
Abstract
Safe virtual execution (SVE) allows a host computer

system to reduce the risks associated with running

untrusted programs. SVE prevents untrusted programs

from directly accessing system resources, thereby giv-

ing the host the ability to control how individual

resources may be used. SVE is used in a variety of

safety-conscious software systems, including the Java

Virtual Machine (JVM), software fault isolation (SFI),

system call interposition layers, and execution moni-

tors. While SVE is the conceptual foundation for these

systems, each uses a different implementation technol-

ogy. The lack of a unifying framework for building SVE

systems results in a variety of problems: many useful

SVE systems are not portable and therefore are usable

only on a limited number of platforms; code reuse

among different SVE systems is often difficult or impos-

sible; and building SVE systems from scratch can be

both time consuming and error prone.

To address these concerns, we have developed a por-

table, extensible framework for constructing SVE sys-

tems. Our framework, called Strata, is based on

software dynamic translation (SDT), a technique for

modifying binary programs as they execute. Strata is

designed to be ported easily to new platforms and to

date has been targeted to SPARC/Solaris, x86/Linux,

and MIPS/IRIX. This portability ensures that SVE

applications implemented in Strata are available to a

wide variety of host systems. Strata also affords the

opportunity for code reuse among different SVE appli-

cations by establishing a common implementation

framework.

Strata implements a basic safe virtual execution

engine using SDT. The base functionality supplied by

this engine is easily extended to implement specific SVE

systems. In this paper we describe the organization of

Strata and demonstrate its extension by building two

SVE systems: system call interposition and stack-

smashing prevention. To illustrate the use of the system

call interposition extensions, the paper presents imple-

mentations of several useful security policies.

1. Introduction

Today’s software environment is complex. End users
acquire software from a number of sources, including
the network, and have very little on which to base their
trust that the software will correctly perform its
intended function. Given the size of modern software—
operating system kernels are comprised of millions of
lines of source code and application programs are often
an order of magnitude larger—it is difficult or impossi-
ble for developers to guarantee that their software is
worthy of the end user’s trust. Even if developers could
make such guarantees about the software they distrib-
ute, hostile entities actively seek to modify that soft-
ware to perform unanticipated, often harmful functions
via viruses and Trojan horses.

In recent years, researchers have developed a variety
of techniques for managing the execution of untrusted
code. These techniques can be divided into two orthog-
onal categories: static and dynamic. Static techniques
analyze untrusted binaries before execution to deter-
mine whether or not the program is safe to run. Proof
carrying code [17] is a good example of the static
approach—before a program can execute, the runtime
system must successfully validate a proof that the
untrusted binary will adhere to a given safety policy.
Many static approaches, including proof carrying code,
rely on source code analyses to produce safe binaries
[5,15,22]. Dynamic techniques, on the other hand, do
not require access to source code. Rather, dynamic
techniques prevent violation of safety policies by moni-
toring and modifying the behavior of untrusted binaries
as they execute. An example of a dynamic approach is
execution monitoring [9,18]. Execution monitors termi-
nate the execution of a program as soon as an imper-
missible sequence of events (corresponding to a safety
policy violation) is observed. System call interposition
layers [11, 12, 13, 14] are similar to execution monitors
with the additional ability to alter the semantics of
events, specifically system calls. Yet another similar
dynamic technique, software fault isolation (also

Safe Virtual Execution Using Software Dynamic Translation

Kevin Scott and Jack Davidson

Department of Computer Science, University of Virginia

Charlottesville, VA 22904

{kscott, jwd}@cs.virginia.edu

known as sandboxing) [23] limits the potential damage
an untrusted binary can do by preventing loads, stores,
or jumps outside of a restricted address range.

In this paper we make the following observation:
many dynamic trust management systems, including
the ones mentioned above, can be implemented using a
technique called safe virtual execution (SVE). SVE
mediates application execution, virtualizing access to
sensitive resources in order to prevent untrusted bina-
ries from causing harm. Despite the fact that SVE pro-
vides a conceptual framework for the implementation
of systems such as execution monitors, interposition
layers, and sandboxing, these systems are frequently
based on widely differing implementation technologies.
These systems are often dependent on a specific target
architecture or on special operating system services,
hence impeding their widespread use in the modern het-
erogeneous networked computing environment. In
addition to non-portability, the use of different imple-
mentation technology places undue engineering bur-
dens on the designers of SVE systems. They cannot
share code and features with similar systems and must
often endure the time consuming and error-prone chore
of building their systems from scratch.

