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We introduce CLASS, a session-typed, higher-order, core language that sup-
ports concurrent computation with shared linear state. We believe that CLASS
is the first proposal for a foundational language able to flexibly express realistic
concurrent programming idioms, with a type system ensuring all the following
three key properties: CLASS programs never misuse or leak stateful resources
or memory, they never deadlock, and they always terminate. CLASS owes these
strong properties to a propositions-as-types foundation based on Linear Logic,
which we conservatively extend with logically motivated constructs for share-
able affine state. We illustrate CLASS expressiveness with several examples
involving memory-efficient linked data structures, sharing of resources with
linear usage protocols, and sophisticated thread synchronisation, which may
be type-checked with a perhaps surprisingly light type annotation burden.

1 Introduction

Stateful programming involving concurrency and shared state plays a prominent
role in modern software development, but, in practice, getting concurrent code
right is still quite hard for common developers. Typical sources of “bugs” include
resource leaks (forgetting to release unused memory or close a socket), violation
of resource state preconditions (writing to a closed file or sending out-of-order
messages), races (data invariant breaking, erratic sharing of resources), dead-
locks (indefinite wait for lock release or incoming messages), livelocks, and even
general non-termination. Fifty years ago Hoare noted [40]: “Parallel programs
are particularly prone to time-dependent errors, which either cannot be detected
by program testing nor by run-time checks. It is therefore very important that
a high-level language designed for this purpose should provide complete secu-
rity against time-dependent errors by means of a compile-time check”. It does
not come as a surprise that finding ways to approximate such certainly very
ambitious goal is still today the object of exciting intense research.

In this paper, we approach this challenge by leveraging the propositions-
as-types (PaT) paradigm towards the realm of concurrency and shared state.
PaT is known to offer a unifying framework connecting logic, computation, and
programming languages. Since the seminal work of Curry and Howard [42], it
is a prolific structuring concept for designing and reasoning about programming
languages (see [82]). Remarkably, languages derived within PaT intrinsically
satisfy crucial properties: type preservation (since reduction corresponds to cut-
reduction), confluence (since computation corresponds to proof simplification),
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deadlock freedom (as a consequence of cut-elimination) and livelock freedom /
termination (as a consequence of strong normalisation).

Although PaT has a traditional focus on functional computation, the emer-
gence of linear logic has progressively motivated interpretations of stateful/re-
sourceful computation [78,1,14,2,12], eventually leading to the discovery of tight
correspondences between session types and linear logic [22,27,81]. These systems
already capture aspects of state change, namely in the sequential execution of
session protocols, thus raising the question of whether such approaches could
be extended to express notions of shared mutable state, subject to interference,
as found in typical imperative and concurrent programs. Recently, such chal-
lenge was addressed by several works [9,64,67]. In particular, [67] developed a
first basic shared state model enjoying all the aforementioned strong properties
of PaT. However, although [67] supports higher-order shareable store for pure
values of replicated type, it forbids linear objects, such as stateful processes or
data structures with update in-place, to be stored and shared as in languages
like Java, Rust, and in the CLASS core language we introduce herein.

In this work, we develop a novel, more fundamental approach to shared state
and PaT, and introduce CLASS, a typed, higher-order, session based core lan-
guage that supports general concurrent computation with dynamically allocated
shared linear (more precisely, affine) state. We believe that CLASS is the first
proposal for a foundational language. able to flexibly express realistic concur-
rent programming idioms, while ensuring all the following three key properties
by static typing: CLASS programs never misuse or leak stateful resources or
memory, they never deadlock, and they always terminate.

Despite the strength of its type system, CLASS expressiveness and effec-
tiveness substantially overcomes limitations of related works, as we show with
compelling program examples that can be algorithmically typed for memory
safety, dead- and live-lock freedom with a perhaps surprisingly light type anno-
tation burden. CLASS owes these strong properties to is PaT foundation based
on Second-Order Linear Logic, already known to capture the polymorphic ses-
sion calculus and the linear System F [74], but which we conservatively extend
with novel logically motivated constructs for shareable affine state, also based on
DiLL co-exponentials [35,67], but to which we give here a different, more general
and fundamental interpretation.

1.1 Overview

A main novelty and source of CLASS’s expressiveness, flexibility and strong
meta-theoretical properties resides in its mechanism for shared state compo-
sition. It is interesting to overview such mechanism in the context of the basic
composition and interaction principles of the fundamental linear logic interpre-
tations [22,27,81]. Our computational model is structured around processes that
interact via binary sessions, the basic composition rules being mix and cut.

P ⊢ ∆1;Γ Q ⊢ ∆2;Γ

P || Q ⊢ ∆1, ∆2;Γ
[Tmix]

P ⊢ ∆1, x : A;Γ Q ⊢ ∆2, x : A;Γ

P |x| Q ⊢ ∆1, ∆2;Γ
[Tcut]
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The mix rule types the independent composition of processes P and Q, which
do not share any free names and run side-by-side without interacting. This is
captured by the implicit disjointness of their linear typing contexts ∆1 and
∆2, declaring the types of their interaction channels. Interactive composition is
expressed by the cut rule, which connects exactly two processes P and Q through
a single linear session x with dual typed endpoints (x : A and x : A), following
Abramsky’s idea of “cut as interactive composition” [1].

Intuitively, duality of endpoint (session) types ensures that all interactions
between P and Q on x always matches: when P sends, Q receives; when Q offers,
P chooses; and likewise for all types. Notice that sharing a single channel x be-
tween the threads P and Q is important to ensure acyclicity of proof structures,
and cut-elimination/deadlock absence. But P,Q may use an arbitrary number
of linear channels, in ∆1, ∆2, to also compose with other processes.

Shared composition in session types is available for replicated “server” objects
!x(y);P , typed by the linear logic exponential type bang !A. Contraction of the
dual exponential type why-not ?A allows an unbounded number of usages of
such replicated server object to be introduced in client processes. In the dyadic
presentation of linear logic (cf. [5,11]), contraction is expressed by moving ?-
typed names into the unrestricted context Γ , with the [T?] rule.

!x(y);P ⊢ x :!A;Γ

Q ⊢ ∆;Γ, x : A
[T?]

?x;Q ⊢ ∆,x :?A;Γ

!x(y);P |x| ?x;Q ⊢ ∆;Γ

...

R ⊢ ∆, y : A;Γ, x:A
[Tcall]

call x(y);R ⊢ ∆;Γ, x:A

Names in Γ may be used unrestrictedly; each call (typed by [Tcall]) spawns a
fresh copy of the server body at type y : A, to be used by the client at type
y : A, in a linear binary session. By the typing rule for !A (promotion) such copy
does not depend on linear resources. Thus, interaction with replicated objects
as captured by the exponentials !A and ?A implements a copy semantics where
each call obtains a new private stateless copy of the same object.

In this work, we introduce a third composition mechanism, allowing processes
to concurrently share mutex memory cells, storing linear state. Mutex memory
cells and their usages are typed respectively by a pair of dual modalities S•A and
U•A, whose logical rules are motivated by Differential Linear Logic (DiLL) [35],
in particular cocontraction, expressed by the type rule [Tsh].

P ⊢ ∆,x : U•A;Γ Q ⊢ ∆′, x : U•A;Γ
[Tsh]

share x {P || Q} ⊢ ∆,∆′, x : U•A;Γ

While sharing of replicated objects corresponds to contraction of ?A types,
shared usage of mutex cells corresponds to cocontraction of U•A types. Apart
from the explicit use of [Tsh], the type system ensures that memory cells are
always used linearly. The shared usage x : U•A is free in the conclusion of the
typing rule, therefore a memory cell may be shared by an arbitrary number of
processes, by nested iterated use of cocontraction.
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Moreover, cocontraction also ensures that concurrent processes may share a
single mutex cell (just like [Tcut] w.r.t. binary sessions). This constraint comes
from the linear logic discipline, and it is important to ensure deadlock freedom.
As discussed in Concluding Remarks, this does not hinder CLASS expressiveness
- e.g., a single mutex cell may act as a gateway to further bundles of shared
state, organised in resource hierarchies, as our examples illustrate - and even
suggests convenient concurrent programming structuring techniques.

To access a mutex memory cell in its (unlocked) full state, typed by U•A, the
client uses a take operation. Take waits for acquiring the cell lock and reads its
contents. The cell then transitions to the (locked) empty state, typed by U◦A.
The taking client becomes the sole responsible for filling back the cell contents,
using a put operation. This will restore the cell to the full state, releasing its
lock, and making it accessible to other concurrent threads waiting to take it.
Our mutex memory cell object is thus akin to a behaviourally typed incarnation
of Concurrent Haskell MVars [45] or Rust std::sync::Mutex objects [46].

To ensure safe releasing of a memory cell, its contents are required to be of
affine type ∧A. Affine objects are well-behaved disposable values, that when dis-
carded, safely dispose all resources they hereditarily refer to, this being ensured
by the linear logic typing.

