion vs 1/T was obtained by a smoothing 
differentiation procedure (Douglas, Aviakan, in Perry, [7]). 
Differentiation is necessary since Q [W/kg] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (l/cp) dT/dr. 

The evaluation procedure takes conversion into account: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A Tsince t = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo 

where { = 
Q 

Qo = ~ 

1-r  A Tad 

The adiabatic temperature rise can be calculated from the 
reported data as AT,, = 269 K and the specific heat capacity 
of the liquid is 2176 J/kg"C. The regression analysis of the data 
of the Arrhenius plot yields Qm = 1.18 x 10'' W/kg and EIR 
= 13753 K. Hordijk et al. [13] mention different values of Qm 
and EIR for this diluted peroxide but the value of the parameter 
Qm exp( - E/RTo) is almost the same. The thermal properties 
given in [13] are valid for an extended temperature range. 
Generally, self-heating properties can be described more ac- 
curately for a narrow temperature range. The adiabatic induc- 
tion time to 0 = 5 at an initial temperature of 295.1 K can now 
be calculated with the aid of Eq. (1 8) as 59.7 h, in good agree- 
ment with the experimental value of 60.5 h. Calculation of the 
adiabatic induction time from the data of Hordijk et al. [13] 
yields 72.9 h. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8.2 Influence of Deviations from Truly Adiabatic Measurement 

Another problem in adiabatic measurements is the influence of 
small, constant temperature differences between the oven and 
sample. This influence will be assessed for the same 40% by 
mass organic peroxide, using a variant of Eq. (1) without the 
conversion correction of adiabatic induction time, which is 
known to be small: 

dT Qm UA 
(A Tsample-oven) (25) - - - -exp (-+,) - ~ 

dt cp ecpV 

where  AT,,,,,,^,,,, is constant during a run. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 350 

- ' I  340 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIL 

T I 328 K e = 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 10 20 30 40 50 60 

t ime  ( min )+ 

Fig. 11. Adiabatic runaway experiment with r-butyl peroxypivalate, 40 

mass-% in isododecane. 

The direct numerical integration of Eq. (25) yields the runaway 
time, based on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 = 5 criterion, of 58.2 h in the ideal case 
of the temperature difference being zero. For the execution of 
the adiabatic test, the investigator chooses a reasonably small 
sample size, in order to reduce the effects of a possible runaway 
reaction. For a truly adiabatic measurement, the result must be 
independent of sample size. Apart from the A Tsample-oven, the 

dominant factor is the parameter UA/(ecp V), characterizing the 
Dewar vessel. Table 5 gives the results of explosion time 
calculations for a number of cases. 

The characteristics of the Dewar vessels in Table 5 are based 
on the following assumptions: 

(1) is a 1.2 dm3 Dewar vessel containing 1 kg organic 
substance with cp = 2500 J/kg K, according to the official 
UNO-test. 

(2) is a 0.5 dm3 Dewar vessel containing 0.4 kg organic 
substance with cp = 2500 J/kg K,.i.e. the accepted SADT- 
simulation test. 

(3) is a 0.1 dm3 Dewar vessel containing 0.05 kg organic 
substance with cp = 2000 J/kg K, in a mini-adiabatic test. 

It is striking that a small heat exchange with the surroundings 
can have.such a dramatic effect on the experimental adiabatic 
induction time. Therefore, resistance thermometers with 0.001 
K accuracy in combination with a good control system must be 
applied. 

Table 5. Calculated explosion times (in hours) in case of small deviations from true adiabatic conditions. 

Set 1: original parameters and Q, = 1.18 x loL9 W/kg. 
Set 2: the same EIR, cp etc. but Q, = 1.18 x lozo W/kg, resulting in 10 times shorter induction time to explosion. 

