
Safe Programmable Speculative Parallelism

Prakash Prabhu
Princeton University

pprabhu@cs.princeton.edu

G. Ramalingam Kapil Vaswani
Microsoft Research, India

kapilv,grama@microsoft.com

Abstract
Execution order constraints imposed by dependences can serialize
computation, preventing parallelization of code and algorithms.
Speculating on the value(s) carried by dependences is one way
to break such critical dependences. Value speculation has been
used effectively at a low level, by compilers and hardware. In this
paper, we focus on the use of speculation by programmers as an
algorithmic paradigm to parallelize seemingly sequential code.

We propose two new language constructs, speculative compo-
sition and speculative iteration. These constructs enable program-
mers to declaratively express speculative parallelism in programs:
to indicate when and how to speculate, increasing the parallelism
in the program, without concerning themselves with mundane im-
plementation details.

We present a core language with speculation constructs and
mutable state and present a formal operational semantics for the
language. We use the semantics to define the notion of a correct
speculative execution as one that is equivalent to a non-speculative
execution. In general, speculation requires a runtime mechanism
to undo the effects of speculative computation in the case of mis-
predictions. We describe a set of conditions under which such
rollback can be avoided. We present a static analysis that checks
if a given program satisfies these conditions. This allows us to
implement speculation efficiently, without the overhead required
for rollbacks.

We have implemented the speculation constructs as a C# library,
along with the static checker for safety. We present an empirical
evaluation of the efficacy of this approach to parallelization.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques - Concurrent Programming]: Parallel Programming; D.3.3
[Programming Languages - Language Constructs and Features]:
Concurrent Programming Structures

General Terms Languages

Keywords speculative parallelism, value speculation, safety, pu-
rity, rollback freedom

1. Introduction
Speculation refers to the act of taking some risks in anticipation
of reward. While speculation is almost second nature of humans, it
has been recognized as an important system design principle [12].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

Many high performance systems such as microprocessors, file sys-
tems, and databases use speculation to improve performance. For
example, software transactions and futures use speculation to in-
crease parallelism in programs.

In this paper we focus on the use of value speculation to achieve
parallelism. Value speculation is a mechanism for increasing paral-
lelism by predicting values of data dependencies between tasks.
Value speculation is by no means a new concept. Compiler writers
and computer architects have investigated the use of value specula-
tion for extracting instruction-level parallelism. This type of value
speculation is completely transparent to the programmer and the
compiler/processor decide when and how to speculate.

In this paper, however, we focus on the use of speculation by
programmers as an algorithm design idiom to parallelize seemingly
sequential code. We show, using real world examples, that value
speculation can be used to extract thread level parallelism and de-
velop speculatively parallel algorithms. This motivates our devel-
opment of language features that enable programmers to conve-
niently express such speculatively parallel algorithms and to declar-
atively expose value speculation opportunities, without concerning
themselves with mundane implementation details. We show how
these constructs can be implemented efficiently, relying on static
safety checkers to avoid expensive runtime mechanisms.

1.1 Speculatively Parallel Algorithms
Examples Of Inherently Sequential Algorithms. We start with
some motivating examples. Lexical analysis is the problem of con-
verting a sequence of characters into a sequence of tokens, encoded
as a finite state machine (FSM). Given an FSM and a sequence of
characters, lexical analysis starts in the initial state and processes
characters one at a time. At every step, the analyzer transitions to
the next state in the FSM based on the character just read. When
the analyzer reaches a final state, it emits a token, resets its state to
the initial state and continues processing the rest of the sequence.

As a second example, consider Huffman decoding. Huffman
coding is a widely used data compression technique that uses a
variable length binary encoding. Given a document, the encoder
constructs a binary tree representing codes for all symbols in the
document as well as a binary string representing the document.
The decoder walks the binary tree starting at the root, matching
bits in the compressed data with bits on the tree edges. When a
leaf is reached, the symbol corresponding to the leaf is emitted and
decoding continues from the root and the next available input bit.

A common feature of both these algorithms is the presence of a
data dependence between successive iterations in the computation.
In lexical analysis, the source of the dependence is the FSM state:
each iteration uses the state value computed by the previous iter-
ation. Such dependences prevent a straightforward parallelization
of the algorithm. Recent studies show that such computations are
not hard to find [3]. These computations are often key components
of large applications such as browsers, databases, games, media

Figure 1. Value speculation

players and machine learning applications. If not parallelized, they
inhibit performance of these applications as a whole.

Speculative Parallel Composition. We now illustrate how ”se-
quential” algorithms such as lexical analysis can be parallelized [8]
with the use of value prediction. The task of lexical analysis of an
input sequence c1 · · · cn can be decomposed into two subtasks, the
analysis of a segment c1 · · · ck and the analysis of a second segment
ck+1 · · · cn. Unfortunately, the second subtask needs the FSM state
computed by the first subtask as input and cannot be run in parallel
with the first subtask.

This is an instance of a common scenario, depicted abstractly in
Fig. 1. A computation P produces a value and a dependent com-
putation C consumes the value. This data dependence between P
and C serializes the execution of P and C. Value speculation in-
volves predicting the value computed by P ahead of time and us-
ing the predicted value to executeC speculatively and concurrently
withP . WhenP completes execution, we validate the prediction by
checking the actual value computed by P and the predicted value.
If the values match, we gain performance because the execution of
P and C overlapped in time. However, if the values do not match,
corrective action must be taken and C must be re-executed with the
correct value to preserve semantics.

We can use this idea to obtain a speculatively parallel lexical
analysis algorithm, as long as we have some means of predicting
the FSM state at the end of the first subtask (i.e., after processing the
first input segment c1 · · · ck). Whenever the prediction is correct,
the segments are processed in parallel. Whenever the prediction is
incorrect, we effectively have a sequential algorithm (with some
added overhead).

Speculative Parallel Iteration. It is straightforward to extend the
previous idea to partition the input into k segments (e.g., where k is
chosen based on the number of available processors) and process all
k segments in parallel speculatively. In the worst case, it is possible
for mis-predictions to produce a cascading effect, forcing corrective
action and re-execution of all subsequent partitions. However, it is
possible for subsequent predictions to be correct even when predic-
tions for one or more of the previous partitions fail. Therefore, even
in the presence of mispredictions, we can gain performance as long
as the number of mispredictions is reasonably small.

The Prediction Function. The performance benefit of specula-
tive parallelization depends critically on the accuracy of the value
prediction mechanism. A key point to note here is that it is not nec-
essary to use a single, generic, value prediction mechanism for ex-
ploiting speculative parallelism. We believe that, in general, better
prediction accuracy can be achieved by using problem-specific pre-
diction functions that incorporate domain knowledge and insights.
We believe that speculative parallelization based on programmer-
specified prediction functions is a very useful paradigm.

In the case of lexical analysis, the state of the lexical analyzer
when it is about to process character ck+1 can be predicted quite
accurately by lexically analyzing just a few characters preceding
ck+1 [8]. This prediction scheme relies on the insight that in lexical
analysis, some states of the FSM are frequently visited (such as the
end of token states). Hence, it is likely that the prediction function,
while lexically analyzing a few characters preceding ck+1, reaches
one of these states at the same character as the sequential analysis.
If this happens, the prediction function will make the right guess.
We were able to come up with accurate prediction functions for
several other problems we looked at as well.