We illustrate the introduced concepts with a simple example, where two
concurrent threads compete to set on an initially off flag, but only one may
win. The flag iteratively announces its state to the client with either #Off or
#On. If the state is off, the client must select #turnOn, if the state is on, it will
remain on. Process flag(f) implements the flag (at name f) in the off state, and
process on(f) in the on state, defined thus

flag(f) = #Off f ; case f{ | #turnOn : affine f ; on(f) }
on(f) = #On f ; affine f ; on(f)

The flag object is typed with the (linear) usage protocol defined by the coinduc-
tive type Flag below, such that flag(f) ⊢ f : Flag and on(f) ⊢ f : Flag

type corec Flag = ⊕{ |#Off : N{ |#turnOn : ∧Flag}, |#On : ∧Flag}

We now consider a scenario where a flag object is shared via a mutex memory
cell c initially storing a off flag of type ∧Flag among two concurrent clients.

client(c, id) ⊢ c : U•Flag; id : int
client(c, id) =

take c(f);
case f {
|#Off : println id+ “: wins.’;

#turnOn f ;
put c(f); release c

|#On : println id+ “: loses.’;
put c(f); release c

}

main() ⊢ ∅
main() =
cut { cell c(f.affine f ; flag(f))

|c : U•Flag|
share c {

client(c, 1)
||
client(c, 2)

}
}
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When running main() exactly one of the threads (executing the same code, just
with a different id) will turn the flag on and win, the other will loose. Notice
that all threads drop usage of the memory cell c using release, which corresponds
to DiLL coweakening ([35]).

When considering a new language, in particular with a static typing disci-
pline, it is necessary to argue about its expressiveness, and aim for a better per-
ception of how natural programs get past its typing rules, and of how types help
in structuring programs. In this paper, we approach these concerns by showcas-
ing many interesting examples that challenge the expressiveness of the CLASS
language and type system on realistic concurrent programming scenarios. We
have developed many more examples, distributed with our implementation [68],
combining imperative, higher-order functional, and session-based programming
styles. For all these programs, strong guarantees of memory safety, deadlock-
freedom, termination, and absence of “dynamic bugs”, even in the presence of
blocking primitives and higher-order state, are compositionally certified by our
lightweight type discipline based on Propositions-as-Types and Linear Logic.

1.2 Outline and Contributions

We believe that CLASS is the first proposal for a foundational language able to
flexibly express realistic concurrent programming idioms while ensuring by typ-
ing three key properties: CLASS programs never misuse or leak stateful resources
or memory, they never deadlock, and they always terminate.

In Section 2 we formally present the core language CLASS, its type system and
operational semantics. Our model builds on the propositions-as-types approach
to session-based concurrency [22,27,80], extending Second-Order Classical Linear
Logic with inductive/coinductive types, affine types, and novel primitives for
shareable first-class mutex reference cells for linear state.

In Section 3 we state and prove type preservation (Theorem 1), progress
(Theorem 2) which implies deadlock-freedom, and strong normalisation (Theo-
rem 3), which also implies livelock absence. Our proof uses a logical relations
argument, extended with an interesting technique to handle shared state inter-
ference, which we believe is exploited here for the first time.

Given the strong properties of its type system, it is of course very important
to substantiate our claims about CLASS expressiveness. In Section 4 we illustrate
the expressiveness of CLASS language and type system by going through a series
of compelling examples. Namely, we discuss a general technique for sharing linear
protocols, a shareable linked list with update in-place, a shareable buffered chan-
nel, using a linked list with pointers to tail and head nodes, and executing send
and receive operations in O(1) time; the dining philosophers, illustrating tech-
niques that rely on our type structure to encode resource acquisition hierarchies;
a generic barrier for n threads; and a Hoare style monitor with await/notify con-
ditions, where our implementation of the condition’s process queue is supported
by a dynamic linked data structure, as in real systems code.

Safe Session-Based Concurrency with Shared Linear State 425



Section 5 discusses related work. Section 6 offers concluding remarks and
suggests further research. Complete definitions and detailed proofs to all results
are provided in [65].

2 The Core Language and its Type System

We present the core language, type system, and operational semantics of CLASS.
The language is based on a PaT correspondence with Linear Logic, so terms of
the language correspond to proof rules. We start by types and duality.

Definition 1 (Types). Types A,B of CLASS are defined by

A,B ::= X | 1 | ⊥ | A N B | A⊕B | A O B | A⊗B
| !A | ?A | ∃X.A | | ∀X.A | µX. A | νX. A
| ∧A | ∨A | S•A | S◦A | U•A | U◦A

Types in the first two rows correspond to Second-Order Classical Linear Logic,
extended with inductive/coinductive types (µ, ν). Types comprise variables (X),
units (1, ⊥), multiplicatives (⊗, O), additives (⊕, N), exponentials (!, ?) and
quantifiers (∃, ∀). The third row extends basic types with affine (∧,∨) and new
modalities (S•,U•, S◦,U◦) to type shared affine state. Duality is the involution
operation A 7→ A on types, corresponding to Linear Logic negation, defined by

1 = ⊥ A⊗B = A O B A⊕B = A N B

!A = ?B ∃X.A = ∀X.A µX. A = νX. {X/X}(A)

∧A = ∨A S•A = U•A S◦A = U◦A

Duality captures symmetry in process interaction, as manifest in the cut rule.
In our system, typing judgements have the form P ⊢η ∆;Γ . The typing context
∆;Γ is dyadic [4,15,63,22], where ∆ is handled linearly and Γ is unrestricted;
both ∆ and Γ assign types to names. The index η is a finite map that holds
coinduction hypothesis to type corecursive processes, as detailed later.

Definition 2. The typing rules of CLASS are presented in Figs. 1 to 5.

The type system corresponds, via propositions-as-types [22,27,80], to Second-
Order Classical Linear Logic (Fig. 1) with inductive/coinductive types (Fig. 2),
affinity (Fig. 3) and extended with constructs for shared mutable state (Figs. 4
- 5). The basic composition rules are [Tmix] and [Tcut], which correspond to
mix and cut of Linear Logic, respectively. [Tmix] types a parallel composition
P || Q, where P and Q run in parallel without interfering. On the other hand,
[Tcut] types linear interactive composition P |x : A| Q: processes P and Q
run concurrently and communicate through a private linear session x, session
endpoints being typed by dual types A/A. When the cut type annotation does
not play any role, we may omit it and write P |x| Q. In examples, for readability,
we use cut {P |x| Q} and par {P || Q} instead of P |x| Q and P || Q, respectively.

For the basic process constructs [22,27,80,19], ⊗/O type send and receive,
⊕/N type choice and offer (in examples we use labelled choice) , !/? type
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[T0]
0 ⊢η ∅;Γ

P ⊢η ∆′;Γ Q ⊢η ∆;Γ
[Tmix]

P || Q ⊢η ∆′, ∆;Γ

[Tfwd]
fwd x y ⊢η x : A, y : A;Γ

P ⊢η ∆′, x : A;Γ Q ⊢η ∆,x : A;Γ

P |x : A| Q ⊢η ∆′, ∆;Γ
[Tcut]

[T1]
close x ⊢η x : 1;Γ

Q ⊢η ∆;Γ
[T⊥]

wait x;Q ⊢η ∆,x : ⊥;Γ

P1 ⊢η ∆,x : A;Γ P2 ⊢η ∆,x : B;Γ
[TN]

case x {|inl : P1, |inr : P2} ⊢η ∆,x : A N B;Γ

Q1 ⊢η ∆′, x : A;Γ
[T⊕l]

x.inl;Q1 ⊢η ∆′, x : A⊕B;Γ

Q2 ⊢η ∆′, x : B;Γ
[T⊕r]

x.inr;Q2 ⊢η ∆′, x : A⊕B;Γ

P1 ⊢η ∆1, y : A;Γ P2 ⊢η ∆2, x : B;Γ
[T⊗]

send x(y.P1);P2 ⊢η ∆1, ∆2, x : A⊗B;Γ

Q ⊢η ∆, z : A, x : B;Γ
[TO]

recv x(z);Q ⊢η ∆,x : A O B;Γ

P ⊢η y : A;Γ
[T!]

!x(y);P ⊢η x :!A;Γ

Q ⊢η ∆;Γ, x : A
[T?]

?x;Q ⊢η ∆,x :?A;Γ

P ⊢η y : A;Γ Q ⊢η ∆;Γ, x : A
[Tcut!]

y.P |!x : A| Q ⊢η ∆;Γ

Q ⊢η ∆, z : A;Γ, x : A
[Tcall]

call x(z);Q ⊢η ∆;Γ, x : A

P ⊢η ∆,x : {B/X}A;Γ
[T∃]

sendty x(B);P ⊢η ∆,x : ∃X.A;Γ

Q ⊢η ∆,x : A;Γ
[T∀]

recvty x(X);Q ⊢η ∆,x : ∀X.A;Γ

Fig. 1: Typing Rules I: Second-Order CLL.