To address these concerns, we have developed a por-
table, extensible framework for constructing SVE sys-
tems. Our framework, called Strata, is based on
software dynamic translation (SDT), a technique for
modifying binary programs as they execute [1, 2, 3, 6,
7, 20, 21, 24]. Using SDT, Strata offers a basic safe vir-
tual execution engine. The base functionality supplied
by this engine can be extended in order to implement
specific SVE systems. Using this approach useful SVE
systems can often be implemented with very few lines
of new code. Strata is designed to be easily ported to
new platforms and to date has been targeted to SPARC/
Solaris, x86/Linux, and MIPS/IRIX. This portability
ensures that SVE applications implemented in Strata
are available to a wide variety of host systems. Strata
also affords the opportunity for code reuse among dif-
ferent SVE applications by establishing a common
implementation framework.

The remainder of this paper is organized as follows.
Section 2 provides an overview of software dynamic
translation and Section 3 describes Strata’s organization
and architecture. Section 4 then describes how Strata is
used to implement a system call interposition layer and
how this layer can be used to implement powerful secu-
rity policies. Section 5 discusses our results while Sec-
tion 6 discusses related work, and Section 7 provides a
summary.

2. Software Dynamic Translation

SDT is a technique for dynamically modifying a
program as it is being executed. Software dynamic
translation has been used in a variety of different areas:
binary translation for executing programs on non-native
CPUs [6, 7, 21]; fast machine simulation [3, 24]; and
recently, dynamic optimization [1]. In this paper we
describe how software dynamic translation can be used
to implement safe virtual execution.

Most software dynamic translators are organized as
virtual machines (see Figure 1a). The virtual machine
fetches instructions, performs an application-specific
translation to native instructions, and then arranges for
the translated instructions to be executed. Safe virtual
execution systems can be viewed as types of virtual
machines. On a conceptual level, an SVE virtual
machine prevents untrusted binaries from directly
manipulating system resources. The difference between
SVE systems is in how this virtual machine is imple-
mented. For instance, in the Java Virtual Machine an
interpreter is used to isolate Java bytecode programs
from underlying system resources [16]. Systems such
as SASI [9] and SFI [23] merge the application program
with the SVE virtual machine, using binary rewriting at
load time; the virtual machine is in the form of instruc-
tions that check certain sequences of instructions before
they are allowed to execute. Systems such as Janus [13]
and Interposition Agents [14] use special operating sys-
tem facilities to virtualize the execution of a very spe-
cific aspect of execution, specifically, system calls.

In this paper we propose the use of software
dynamic translation as the basis for implementing safe
virtual execution systems. Implementing an SVE appli-
cation in a software dynamic translator is a simple mat-
ter of overriding the translator’s default behavior. For
example, an SDT implementation of a software fault
isolator would translate load instructions into a
sequence of instructions that performs an address check
before the load executes.

In order to illustrate our approach in brief, consider
the task of preventing stack-smashing attacks using
SDT. Stack-smashing attacks take advantage of unsafe
buffer manipulation functions (e.g., strcpy from the C
standard library) to copy, and subsequently execute,
malicious code from the application stack. The mali-
cious code is executed with the privileges of the user
running the program, and in many cases can lead to
serious security compromises on affected systems
[4,15].

A simple way to prevent stack-smashing attacks is to
make the application stack non-executable. In the
abscence of operating system support for non-execut-
able stacks, it is a trivial matter to prevent execution of

code on the stack by using SDT. This task is accom-
plished by replacing the software dynamic translator’s
default fetch function with a custom fetch that prevents
execution of stack resident code.
The custom fetch function

custom_fetch (Address PC) {

if (is_on_stack(PC)) {

fail("Cannot execute code on the
stack");

} else {

return default_fetch(PC);
}

}

checks the PC against the stack boundaries and termi-
nates program execution if the instruction being fetched
is on the stack. If the instruction being fetched is not on
the stack, it is alright to execute the instruction, and
consequently the fetch is completed by calling the
default fetch function.

3. Strata

To facilitate SDT research and the development of
innovative SDT applications, we have constructed a
portable, extensible SDT infrastructure called Strata. As
shown in Figure 1a, Strata is organized as a virtual
machine. The Strata VM mediates application execu-
tion by examining and translating instructions before
they execute on the host CPU. Translated instructions
are held in a Strata-managed cache. The Strata VM is
entered by capturing and saving the application context
(e.g., PC, condition codes, registers, etc.). Following
context capture, the VM processes the next application
instruction. If a translation for this instruction has been
cached, a context switch restores the application context

and begins executing cached translated instructions on
the host CPU.