1.2 Language Support For Speculative Parallelism
Even after an algorithm designer has identified suitable opportuni-
ties for speculative parallelism and reasonably accurate prediction
schemes, implementing such speculative algorithms while ensur-
ing correctness and high performance, can be a non-trivial pro-
gramming exercise. This is because in existing languages, specu-
lation must be expressed using low level primitives such as threads
and locks. Tasks such as spawning and scheduling speculative and
non-speculative computations, checking for mis-predictions, and
re-executing speculatively executed code if required, must all be
performed manually. A more important concern is that of ensur-
ing correctness, especially when the implementation uses mutable
state. (a) What happens to the side-effects of speculatively executed
code in the case of mis-prediction? (b) What happens if the pro-
ducer and consumer access the same mutable state, and at least one
of these accesses is a write?

In this paper, we propose new language constructs that enable
programmers to declaratively express value speculation opportu-
nities, as well as the prediction functions, exposing more paral-
lelism in the program. The compiler and/or the runtime can take
care of the tedious aspects mentioned above, ensuring performance
and safety.

Specifically, we enhance a simple language that permits muta-
ble state with two language constructs, speculative application and
speculative iteration The construct “spec p g c” is used for the idea
of speculative application illustrated earlier: it has three parame-
ters, identifying a producer, a consumer that depends on the value
produced by the producer and a prediction (“guess”) function that
predicts the value computed by the producer.

The construct “specfold f g m n” is used for the idea of
speculative iteration illustrated earlier: it takes four parameters, a
function f representing the loop body, a prediction function g, and
the lower and upper bounds m and n for the iteration.

The semantics of these two constructs was informally described
earlier. In the paper, we present a formal operational semantics
for these constructs, which we call the speculative semantics.
The notable aspect of this semantics is that any speculative sub-
computation that used a mis-predicted value is not used, but its
side-effects are not undone! We also define a non-speculative se-
mantics for the language. This semantics ignores the “speculation
hints” contained in the speculation constructs and, instead, executes
them sequentially. The non-speculative semantics provides us with
a way to interpret the program as a “specification”. It serves to
define the desired behavior.

Ideally, we would like to ensure that any speculative execution
should be equivalent to some non-speculative execution. As a first
step towards this goal, we formalize the notion of an equivalence
between speculative and non-speculative executions. This formal-
ization is based on the notion of a dependence-preserving embed-
ding of a non-speculative execution into a speculative execution,
which adapts the notion of conflict-serializability [23] to support
speculation.

Several options exist for ensuring equivalence: (a) Use a pure
functional language. In the absence of destructive updates, the spec-
ulative optimizations are inherently safe. (b) Use a static checker to
determine whether the use of speculation in a given program con-
text is safe. (c) Use a runtime mechanism for detecting conflicts
and/or taking corrective action to ensure correctness. A rollback
mechanism to undo the side-effects of a computation (as used in
STMs) is an example of such a runtime solution. We can also use,
e.g., a combination of static checking and runtime mechanisms.

In this paper, we explore the second option of using a static
checker to ensure the safety of speculation in a language that
supports mutable state. We define a safety condition called rollback
freedom for a program. We show that in a program that satisfies
rollback freedom, any speculative execution is equivalent to a non-
speculative execution, even without any runtime mechanism for
logging, conflict detection and rollback. In a rollback-free program,
it suffices to simply re-execute speculatively executed consumers
when mis-predictions occurs. Rollback freedom is weaker than
conditions such as side-effect freedom and purity [19] that are
traditionally used to ensure safety, as it allows certain forms of side-
effects that are quite useful in practice.

We finally describe an inter-procedural, flow sensitive static
analysis that checks for rollback freedom. Our analysis uses a flow-
sensitive heap abstraction and an interval abstraction to precisely
characterize parts of the heap that may be accessed by a given
computation. This analysis ensures safe speculative parallelism at
no runtime complexity and overheads.

We have implemented the speculation constructs as a C# library,
along with the static checker for safety. We present an empirical
evaluation of the efficacy of this approach to parallelization.

1.3 Contributions
In summary, our paper makes the following contributions:

• We propose new language constructs to enable programmers to
express speculative parallelism in programs.

• We present a formal operational semantics for a language that
supports mutable state as well as the proposed speculation con-
structs. The semantics formalizes an unsafe but efficient imple-
mentation that does not rollback side-effects of mis-predicted
speculative computation. We also present a non-speculative se-
mantics for the language, which we use to define the notion of
a correct speculative execution as one that is equivalent to a
non-speculative execution.

• We present a set of safety conditions (rollback freedom) for a
program that guarantee that every speculative execution of the
program is correct. We also present a static analysis to check
that a program satisfies these safety conditions.

• We have implemented the speculation constructs as a C# li-
brary. We present experimental results showing how speculative
versions of several real-world applications implemented using
our library are able to exploit parallelism. We have also imple-
mented an initial version of our static safety analysis.

2. A Language for Speculative Parallelism
In this section, we present the syntax and semantics of Speculate,
a language with explicit support for speculative parallelism. The
core language consists of call-by-value lambda calculus with dy-
namically allocatable mutable heap cells.

Syntax and Informal Semantics. Figure 2(a) presents the ab-
stract syntax of Speculate. The language includes constants (inte-
ger constants as well as arithmetic operators), standard λ-calculus
expression forms such as variables, functions, function application,
sequential composition and conditionals. We support shared mem-
ory with constructs for memory allocation (new e), assignment
(e1 := e2) and memory dereferences (!e).

The language includes fold expressions, similar to those found
in functional languages, which model a simple form of iteration
where each iteration depends on the value computed in the previous
iteration. Informally, fold f s l u represents the value f u (· · · f (l+
1) (f l s) · · ·) computed by the loop:

result := s;
for i = l to u do

result := f (i, result);

The first new construct in the language is speculative application
(spec p g c), which we also refer to as speculative composition.
This construct takes three parameters, a producer p and a predictor
g, and a consumer g. Informally, speculative application computes
the value of c(p), but does this concurrently with the computation
of p by predicting that the value of p will be g and computing c(g)
and taking corrective action if the prediction fails.

The second new construct is speculative fold (specfold f g l u),
which we also refer to as speculative iteration). This computes a
fold expression using speculative parallelism. This construct has a
signature slightly different from that of fold: the second parameter
g is a prediction function that takes an integer (in the range l..u) as a
parameter. The value g(l) is taken to be the initial value s used in a
fold expression. For any i > l, g(i) is the value predicted to be the
value of result at the beginning of the i-th iteration of the loop
described above (that evaluates a fold expression). Operationally,
speculative fold executes all the iterations of the loop in parallel,
using the predicted values, and takes corrective action when the
prediction fails.

The language does not provide any other parallelism construct.
However, the speculation constructs are expressive enough to en-
code common parallel programming patterns. E.g., the parallel
evaluation construct “e1 ‖ e2” is a special case of speculative com-
position with no dependence between the producer and consumer.
Similarly, a do all parallel loop is a special case of speculative iter-
ation with no loop-carried dependence. (These special cases can be
encoded using the unit value () as the predicted value.)

Semantic Domains. The execution state of a program is repre-
sented by a configuration H,T consisting of a heap H and a set of
threads T. A heap is a partial map from locations l to values v. A
thread t[e] consists of a thread-id t and an expression e that is being
evaluated by the thread. We use the construct t1[e1] ‖ · · · ‖ tk[ek]
to represent the set of threads {t1[e1], · · · , tk[ek]} mnemonically,
but note that the ordering of these threads is immaterial.

The language of runtime expressions is richer than the language
of expressions allowed by our language, as it includes some auxil-
iary constructs we use to define the semantics of the language. The
new constructs include wait t and cancel t, where t is a thread-
id. wait and cancel are used to synchronize between threads and
preempt threads in speculative computations.