P ⊢η′ ∆, z : A;Γ η′ = η,X(z,w) 7→ ∆, z : Y ;Γ
[Tcorec]

corec X(z,w);P [x,y] ⊢η {y/w}∆,x : νY. A; {y/w}Γ

η = η′, X(x,y) 7→ ∆,x : Y ;Γ
[Tvar]

X(z,w) ⊢η {w/y}∆, z : Y ; {w/y}Γ

P ⊢η ∆,x : {µX. A/X}A;Γ
[Tµ]

unfoldµ x;P ⊢η ∆,x : µX. A;Γ

P ⊢η ∆,x : {νX. A/X}A;Γ
[Tν]

unfoldν x;P ⊢η ∆,x : νX. A;Γ

Fig. 2: Typing Rules II: Induction and Coinduction.
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P ⊢η a : A, b : ∨B, c : U•C;Γ
[Taffine]

affineb,c a;P ⊢η a : ∧A, b : ∨B, c : U•C;Γ

[Tdiscard]
discard a ⊢η a : ∨A;Γ

Q ⊢η ∆, a : A;Γ
[Tuse]

use a;Q ⊢η ∆, a : ∨A;Γ

Fig. 3: Typing Rules III: Affinity.

replicated servers and their invocation, ∀/∃ type receive and send of types, im-
plementing polymorphic processes.

Coinductive types are introduced by rule [Tcorec]. It types corecursive pro-
cesses corec X(z,w);P [x,y], with parameters z,w bound in P , that are instan-
tiated with the arguments x,y (free in the process term). By convention, the
coinductive behaviour, of type νY. A, of a corecursive process is always offered
in the first argument z. According to [Tcorec], to type the body P of a core-
cursive process, the map η is extended with a coinductive hypothesis binding
the process variable X to the typing context ∆, z : Y ;Γ , so that when typing
the body P of the corecursion we can appeal to X, which intuitively stands for
P itself, and recover its typing invariant. Crucially, the type variable Y is free
only in z : A. This causes corecursive calls to be always applied to names z′ that
hereditarily descend from the initial corecursive argument z, a necessary con-
dition for strong normalisation (Theorem 3), and morally corresponds to only
allowing corecursive calls on “smaller” argument sessions (of inductive type).

Rule [Tvar] types a corecursive call X(z,w) by looking up in η for the corre-
sponding binding and renaming the parameters with the arguments of the call.
Inductive and coinductive types are explicitly unfolded with [Tµ] and [Tν].

To simplify the presentation in program examples, we omit explicit unfolding
actions, and write inductive and coinductive type definitions with equations of
the form rec A = f(A) and corec B = f(B) instead of A = µX. f(X) and
B = νX. f(X), respectively. Similarly, we write corecursive process definitions
as Q(x,y) = f(Q(−)) instead of Q(x,y) = corec X(z,w); f(X(−)) [x,y], while
of course respecting the constraints imposed by typing rules [Tvar] and [Tcorec].

Affinity Affinity is important to model discardable linear resources, and plays
an important role in CLASS. An affine session can either be used as a linear
session or discarded. The typing rules for the affine modalities are in Fig. 3.
Affine sessions are introduced by rule [Taffine] that promotes a linear a : A to
an affine session a : ∧A. It types affineb,c a;P , which provides an affine session
at a and continues as P , and follows the structure of a standard promotion rule.

A session a may be promoted to affine if it only depends on resources that
can be disposed, i.e. resources that satisfy some form of weakening capability,
namely: coaffine sessions bi of type ∨Bi, that can be discarded; full cell usages
ci of type with U•Ci, that can be released; and unrestricted sessions in Γ , which
are implicitly ?-typed. The dependencies of an affine object on coaffine or full
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P ⊢η ∆, a : ∧A;Γ
[Tcell]

cell c(a.P ) ⊢η ∆, c : S•A;Γ

[Trelease]
release c ⊢η c : U•A;Γ

[Tempty]
empty c ⊢η c : S◦A;Γ

Q ⊢η ∆, a : ∨A, c : U◦A;Γ
[Ttake]

take c(a);Q ⊢η ∆, c : U•A;Γ

Q1 ⊢η ∆1, a : ∧A;Γ Q2 ⊢η ∆2, c : U•A;Γ
[Tput]

put c(a.Q1);Q2 ⊢η ∆1, ∆2, c : U◦A;Γ

Fig. 4: Typing Rules IV: Reference Cells.

cell objects are explicitly annotated as b, c in the process term, to instrument
the operational semantics, but we often omit them and simply write affine a;P .

The coaffine endpoint ∨A of an affine session, dual of ∧A, has two operations:
use and discard. Rule [Tuse] types a process use a;Q that uses a coaffine session a
and continues as Q, it is a dereliction rule. [Tdiscard] types the process discard a
that discards a coaffine session a, it is a weakening rule.

Shared Mutable State Shared state is introduced in CLASS by typed con-
structs that model mutex memory cells, and associated cell operations allowing
its use by client code, defined by the tying rules in Fig. 4.

At any moment a cell may be either full or empty, akin to the MVars of
Concurrent Haskell [45]. A full cell on c, written cell c(a.P ), is typed S•A by
rule [Tcell]. Such cell stores an affine session of type ∧A, implemented at a by
P . All objects stored in cells are required to be affine, so that memory cells may
always be safely disposed without causing memory leaks. An empty cell on c, of
type S◦A, and written empty c, is typed by rule [Tempty].

Client processes manipulate cells via take, put and release operations. These
operations apply to names of cell usage types - U•A (full cell usage) and U◦A
(empty cell usage) - which are dual types of S•A and S◦A, respectively. At any
given moment, a client thread owning a U•A-typed usage to a cell may execute
a take operation, typed by rule [Ttake]. The take operation take c(a);Q waits
to acquire the cell mutex c, and reads its contents into parameter a, the linear
(actually coaffine, of type ∨A) usage for the object stored in the cell; the cell
becomes empty, and execution continues as Q.

It is responsibility of the taking thread to put some value back in the empty
cell, thus releasing the lock, causing the cell to transition to the full state. The put
operation put c(a.Q1);Q2 is typed by [Tput], the stored object a, implemented
by Q1, is required to be affine, as specified in the premise a : ∧A.

Hence a cell flips from full to empty and back; [Ttake] uses the cell c at U•A
type, and its continuation (in the premise) at U◦A type, symmetrically [Tput]
uses the cell c at U◦A type, and its continuation (in the premise) at U•A type.

The release c operation allows a thread to manifestly drop its cell usage c.
Release is typed by [Trelease] (cf. coweakening [35]); a usage may only be released
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P ⊢η ∆′, c : U•A;Γ Q ⊢η ∆, c : U•A;Γ
[Tsh]

share c {P || Q} ⊢η ∆′, ∆, c : U•A;Γ

P ⊢η ∆′, c : U◦A;Γ Q ⊢η ∆, c : U•A;Γ
[TshL]

share c {P || Q} ⊢η ∆′, ∆, c : U◦A;Γ

P ⊢η ∆′, c : U•A;Γ Q ⊢η ∆, c : U◦A;Γ
[TshR]

share c {P || Q} ⊢η ∆′, ∆, c : U◦A;Γ

Fig. 5: Typing Rules V: State Sharing.

in the unlocked state U•A. When, for some cell c, all the owning threads release
their usages, which eventually happens in well-typed programs, the cell c gets
disposed, and its (affine) contents safely discarded.

Our memory cells cells are linear objects, with a linear mutable payload,
which are never duplicated by reduction or conversion rules. However, in CLASS,
multiple cell usages may be shared between concurrent threads, which compete
to take and use it in interleaved critical sections. Such aliased usages be passed
around and duplicated dynamically, changing the sharing topology at runtime.

Sharing of cell usages is logically expressed in our system by the typing rules
in Fig. 5. Co-contraction, introduced in Differential Linear Logic DiLL [35], al-
lows finite multisets of linear resources to safely interact in cut-reduction, resolv-
ing concurrent sharing into nondeterminism, as required here to soundly model
memory cells and their linear concurrent usages. Rule [Tsh] interprets cocon-
traction with the construct share c {P || Q}, and types sharing of the cell usage
c : U•A between the concurrent threads P and Q.

Contrary to cut, share c {P || Q} is not a binding operator for c. The shared
usage c : U•A is free in the conclusion of the typing rule, permitting c to be
shared among an arbitrary number of threads, by nested iterated use of [Tsh].
In [Tsh], P and Q only share the single mutex cell c, since the linear context is
split multiplicatively, just like [Tcut] wrt. binary sessions. This condition comes
from the DiLL typing discipline, and is important to ensure deadlock freedom.