AT,,,,,, -oven 

[KI 

Characterization of Dewar vessel UA(ecpV) in [ s -  '1 
Set 1 Set 2 

1 . 3 3 ~  2.7 x 10- 8 x  1 . 3 3 ~ 1 0 - ~  2 . 7 ~  lo- '  8x lo-' 

(1) (2) (3) (1) (2) (3) 

+0.50 52.8 48.4 37.5 5.76 5.70 5.48 

0 58.2 58.2 58.2 5.82 5.82 5.82 

65.4 92.6 5.85 5.88 6.01 
76.0 subcrit 5.88 5.95 6.22 

+0.25 55.3 52.7 45.0 5.79 5.76 5.64 

- 0.25 61.5 
- 0.50 65.4 
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8.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASupercritical Experiments in a Dewar Vessel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA78 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt- 

8.3.1 Characterization of a Dewar Vessel and Contents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60k 
A Dewar flask and its contents undergo a certain heat loss, 
quantifiable by the two parameters in Eq. (22), i.e. the natural 
convection exponent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq and (UA)'I(Mc, + C,) [s-l  "C'-*]. 
These parameters can be determined as outlined in section 6.1. 

Analysis of experimental cooling curves, according to the in- 
tegrated Eq. (20), reveals that q cannot be determined accurate- 
ly, due to the naturally occurring scatter in the temperature 

data. We prefer a different approach: 

The temperature vs time plot is split into a number of 
small temperature intervals. For each interval, we assume 
that the heat loss is proportional to AT.  Regression analy- 
sis of the plot, according to the logarithmic Eq. (21), 
yields the values for the parameter (UAI(C, + M c ~ ) ) ~ ~ ~ ~ ~ .  
These values correspond to the logarithmic mean 
temperature in the adopted interval. When all the intervals 
have been evaluated, a correlation between the heat 
transfer coefficient and A T can be found by regression an- 
alysis. 

This method is applied to the Dewar vessel, used for the super- 
critical experiments. Cooling of some liquids in a number of 
different packages is also examined. Table 6 gives a survey of 
the cooling experiments. 

Table 6 demonstrates that, even on a small scale, the combined 
effect of natural convection and possibly other parameters 
which are slightly affected by temperature leads to a deviation 
from the idealized first order heat transfer. The exponent q 
tends to increase slightly with increasing size which is in agree- 
ment with literature. We conclude that, even on a small scale, 
natural convection does play a role. 

Fig. 12 presents the cooling curve of 400 g of water in a Dewar 
flask of 500 ml, used for the supercritical experiments. Con- 
stant ambient temperature was 19.6 "C, and the initial water 
temperature 66.7 "C. 

Regression results of the cooling curve by Eq. (20), in order to 
obtain the value of q directly, are given in Table 7. 

Table 6. Evaluation of cooling experiments. 

+ 

I0t 
01 I I I 1 I I I I I 

B 25 50 75 iaa 125 150 175 200 225 

time ~t ( 5 )  - 
Fig. 12. Temperature as function of time for 400 g water In 500 ml Dewar 

vessel used for supercritical experiments. 

Table 7. Analysis of cooling curve of 400 g water, in a 500 ml Dewar 

vessel, by Eq. (20). 

Test value Regression equation Regression equation 

for temperature range 
66.7 "C to 31.1 OC 30.8 "C to 23.2 "C 

for temperature range of 4 

~ 

1.01a' y = -0.0403-0.04537 t y = -0.00099-0.0407 t 

1.10 y = -0.0193-0.0342 t y = +0.0088-0.0345 t 

1.20 y = -0.00523-0.0251 t y = -0.0146-0.0288 t 

1.25 y = -0  00085 -0.021 r not determined 
~ ~~ 

a) q = 1.01 is close to Newtonian cooling behaviour. q = 1 would give 

an indeterminate result in Eq. (20). 

The regression analysis according to Eq. (20), which looks so 

attractive if applied to calculated data, is rather difficult to use 
for the experimental cooling examples given in Table 6. It is 
not absolutely clear from Table 7 as to what is the best value 
for the exponent q. Therefore, we favour the indirect analysis 
in which UAI(C, + Mcp)local is derived as a function of AT.  
Application of this method yields the data given in Table 8. 