Operational Semantics. Fig. 2 presents two different operational
semantics for Speculate. Rules C ∪ S define the actual semantics,

(a) Syntax and Semantic Domains

x ∈ Var c ∈ Const t ∈ Tid l ∈ Loc v ∈ Val e ∈ Exp H ∈ Heap = Loc ↪→ Val

e ::= c | x | λx.e | e1 e2 | e1; e2 | if e1 e2 e3 | new e | e1 := e2 | !e | fold ef ei el eu | spec ep eg ec | specfold ef eg el eu | r
r ::= wait t | cancel t | check tp tg tc ec | auxfold ef eg el eutp
v ::= c | x | λx.e | l | t | unit

(b) Evaluation Context

E ::= [·] | E e | v E | E; e | if E e2 e3 | new E | !E | E := e | l := E | spec ep eg E | opk v1 · · · vi−1 E ei+1 · · · ek
(fold, specfold ∈ op4, check, auxfold ∈ op5)

(c) Common Evaluation Rules (C)

[THREAD]

H, e→ H′, e′

H, t[e] ‖ T⇒ H′, t[e′] ‖ T

[CONTEXT-1]

H, e→ H′, e′

H, E[e]→ H′, E[e′]

[CONTEXT-2]

H, t[e] ‖ T⇒ H′, t[e′] ‖ T′

H, t[E[e]] ‖ T⇒ H′, t[E[e′]] ‖ T′

[APPLY]

H, (λx.e) v → H, e[v/x]

[SEQ]

H, v; e→ H, e

[IF-ZERO]

H, if 0 e2 e3 → H, e3

[IF-NON-ZERO]

c 6= 0

H, if c e2 e3 → H, e2

[ALLOC]

l /∈ Dom(H)

H, new v → H[l 7→ v], l

[SET]

H, l := v → H[l 7→ v], v

[GET]

H, !l→ H,H(l)

[FOLD-1]

vl > vu

H, fold vf vinit vl vu → H, vinit

[FOLD-2]

vl ≤ vu
H, fold vf vinit vl vu → H, fold vf (vf vl vinit) (vl + 1) vu

(d) Speculative Evaluation Rules (S)

[WAIT]

H, t′[wait t] ‖ t[v] ‖ T⇒ H, t′[v] ‖ t[v] ‖ T

[CANCEL]

H, t′[cancel t] ‖ t[e] ‖ T⇒ H, t′[()] ‖ T

[SPEC-APPLY]

tp, tg, tc fresh in T

H, t[spec ep eg vc] ‖ T⇒ H, tp[ep] ‖ tg[eg] ‖ tc[vc (wait tg)] ‖ t[check tp tg tc vc] ‖ T

[CHECK]

xp, xg not free in vc
H, check tp tg tc vc ⇒ H, (λxp, xg.if(xp =int xg) (wait tc) (cancel tc; vc xp))(wait tp)(wait tg)

[SPEC-ITERATE-1]

vl ≤ vu and tg, tb fresh in T

H, t[specfold vf vg vl vu] ‖ T⇒ H, t[auxfold vf vg (vl + 1) vutb] ‖ tg[vg vl] ‖ tb[vf (wait tg)vl] ‖ T

[SPEC-ITERATE-2]

vl ≤ vu and tg, tb, tc fresh in T

H, t[auxfold vf vg vl vutp] ‖ T⇒ H, t[auxfold vf vg (vl + 1) vutc] ‖ tg[vg vl] ‖ tb[vf vl (wait tg)] ‖ tc[check tp tg tb (vfvl)] ‖ T

[SPEC-ITERATE-3]

vl > vu

H, t[auxfold vf vg vl vutp] ‖ T⇒ H, t[wait tp] ‖ T

(e) Non-Speculative Evaluation Rules For Speculative Constructs (N)

[NONSPEC-APPLY]

H, spec ep eg ec → H, ec ep

[NONSPEC-ITERATE]

vl ≤ vu
H, specfold vf vg vl vu → fold vf (vg vl) vl vu

Figure 2. Syntax and two operational semantics for Speculate. The expressions r are used by the runtime; they are not available in the
source language. Rules C ∪ S define the speculative semantics. Rules C ∪ N define the non-speculative semantics.
.

which we call the speculative semantics. Rules C ∪ N define a se-
mantics, the non-speculative semantics, that ignores the speculation
hints and is used subsequently in our discussion of safety. (Seman-
tics of primitive arithmetic operations such as + are assumed.)

Reductions that do not involve multiple threads are described
using rules of the simpler form H, e→ H′, e′, which indicates that
an expression e, with an initial heap H, reduces to e′, transform-
ing the heap to H′ in the process. Reductions involving multiple
threads are described using rules of the form H,T⇒ H′,T′, which
indicates that state H;T reduces to state H′;T′. The rule THREAD
relates the two forms of reduction rules. Furthermore, the rule also
indicates that the scheduling is non-deterministic: any thread ready
to perform a reduction may be chosen to execute at any point dur-
ing execution. The evaluation of a program e starts in the initial
state ◦;main[e] consisting of an empty heap and a main thread
evaluating e.

As usual, we use evaluation contexts (see Fig. 2(b)) to define
the order of evaluation within an expression. An evaluation context
is an expression with a hole, denoted [·], that identifies the next
reduction to be performed. Given an evaluation contextE, letE[e′]
denote the expression obtained by replacing the hole inE by e′. For
any expression e, there is at most one evaluation context E and a
reducible sub-expression e′ such that e = E[e′], and this identifies
the sub-expression e′ that is reduced next. E.g., the definition of
evaluation context vE indicates that in an application e1e2, the sub-
expression e2 is evaluated only after e1 has been reduced to a value
v. The CONTEXT rules show how the reduction is performed at the
appropriate sub-expression chosen by the evaluation context.

Common expression forms such as function application, se-
quential composition, conditional expressions and memory alloca-
tion have standard semantics.

The WAIT rule defines semantics of wait, a synchronization
primitive that allows threads in Speculate to communicate and
co-ordinate. The evaluation of wait t in a thread t′ blocks until
t completes evaluation and the expression evaluates to the value
computed by t. Observe that the rule permits multiple threads to
successfully wait and retrieve the value computed by any thread t.

A thread t′ may abort another existing thread t using the
cancel t primitive, as indicated by the CANCEL rule. Note that
the evaluation of a cancel blocks until the cancellation is success-
ful. The non-deterministic scheduling may permit t to execute any
number of reductions before the cancellation completes success-
fully. (Preemptive cancellation is hard to implement in practice.
We will discuss some of the implications of this aspect later on.)

We now consider the semantics of spec. Rule NONSPEC-APPLY
presents a straightforward non-speculative semantics for this con-
struct that ignores the speculation hint. The rule SPEC-APPLY
describes the speculative semantics of spec. The evaluation of
spec ep eg vc proceeds as follows: a producer thread tp starts
evaluating ep and a predictor thread tg starts evaluating eg . A spec-
ulative consumer thread tc waits for the predicted value and ap-
plies the consumer function vc to the predicted value. The original
thread t uses the auxiliary function check to coordinate the specu-
lative computation, as defined by rule CHECK. The check function
waits for both the producer and predictor to complete execution,
and compares the value produced by these two threads. If they are
the same, then the check function waits for the value computed by
the speculative consumer. Otherwise, the speculative consumer is
aborted, and the consumer function is applied to the correct input
value.

Some key observations about the semantics of spec:

• We restrict the predicted values to be of type integer, and the
equality operator used is the integer equality operator.

• We use three new threads solely to simplify the description.
In an implementation, one new thread (for the predictor and
speculative consumer) is sufficient, while the original thread
can evaluate the producer and do the final check.

• The evaluation of spec blocks until the producer and the con-
sumer complete evaluation.