While [Tsh] types sharing of a full (unlocked) cell usage of type U•A, the
symmetric rules [TshR] and [TshR] type sharing of an empty (locked) cell usage
of type U◦A. We may verify that for every cell c in a well-typed process, at
most one unguarded operation to c may be using type U◦A, all the remaining
unguarded operations to cmust be using type U•A. This implies that, at runtime,
only one thread may own the lock for a given (necessarily empty) cell, and
execute a put to it, which will bring the cell back to full and release its lock,
other threads must be either attempting to take, or release the reference.

Working together, the sharing typing rules ensure that in any well-typed cell
sharing tree, at most one single thread at any time may be actively using a cell
(in the locked empty state) and put to it, thus guaranteeing mutual exclusion,
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while satisfying Progress (Theorem 2) which in turn ensures deadlock absence,
even in the presence of the crucially blocking behaviour of the take operation.

2.1 Operational Semantics

We now define CLASS operational semantics, which is given by a structural
precongruence relation ≤ that captures static relations on processes, essentially
rearranging them, and a reduction relation → that captures process interaction.

Definition 3 (P ≡ Q and P ≤ Q). Structural congruence ≡ is the least congru-
ence on processes closed under α-conversion and the ≡-rules in Fig. 6. Structural
precongruence ≤ is the least precongruence on processes including ≡ and closed
under α-conversion and the ≤-rules in Fig. 6.

The basic rules of ≡ essentially reflect the expected static laws, along the lines
of the structural congruences / conversions in [22,80]. The binary operators for-
warder, cut and share are commutative ([comm]). The set of processes modulo
≡ is a commutative monoid with binary operation given by parallel composition
and identity given by inaction 0 ([par]). Any two static constructs commute,
as expressed by the laws [CM]-[ShC!]. Furthermore, we can distribute the unre-
stricted cut over all the static constructs as expressed by law [D-C!X], where ∗
stands for either a mix, linear or unrestricted cut or a share.

The commuting conversions [ShTake] and [ShPut] allows take and put op-
erations on cell usages to commute with a share construct. Rule [ShTake] picks
the take that occurs on the left argument, however since share is commuta-
tive, a right-biased version of [ShTake] is admissible. Using [ShTake], any of the
two possible interleavings for two concurrent takes may be nondeterministically
picked via ≤. Indeed, we express ≤ as a precongruence because it introduces non-
determinism, and does not express a behavioural equivalence as ≡ does. N.B.:
Although one could easily formulate a confluent version of CLASS semantics,
using explicit sums as in [13,66,35,65], we prefer in this paper to focus on the
expressiveness of CLASS as a programming language and on its deadlock and
livelock absence properties, adopting a nondeterministic reduction relation.

In [ShPut] only a put, in the U◦A-typed premise of [TshL], may be propagated
up and eventually update the cell, causing it to transit back to the full state.
Hence, take operations originating the U•A typed premise of [TshR] will be
blocked, waiting until such (unique) put propagation occurs. Algebraically, rule
[ShRel] expresses that the release operation is the identity for share composition,
we orient it as a precongruence, to ensure type preservation.

Definition 4 (Reduction →). Reduction → is defined by the rules of Fig. 7.

We let
∗−→ stand for the reflexive-transitive closure of →. Reduction includes

the set of principal cut conversions, i.e. the redexes for each pair of interacting
constructs. It is closed by structural precongruence ([≤]) and in rule [cong] we
consider that C is a static context, i.e. a process context in which the hole is
covered only by the static constructs mix, cut and share.
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fwd x y ≡ fwd y x P |x| Q ≡ Q |x| P
share x {P || Q} ≡ share x {Q || P} [comm]

P || 0 ≡ P P || Q ≡ Q || P P || (Q || R) ≡ (P || Q) || R [par]

P |x| (Q || R) ≡ (P |x| Q) || R [CM]

P |x| (Q |y| R) ≡ (P |x| Q) |y| R [CC]

P |x| share y {Q || R} ≡ share y {P |x| Q || R} [CSh]

P |z| (y.Q |!x| R) ≡ y.Q |!x| (P |z| R) [CC!]

y.Q |!x| (P || R) ≡ P || (y.Q |!x| R) [C!M]

y.P |!x : A| (w.Q |!z : B| R) ≡ w.Q |!z : B| (y.P |!x : A| R) [C!C!]

share x {P || (Q || R)} ≡ share x {P || Q} || R [ShM]

share x {P || share y {Q || R}} ≡ share y {share x {P || Q} || R} [ShSh]

share z {P || y.Q |!x| R} ≡ y.Q |!x| share z {P || R} [ShC!]

y.P |!x : A| (Q ∗R) ≡ (y.P |!x : A| Q) ∗ (y.P |!x : A| R) [D-C!X]

share x {release x || P} ≤ P [ShRel]

share x {put x(y.P );Q || R} ≤ put x(y.P ); share x {Q || R} [ShPut]

share x {take x(y1);P1 || take x(y2);P2}
≤ take x(y1); share x {P1 || take x(y2);P2} [ShTake]

Provisos: in [CM] and [ShM], x ∈ fn(Q); in [CC], [CSh] and [ShSh], x, y ∈ fn(Q); in

[CC!], [C!M] and [ShC!], x /∈ fn(P ); in [C!C!], x /∈ fn(Q) and z /∈ fn(P ).

Fig. 6: Structural congruence P ≡ Q and precongruence P ≤ Q.

Operationally, the forwarding behaviour is implemented by name substitu-
tion [23] ([fwd]). All the other conversions apply to a principal cut between two
dual actions. Reduction rules for the basic session constructs that interpret Sec-
ond Order Linear Logic and recursion are the expected ones [22,27,81], along
predictable lines. For readability, we omit the type declarations in the cuts, as
they do not actually play any role in reduction.

We comment the rules concerning affinity. The interaction between an affine
session and an use operation is defined by reduction rule [∧∨u], where a cut on
a : ∧A between affineb,c a;P and use a;Q reduces to a cut on a : A between the
continuations P and Q. The reduction between an affine session and a discard
operation is defined by [∧∨d]. A cut between affineb,c a;P and discard a reduces
to a mix-composition of discards (for the coaffine sessions b) and releases (for
the cell usages c) cf. [6,20]). In the corner case where c and a are empty, the
left-hand side of [∧∨d] simply degenerates to inaction 0 (the identity of mix).

The reductions for the mutable state operations are fairly self-explanatory. In
rule [S•U•r], a cut between a full mutex cell cell and a release operation reduces
to a process that discards the affine cell contents, cf. rule [∧∨d]. In rule [S•U•t], a
cut on c : S•A between a full cell and a take operation reduces to a process with
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fwd x y |y| P → {x/y}P [fwd]

close x |x| wait x;P → P [1⊥]

send x(y.P );Q |x| recv x(z);R → Q |x| (P |y| {y/z}R) [⊗O]

case x {|inl : P, |inr : Q} |x| x.inl;R → P |x| R [N⊕l]

case x {|inl : P, |inr : Q} |x| x.inr;R → Q |x| R [N⊕r]

!x(y);P |x| ?x;Q → y.P |!x| Q [!?]

y.P |!x| call x(z);Q → {z/y}P |z| (y.P |!x| Q) [call]

sendty x(A);P |x| recvty x(X);Q → P |x| {A/X}Q [∃∀]
unfoldµ x;P |x| unfoldν x;Q → P |x| Q [µν]

unfoldµ x;P |x| corec Y (z,w);Q [x,y]
→ P |x| {x/z}{y/w}{corec Y (z,w);Q/Y }Q [corec]

affineb,c a;P |a| use a;Q → P |a| Q [∧∨u]
affineb,c a;P |a| discard a → discard b || release c [∧∨d]
cell c(a.P ) |c| release c → P |a| discard a [S•U•r]

cell c(a.P ) |c| take c(a′);Q → P |a| (empty c |c| {a/a′}Q) [S•U•t]

empty c |c| put c(a.P );Q → cell c(a.P ) |c| Q [S◦U◦]

P ≤ P ′ and P ′ → Q′ and Q′ ≤ Q ⊃ P → Q [≤]

P → Q ⊃ C[P ] → C[Q] [cong]

Fig. 7: Reduction P → Q.

two cuts, both composed with the continuation {a/a′}Q of the take. The outer
cut on a : ∧A composes with the stored affine session, which was successfully
acquired by the take operation. The inner cut on c : S◦A composes with the
reference cell c, which has became empty in the reductum. Finally, in rule [S◦U◦],
a cut on session c : S◦A between an empty cell and a put operation reduces to
a cut on session c : S•A between a full cell, that now stores the session that was
put, and the continuation of the put process. Notice that the locking/unlocking
behaviour of cells is simply modelled by rewriting of the process terms, from cell
to empty and back, as typical in process calculi.

3 Type Safety and Strong Normalisation

In this section we state and give proof sketches for our main results of type safety
and strong normalisation. Full proofs may be found in [65].

Type Preservation The semantics of CLASS is defined by a set of precongru-
ence ≤ and reduction → rules on process terms. Theorem 1 shows that these
relations preserve typing, and gives substance to our PaT approach, showing that
every ≤ and → rule corresponds to a conversion on type derivations/proofs.