These data are analyzed according to the regression function 
UAI(C, + M c ~ ) ~ ~ ~ ~ ~  = A Zi," - I ,  so that the intercept on the 

Experimental Range of temp. Slope of Value of q in 

condition in experiment [K] s -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 AT1 -4 UA = ( U A ) ' A P p - '  
correlation cooling differences curve 

400 ml isododecane 1.4 to 32 1.09 x lo- '  1.191 

400 ml water in a 7.2 to 47.1 0.70 x 1 0 - ~  1.20 

10 1 isododecane in 6.4 to 37 1.78 x 1 0 - ~  1.212 

in a 500 ml Dewar vessel 

500 ml Dewar vessel 

10 1 PE-bottle 

20 kg isododecane in 3 to 66.5 2.36 x lo- '  1.244 

30 1 plastic package 
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y-axis tends to zero. This yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(UA) ' / (C, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMcp) = 
0.70 x s - ' A F - '  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = 1.2. The data of Table 6 were 
similarly obtained. Table 8 shows that, at small temperature 

gradients, the influence of fluctuating ambient temperature 

(because critical experiments are usually carried out in sturdy 
and rather simple equipment with on/off controllers) becomes 
significant and the results become unreliable. 

Table 8. Characterization of cooling of 400 g water in a 500 rnl Dewar 

vessel. Cold room temperature: 19.6 "C and initial temperature: 66.7 "C. 

Temperature interval A T,, Value of Regression 

from _... to .... U*q coefficient 

i"C1 

66.7.. ..53.6 40.195 0.0543 0.9999 

51.9. ... 43.7 28.000 0.0487 0.998 

42.5 .... 36.7 19.85 0.0468 0.997 

36.4. ... 32.6 14.82 0.04198 0.9996 

31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS.. . .29.0 10.60 0.0390 0.997 

28.7 .... 26.8 8.11 0.0406 0.998 

8.3.2 Supercritical Experiments in a Dewar Vessel 

The critical condition for the above-mentioned peroxide could 

be calculated from Eqs (15) and (24), once the characteristics 
of the applied Dewar vessel were known. These were establish- 
ed with the particular peroxide in a low-temperature range, 
where self-heating is irrelevant, and found to be q = 1.2 and 
(UA)'I(MC, + c,) = 1.32 x 1 0 - ~  s - I  O C - O . ~  so that 6,, = 

1.295 for rn = 2.5, which is an approximative value for this 

shape of vessel. Further, the adiabatic temperature rise A Tad is 
231 "c. In the calculation of AT,,, the specific heat capacity 
of the Dewar vessel with contents must be adopted since the 
vessel acts as a heat sink, similar to the phlegmatizing agent 

isododecane. Heat capacity of the Dewar vessel is estimated 
from the temperature drop of hot water, suddenly poured into 

the cold vessel, as C, = 116 J/K. Hence, the effective specific 
heat capacity of the Dewar vessel and its contents is 

(McP + C,)/M = 253 1 J/K kg instead of 2176 J/K kg and A Tad, 
corrected for the Dewar vessel's heat capacity, is ATad = 
269 x 2176/2531 = 231 K. 

The critical ambient temperature To,,, follows from the defini- 

tion of 6,, 

Insertion of all known data yields er/Uo = 50.7 kg K/W and 
solution of the critical condition for 6,, = 1.295 results in To,,, 
= 301.4 K = 28.4 OC. 

time ( h )  - 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13. Temperature runaways of t-butyl peroxypivalate. 40 mass-% in 

isododecane; supercritical conditions in a 500 ml Dewar vessel. 

bient temperature exceeds 28.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"C.  A series of supercritical ex- 
periments were performed by rapidly heating the peroxide solu- 

tion to the desired initial temperature and placing it in preheated 
surroundings. Fig. 13 presents the temperature profiles of the 
supercritical experiments, and Table 9 summarizes the evalua- 
tion data. 