• The speculative executions may behave differently from non-
speculative executions for two reasons. (i) In the speculative
semantics, side-effects of speculative consumers are not rolled
back in the case of mispredictions. The consumers are simply
re-evaluated. (ii) Producers and consumers may also race if they
access the same shared state. As explained later, we rely on a
static analysis to ensure “correct speculation”.

• In the presence of speculation, scheduling policies (e.g., thread
prioritization) and thread-cancellation policies (e.g., preemp-
tive vs. non-preemptive) have implications for both termina-
tion and performance. A program that terminates under the
non-speculative semantics may fail to terminate in the spec-
ulative semantics if a (mispredicted) speculative consumer is
non-terminating and the scheduling policy is unfavorable. We
discuss these issues in more detail in section 3.3.

We now consider the semantics of specfold. Rule NONSPEC-
ITERATE presents the non-speculative semantics for this construct.
The speculative semantics of specfold are a natural generalization
of speculative application to loops with loop-carried dependences.
As the rules SPEC-ITERATE-1 and SPEC-ITERATE-2 indicate, threads
are created to execute all the iterations in parallel, using predicted
values instead of the loop-carried dependence. The predictor vg
is a function that takes the iteration index i as a parameter and
predicts the incoming value for the i-th iteration. The first itera-
tion is non-speculative and is described by rules SPEC-ITERATE-1.
Rule SPEC-ITERATE-2 describes the remaining iterations, which are
speculative and utilize a checker thread tc to validate the predic-
tion and re-execute the loop body in case of mispredictions. Rule
SPEC-ITERATE-3 indicates the final termination of the computation,
which happens once the final loop iteration successfully completes.

Note that our semantics describes one specific validation scheme.
It is possible to increase the speculative parallelism in the program
with other validation schemes. E.g., assume that the speculative
execution of the i-th iteration completes before the i − 1-th itera-
tion. The speculative output of the i-th iteration, if different from
the value predicted by the i+ 1-th iteration, can be used to initiate
further speculative executions of the i+1-the iteration. We discuss
such a variation in Section 4.

3. Safe Speculation Without Rollback
One of the potential advantages of language support for speculation
is that speculation constructs can be seen as hints used solely to
improve performance, without affecting correctness. In general, a
program’s behavior under the speculative semantics may not be the
same as its behavior under the non-speculative semantics due to
side-effects. We would like to treat the non-speculative semantics
as the intended behavior and statically check a speculative program
to see if we can guarantee that its speculative behavior will be
equivalent to its non-speculative behavior. We take the following
three step approach to this goal:

1. We define a notion of equivalence between speculative and non-
speculative executions. We define a speculative execution to be
correct if it is equivalent to a non-speculative execution.

2. We define a safety criterion, rollback freedom, for the use of
speculation constructs. We show that all speculative executions
of a program that satisfies rollback freedom are correct.

3. We then present (in Section 5) a static analysis to check if a
given speculative program satisfies rollback freedom.

Some of these notions become complicated if the predicted
value consists of a (mutable) heap-allocated data structure. We
focus on the essence of speculation by restricting attention to the
case where the predicted value is of primitive type (e.g., integer).

3.1 Correctness Criterion
We now define two, related, notions of equivalence between specu-
lative and non-speculative executions: a weaker notion that requires
the final-states produced by the two executions to be equivalent and
a stronger notion that also requires a correspondence between the
(interesting) transitions of the two executions. The stronger notion
is useful because it covers operational aspects and is also relevant
for language extensions such as I/O with externally visible effects.
(The second notion is a natural adaptation of the notion of conflict
equivalence and conflict serializability [23] to permit speculation.)
The following definitions are asymmetric because the speculative
execution is allowed to have extraneous steps (transitions) as long
as they don’t affect the rest of the computation or the final state,
and the heap is allowed to have extraneous heap cells (created by
the extraneous steps) that are garbage (unreachable).

Preliminary Definitions. A transition c a⇒ c′ represents a single
execution step, with a label a explained below. An execution is a
sequence of transitions c0

a1⇒ c1 · · ·
an⇒ cn, where c0 is the initial

configuration. Let label(τ) denote the label on a transition τ . We
define the labels of transitions generated by the ALLOC, SET, and
GET rules to be “ALLOC (`, v)”, “SET (`, v)”, and “GET (`, v)”,
respectively, where ` and v represent the location and the value
read/written respectively. We refer to these transitions as interesting
transitions. We define the labels of all other transitions to be ε.

We say that a transition τ1 is data-dependent on a transition τ2 if
τ2 writes to a location ` that τ1 reads and no transition in between
τ2 and τ1 writes to `. We say that a location ` in the final heap
produced by an execution is data-dependent on a transition τ if τ
writes to location ` and no transition after τ writes to `.

Since different executions may use different location addresses,
we compare different executions modulo a correspondence be-
tween the heap locations of the two executions. For this reason,
we define a correspondence mapping from one execution π1 to an-
other execution π2 to be a function µ that maps every interesting
transition τ of π1 to a distinct interesting transition µ(τ) of π2, and
every heap location ` in π1 to a distinct heap location µ(`) in π2.
We extend such a given mapping µ to map action labels and values:
µ(a), where a is an action label or value, is obtained by replacing
every occurrence of a location ` in a by µ(`).

Final-State Equivalence. The final configuration of a complete
execution is of the form H,main[v] ‖ T, indicating that the main
thread main has completed evaluating the original program. We
say that the final state of this execution is (H, v). Let πn and πs

be a complete non-speculative and speculative execution with final
states (Hn, vn) and (Hs, vs) respectively. We say that πs is final-
state equivalent to πn, modulo a correspondence mapping µ, if

1. vs = µ(vn), and

2. for every location ` in Hn, Hs(µ(`)) = µ(Hn(`)).

Dependence Equivalence. We say that a correspondence map-
ping µ from an execution πn to an execution πs is a dependence-
preserving embedding if

1. The mapping preserves transition labels: for every interesting
transition τ in πn, we have label(µ(τ)) = µ(label(τ))

2. The mapping preserves data-dependences between transitions:
for every transition τ1 and τ2 in πn, τ1 is data-dependent on τ2
iff µ(τ1) is data-dependent on µ(τ2).

3. The mapping preserves data-dependences of the final heap: for
every ` in the final heap produced by πn and transition τ in πn,
` is data-dependent on τ iff µ(`) is data-dependent on µ(τ).

We say that a speculative execution πs is dependence equivalent
to a non-speculative execution πn if there exists a dependence-
preserving embedding from πn into πs. Note that dependence
equivalence is a stronger guarantee than final-state equivalence.
We say that a speculative execution is correct if it is dependence
equivalent to some non-speculative execution.

Note. The notion of dependence equivalence can be further
strengthened by including other primitive reductions as interesting
transitions and enriching transition labels to include the id of the
thread performing the execution step, the redex being performed,
and the evaluation-context to establish a much tighter correspon-
dence between the executions. As this would significantly compli-
cate the notation, we restrict ourselves to the simpler equivalence
notion in this paper.

3.2 Rollback Freedom: A Safety Criterion
We now consider the problems that can prevent a speculative exe-
cution of spec ep eg ec from satisfying the correctness criterion.

The first problem is the common one of data races: if the pro-
ducer and the speculative consumer both access the same location,
and at least one of these accesses is a write, the resulting execution
may not be equivalent to the non-speculative execution (where the
producer and consumer execute sequentially one after another). If
no such conflicting accesses are possible between the producer and
speculative consumer, then this problem does not arise.