Safe Session-Based Concurrency with Shared Linear State 433



Theorem 1 (Type Preservation). Suppose P ⊢η ∆;Γ . (1) If P ≤ Q, then
Q ⊢η ∆;Γ . (2) If P → Q, then Q ⊢η ∆;Γ .

Proof. By induction on derivations for P ≤ Q (resp. P → Q), we verify that all
the rules of ≤ (Def. 3) (resp. → (Def. 4)) are type preserving.

Progress We prove the progress property for well-typed CLASS processes. The
following notion of live process becomes useful. A process P is live if and only
if P = C[Q], for some static context C (the hole lies within the scope of static
constructs mix, cut and share) and Q is an active process (a process with a
topmost action prefix, such as a receive or a take, or a forwarder). We first
show that a live well-typed process either reduces or offers an interaction with
its environment on a free name. The following observability predicate (cf. [70])
characterises the interactions of a process with its environment

Definition 5 (P ↓x). The predicate P ↓x is defined by rules of Fig. 8.

The predicate P ↓x holds if P offers an immediate interaction (unguarded action)
on free name x. We can observe the subject of an action (rule [act]) and x, y
of a forwarder fwd x y. The definition of P ↓x is closed by ≤ and propagates
observations over the various static operators. Cut bound names are not free,
hence cannot be observed. Share share y {P || Q} propagates all the observations
x for which x ̸= y and by applying ≤ rules [ShTake], [ShRel] or [ShPut] via [≤],
an interaction on x may be observed. We have

Lemma 1 (Liveness). Let P ⊢∅ ∆;Γ be live. Either P ↓x or P reduces.

Proof. (Sketch) By induction on a derivation for P ⊢∅ ∆;Γ , along the lines
of [27]. To handle case [Tcut] P = P1 |y| P2: both P1 and P2 are live, since both
type with a nonempty linear typing context, hence we can apply the induction
hypothesis (i.h.) to both premises of [Tcut]: either (i) one of P1 and P2 reduces
or (ii) both P1 ↓x1

and P2 ↓x2
. If (i), then P reduces. Case (ii) follows because,

crucially, P1 and P2 synchronise through a single private session y, then either
x1 ̸= y or x2 ̸= y, in which case we can observe either x1 or x2; or x1 = x2 = y,
in which case we can trigger a reduction, by applying ≤ rules to P in order to
exhibit a principal cut. For case [Tsh] P = share y {P1 || P2}: since P1 and P2

are live, we apply i.h. to both premises. The interesting case occurs when P1 ↓x1

and P2 ↓x2
. Co-contraction implies that P1 and P2 share the single usage y, so

if x1 ̸= y or x2 ̸= y, we have either P1 ↓x1 or P1 ↓x2 . If both x1 = x2 = y,
then we derive P ↓y: the observation corresponds to either a take or a release
operation on y, which we commute up with [ShTake] or [ShRel]. For [TshL]
P = share y {P1 || P2}, we apply the i.h. to the premise P1, which types with
an empty usage on y. If P1 ↓y, then P ↓y, the observation corresponding a put
operation on y, which we commute up with [ShPut]. Symmetrically for [TshR].

Theorem 2 (Progress). Let P ⊢∅ ∅; ∅ be a live process. Then, P reduces.

Proof. Follows from Lemma 1 since fn(P ) = ∅.
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[fwd]
fwd x y ↓x

s(A) = x
[A]

A ↓x

P ≤ Q Q ↓x
[≤]

P ↓x

P ↓x
[mix]

(P || Q) ↓x
P ↓x x ̸= y

[cut]
(P |y| Q) ↓x

Q ↓x x ̸= y
[cut!]

(z.P |!y| Q) ↓x

P ↓x x ̸= y
[share]

(share y {P || Q}) ↓x

Fig. 8: Observability Predicate P ↓x.

Remarkably, our proof of Theorem 2 leverages deep properties of Linear Logic,
in particular the structure of the linear cut and co-contraction, allowing us to
prove deadlock absence, even in a language with primitives exhibiting blocking
behaviour, avoiding the use of extra mechanisms [47,33,48,10,25,76,31].

Strong Normalisation Establishing strong normalisation (SN) for concur-
rent process calculi is usually fairly challenging, particularly in the presence
of name passing, recursion and higher-order shared state [32,16,83,49,69]. For
example, with reference cells one may express general recursion with Landin’s
knot, and, in general, circular chains of references that may lead to divergence.
However, our linear type system uses primitive recursion and corecursion, and
excludes cyclic dependencies through state or session based interaction, allowing
strong normalisation, and therefore livelock absence, to hold. Our proof relies
on defining suitable linear logical relations, cf. [62,21,72], adapted to Classical
Linear Logic [38,1,8], and crucially relying on a notion of reducibility up to in-
terference that imposes stronger properties on the interpretation of the state
modalities, and which allows the inductive proof of the Fundamental Lemma 2
to go through in the usual way. To this end, we extend our basic language with
auxiliary constructs cell c(a.S) and empty c(a.S), which denote memory cells
subject to interference from concurrent writers, allowed to take terms from the
set S ⊆ {P | P ⊢η a : ∧A}. The intuition is that a take on the cell may always
read any object from S, due to interference. We also consider the additional
reduction (nondeterministic) rules (1)-(3), where in 1 and 2 we assume P ∈ S.

cell c(a.S) |c| release c → P |a| discard a, (1)
cell c(a.S) |c| take c(a′);Q → empty c(a.S) |c| (P |a| {a/a′}Q) (2)
empty c(a.S) |c| put c(a.P );Q → cell c(a.S) |c| Q (3)

In this section, we thus consider reduction of P → Q to be the relation defined
in Fig 7, extended with these rules. When a take or a release interacts with
cell c(a.S), an arbitrary element P from the set S may be picked (rules (1) and
(2)). In (3), a put put c(a.P );Q interacts with empty c(a.S) causing empty c(a.S)
to evolve to cell c(a.S) (3). The following notion is also useful. A process P is
S-preserving on x if P ⊢η x : U•A or P ⊢η x : U◦A, and

– if P
∗−→≈ take x(y);P ′ and Q ∈ S, then Q |y| P ′ is S-preserving on x.

– if P
∗−→≈ put x(y.P1);P2, then P1 ∈ S and P2 is S-preserving on x.
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A set of processes T is S-preserving on x if and only for all P ∈ T , P is S-
preserving on x. Intuitively a process P that uses a cell x is S-preserving on x
if it only puts values from S on cell x. The notion of S-preservation, parametric
on any S, brings explicit the conditions needed for safe interaction with a mem-
ory cell, subject to interference, while ensuring a state invariant S on the cell
contents. We now introduce the logical predicate.

Definition 6 (Logical Predicate Jx : AKσ). By induction on the type A, we
define the sets Jx : AKσ an shown in Fig. 9, such that Jx : U•AKσ and Jx : U◦AKσ
are J− : ∧AK-preserving on x.The definition is direct for the positive types A,
for negative types B is given by orthogonality.

The definition relies on Girard’s notion of orthogonality S⊥ ≜ {P | ∀Q ∈
S. P |x| Q is SN} [37]. Duality promotes succinctness in our definition: for neg-
ative types A, Jx : AKσ is defined as the orthogonal of the predicate for its dual
A (positive) type. To handle polymorphic and inductive types, the logical pred-
icate is indexed by a map σ that assigns reducibility candidates R[x : A] to type
variables. A reducibility candidate R[x : A] is any set S of processes P ⊢∅ x : A
such that P is SN and S = S⊥⊥. We let R[− : A] be the set of all reducibil-
ity candidates R[x : A] for some name x. The definition relies on a congruence
relation ≈ extending ≤ with a complete set of commuting conversions, along
standard lines [22,27,80]. It essentially plays the role of the labelled transition
system in the proof of strong normalisation given in [62].

We extend the logical predicate to typing judgements P ⊢η ∆;Γ by universal
closure over the typing context and σ.

Definition 7 (Extended Logical Predicate LJ⊢η ∆;Γ Kσ). We define LJ⊢η

∆;Γ Kσ inductively on ∆,Γ and η as the set of processes P ⊢η ∆;Γ s.t.

P ∈ LJ⊢∅ ∅; ∅Kσ iff P is SN.
P ∈ LJ⊢∅ ∆,x : A;Γ Kσ iff ∀Q ∈ Jx : AKσ. Q |x : A| P ∈ LJ⊢∅ ∆;Γ Kσ.
P ∈ LJ⊢∅ ∆;Γ, x : AKσ iff ∀Q ∈ Jy : AKσ. y.Q |!x : A| P ∈ LJ⊢∅ ∆;Γ Kσ.
P ∈ LJ⊢η,X(x,y) 7→∆′,x:Y ;Γ ∆;Γ Kσ iff ∀Q ∈ σ(Y ). {Q/X}P ∈ LJ⊢η ∆;Γ Kσ.