If there is no cached translation for the next applica-
tion instruction, the Strata VM allocates storage for a
new fragment of translated instructions. A fragment is a
sequence of code in which branches may appear only at
the end. The Strata VM then populates the fragment by
fetching, decoding, and translating application instruc-
tions one-by-one until an end-of-fragment condition is
met. The end-of-fragment condition is dependent on the
particular software dynamic translator being imple-
mented. For many translators, the end-of-fragment con-
dition is met when an application branch instruction is
encountered. Other translators may form fragments that
emulate only a single application instruction. In any
case, when the end-of-fragment condition is met, a con-

text switch restores the application context and the
newly translated fragment is executed.

As the application executes under Strata control,
more and more of the application’s working set of
instructions materialize in the fragment cache. This,
along with certain other techniques—e.g., partial inlin-
ing of functions and indirect branch elimination—that
reduce the number and cost of context switches, permits
Strata to execute applications with little or no measur-
able overhead [19].

Figure 1b shows the components of the Strata VM.
Strata was designed with extensibility and portability in
mind. Extensibility allows Strata to be used for a vari-
ety of different purposes; researchers can use Strata to
build dynamic optimizers, dynamic binary translators,
fast architecture emulators, as well as safe virtual exe-
cution systems. Portability allows Strata to be moved to
new machines easily. To date, Strata has been ported to
SPARC/Solaris, x86/Linux, and MIPS/IRIX. More

Figure 1: Strata Architecture

Application

Host CPU

Target Specific Functions

Strata Virtual CPU

Context Management

Memory Management

Cache Management

S
tr

a
ta

 V
ir

tu
a

l
M

a
c
h

in
e

Target Interface

Linker

Context
Switch

Fetch

Decode

Translate

New

PC

Host CPU (Executing Translated Code from Cache)

Finished?

No

SDT Virtual Machine

Yes

Context
Capture

Cached?

Yes

New
Fragment

Next PC

(a) (b)

importantly, Strata’s portability means that software
implemented using Strata’s extensibility features is
readily available on a wide range of target architectures
and operating systems.

To achieve these goals, the Strata virtual machine is
implemented as a set of target-independent common

services, a set of target-specific functions, and a recon-
figurable target interface through which the machine-
independent and machine-dependent components com-
municate (see Figure 1b). Implementing a new software
dynamic translator often requires only a small amount
of coding and a simple reconfiguration of the target
interface. Even when the implementation is more
involved, e.g., when retargeting the VM to a new plat-
form, the programmer is only obligated to implement
the target-specific functions required by the target inter-
face; common services should never have to be reim-
plemented or modified.

Strata consists of 5000 lines of C code, roughly half
of which is target-specific. In Figure 1b, shaded boxes
show the Strata common services which comprise the
remaining half of the Strata source. The Strata common
services are target-independent and implement func-
tions that may be useful in a variety of Strata-based
dynamic translators. Features such as context manage-
ment, memory management, and the Strata virtual CPU
will most likely be required by any Strata-based
dynamic translator. The cache manager and the linker
can be used to improve the performance of Strata-based
dynamic translators, and are detailed in other work
[19].

4. Strata and Safe Virtual Execution

In Section 2 we sketched one example that demon-
strates the process one can use to write a Strata-based
safe virtual execution system, specifically, a stack-
smashing inhibitor. In this section we use Strata to
implement a system call interposition layer. This inter-
position layer, like all Strata-based applications, is user-
level software and requires no kernel modifications.
Our Strata-based system call interposition layer also
obviates the need for special operating system services
for interception or redirection of system calls. As a con-
sequence, our system call interposition layer is more
flexible and portable than many existing systems.

SDT’s ability to control and dynamically modify a
running program provides an ideal mechanism for
implementing a system call interposition layer. As the
untrusted binary is virtualized and executed by Strata,
code is dynamically inserted to intercept system calls
and potentially redirect those calls to user supplied
functions. In general though, this process does not need
to be limited to system calls; all access to host CPU and

operating system resources are explicitly controlled by
Strata (see Figure 2).

In this paper, we will use terms and phrases that are
typically employed when discussing the Unix operating
system (e.g., “becoming root”, “exec’ing a shell”, “per-
forming a setuid(0)”, etc.). The actions indicated by
these terms have analogs in other major operating sys-
tems (e.g., Windows NT, Windows 2000, Window XP,
VxWorks, and PSOSystem) and the approaches we
describe would apply equally well to applications run-
ning on these systems.

A simple, but realistic example illustrates our
approach. Suppose a user wishes to enforce a policy
that prohibits untrusted applications from reading a file
that the user normally has permission to read. Let’s call
this file /etc/passwd (registry.dat, SAM, or sys-
tem might be equally good choices). Now assume that
the user receives an untrusted binary called funny and
wishes to run it. The user invokes funny using the
Strata loader. The Strata loader locates the entry point
of the application and inserts a call to the Strata startup
routine. When the loader begins the execution of the
application, the call to the Strata startup routine leads to
the dynamic loading and invocation of Strata.