The second problem, however, is specific to speculative execu-
tion without rollback. In the case of misprediction, heap updates
performed by the speculative consumer can affect correctness. The
key idea we exploit in our safety check for this problem is the fol-
lowing. If the locations read by the consumer re-execution are dis-
joint from the locations written by the speculative consumer, then
the invalid speculative consumer execution does not affect the cor-
rectness of the subsequent consumer re-execution. Furthermore, if
the consumer re-execution is guaranteed to overwrite all locations
written by the speculative consumer, then the invalid speculative
consumer execution will not affect the correctness of any subse-
quent computation (or the correctness of the final state).

E.g., consider an iterative loop in which the i-th iteration com-
putes a value vi and stores it in a (pre-existing) location `i. If the
speculative execution of the i-th iteration, because of a mispredic-
tion, stores a wrong value v′i in `i, the execution will still be correct
as long as the re-execution of the i-th iteration stores the right value
vi in `i (and it does not read the pre-existing value of `i).

We now state the safety condition formally. For any expression
e and heap H, we define R(e,H) to be the set of locations in the
initial heap H that are read before they are written by the non-
speculative evaluation of e with initial heap H. We defineW(e,H)
to be the set of locations in the initial heap H that are written
during the non-speculative evaluation of e with initial heap H.
(These definitions can be extended to accomodate the case where
the evaluation of e in initial heap H is non-terminating.)

We say that (spec ep eg ec,H) is safe if

(a)W(ep,H) ∩R(eceg,H) = ∅,
(b)R(ep,H) ∩W(eceg,H) = ∅,
(c)W(ep,H) ∩W(eceg,H) = ∅,
(d)R(ecep,H) ∩W(eceg,H) = ∅,
(e)W(ecep,H) ⊇ W(eceg,H).

Note that condition (b) is subsumed by condition (d), but we
include it for expository reasons. We obtain an analogous safety
condition for the construct specfold vf vg vl vu by treating, for
every vl ≤ i < vu, the i-th iteration as the producer and the i+ 1-
the iteration as the consumer.

We say that the pair (H, e2) is reachable from e1 if, in the non-
speculative semantics, ◦, e1 →∗ H, E[e2]. We say that a program
e is safe if every (H, spec ep eg ec) and (H, specfold vf vg vl vu)
reachable from e is safe. We also say that a program satisfies
rollback freedom if it is safe.

Note that rollback freedom is expressed in terms of the non-
speculative semantics (which is a sequential semantics). This sim-
plifies the analysis required to check for rollback freedom because
the analysis does not have deal with interleaved (concurrent) exe-
cutions produced by speculation.

Theorem 1. If e satisfies rollback freedom, then every complete
speculative execution of e is correct.

Proof. We present a brief proof sketch here. We first prove a weaker
result that a given speculative execution of a construct spec ep eg ec
that satisfies the safety conditions is correct. Conditions (a) to (c)
imply that there is no conflicting access between the execution steps
of the producer and the speculative consumer. Hence, the execution
steps of the producer and the speculative consumer commute with
each other. Thus, the speculative execution is equivalent to the com-
plete execution of the producer followed by the speculative con-
sumer. If the prediction is correct, then this particular execution is
correct. If the prediction is incorrect, then consider the speculative
consumer and the re-execution of the consumer. Since the locations
read by the consumer re-execution are disjoint from the locations
written by the speculative consumer (condition (d)), the speculative
consumer execution does not affect the correctness of the consumer
re-execution. Since the consumer re-execution overwrites all loca-
tions written by speculative consumer (condition (e)), the writes by
the speculative consumer do not affect the correctness of any subse-
quent computation (or the correctness of the final state). It follows
that the speculative execution is correct.

However, our safety criterion checks for conditions (a)-(e) only
using non-speculative executions. This may seem unintuitive, but is
sufficient. We can prove, by induction, that speculative executions
must also satisfy the same conditions and be equivalent to non-
speculative executions. Details omitted.

3.3 Termination Guarantees
Ideally, the speculation scheme should provide a termination guar-
antee: if a non-speculative execution terminates, the speculative ex-
ecution should also terminate. With minor modifications, the spec-
ulative semantics does provide this guarantee.

First, note that the speculation-validation step waits for both
producer and predictor to complete execution. If the predictor is
non-terminating, this is a problem as the non-speculative execution
does not invoke the predictor. This is easy to fix: if the producer
completes execution before the predictor, there is no point in con-
tinuing with the speculation; we can abort the predictor and specu-
lative consumer and execute the consumer with the correct input.

Second, when the validation step detects mis-prediction, it at-
tempts to cancel the speculative consumer. If the speculative con-
sumer is non-terminating (e.g., because it is processing the wrong
input), then we need to ensure that the cancellation step eventually
takes place to guarantee termination. Either a fair scheduler or a
prioritized scheduler that prioritizes non-speculative threads higher
than speculative threads suffices to guarantee termination.

1 public class Speculation {
2 public static void Apply <T>(
3 Func(T) producer ,
4 Func(T) predictor ,
5 void Action(T) consumer)
6
7 public enum ValidationMode { Seq , Par };
8
9 public static void Iterate <T>(

10 int low , int high ,
11 Func(int , T, T) loopBody ,
12 Func(int , T) predictor ,
13 ValidationType val /* optional */)
14
15 public static void Iterate <T, U>(
16 int low , int high ,
17 Func(U) initializer ,
18 Func(int , U, T) loopBody ,
19 Func(int , T) predictor ,
20 Action(int , U) finalizer ,
21 ValidationMode val)
22 }

Figure 3. An API for speculative parallelism. Func is a C# generic
type for delegates that take zero or more arguments and return a
value. Action is a C# type for delegates that do not return a value.

4. A Speculation Library
In this section we describe how we realized the speculation con-
structs presented earlier as a C# library.

Programming model. Our API (see Fig. 3) consists of a method
Speculation.Apply that implements speculative application, and a
set of methods Speculation.Iterate that support speculative itera-
tion. The classes and methods in the API are generic with types
representing the type of the value(s) being speculated. The API re-
quires that all computations be specified as C# delegates.

Apply provides the same interface and semantics as spec. Our
API supports several variations of specfold. There are several meth-
ods that support speculative iteration. In its simplest form, the
Speculation.Iterate method requires four arguments, the low and
high loop indices, and delegates representing the loop body and
prediction function. Both delegates are parameterized with the loop
index; this permits the prediction delegate to make iteration specific
predictions.

The call to Speculation.Iterate takes an optional validation
mode parameter. This parameter can be used to specify the vali-
dation mode an implementation should use to validate speculative
iterations. We currently support two validation modes. In the se-
quential validation mode, speculatively executed iterations are val-
idated (and re-executed) in sequence, starting from the low to the
high loop index. Sequential validation matches the semantics de-
scribed in section 2. The parallel mode does validation specula-
tively. In this mode, a speculatively executed iteration i is validated
speculatively as soon as the previous iteration i−1 completes, even
if iteration i− 1 itself has not been validated.

We find that a common usage scenario for speculative iteration
is one where each iteration allocates local objects, computes results
in the objects and then publishes the results to global state. We
provide a variant of speculative iteration that explicitly supports
this scenario. This variant requires the user to provide a local
initialization and a local finalization delegate. The local initializer
is a function delegate that returns the initial state of the local data
for each iteration and the local finalizer is a delegate that performs
a final action on the local state of each iteration.