We now state the Fundamental Lemma (2) from which Theorem 3 follows.

Lemma 2 (Fundamental Lemma). If P ⊢η ∆;Γ , then P ∈ LJ⊢η ∆;Γ Kσ.

Proof. (Sketch) By induction on P ⊢η ∆;Γ . For cases [Tcell] and [Tempty], we
show that cell c(a.S) and empty c(a.S) respectively simulate cell c(a.P ) (where
P ∈ S) and empty c, when composed with any S-preserving on c usages. To
handle one of the most challenging cases, [Tsh] we prove, for all S, and all S-
preserving on x processes P1 and P2, that cell c(a.S) |c| share c {P1 || P2} (1)
is simulated by (cell c(a.S) |c| P1) || (cell c(a.S) |c| P2) (2). This allows us to
infer that if (2) is SN, then so it is (1). When S = Ja : ∧AKσ, the i.h. yields
(cell c(a.S) |c| Pi) SN, hence we conclude (2) SN. Similarly for [TshL], [TshR].

Theorem 3 (Strong Normalisation). If P ⊢∅ ∅; ∅, then P is SN.
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Jx : XKσ ≜ σ(X)[x]

Jx : 1Kσ ≜ {P | P ≈ close x and P is SN}⊥⊥

Jx : A⊗BKσ ≜ {P | ∃P1, P2. P ≈ send x(y.P1);P2 and
P1 ∈ Jy : AKσ and P2 ∈ Jx : BKσ}⊥⊥

Jx : A⊕BKσ ≜ {P | ∃Q. P ≈ x.inl;Q and Q ∈ Jx : AKσ or
P ≈ x.inr;Q and Q ∈ Jx : BKσ}⊥⊥

Jx :!AKσ ≜ {P | ∃Q. P ≈ !x(y);Q and Q ∈ Jy : AKσ}⊥⊥

Jx : ∃X.AKσ ≜ {P | ∃Q,S ∈ R[− : B]. P ≈ sendty x(B);Q and
Q ∈ Jx : AKσ[X 7→S]}⊥⊥

Jx : µX. AKσ ≜ (
⋂
{S ∈ R[− : µX.A] | unfoldµ x; Jx : AKσ[X 7→S] ⊆ S})⊥⊥

Jx : ∧AKσ ≜ {P | ∃Q. P ≈ affine x;Q and Q ∈ Jx : AKσ}⊥⊥

Jx : S•AKσ ≜ {P | P ≈ cell x(y.Jy : ∧AKσ) and P is SN}⊥⊥

Jx : S◦AKσ ≜ {P | P ≈ empty x(y.Jy : ∧AKσ) and P is SN}⊥⊥

Jx : BKσ ≜ Jx : BK⊥σ (B negative type)

Fig. 9: Logical Predicate Jx : AKσ.

4 Typeful Concurrent Programming in CLASS

In this section, we discuss the expressiveness of CLASS’s type system, going
through a sequence of illustrative realistic concurrent programming idioms.

Sharing a Linear Session. Our first example illustrates how objects subject
to a linear usage protocol and satisfying an invariant may be shared among
multiple concurrent clients by serialising linear usages using a mutex cell, al-
ternating ownership from the cell to clients and back at the invariant state, a
commonly used discipline to implement and reason about resource sharing (see,
e.g., [39,17,9]). We illustrate with a basic toggle switch with two states - On and
Off - the resource invariant is the state Off, and two operations #turnOn and
#turnOff that must be executed in strict linear sequence (Fig. 10). The toggle
protocol, defined by type Off, offers the single option #turnOn, after which it
evolves to On. Conversely, type On offers the single option #turnOff, after which
it evolves to an affine Off. The toggle process at t is defined by two mutually
corecursive processes on(t) and off(t), which define the expected behaviour, and
comply with types On and Off.

Process main() introduces a mutex cell c storing an affine toggle object at the
invariant type ∧Off. It then shares it with two concurrent clients, each acquires
the toggle in the invariant type and uses the linear protocol independently. After
their linear interaction, they put back the toggle, the type system ensures that
this can only happen when the invariant (given by the cell type) holds. When
they are done, both clients release their respective usages of c, which ultimately
leads to the cell being deallocated and the (affine) toggle to be discarded.
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type corec Off = N{|#turnOn : On}
type corec On = N{|#turnOff : ∧Off}
off(t) ⊢ t : Off
off(t) = case t {|#turnOn : on(t)}
on(t) ⊢ t : On
on(t) = case t {|#turnOff :

affine t; off(t)}
client1(c) ⊢ c : S•Off
client1(c) = take c(t);

#turnOn t; #turnOff t;
put c(t); release c

client2(c) ⊢ c : S•Off
client2(c) = take c(t);

#turnOn t; #turnOff t;
#turnOn t; #turnOff t;
put c(t); release c

main() ⊢ ∅
main() = cut {cell c(t.affine t; off(t))

|c|
share c {

client1(c) ||
client2(c) }}

Fig. 10: Sharing a Linear Toggle Switch

type rec SList(A) = S•List(A)
type rec List(A) = ⊕{

|#Null : 1,
|#Next : ∧A⊗ SList(A)}

nil(l) ⊢ l : ∧List(A)
nil(l) = affine l; #Null l; close l

cnext(a, c, l) ⊢ a: ∨A, c:SList(A), l: ∧ List(A)
cnext(a, c, l) = affine l;

#Next l;
send l(a);
fwd l c

append(c, l′, c′) =
take c(l);
case l {
|#Null :
wait l; put c(l′); fwd c c′

|#Next :
recv l(a);
cut {
append(l, l′, x)
|x|
put c(y.cnext(a, x, y));
fwd c c′ }}

Fig. 11: A Linked List with an Append In-Place Operation.

We have also developed CLASS code for a generic (polymorphic) wrapper
factory that, for any affine corecursive protocol, generates a wrapper to a general
invariant-based sharing interface.

Linked Lists, Update In-Place. In this example, we show how inductive/-
coinductive types combine harmoniously with CLASS state modalities to type
linked data structures with memory-efficient updates in-place. Specifically, we
show how to code a linked list, parametric on the type A of its affine values,
with update in-place append (Fig. 11). An object of type SList(A) is a (full) cell
storing a List(A) object. An object of type List(A) is a session that either selects
#Null (the list is empty), in which case it closes; or selects #Next, in which case
it sends an affine session ∧A representing the head element and continues as the
tail SList(A). Process nil(l) - defines an empty list at l - and process cnext(a, c, l)
- constructs a nonempty list l with head a and tail c. For example, a list with
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elements a, b stored at c1 : S•List(A) is represented

cut{ cell c1(l1.cnext(a, c2, l1)) |c2| cell c2(l2.cnext(b, cs, l2)) |cs| cell cs(l0.nil(l0))}

Process append(c, l′, c′) ⊢ c : SList(A), l′ : List(A), c′ : SList(A) produces on c′

the result of appending l (in place) to c. It takes the list l stored in c, and then
performs case analysis on l. If l selects #Null, it simply replaces the previous null
node of c by l′ and forwards the updated cell c to the output c′. This corresponds
to the recursion base case in which the list l is empty.

If l selects #Next, in which case l has at least one element, one receives at l
the node element a : ∨A, and corecursively call append l′ to the tail l : SList(A)
and puts back in c element a and tail x “returned” by the call. Notice that
x is exactly x (by forwarding), which was passed along linearly. Remarkably,
the append(c, l′, c′) operation just defined may be safely applied concurrently
to the same shared linked list, with the final result being the correct one (some
serialisation of the appends), without deadlocks or livelocks. It is also interesting
to see how the type system forbids a list to be appended to itself.

We have also developed many other in-place operations on linked data struc-
tures, such as insertion sort, and other kinds of linked structures such as queues
and binary search trees. In the next examples we discuss a shared queue ADT
with a fine-grained locking discipline and O(1) enqueue and dequeue operations.

A Concurrent Shareable Buffered Channel. We illustrate increased de-
grees of sharing in a mutable data structure with various references pointing to
different parts of it, how the CLASS type system may express interfaces that
talk about different client views for using a stateful object, and the use of poly-
morphism to implement information hiding ensuring that client code will never
break the representation invariants of stateful ADTs, particularly challenging
when aliasing and sharing are involved.

More concretely, we consider a shareable buffered channel (Fig. 12), and
provide a realistic and efficient implementation [56] based on a message queue
represented by a linked list with update-in-place (cf. Section 4 above) and two
independent pointers: one to the head of the list, used for receiving, and another
to the tail, used for sending. The operations are executed in O(1) time. Moreover
we provide a typing with two separate send and receive views, which may be
used by an arbitrary number of concurrent clients. In particular, when the list
is nonempty, both send and receive run in true concurrency (asynchronously),
without blocking each other, thanks to fine-grained locking.