As Strata processes funny’s text segment and builds
fragments to be executed, it locates open system calls
and replaces them with code that invokes the execution
steering policy code. When the fragment code is exe-
cuted, all open system calls are diverted to the policy
code. It is the policy code’s job to examine the argu-
ments to the original open system call. If the untrusted
application is attempting to open /etc/passwd, an
error message is issued and the execution of the appli-
cation is terminated. If the file being opened is not /
etc/passwd, the security policy code performs the

Figure 2: Strata

Host CPU

Strata SVE Application

Untrusted
Binary

Host CPU and OS
Services

open request, returns the result, and execution contin-
ues normally (albeit under the control of Strata).

4.1. A System Call Interposition API

We support system call interposition through an API
implemented by overriding Strata’s base functionality.
The API is a simple, efficient mechanism that allows
the user to specify which operating system calls are to
be monitored and the code to execute every time the
operating system call is invoked. Strata’s execution
steering API consists of four functions. They are:

void init_syscall();

watch_syscall(unsigned num, void *callback);

void strata_policy_begin(unsigned num);
void strata_policy_end(unsigned num);

The first function is called on the initial entry to Strata.
The implementation of this function will contain calls
to the second API function watch_syscall(). Func-
tion watch_syscall() specifies an operating system
call to watch (i.e., num) and the redirected system call to
execute when that OS call is invoked (i.e., callback).
The signature of callback should match the signature
of the operating system call being watched. The final
two API functions are used to bracket redirected system
call code. The need for the bracketing functions will be
explained shortly when we describe how Strata dynam-
ically injects code into the application.

To illustrate the implementation of Strata’s security
API, we show the Strata security policy for preventing
an untrusted application from reading /etc/passwd.
Following the style used on hacker websites to demon-
strate the exploitation of security vulnerabilities, we
give a small demonstration program that exercises the
policy. The demonstration code is given in Listing 1.

Before explaining how Strata injects this code into
an untrusted binary, we review the code at a high level.
Function init_syscall() at lines 17–19 specifies
that SYS_open calls should be monitored and that when
a SYS_open call is to be executed by the application,
control is to be transferred to the policy routine myo-
pen().

Function myopen() (lines 5–16) implements the
redirected system call. As mentioned previously, invo-
cations of strata_policy_begin() and
strata_policy_end() are used to bracket the redi-
rected system call code and their purpose will be
explained shortly.

In function myopen(), the path to be opened is con-
verted to an absolute pathname by calling the utility
function makepath_absolute(). The path returned is
compared to the string /etc/passwd and if it matches,
an error message is issued and execution is terminated.
If the file to be opened is not /etc/passwd, then the
policy code performs the SYS_open system call and
returns the result to the client application as if the actual
system call was executed.

When an untrusted binary is to be executed, the
Strata loader modifies the application binary so that ini-
tial control is transferred to Strata’s initialization rou-
tines. This routine dynamically loads and executes the
init_syscall() function that sets up a table of sys-
tem calls to watch and their corresponding callback
functions.

After initialization is complete, Strata begins build-
ing the initial application fragment by fetching, decod-
ing and translating instructions from the application
text into the fragment cache. The system call interposi-
tion API is implemented by overriding the translate
function that handles trap or interrupt instructions. For
the SPARC/Solaris platform, less than 20 lines of code
are required to implement the new translation function-
ality.

Strata examines each operating system call site to
determine if the OS call is one to be monitored. In most
cases, Strata can determine at translation time which
operating system call will be invoked at the call site. If

1. #include <stdio.h>

2. #include <string.h>

3. #include <strata.h>

4. #include <sys/syscall.h>

5. int myopen (const char *path, int oflag) {

6. char absfilename[1024];

7. int fd;

8. strata_policy_begin(SYS_open);

9. makepath_absolute(absfilename,path,1024);

10. if (strcmp(absfilename,"/etc/passwd") == 0) {

11. strata_fatal("Naughty, naughty!");

12. }

13. fd = syscall(SYS_open, path, oflag);

14. strata_policy_end(SYS_open);

15. return fd;

16. }

17. void init_syscall() {

18. (*TI.watch_syscall)(SYS_open, myopen);

19. }

Listing 1: Code for preventing a file from being
opened.

20.

21. int main(int argc, char *argv[]) {

22. FILE *f;

23. if (argc < 2 || (f = fopen(argv[1],"r")) ==
NULL) {

24. fprintf(stderr,"Can't open file.\n");

25. exit(1);

26. }

27. printf("File %s opened.\n",argv[1]);

28. return 0;

29. }

Listing 1: Code for preventing a file from being
opened.

the OS call is one to be monitored, the code to invoke
the operating system call is replaced with a call to the
user-supplied code. If the call is not one to be moni-
tored, no translation action needs to be taken and the
operating system call code is copied unchanged to the
fragment cache.