1 public class LexicalAnalysis {
2 private TokenCollection [] tc =
3 new TokenCollection[NUM_TASKS];
4
5 public Token [] SpeculativeLex(char[] input) {
6
7 int fragmentSize =
8 input.Length () / NUM_TASKS;
9

10 Speculation.Iterate <State >(0, NUM_TASKS ,
11 (i, state) => /* loop body */ {
12 State finalState;
13 tc[i] = SequentialLex(input ,
14 i * fragmentSize ,
15 (i + 1) * fragmentSize ,
16 state , out finalState);
17 return finalState;
18 },
19 (i) => /* prediction function */ {
20 if (i == 0)
21 return START_STATE;
22 else {
23 State predictedState;
24 SequentialLex(input ,
25 i * fragmentSize - 10 /* overlap */,
26 i * fragmentSize ,
27 START_STATE , out predictState);
28 return predictedState;
29 }
30 });
31
32 /* assimilate tokens in tc */
33 · · ·
34 }
35
36 private TokenCollection SequentialLex(
37 char[] input ,
38 int from , int to ,
39 State inputState ,
40 out State finalState)
41 {
42 LatexLexer lexer =
43 new LatexLexer(input , from , to);
44 return lexer.Lex(inputState , out finalState);
45 }
46 }

Figure 4. An implementation of speculative lexical analysis using
the Speculation API.

Figure 4 shows an implementation of speculative lexical analy-
sis using our API. The implementation lifts an existing sequential
lexcial analysis routine (SequentialLex) to a speculatively paral-
lel version. The usage closely resembles the usage of Parallel.For
(a C# API for parallel loops), with the only difference being the
presence of a prediction function.

Implementation. We have implemented this API using the .NET
Task Parallel Library [1]. Some aspects of our implementation not
covered by our earlier theoretical description include the following,
and extending the theory to handle these aspects is future work.

• The implementation ensures that only validated consumers/iter-
ations throw exceptions. The library hides all exceptions from
code that was speculatively executed with the wrong values.
We also try and provide sequential exception semantics. Un-
der these semantics, a call to Speculation.Iterate throws the
exception corresponding the first valid iteration, irrespective of
the order in which the runtime executes iterations.

• Our implementation is based on the .NET Task Parallel Library,
which supports a co-operative cancellation model (as opposed
to preemptive cancellations). Consequently, our implementa-
tion does not preserve termination. We rely on the user to in-
ject cancellation checks to ensure that speculatively executed
codes terminates even with incorrect values. These checks can
be automatically injected in user code, as is done in STMs.

• We use the abstract Equals method of the generic type T to
check for equality. This allows a user of the library to supply
their own abstract equality function. This may be useful in
scenarios where strict equality is not required and a prediction
can be considered correct as long as it satisfies a more relaxed
equality check. If the programmer specifies her own equality
function, it is her responsibility to ensure that the equality
function does not affect correctness. Our safety correctness
results currently apply only when strict equality is used.

5. Static Analysis For Safety
In this section, we describe a static analysis that checks whether a
C# program that uses our API satisfies rollback freedom conditions
described in Section 3.2.

The core analysis is combined pointer and escape analysis (sim-
ilar to the purity and side-effect analysis described in [19]). The
goal of the analysis is to compute precise over-approximations of
the R andW sets defined in Section 3.2. The analysis is an inter-
procedural flow and field sensitive analysis that computes an ab-
stract model of the heap at every program point. The model rep-
resents the heap accessed by the given method when the program
point is reached. The heap is modeled as a graph, with nodes rep-
resenting abstract heap locations, and edges representing heap ref-
erences. All heap locations that share the same allocation site are
represented by the same abstract location.

This analysis is specifically designed to distinguish parts of the
heap allocated for internal use by a method during its execution
from parts of the heap exist before the call to the method such as
parameters, objects loaded through parameters and static objects.
This is a critical distinction since speculatively executed code may
create new objects in the heap, but we do not have to worry about
writes to such objects as long as they do not escape to the caller.
(The definitions ofR andW in Section 3.2 reflect this.)

For example, consider the speculative lexical analysis imple-
mentation in Figure 4. Figure 5 shows a simplified heap graph ob-
tained after analyzing SequentialLex. The method requires three
parameters, an input character array input, an object initialState
representing the state in which lexical analysis should start, and fi-
nalState, which is a reference to the final state of the FSM. Edges
are annotated with names of fields (e.g. yy input, yy initial, to-
kens and yy final are fields in the class LatexLexer; these fields are
accessed inside the constructor and the method Lex). Edges from
array objects are annotated with intervals representing a set of ar-
ray indices (e.g. [from, to]). As in [19], dashed nodes represent
pre-existing objects (such as parameter objects) and dashed edges
represent reads from escaping objects. This method creates an ob-
ject of type LatexLexer for processing the input string. Since this
object does not escape to the caller, any writes to fields of this ob-
ject do not affect safety.

The analysis is modular analysis that analyzes each method in-
dependent of its calling contexts. The analysis assumes that formal
parameters do not alias and computes a summary that describes the
set of abstract locations in the pre-existing heap that are read/writ-
ten during the method execution. The inter-procedural component
of the pointer analysis utilizes aliasing information available at the
call site to merge the summary of the callee into the caller.

Figure 5. Model representing the heap accessed by SequentialLex

Modeling array accesses. We extend the core analysis to model
array accesses and accesses to static objects more precisely. This
analysis identifies locations in an array that may be read/written
and describes them using symbolic intervals, whose lower bounds
and upper bounds are linear expressions over program variables (in
particular, the procedure parameters). The inter-procedural compo-
nent of the range analysis re-interprets intervals in terms of param-
eters of the caller. This is an important extension because some of
the common scenarios where speculative parallelism is likely to be
used (including the benchmark programs in this paper) involve ar-
rays and other indexed collections. For example, in SequentialLex,
the interval [from, to] describes the set of indices of the array input
read by the method. Similarly, the internal [i, i] describes the set of
indices of the array tc written to by the loop body delegate.

Computing must information. The analysis defined above com-
putes an over approximation (may information) of R andW sets.
Using over-approximate read and write sets is sound in all cases
except the LHS of condition (e). In condition (e), ensuring sound-
ness requires that we use an under-approximation of the write set
W(eceg). We achieve this using the following two extensions to
the core pointer and range analysis. We extend the pointer analysis
to maintain a single bit with every abstract heap node, which rep-
resents whether the node models a single (concrete) object or sum-
mary objects. We say that a reference is must-written in a method
if the object containing the reference is a single object and if the
reference has been written to on all paths in the method. We also
extend the range analysis to compute an under-approximate inter-
val of values for every variable. The must write set at any program
point consists of the writes to all single objects in the heap graph.

6. Experiments
In this section, we present an empirical evaluation of the proposed
approach, using real-world applications we implemented using the
library described in Section 4.

Benchmark programs. We implemented three representative
benchmark programs using the speculation library. These include
lexical analyzers for C, HTML, Java and Latex, Huffman decoding
algorithm, and a dynamic programming algorithm for finding the
maximal weighted independent set (MWIS) of a given path graph.
We implemented prediction functions for all the algorithms. The
prediction functions use a specified number of elements preceding
a given segment (referred to as the overlap) to predict the required
value at the beginning of the segment (similar to the lexical analysis
prediction function described in Section 1).

Our implementation of MWIS has two speculatively parallel
phases. In the first phase, we identify the elements that will be a

part of the MWIS using dynamic programming. This phase oper-
ates on segments of the path graph in parallel. The prediction func-
tion predicts whether the pair of nodes immediately preceding the
current segment will be a part of MWIS. The second phase walks
backwards along the path graph and emits the MWIS.

We note that the speculation library itself took about 4 man
months to design, develop and validate. Subsequently, each specu-
lative algorithm took only about a day’s effort to implement starting
from a pre-existing sequential implementation.