The experimental data texplltad are shown in the adapted r--d 
diagram, Fig. 10. It is seen that these points lie on the "all cor- 

rections" line. 

The question "does incorporation of natural convection effects 
alter our safety assessment of a given cooling situation, com- 

pared to using a less sophisticated method which neglects this 
effect ?" can now be answered. The analysis of the cooling ex- 
periments, given in Table 6, shows that natural convection ef- 

fects do indeed play a role and lead to a certain range of 
parameter values (UA)'/(Mc, + CJ, which, in turn, are 
associated with a range of critical ambient temperatures To,,, 
for a particular self-heating problem. Table 10 shows the out- 

come of comparative calculations of To,,,. 

A storage vessel, with the same cooling behaviour as that in the 

hypothetical situation of Table 2, is considered with q = 
1.333.., and (UA)/Mc, = 0.03 h - '  K-"3; the heat capacity 
of a large vessel can be neglected compared to its contents. The 
self-heating substance is again t-butyl peroxy pivalate 40 wt-% 
in isododecane, with the characteristic parameters AT,,, cp, Qm 
and EIR as given. 

Table 9. Evaluation of supercritical experiments. 

Initial temp. Calculated Calculated Calculated Experimental 
of peroxide, value induction time runaway time runaway 
equal to oven of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 tad, from time 

temperature Eq. (18) 
"w ihl [hl ihl 

31.7 2.21 17.2 26.8 23.4 
35.2 3.61 10.55 13.4 12.3 

40.0 6.94 5.5 6.2 6.0 

13.6 2.8 3.0 2.7 45,1 
Hence, the peroxide in this Dewar vessel will undergo a 
runaway reaction which cannot be arrested by cooling if am- 
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Table 10. Calculation of critical ambient temperature in a self-heating case, 

where cooling by natural convection is important. Cooling curve for the 

vessel is the same as in Table 2. Properties of peroxide: AT,, = 269 K .  
cp = 2176 JikgK, Q, = 1.18 x lOI9 Wikg and EIR = 13753 K .  

Type of analysis Value of Value of Value of To,,,, first 

Wm), ,  e r l 4  trial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo,,, is 299 K 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn = e [K] 

x exp(-&) + .  . .] d0 (a1 - 1) 

non-Newtonian, 1.4381 80.314 298.5 
full T-range 

Newtonian. 1.294 45.29 301.8 
range 60 . . .  53 "C 

Newtonian range 

60 ... 40 "C 1.294 49.75 301.1 

Newtonian 1.294 59.96 299.8 
range 47 ... 30 "C 

Newtonian, 1.294 76.61 298.2 
range 29 ... 25 "C 

9 Conclusions 

The induction time to runaway under supercritical conditions 
for a reacting batch, exemplified by adopting excessively high 

cooling temperature for cooled storage of a self-heating 
substance, can be accurately calculated with a generalized 
equation. This equation uses, on the one hand, the distance to 

the critical condition, which can be derived from thermal 
stability properties of the self-heating substance and the heat 

transfer coefficient and, on the other hand, the adiabatic induc- 
tion time to runaway, which is determined solely by the 

physical properties of this substance. Thermal properties can be 

measured by a number of established techniques, preferably in 

a temperature range where a thermal runaway may also take 

place. Storage vessels are usually jacketed and unstirred 
because agitation drastically reduces the time to runaway in 
case of accidental cooling failure. The heat transfer coefficient 

can be best derived by analyzing the cooling behaviour of the 
self-heating substance at a safe, low temperature. Cooling is 
often assumed to be Newtonian, but natural convection within 
the vessel results in the heat flow rate becoming a weak ex- 

ponential function of the temperature difference. We found that 

this occurs even in laboratory experiments. Newtonian analysis 
as opposed to the correct method may yield a higher critical am- 

bient temperature than the true value, but the difference is quite 

small, approximately 3 K. The difference becomes very small 
when the temperature gradients in the determination of the 

cooling curve are kept small. Performance of the rigorous, 
rather cumbersome, calculation of the critical condition is 
recommended if the actual operating conditions for the storage 

vessel are supercritical and, as a consequence, the induction 

time is finite. If only a quick estimate is required whether the 
cooling conditions are subcritical or supercritical, we recom- 
mend adoption of the classical approach by Semenov. 