In some cases, Strata cannot determine which oper-
ating system call will be invoked at a given call site.
This can occur, for instance, with indirect operating
system calls. In these cases, Strata must generate and
insert code that, when the fragment is executed, will
test whether the OS call being invoked is one to be
monitored. If the call is one to be monitored, the
inserted code must call the appropriate user-supplied
policy code; otherwise, the OS call is executed.

In the case where the OS call to be invoked can be
determined at fragment creation (translation) time,
Strata treats redirected code just like application code.
As a result, calls to redirected system call code can
often be partially inlined [1, 19], thus improving the
efficiency of the code. However, partially inlining code
creates a complication. Consider the myopen() code in
Listing 1. When this code is inlined, the SYS_open OS
call will be generated. This OS call should not be
replaced by a callback, as it is the OS call to execute
when the policy’s conditions are satisfied. To avoid
infinite recursion, redirected system calls are bracketed
using the interposition API calls
strata_policy_begin() and
strata_policy_end(). Strata uses these “code
markers” to suspend the translation of operating system
calls. Thus, we are assuming that the writer of policy
code is not malicious.

One further complication exists. A malicious user
with knowledge of how Strata operates may try to cir-
cumvent Strata by using calls to
strata_policy_begin() and
strata_policy_end() to bracket application code
that attempts to violate the security policy. To prevent
this avenue of attack, Strata permits
strata_policy_begin() and
strata_policy_end() to execute only from within
security policy code.

4.2. System Call Interposition at Work

A common security exploit is to arrange to exec a
shell while in root or super-user mode. This is most
commonly done by using a buffer overrun attack that
corrupts the run-time stack. In an earlier paper we
described how such an attack can be stopped using
Strata’s target-dependent interfaces [13]. Other types of
attacks are possible [16]. However, they all rely on

exec’ing a program (usually a shell) while in root or
super-user mode. Using Strata’s security API, it is very
simple to write a policy that prohibits exec’ing a pro-
gram when in super-user mode, yet allows exec’s when
not in super-user mode. Listing 2 contains the demon-
stration program.

Two system calls—setuid and execve—must be
monitored to implement this security policy. We must
monitor setuid to keep track of the uid of the running
application. This information is stored in the state vari-
able curuid. In function myexecve(), exec’s are dis-
allowd if the program is running in root mode (i.e., the
uid of the process is 0); otherwise they are allowed.

This example demonstrates a number of advantages
of our system call interposition API. It is easy to see
that the code required to implement the security policy
using the system call interposition API is simple and
straightforward. We do not rely on special operating
system services, compilers, or libraries. The user does
not have to learn a new domain specific language in
order to write security policies. Furthermore, the use of
C as the security policy language does not imply that
untrusted binaries must be written in C. The security
policy is compiled to binary code that is processed by

1. #include <stdio.h>

2. #include <string.h>

3. #include <unistd.h>

4. #include <strata.h>

5. #include <sys/syscall.h>

6. static int curuid = -1;

7. int mysetuid (int uid) {

8. strata_policy_begin(SYS_setuid);

9. curuid = syscall(SYS_setuid, uid);

10. strata_policy_end(SYS_setuid);

11. return curuid;

12. }

13. int myexecve (const char *path, char *const
argv[],

14. char *const envp[]) {

15. int retval;

16. strata_syscallback_begin(SYS_execve);

17. if (curuid == 0)

18. strata_fatal(“Naughty, naughty”);

19. retval = syscall(SYS_execve, path, argv,
envp);

20. strata_syscallback_end(SYS_execve);

21. return retval;

22. }

23. void init_syscall() {

24. (*TI.watch_syscall)(SYS_execve, myexecve);

25. (*TI.watch_syscall)(SYS_setuid, mysetuid);

26. }

27. int main (int argc, char *argv[]) {

28. FILE *f;

29. char *args[2] = {“/bin/sh”,0};

30. setuid(0);

31. execv(“/bin/sh”, args);

32. return 0;

33. }

Listing 2: Code to prevent exec’s while root.

Strata along with the untrusted binary. The security pol-
icy code is portable to most systems with a native C
compiler and POSIX compliant system calls. Moreover,
static source code analysis cannot effectively prevent
execs while root due to a number of inhibiting factors—
unavailability of library source code, dynamically gen-
erated code, self-modifying code, and the inability of
static analyses to precisely predict dynamic state.