Setup. We conducted all our experiments on a 2.66 Ghz, Intel
Core 2 Duo server with 4 GB RAM, running Windows Server
2008. We measured time using the DateTime class in C#. All the
times we report are averages over 10 executions measured using the
ptime utility. We used the .NET PeakVirtualMemorySize64 API
to measure peak memory consumption.

We also identified input datasets of different flavors for each
benchmark to study the effect of the input dataset on the observa-
tions. We generated lexical analyzers for 4 different languages (C,
HTML, Java and Latex). We created three representative data sets
for Huffman decoding, media (mp3 files), rawdata (trace data from
an Intel profiling tool) and text (a collection of books). For MWIS,
we generated path graphs with uniformly distributed numbers be-
tween intervals 0 to 50 and 0 to 5000.

Speedup and Scalability. First, we measured the speedup of the
parallel implementations for each dataset, while varying the num-
ber of threads and the amount of overlap. Figure 6 shows the results
of this experiment. For each data set, we plot two sets of speedup,
a max speedup (on the left) obtained with an overlap that is large
enough to eliminate mis-predictions (this represents our best case),
and a min speedup (on the right) obtained with a very small overlap.
We make several observations from this data.

• Several of the benchmark/dataset combinations scale almost
linearly with the number of threads when the overlap is large
enough to make accurate predictions. The actual speedups de-
pend on the datasets. For example, the latex lexical analysis im-
plementation achieves a speedup of 4 with 4 threads.

• The speedups obtained with smaller overlap vary from no
speedup (Huffman decoding/media dataset) to near linear
speedup (Java lexical analysis). In the case of the Java lexi-
cal analyzer, we find that predictions are often accurate even
with a small overlap.

• In the lexical analysis implementations, we observe a correla-
tion between the speedup and the size of the finite state ma-
chine. The lexical analyzer for C has the largest FSM whereas
the one for Latex has the smallest FSM. This suggests that the
speedup may be influenced by the memory subsystem, which is
stressed more when finite state machines are larger.

• The MWIS benchmark does not scale as well as the other
benchmarks even with a large overlap . We find that this bench-
mark is memory bound and performance is limited by the mem-
ory subsystem.

• There are a small number of cases where speedup is marginally
less than 1. This shows that the runtime overheads introduced
by our library are negligible.

Prediction Accuracy. The scalability of a speculative algorithm
largely depends on the accuracy of the prediction function. If a pre-
diction function rarely mis-predicts, we expect a speculative imple-
mentation to behave like a parallel implementation. On the other
hand, if a prediction function mis-predicts often, the implementa-
tion reduces to a sequential implementation, plus the library’s own
overheads.

Figure 6. Variation in scalability of the three benchmark programs
with number of threads, data sets and prediction quality.

We measured the accuracy of prediction using different overlap
lengths for all our datasets. In each case, we made 32 predictions
using the prediction function at equally separated points in the
input data, and measured the prediction accuracy. As shown in
Figure 7, we find that the prediction accuracy increases as the
overlap increases. Except for the HTML Lexer and MWIS (uni-
5000), a 100% prediction accuracy was achievable with reasonable
overlap sizes. We also repeated this experiment increasingly larger
number of predictions (upto 500,000 predictions) and found that
the prediction accuracy remains more or less the same. These
experiments highlights the potential for domain specific prediction
functions to be very accurate and the value of programmer specified
prediction functions.

Validation modes. As described in Section 4, we support two val-
idation modes in the Speculation.Iterate API, a sequential vali-
dation mode (seq) and a parallel/optimistic validation mode (par).
Figure 8 shows the variation in speedup with the choice of the vali-
dation mode and the accuracy of prediction for one dataset in each
of the benchmark programs. We present two sets of speedups, a min
speedup obtained with a small overlap, and a max speedup obtained
with a large overlap that eliminates mis-predictions.

Benchmark Overlap Prediction Accuracy %

Lexical analysis

HTML Java Latex
16 28% 90% 62%
64 41% 100% 100%

256 50% 100% 100%

Huffman

media rawdata text
2 38% 72% 66%
4 47% 81% 75%
8 72% 100% 91%

16 91% 100% 100%
64 100% 100% 100%

MWIS

uni-50 uni-5000
8 81% 38%

16 97% 38%
32 100% 38%

Figure 7. Variations in prediction accuracy for various data-sets.

Both validation modes performed equally well in many cases,
but sequential validation seems to do better when the number of
threads is increased to 4 and we use a good predictor. This is
slightly counter intuitive since we would expect parallel validation
to perform better in exactly such scenarios. Our investigation sug-
gests that the overheads of creating a larger number of validation
tasks outweighs the benefits of parallel validation as the number of
speculative threads increase. We believe this is an artifact of the task
library we are using and we are working on optimizing this aspect
of our implementation. We propose to further investigate the rela-
tive performance of the two options, e.g., in machines with more
than 4 cores.

Dataset size. We also conducted experiments to study the effect
of the data set size on scalability. For example, in the case of
Huffman decoding, we varied the size of input data from 10 MB
to 50 MB. Our experiments suggest that the speedups do not vary
significantly within the data size intervals we chose. On an average,
we see a small drop in speedup with the increase in data set size.
We studied this behavior closely using performance counters and
we find that the memory subsystem plays an increasingly important
role as data sets sizes increase, which limits speedup. We omit the
details of this experiment due to space constraints.

Static analysis. We have built a prototype implementation of the
analysis for checking rollback freedom (described in Section 5)
and used it to verify correctness of our benchmark programs. Cur-
rently, our implementation does not analyze methods in the .NET
base class library. We manually provided summaries for BCL meth-
ods called from within our programs. Table 9 shows some of the
characteristics of the benchmarks programs and the time taken by
our analysis to verify correctness. All of our benchmarks are mod-
erately sized with a reasonably small number of methods. In all
three case, the time taken to verify rollback freedom was under 30
seconds (unfortunately, with relatively high peak memory usage).
We believe that the scalability of our implementation can be im-
proved further. We leave a more detailed analysis of the precision-
performance trade-off for future work.

7. Related Work
Speculatively Parallel Algorithms. Several speculatively parallel
algorithms have been designed in recent years, for use in specific
domains. Jones et al. [8] devised an overlap-based speculative lexi-
cal analysis for parallelizing a web browser’s front-end. Luchaup et
al. [14] speculatively identify attacks within an intrusion detection
system using hot state prediction within a pattern matching FSM.
Klein et al. [10] designed a parallel JPEG decoder by specula-
tive identification of synchronization points within Huffman codes.

Figure 8. Variation in scalability of benchmarks with the type of
speculation validation sequential or parallel.

Benchmark LOC # methods Time (sec.) Memory
Usage
(MB)

Lexical Analysis (Java) 493 76 23.62 50
Huffman Decoding 578 83 21.25 66
MWIS 412 44 29.89 64

Figure 9. Characteristics of benchmark programs and time &
memory consumed to verify rollback freedom.

Speculative parsing [9] and speculative simulated annealing [25]
are other examples of speculative algorithms. All these algorithms
can be easily expressed using our speculation constructs.

Language Constructs and Implementation Mechanisms For Safe
Parallelism. Futures is a well-known language construct for ini-
tiating the concurrent computation of a value for later use. Welc
et al. [24] formalized the concept of safe futures for Java as one
that guaranteed behavior equivalent to a sequential implementa-
tion. They utilize a runtime mechanism to ensure sequential se-
mantics in the presence of memory conflicts. Software transac-
tions [4, 7, 2, 22] are a well-known construct for safe parallelism,
with a well-studied formal semantics [15, 2]. Implementations of

software transactions typically rely on optimistic concurrency and
runtime techniques to detect conflicts and use rollback for correc-
tive action. The Galois system provides set iterators for specifying
optimistic parallelism and uses high level commutativity checks for
runtime validation [11]. The constructs we propose meet a need not
addressed by the above constructs: programmable value specula-
tion. Further, we use static analysis techniques to ensure safety and
avoid the need for runtime techniques. The use of runtime tech-
niques to detect conflicts and/or take corrective action in an imple-
mentation of our speculation constructs (e.g., when static verifica-
tion is not possible) is an interesting problem worth exploring.