Appendix 1: Analytical Calculation for the Simplest Case 

The derivation starts with Eq. (3), with Oexpl = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco as the upper 
limit for the integration. The integrand, being a quotient, can 
be expanded algebraically according to: 

Induction Times 

The terms in Eq. (a1 -2) can be found by partial integration 

carried out in such a way that the exponent (n-1) on (mO/6) is 
reduced stepwise: 

TeXp] = I, + ... I,, +I, + + ... where I,, = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ (mei6)" - ' x 
1 "  

& O  

x exp(-x) 1 +pe dB . (a1 - 3) 

The primitive function of exp( - no/( 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+PO))  is not known and 
no approximation covering all values of n and the full range of 

0 from 0 to rn could be found. Only the special case of (3 = 0 
can be solved analytically. We proceed with Eq. (a1 - 3) by ap- 

plying the partial integration principle, taking into account that: 

1 m 

~ O"-Pexp( - no) 

Evaluation of Eq. (a1 - 3) yields for the first partial integration: 

I, = (1/6) (m/6)" - ~ n - l  n r 8 " - 2 e x p ( - n O )  d0 . 

= 0 for p < n and any value of 8.  
n lo 

0 

Further reductions of the exponent on 0, until it becomes zero, 
yield: 

(n - l ) !  

n" 
x - .  

Hence: 

l !  2! 
TeXpl 6 = 1 + (m/6) ~ + (m/6l2 3 + .... . (a1 -4) 

22 3 

Transposition yields Eq. (4), as Se = ( 6 h )  and 7,xp16 = ( t / tad).  

Critical Condition 

111 the series, given by Eq. (a1 -4), the individual terms can be 
calculated by a recurrent correlation, starting from the first 
term, i.e. term(1) = I, = 1: 

term(i) = Ii = Ii - , e/a ((i - l)/i)i where a = e/m6 = SeiSe,, . 

For large values of i the following correlation is valid: 

((i- 1)/ili = e -  . 
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Hence, the higher terms are calculated according to: 

Zi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZi - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,/a 

The sum .z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZi is known to be convergent only if a > 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAppendix 3: Conversion of Thermal Explosion Parameters 
to their Chemical Reaction Engineering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W Equivalents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i = l  

Thermal explosion science applies a number of different 
parameters, based on kg’s rather than moles and on heat pro- 

Therefore, the critical condition is 6,, = (m/e), or Seer = l/e. 

duction rate rather than chemical conversion rate. The reason 
is that the starting materials are often quite complex mixtures, 
or the products are either difficult to define chemically or are 
unimportant. The conversion equations are derivable as 

Appendix 2: Mathematical Treatment of Sharp Tempera- 
ture Increases and Criticality 

Criticality calculations must be carried out with great precision 
if the maximum subcritical temperature excess Omax is to be 
found. For example, the following results are obtained in the 
vicinity of 6,, for ATad = 400 K and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 0.03: 

(6e/rn) = 1.2910 is subcritical, and Omax = 2.21; 

(6elm) = 1.2915 is subcritical, and Omax = 3.58; 

Assume that the batch ’AA --$ ’cC takes place in a 
volume V ,  and the reaction enthalpy per unit mass of A is 
AHr,w. The equivalent molar heat of reaction, with the usual 
dimension of heat per kmol of product C, is AH,. The initial 
mass fraction of A is wAo, and its initial molar concentration is 
cAo. The average density of the reacting system is Q .  The 
amount of heat released after total conversion of A is: 

(6e/m) = 1.291508 is supercritical, because Omax > 5. 
QVWAOAH,,, = VCAOVAAH,/V, 

The integration step h for the numerical integration must 
decrease sharply on reaching higher values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  for example: 

ifO<O< 1.8,selecth =ho,ho = 0.01/6orsmallerissuggested; 

if 1.8 < 0 < 2.8, select h = h0/4; 

if 2.8 < 0 < 4, select h = h0/15; 

if O > 4, select h = ho/lOO. 