The third security policy presented implements a
policy that controls the rate at which an application uses
a resource. In this example, we will limit the rate at
which an application can transmit packets over a
socket. This type of policy could be useful for thwarting
denial of service attacks where zombie processes
attempt to flood a server with packets. Listing 3 gives
the code for the demonstration application.
1. #include <stdio.h>

2. #include <stdlib.h>

3. #include <sys/types.h>

4. #include <sys/socket.h>

5. #include <netinet/in.h>

6. #include <netdb.h>

7. #include <time.h>

8. #include <string.h>

9. #include <strata.h>

10. #include <sys/syscall.h>

11. #define RATE 10000

12. #define TOPRATE 10000000

13. #define DISCARD_PORT 9999

14. #define PAYLOAD_SIZE 1024

15. void xmit (const char *host, int nbytes);

16. static int socket_fd = -1;

17. /* Compute the delay necessary to maintain */

18. /* the desired rate */

19. int limiting_delay (double rate, time_t tbeg,

20. time_t tend, int last_len, int len);

21. /* Callback for the so_socket call */

22. int my_so_socket (int a,int b,int c,char *d,int e)
{

23. strata_policy_begin(SYS_so_socket);

24. /* Make the system call and */

25. /* record the file descriptor */

26. socket_fd = syscall(SYS_so_socket,a,b,c,d,e);

27. strata_policy_end(SYS_so_socket);

28. return socket_fd;

29. }

30. /* Callback for the write system call */

31. int my_send (int s, const void *msg, size_t len,

32. int flags) {

33. int result;

34. time_t now;

35. static int last_len = 0;

36. static time_t last_time = 0;

37. strata_policy_begin(SYS_send);

38. /* Only look at writes to socket_fd */

39. if (s == socket_fd) {

40. now = time(NULL);

41. sleep(limiting_delay(RATE,last_time, now

42. len,last_len));

Listing 3: Code to limit the rate of
transmission over a socket.

43. last_len = len;

44. last_time = now;

45. }

46. result = syscall(SYS_send,s,msg,len,flags);

47. strata_policy_end(SYS_send);

48. return result;

49. }

50. void init_syscall() {

51.
(*TI.watch_syscall)(SYS_so_socket,my_so_socket);

52. (*TI.watch_syscall)(SYS_send,my_send);

53. }

54. main(int argc, char *argv[]) {

55. if (argc == 3)

56. xmit(argv[1],atoi(argv[2]));

57. else

58. fprintf(stderr,

59. ”Usage: %s host nbytes\n”,argv[0]);

60. }

61. /* Transmit nbytes to discard port (9) on host */

62. void xmit (const char *host, int nbytes) {

63. int sd, bytes_sent;

64. struct sockaddr_in sin;

65. struct sockaddr_in pin;

66. struct hostent *hp;

67. char *payload[PAYLOAD_SIZE];

68. time_t begin, elapsed;

69. double rate;

70. /* go find out about the desired host machine
*/

71. if ((hp = gethostbyname(host)) == 0) {

72. perror(“gethostbyname”);

73. exit(1);

74. }

75. /* fill in the socket structure with host info
*/

76. memset(&pin, 0, sizeof(pin));

77. pin.sin_family = AF_INET;

78. pin.sin_addr.s_addr = ((struct in_addr *)

79. (hp->h_addr))->s_addr;

80. pin.sin_port = htons(DISCARD_PORT);

81. /* grab an Internet domain socket */

82. if ((sd = socket(AF_INET,SOCK_STREAM, 0)) == -
1) {

83. perror(“socket”);

84. exit(1);

85. }

86. /* connect to PORT on HOST */

87. if (connect(sd, (struct sockaddr *) &pin,

88. sizeof(pin)) == -1) {

89. perror(“connect”);

90. exit(1);

91. }

92. begin = time(0);

93. bytes_sent = 0;

94. while(bytes_sent < nbytes) {

95. /* send a message to the server PORT */

96. /* on machine HOST */

97. if (send(sd,payload,sizeof(payload),0) == -
1) {

98. perror(“send”);

99. exit(1);

100. }

101. bytes_sent += sizeof(payload);

102. printf(“.”);

103. fflush(stdout);

Listing 3: (Continued)Code to limit the rate of
transmission over a socket.

To implement this policy, SYS_so_socket and
SYS_send system calls must be monitored. Callbacks
SYS_so_socket (my_so_socket) and SYS_send
(my_send) are established (lines 50–53). The policy
code for monitoring the socket call simply records the
file descriptor for the socket. The recorded file descrip-
tor will be used by my_send() to limit the rate only on
this connection. In function my_send(), if the trans-
mission is to the monitored connection (i.e.,
socket_fd), then a delay is introduced when neces-
sary (see line 41 of Listing 3).