The buffered channel type BChan(M), where M is the type of messages,
offers two views: SendT(M) and RecvT(M), interfaces for sender and receiver
endpoint clients. These views are exposed with a par (O), since they share an
underlying resourceful structure. In fact, they could not be exported using a ten-
sor (⊗); it is interesting to notice how the type system imposes these constraints,
important to ensure deadlock freedom. The representation type of both views is
Rep = S•SList(M) (see Section 4), hidden behind the SV and RV existential
types [29,58]; sending clients use a cell storing a reference to the tail node of
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type BChan(M) = SendT(M) O RecvT(M)
type SendT(M) = ∃SV.!MenuS(M,SV )⊗ SV
type RecvT(M) = ∃RV.!MenuR(M,RV )⊗RV

type MenuS(M,SV ) = N {
|#Send : SV ⊸ ∧M ⊸ SV,
|#Share : SV ⊸ (SV O SV ),
|#Free : SV ⊸ 1 },

type MenuR(M,RV ) = N {
|#Recv : RV ⊸ (Maybe(∧M)⊗RV ),
|#Share : RV ⊸ (RV O RV ),
|#Free : RV ⊸ 1 }

Rep = SV = RV = S•SList(M)

msend(me) =
recv me(tailptr);
recv me(a);
take tailptr(c);
take c(l);
cut {

cell c′(l)
|c′|
share c′ {
put c(l′.cnext(a, c′, l′));
release c′

||
put tailptr(c′);
send me(tailptr);
close me}}

Fig. 12: A Concurrent Shareable Buffered Channel.

the queue; receiving clients use a cell storing a reference to the head node of the
queue.

Clients use the buffer through references of abstract type SV and RV and
replicated menus !MenuS(M,SV ) and !MenuR(M,RV ). Both menus export the
options #Share and #Free to allow sharing and release of the views. To send, a
client selects #Send, sends his handle (of opaque type SV ), the message to send
and receives the (linear) handle back. In this implementation, receive is non-
blocking, so operation #Recv returns a Maybe(∧M) value: the client receives
either #Nothing (if the buffer is empty) or #Just followed by a message a, oth-
erwise. In 4 we discuss the implementation, in CLASS, of (Hoare style) monitors
with conditions, which would allow a blocking receive to be implemented.

Process msend(me) implements the #Send “method”. It first receives the
sending view handle (of concrete type Rep), which is a cell with the tailptr , and
the message a to be sent. Then, a new cell c′ with nil (l) is created, the current
tail of the list c is updated with a new node storing a and pointing to c′. Finally,
the tailptr cell is updated to point to the new tail node c′ of the linked list.

Dining Philosophers. A resource hierarchy solution for the dining philoso-
phers problem [34] requires forks to be acquired in a defined order. We “encode”
such order in CLASS with an explicit (necessarily) acyclic structure, which in-
forms the type system about the code safety. This allows us to define a correct
implementation that satisfies deadlock freedom by pure linear logic typing. More
concretely, we organise the forks in a linked chain defined by the inductive types
rec Fork = S•Node and rec Node = ⊕{#Null : 1,#Next : Fork}.

Any fork in the chain may be shared by an arbitrary number of philosophers,
cocontraction ensures that philosophers cannot communicate between them-
selves via any other channel, all synchronisation must happen via the chained
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putNull(f, f ′) ⊢ f : U◦Node, f
′ : Fork

putNull(f, f ′) ≜ put f(n.null(n)); fwd f f ′

eat(f, f ′) ⊢ f : Fork, f ′ : Fork

eat(f, f ′) ≜
take f(n);
case n {
|#Null :
wait n; putNull(f, f ′)
|#Next :
take n(m);
put n(m); put f(n′.next(n, n′));
fwd f f ′}

eat2(f, f ′) ⊢ f : Fork, f ′ : Fork

eat2(f, f ′) ≜
take f(n);
case n {

|#Null :
wait n; putNull(f, f ′)
|#Next :
cut {
takeLast(n, x)
|x|
recv x(m);wait x;
put f(n′.next(m,n′));
fwd f f ′}

Fig. 13: The Dining Philosophers.

forks. Furthermore, the chain can be resized and grow unboundedly to accommo-
date an arbitrary number of philosophers. If a philosopher successfully takes a
fork fi, he can then take any fork fj , with i < j; crucially, he must follow the path
dictated by the chain, hence cannot acquire forks fj with j < i. In Fig. 13 we
define the eat operation, which allows each philosopher Pi, with 0 ≤ i < k−1 to
eat: it acquires two consecutive forks in the chain. And eat2, which is the specific
eating operation for the symmetry breaker Pk−1: it acquires the first fork, and
traverses the chain to acquire the last with takeLast(n, x) ⊢ n : Fork, x : Fork⊗1.

A Barrier for N threads. We describe in Fig. 14 a CLASS implementation
of a simple barrier, parametric on the number N of threads to synchronise. We
find it interesting to model the “real” code shown in the Rust reference page for
std::sync::Mutex [46]. The code uses if-then-else and primitive integers, as offered
in our implementation, that could be defined as idioms in CLASS. We represent
a barrier by a mutex cell storing a pair consisting of an integer n, holding the
number of threads that have not yet reached the barrier, and a stack s of waiting
threads, each represented by a session of affine type ∧⊥ (so they will be safely
aborted if at least one thread fails to reach the barrier).

The type Barrier of the barrier is S•BState, where BState ≜ Int⊗∧List(∧⊥).
Initially the barrier is initialised with n = N threads and an empty stack, so that
the invariant n+depth(s) = N holds during execution. Each thread(c; i) acquires
the barrier c and checks if it is the last thread to reach the barrier (if n == 1): in
this case, it awakes all the waiting threads (awakeAll(ws)) and resets the barrier.
Otherwise, it updates the barrier by decrementing n and pushing its continuation
into the stack (the continuation for thread i just prints “finished”). The following
process main() ⊢ ∅ creates a new barrier c and spawns N threads, each labelled
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init(ws) ⊢ ws : ∧BState
init(ws) ≜

affine ws; send ws(N); affine ws; nil(ws)

awakeAll(ws : List(∧⊥))

awakeAll(ws) ≜
case ws {
#Nil : wait ws; 0
#Cons :
recv ws(w);
par {close w || awakeAll(ws)}

spawnAll(c; i, n) ⊢ c : Barrier; i : Int, n : Int

spawnAll(c; i, n) ≜
if (n == 0) { release c}
{ share c {

thread(c; i)
||
spawnall(c; i+ 1, n− 1)}}

thread(c; i) ⊢ c : Barrier; i : Int
thread(c; i) =

println i+ “: waiting.”;
take c(ws); recv ws(n);
if (n == 1) {
par {

println i+ “: finished.”;
awakeAll(ws)
||
put c(w′

s.init(w
′
s));

release c}}
{ cut {

affine w;wait w;
println i+ “: finished.”; 0
|w| put c(w′

s.affine w′
s;

send w′
s(n− 1);

affine w′
s;

cons(w,ws, w
′
s));

release c}}

Fig. 14: A Barrier for N Threads

by a unique id i: main() ≜ cut { cell c(ws.init(ws)) |c| spawnAll(c; 0, N) }. Again,
our type system statically ensures that the code does not deadlock or livelock.

A Hoare Style Monitor. A Hoare style monitor is a well-know powerful
programming abstraction [39], allowing concurrent operations on shared data to
be coordinated in a sound way, so that it always satisfy a correctness invariant.
The key essential idea is that concurrent client threads use the monitor lock to
access the protected state in mutual exclusion, but may also wait (via a await
primitive) inside the monitor until the state satisfies specific (pre-)conditions,
while transferring state ownership to other threads potentially responsible for
establishing such conditions and announcing it (via a notify primitive).

We discuss a CLASS implementation of a monitor, sketching the main com-
ponents and how they are typed (Fig. 15). We consider a counter with value n,
with increment #Inc and decrement #Dec operations, and subject to the invari-
ant n ≥ 0. The type of the counter CounterI exposes two separate, coinductively
defined, client interfaces DecI and IncI for decrementing and incrementing.

While the #Inc operation is synchronous, the #Dec operation is always called
asynchronously by passing a continuation (of type ContDec). This allows decre-
menters to wait inside the monitor for condition NZ (n > 0) when n = 0. The
condition NZ is represented by a wait queue of type WaitQ. The representation
type of the monitor (Rep) holds the counter value and the wait queue. Each node
in the wait queue stores information, of type ContDecW, for the waiting thread.
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type corec IncI ≜ N{|#Inc : IncI, |#End : ⊥}
type corec DecI ≜
∨ N {|#Dec : ∨(ContDec ⊸ ⊥),#End : ⊥}

type corec ContDec ≜ ∨(DecI⊗ 1)

type CounterI ≜ DecI O IncI

type rec Rep ≜ (!Int)⊗WaitQ

type rec WaitQ ≜ ∧ ⊕ {|#Null : 1, |#Next : NodeQ}
type rec NodeQ ≜ S•(ContDecW ⊗WaitQ)

type rec ContDecW ≜ ∧(∧Rep ⊸ ∧Rep⊗ DecI ⊸ ⊥)

awaitNZ ⊢ m : U◦Rep,
n : !Int, w : WaitQ, cc : ContDecW

notifyNZ ⊢ m : U◦Rep, s : Rep,m
′ : S•Rep

incloop ⊢ iv : IncI,m : U•Rep

awaitNZ(m,n,w, cc) ≜
put m(w′.affine v;

send w′(n);
consWQ(cc, w,w′));
release m

incloop(iv,m) ≜
case iv {
#Inc : take m(r);

recv r(n);
cut {
send s(n+ 1); fwd s r
|s| notifyNZ(m, s,m′)
|m′| incloop(iv,m′) }
#End : wait iv;

release m}

Fig. 15: Implementing a Counter Monitor with Await / Notify.