Hence: 

(a3 - 1) 4 wAO A Hr,w > 
AH, = 

cAO ’ c  

The heat production factor, being the heat production rate at in- 
finitely high temperature and zero conversion, is: 

Qm = k l , l a t T = m  AH,cA~c,~/Q for a second order reaction 

or 

Qw = k l a t T = m  m,cAO/@ for a first order reaction. 

These values were optimized in an empirical way. 

The basis is the very sharp temperature rise close to the explo- 
sion point. For numerical evaluation of the temperature profile 
in the adiabatic case, the following approximation, based on the 
assumption of 06 being negligible compared to unity, is essen- 
tial (“the Frank-Kamenetskii substitution”): 

exp (-$) = exp(-&) exp(-- RT; (T- To$ . 

It is now possible to integrate the heat balance 
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Symbols used 
This eventually yields: 

heat transfer area 
adjustable parameter in Eq. (5) 

W - 1 )  B adjustable parameter in Eq. (5) 

A [m2] 

C rkmo1/m3i molar concentration 

A 

[J/kg K] 
WKI 

where tad is the adiabatic induction time according to Eq. (4b). 2w specific heat capacity at constant pressure 
heat capacity of (Dewar) vessel 

E- [J/kmol] energy of activation 

Gr Grashof number = 
The mathematical form of Eq. (a2 - 1)  makes it obvious that, 
in the initial period, the temperature rise is approximately 

asymptotically to infinity. 

L’ g (em- e , d  
u2 ewall 

linear but, on reaching t = tadr the temperature increases [m/s2] gravitational acceleration 9.8 m/s2 
AH,,, [Jlkgl enthalpy change per unit mass 
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AHr 
k 

m 
M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n 
Pr 

Q 
Q, 

4 
r 
R 
Se 

T 

U 
U‘ 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A ‘ad 

uo 

V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W 

molar enthalpy change 

reaction rate constant (first order) 

ditto (second order) 

geometric constant, in = rA/V 
mass 

order of reaction 

Prandtl number = p/c,h 
heat production rate 
heat production rate at infinitely high tempe- 

rature (heat production factor) 

natural convection exponent in U = U ’ A P  
radius 

gas constant = 8.314 Jlgmol K 

Semenov number = b/m 
time 

temperature 

adiabatic temperature rise 
overall heat transfer coefficient 

regression value of U ,  determined from 

U = U ’ A P - ‘  
regression value of U,  determined from (I = 
UOeq - ’ 
volume 
mass fraction 

Dimensionless Parameters and Greek Symbols 

8 

R 

dimensionless temperature increase, 8 = 
E ( T -  To)/RToz 
reciprocal dimensionless activation energy, 

/3 = RT,/E 
dimensionless time, r = Ut/ec,r 
conversion 

stoichiometric coefficients 

[m2/sl kinematic viscosity 

[Nsim’l viscosity 
E e r  (-+) = 

b = ~ - Q, exp 

dimensionless heat production rate 
R T , ~  u 

x [W/mK] thermal conductivity 

161 

RT,Z correction for reactant 
YH = ~ YH E AT,, consumption 

e [kg/m31 density 

Subscripts 

ad adiabatic 

0 reference or initial value 

cr critical 

expl explosion 

wall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
03 

1 /2 

at wall (in the Grashof number Gr) 
at infinitely high temperature or distance 
in: thermal half-life tl,’ 
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