Listing 4 contains our fourth and final Strata security
demonstration program. The security policy prevents
cookies from being transmitted to web servers. In this
example, the two system calls to be monitored are
SYS_so_socket and SYS_write. Like the previous
example, the callback my_so_socket() simply
remembers the socket being opened. In callback
my_write(), writes to the socket are detected and the
buffer is preprocessed by remove_cookies() before
writing it (see lines 29–33 of Listing 4)..

Whereas the second security policy (Listing 2) halts
programs that violate a given system call utilization
pattern, the final two policies permit programs to con-
tinue running with altered system call semantics. The
third security policy (Listing 3), in effect, can prevent
untrusted binaries from mounting an effective network
denial of service attack from a Strata protected host.
The third security policy can help a user maintain his/
her privacy while navigating the web.

5. Discussion

As the previous section has shown, writing powerful
software security policies using Strata’s security API is
simple. We implemented the API under SPARC/Solaris
by adding fewer than 20 lines of code to the base Strata
system. The implementation of the interposition API
for other Strata supported architectures (x86/Linux,
MIPS/IRIX) would also require relatively few lines of
code. Developing a system call interposition system
from scratch, even if using non-standard operating sys-
tem facilities, would on the other hand require a much
greater implementation effort.

While it is somewhat ironic that we wrote our sam-
ple security policies using C (a cause of many security
vulnerabilities in general) we did so to make the tech-
niques and policies accessible to the largest audience.
The policies presented here could have been written in
any language. The only requirements are that bindings
of Strata’s security API must be implementable in the
new target language and that a compiler for the target
language is available which emits object code. Provid-
ing a new language implementation of Strata’s security
API is easy since the API consists of four simple func-
tions.

Our current implementation does, however, have a
few limitations on the types of SVE systems that can be
built. For instance, Strata does not currently handle

104. }

105. elapsed = time(0) - begin;

106. rate = bytes_sent / elapsed;

107. printf(“\nRate = %8.3f bytes per
second.\n”,rate);

108. close(sd);

109.}

Listing 3: (Continued)Code to limit the rate of
transmission over a socket.

1. #include <stdio.h>

2. #include <string.h>

3. #include <strata.h>

4. #include <sys/syscall.h>

5. #include “snarf.h”

6.

7. static int socket_fd = -1;

8.

9. /* Copy src buffer to dst removing cookies*/

10. int remove_cookies(char *dst, const void *src,

11. int size);

12. /* Callback for the so_socket system call. */

13. int my_so_socket (int a, int b, int c, char *d,
14. int e) {

15. strata_policy_begin(SYS_so_socket);

16. /* Make the system call and record the */

17. /* file descriptor */

18. socket_fd = syscall(SYS_so_socket,a,b,c,d,e);

19. strata_policy_end(SYS_so_socket);

20. return socket_fd;

21. }

22. /* Callback for the write system call */

23. int my_write (int fd, void *buf, int size) {

24. char new_buf[1024];

25. int s, new_size;

26. strata_policy_begin(SYS_write);

27. /* Only look at writes to socket_fd

28. /* and only rewrite HTTP headers. */

29. if (fd == socket_fd &&

30. (new_size =
remove_cookies(new_buf,buf,size)))

31. s = syscall(SYS_write,fd,new_buf,new_size);

32. else

33. s = syscall(SYS_write,fd,buf,size);

34. strata_policy_end(SYS_write);

35. return s;

36. }

37. void init_syscall() {

38.
(*TI.watch_syscall)(SYS_so_socket,my_so_socket);

39. (*TI.watch_syscall)(SYS_write,my_write);

40. }

41. int main(int argc, char *argv[]) {

42. snarf_main(argc, argv);

43. }

Listing 4: Code to remove cookies.

multi-threaded code. We are currently extending Strata
so that SVE designers can build systems that handle
threaded code. Nonetheless, we feel that our approach
provides a useful and complementary approach to help-
ing provide software security.

Another important issue to consider is the overhead
of using SDT for SVE. High overheads will limit the
applicability of using SDT in SVE systems. In a previ-
ous paper, we discussed techniques for reducing over-
head and showed that SDT was competitive with
previously developed techniques for preventing certain
classes of security breaches [14]. Currently, the slow-
down of running an application under Strata is negligi-
ble, but in some cases can be as much as 1.32X. For
many types of applications, 30 percent overhead is
acceptable. Examples include executing an e-mail
attachment which includes a self-extracting archive,
opening a foreign document that contains malicious
macros which destroy valuable information, and many
setuid programs which perform simple administrative
functions. For these situations, a slowdown of 20 to 30
percent would not be noticeable to the user.