Every such ContDecW objects stores (1) the pending action on the internal mon-
itor state (of type ∧Rep ⊸ ∧Rep), to be executed after await returns, and (2) a
callback to the continuation provided by the external client in the asynchronous
call (of type DecI ⊸ ⊥).

The awaitNZ(m,n,w, cc) process implements the monitor wait operation,
used in the #Dec operation. It receives the (empty) cell usage m to the mon-
itor state, the integer value n (where n = 0), a reference w to the wait queue,
and the continuation cc, it pushes a new node in the queue and puts the moni-
tor state back, unlocking the cell m, and releases m. The incloop(iv,m) process
implements the counter IncI interface. The call to notifyNZ(m, s,m′) after incre-
menting n will cause a waiting DecI thread to be awaken (if any), and continue
by applying the pending action to the Rep state s in which n > 0 holds, before
passing the updated state m′ to the incloop recursive call. Affinity plays a key
role, allowing all data structures, including waiting continuations to be safely
discarded, at the end of any computation. We have only shown here some code
snippets, the complete code is available in the CLASS distribution.

Our examples illustrate how our system types non-trivial concurrent code,
akin to real system-level code, involving higher-order state, rich sharing and own-
ership transfer patterns, while ensuring deadlock, livelock freedom and memory
safety. Our typing of sharing imposes that only a single bundle of linear resources
may be shared by two independent threads. As our examples show, code can of-
ten be structured in that way, so that bundles of many linear resources may be
safely shared by monitor-like structures, exposing informative typed interfaces.

The feasibility of CLASS is corroborated by our implementation [68] of a fully-
fledged type checker and interpreter, developed in Java (∼15k), and packaged
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with an extensive CLASS library of code and test suites (∼10k), including all the
examples in this paper. Type checking is decidable in polynomial time, using a
minimal type annotation, only on cut-bound names and function parameters,
the multiplicative rules are handled by lazy context splitting (cf. [41]). The
type checker ensures that corecursive calls are done on a session hereditarily
descendent from the corecursion parameter, a condition motivated by our SN
result (Theorem 3). But we also support an unsafe corecursion mode, in which
this check is turned off, to type programs defined by general corecursion.

The type checker supports useful type inference and reconstruction abilities.
The interpreter uses java.util.concurrent.* package [53], using primitives such as
fine-grained locks and condition variables to emulate the synchronous interac-
tions of CLASS sessions and a cached thread pool to manage the life cycle of
short-lived threads. Cell deallocation is implemented by reference counting, in-
cremented on each share and decremented on each release. Forwarding redirects
the clients of a shared cell through a chain of forwarding pointers (cf. [9]).

5 Related Work

Many resource-aware logics and type systems to tame shared state and interfer-
ence have been proposed [3,18,57,77,44,17,60,61,24]. These systems adopt some
form of linearity and/or affinity to resourceful programming [75,30] and to model
failures/exceptions [28,59,20,36,52]. In CLASS, linearity allows us to control state
sharing, whereas affinity is useful to ensure memory safety and to represent
safely finalizable or abortable computations. The hereditary session-discarding
behaviour of affine sessions, modelled by rule [∧∨d], is also present in other
works, e.g. [6,59,20].

CLASS builds on top of the PaT correspondence with Linear Logic [22,27,80],
the logical principles for the state modalities being inspired by DiLL [35]. Recent
works [43,9,10,7,50,64,67] also address the problem of sharing and nondetermin-
ism in the setting of session-based PaT. In [67], reference cells may only store
replicated sessions (of type !A), thus cannot refer to linear entities such as other
cells or linear sessions, hence cannot represent many realistic programming id-
ioms that CLASS does (see Section 4). Accommodating linear state in a pure
PaT approach is thus addressed in this work with a novel, more fundamental
approach. Furthermore, in [67], recursion is obtained via a system-F style encod-
ing [79], which cannot model inductive stateful structures with updates in-place
as we do with CLASS native inductive/coinductive types.

The take/put operations of CLASS relate with Concurrent Haskell MVars [45]
and the acquire/release operations of the manifest sharing session-typed lan-
guage SILLS [9,10]. Sharing in SILLS is based on shift modalities to move from
shared to linear mode and back, and contraction principles to alias shared ses-
sions. In CLASS we explore DiLL modalities and cocontraction principles [35]
to express sharing of linear state and put / take protocols of mutex memory
cells of invariant type. The work [10] ensures deadlock-freedom by relying on
programmer provided partial orders on events [55,33,26], whereas in CLASS
deadlock-freedom follows the same simple and general inductive argument of
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the corresponding result in e.g. [22], thanks to the logical character of the new
proof rules (DiLL cocontraction, that enjoys cut-elimination). The work [64] in-
troduces the language CSLL, by extending linear logic with coexponentials that
support a notion of shared state, with a quite different approach than ours. CSLL
does not claim the ability to naturally express shared linked data structures with
update in-place and fine-grained locking, as CLASS does. Nevertheless, it is nat-
ural to define in CLASS sessions exporting weakening, sharing and dereliction
capabilities for linear behaviours, as in our shared buffer example.

Recently, the work [43] develops λlock, a substructural-typed λ-calculus with
higher-order locks, which enjoys deadlock-freedom by imposing a set of high-level
principles that guarantee acyclicity of the lock-sharing topologies, and which fol-
low in CLASS as a consequence of its logical-motivated type system and DiLL’s
cocontraction. This work also extends λlocks with partial orders in which a re-
source can shared by more than two concurrent threads. None of the models
in [43,9,10,64] addresses livelock absence or memory safety, as CLASS does.

As far as we are aware, CLASS is a first proposal integrating shared state
and recursion in a language based on PaT and Linear Logic, while guaranteeing
strong normalisation. Least/greatest fixed points in Linear Logic were studied
in [8], which inspired the development of recursion in [54,73], our treatment
of recursion draws inspiration on [73]. Several works exploit the technique of
logical relations to establish strong normalisation for concurrent process cal-
culi [1,83,69,16,62]. The work [16] proves strong normalisation for a language
with higher-order store with a type and effect system that stratifies memory
into regions so as to preclude circularities. Interestingly, in CLASS such stratifi-
cation is implicitly guaranteed by the acyclicity inherent to Linear Logic. Linear
logical relations were studied in [62,21,72,74]. In this work we recast and ex-
tend the technique to Classical Linear Logic, exploring orthogonality [38,8,1],
and demonstrate, using a specially devised technique of interference-sensitive
reducibility, how logical relations scale to accommodate shared state.

6 Concluding Remarks

We have introduced CLASS, a session-based language founded on a propositions-
as-types interpretation of Second-Order Classical Linear Logic, extended with
recursion, affine types, first-class mutex cells and shared linear state. We believe
that CLASS is the first proposal of a language of its kind to provide the follow-
ing three strong properties by static typing: well-typed CLASS programs enjoy
progress, hence never deadlock, do not leak memory and always terminate.

CLASS metatheoretical properties are obtained in a compositional and mod-
ular way, by leveraging the key features of propositions-as-types, from which
the operational semantics and type system also emerges. In CLASS, types and
process have a consistent proof-theoretical behaviour: typed program constructs
correspond exactly to proof rules, with a proper compositional semantics via log-
ical relations (Section 3). Programs are composed by plugging basic constructs
with the cut rule, and all interaction principles are captured by principal cut
reductions that act locally in proofs/type derivations (Def. 4). We also obtain
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an algebraic system based on proof simplification to reason about program (ob-
servational) equivalence, due to confluence (cf. [65]).

Besides the foundational relevance of our work, we also argued how CLASS
can cleanly express realistic concurrent higher-order programming idioms, with
many compelling examples. Any type system introduces conservative restric-
tions on its language, but we believe that CLASS offers an interesting balance
between the strong properties it ensures by typing and its expressiveness. In
fact, we find CLASS type system helpful to guide the development of safe con-
current idioms, with a fairly light type annotation burden. As future work, we
would like to investigate several possible refinements of the CLASS type disci-
pline, namely, allowing finer-grained resource-access policies to be expressed, and
exploring the integration of dependent and refinement types [71,51], enhancing
the logical expressiveness of the basic type system.
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