Software BOP [6] is a system that speculatively executes code
regions annotated as “possibly parallel” by the programmer. Value
checking is used as an optimization for speculation validation in
certain restricted cases, while address-based checking is used in
the general case. Speculatively parallel algorithms which can be ex-
pressed using our constructs cannot be expressed in Software BOP
as there is no support for specifying ordered “possibly parallel”
regions. This ordering is important in deciding the regions to re-
execute on mis-speculation detection. Software BOP supports roll-
back at runtime by leveraging page-based protection mechanisms,
while we rely on static analysis to prove rollback freedom.

Compiler and hardware driven value speculation. Computer ar-
chitects and compiler writers have proposed the use of value spec-
ulation for extracting parallelism at both the instruction level (ILP)
and thread-level (TLP). For example, value speculation has been
used to to drive ILP optimizations such as register value re-use [21]
and load/store reordering [13].

Hardware-assisted TLS systems use value prediction for mask-
ing communication latency between threads [20] and predicting
silent stores [5] and return values [16]. Mitosis is a system that
uses slice based value prediction for initializing speculative thread
state [17]. SPICE [18] uses selective value prediction to convert
loops into data parallel form.

In this paper, we focus on user-programmable speculation for
TLP. Our constructs are complementary to low-level value specu-
lation used in compilers and the hardware. Our constructs enable
programmers to specify custom prediction functions that exploit
domain knowledge, which is often critical for prediction accuracy.

8. Future Work
We believe that speculative parallelism is an important algorithm
design idiom for improving performance of algorithms that are
commonly perceived as sequential. The language extensions we
propose simplify writing speculatively parallel programs. However,
these are initial designs and there are several interesting avenues for
future work.

We defined the semantics of our speculative constructs in a sim-
ple language. Formally defining the semantics of these constructs
in a richer language that supports features such as exceptions, syn-
chronization primitives is an interesting problem. Ideally, we would
like to guarantee non-speculative exception semantics for the spec-
ulative constructs. However, providing these guarantees statically
or even with low runtime overheads appears challenging. For ex-
ample, consider the scenario when a producer or a speculative iter-
ation throws an exception. In such a scenario, the consumer or any
subsequent speculative iterations should not appear to have been
executed at all.

We would also like to weaken the conditions we use check for
rollback freedom to permit common programming idioms such as
caching. By weakening these conditions and statically verifying
larger fragments of code as rollback free, we may be able to signifi-
cantly reduce the burden of runtime mechanisms that ensure safety
such as transactional memory.

Finally, we believe that expressing speculative algorithms us-
ing constructs may permit more efficient implementations of these
algorithms. For example, it may be possible to exploit knowledge
about whether or not a task is speculative (and the degree of specu-
lation) to improve task scheduling.

Acknowledgments
We would like to acknowledge Tim Harris for his inputs during the
initial stages of this work. We also thank Ashish Agarwal for his
contributions to this paper.

References
[1] What’s new in beta 2 for the task parallel library. In blogs.msdn.com,

2009.

[2] Martı́n Abadi, Andrew Birrell, Tim Harris, and Michael Isard.
Semantics of transactional memory and automatic mutual exclusion.
In Proc. of POPL, pages 63–74, 2008.

[3] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny,
Kurt Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson,
Koushik Sen, John Wawrzynek, David Wessel, and Katherine Yelick.
A view of the parallel computing landscape. Communications of
ACM, 2009.

[4] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong
Chung, Chi Cao Minh, Christos Kozyrakis, and Kunle Olukotun.
The atomos transactional programming language. SIGPLAN Not.,
41(6):1–13, 2006.

[5] Marcelo Cintra and Josep Torrellas. Eliminating squashes through
learning cross-thread violations in speculative parallelization for
multiprocessors. In Proc. of HPCA, page 43, Washington, DC, USA,
2002. IEEE Computer Society.

[6] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and
Chengliang Zhang. Software behavior oriented parallelization. In
Proc. of PLDI, pages 223–234, 2007.

[7] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice
Herlihy. Composable memory transactions. In Proc. of PPoPP,
pages 48–60, New York, NY, USA, 2005. ACM.

[8] Christopher Grant Jones, Rose Liu, Leo Meyerovich, Krste Asanovic,
and Rastislav Bodik. Parallelizing the web browser. In Proc. of
HOTPAR, 2009.

[9] Blake Kaplan. Speculative parsing patch. In bugzilla.mozilla.org,
2009.

[10] Shmuel Tomi Klein and Yair Wiseman. Parallel huffman decoding
with applications to jpeg files. Journal of Computing, 46(5):487–497,
2003.

[11] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L. Paul Chew. Optimistic parallelism
requires abstractions. In PLDI, pages 211–222, 2007.

[12] Butler W. Lampson. Lazy and speculative execution in computer
systems. In Proc. of ICFP, pages 1–2, New York, NY, USA, 2008.
ACM.

[13] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen.
Value locality and load value prediction. In Proc. of ASPLOS, pages
138–147, 1996.

[14] Daniel Luchaup, Randy Smith, Cristian Estan, and Somesh Jha.
Multi-byte regular expression matching with speculation. In Proc. of
RAID, pages 284–303, 2009.

[15] Katherine F. Moore and Dan Grossman. High-level small-step
operational semantics for transactions. In Proc. of POPL, pages
51–62, 2008.

[16] Jeffrey T. Oplinger, David L. Heine, and Monica S. Lam. In search
of speculative thread-level parallelism. In Proc. of PACT, page 303,
Washington, DC, USA, 1999. IEEE Computer Society.

[17] Carlos Garcı́a Qui nones, Carlos Madriles, Jesús Sánchez, Pedro
Marcuello, Antonio González, and Dean M. Tullsen. Mitosis
compiler: an infrastructure for speculative threading based on pre-
computation slices. SIGPLAN Not., 40(6):269–279, 2005.

[18] Easwaran Raman, Neil Vachharajani, Ram Rangan, and David I.
August. Spice: speculative parallel iteration chunk execution. In
Proc. of CGO, pages 175–184, 2008.

[19] Alexandru Salcianu and Martin C. Rinard. Purity and side effect
analysis for java programs. In Proc. of VMCAI, pages 199–215, 2005.

[20] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and
Todd C. Mowry. Improving value communication for thread-level
speculation. In Proc. of HPCA, page 65, Washington, DC, USA,
2002. IEEE Computer Society.

[21] Dean M. Tullsen and John S. Seng. Storageless value prediction using
prior register values. In Proc. of ISCA, pages 270–279, 1999.

[22] Christoph von Praun, Luis Ceze, and Calin Cascaval. Implicit
parallelism with ordered transactions. In Proc. of PPoPP, pages
79–89, 2007.

[23] G. Weikum and Gottfried Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of Concurrency
Control and Recovery. Morgan Kaufmann, 2002.

[24] Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe futures
for java. In Proc. of OOPSLA, pages 439–453, New York, NY, USA,
2005. ACM.

[25] E. E. Witte, R. D. Chamberlain, and M. A. Franklin. Parallel
simulated annealing using speculative computation. IEEE Trans.
Parallel Distrib. Syst., 2(4):483–494, 1991.