For some applications such as web servers, web
browsers, and databases, an overhead of 30 percent
might not be acceptable. Indeed for these types of appli-
cations, any overhead is unlikely to be acceptable. For-
tunately, previous research on dynamic optimization
has shown that it is possible to achieve substantial
speedups in long running applications [1, 2, 11]. Thus
we believe that by combining a dynamic security
checker with a dynamic optimizer, CPU-intensive
applications can be run securely without overhead. To
this end, we are working to incorporate additional opti-
mizations within Strata’s framework. If successful, our
approach to SVE implementation would be applicable
to an even wider range of applications.

6. Related Work

Many researchers have proposed and implemented
system call interposition layers. Mike Jones proposed
interposition agents an object-oriented, high-level
framework for building interposition layers [14]. Inter-
position agents are portable as long as the host operat-
ing system provides a system call interception and
redirection interface. Ghormley, et. al., proposed an
interposition system based on a non-standard, reconfig-
urable, kernel-resident system call redirection API [12].
Fraser, et.al., have proposed a similar interposition sys-
tem based on kernel loadable modules [11].

Considerable research has been conducted on execu-
tion monitoring [18], a technique similar to interposi-
tion layers. The Janus system monitors system calls
executed by a program in order to determine whether or

not a security policy has been violated [13]. Janus uses
the operating system ptrace facility to register callbacks
to policy enforcement code. Not all operating systems
have such a facility, precluding Janus’s use on those
platforms. Janus also refrains from monitoring fre-
quently executed system calls (e.g., write()) in order to
keep overhead low. The SASI system, like Janus, also
performs execution monitoring [9]. Rather than relying
on an operating system facility, or restricting itself to
monitoring only system calls, SASI inserts monitoring
code required by the security policy directly into the
program binary before execution. Consequently SASI
cannot enforce the security policy on self-modifying
code or dynamically generated code.

There are a variety of tools which dynamically pre-
vent buffer overflow attacks using specialized code
generation and/or binary rewriting techniques. The
StackGuard system is a customized C compiler that
generates code to dynamically detect and prevent the
occurrence of most stack buffer overflows (i.e., a
“stack-smashing” attack) [4]. The libverify tool uses a
combination of late program modification and tech-
niques borrowed from StackGuard to prevent buffer
overflows, but without requiring a special compiler or
access to source code [3]. While both of these tools are
very useful, they are restricted to one specific safe vir-
tual execution task, one programming language (C),
and in the case of StackGuard, require a special com-
piler as well as special versions of standard libraries.

In addition to the dynamic execution management
techniques discussed in this paper, there are also a vari-
ety of static techniques for improving the trustworthi-
ness of programs. As mentioned earlier, proof carrying
code systems [17] prevent untrusted binaries from ever
executing if their trustworthiness cannot be statically
proven. When source code is available, a variety of
static analysis techniques can be used to locate buffer
overflow vulnerabilities [10, 15], API misusages [5],
and other programming errors that may result in secu-
rity vulnerabilities [8, 22]. These techniques, and many
other static source code analyses, are complementary to
the dynamic techniques discussed in this paper.

7. Summary

In this paper we have shown that powerful safe vir-
tual execution systems can be easily constructed using
SDT and the Strata framework. Some SVE applica-
tions, such as stack-smashing prevention can be imple-
mented in relatively few lines of code and are portable
across any of Strata’s supported architectures. Other
SVE applications, such as system call interposition,
require on the order of twenty lines of code per target
architecture. Implementing either of these SVE systems

from scratch would require significantly greater imple-
mentation efforts, thus making Strata a particularly
attractive starting point for SVE developers.

We have also shown several applications of our sys-
tem call interposition API. These applications perform
useful tasks, such as preventing the execution of root
shells, limiting the effectiveness of network denial of
service tasks, and helping users maintain the privacy of
personal information. Moreover each of these applica-
tions were relatively simple to implement using Strata.

Given Strata’s portability, extensibility, and the dem-
onstrated ease with which it can be used to develop
powerful SVE systems, we are confident that SDT and
Strata will find use in the development of novel SVE
systems.

8. Acknowledgements

This work was supported in part by an Intel Founda-
tion Graduate Fellowship and by NSF grant EIA-
0072043. We would like to thank Siva Velusamy for
his work on Strata/x86 and Naveen Kumar and Bruce
Childers for their work on Strata/MIPS. Lastly we
would like to thank Shannon Hunt, whose careful read-
ing of this paper greatly improved its quality.

9. References

[1] BALA, V., DUESTERWALD, E., AND BANERJIA, S. Dynamo: A
transparent dynamic optimization system. In SIGPLAN ’00 Confer-

ence on Programming Language Design and Implementation (2000),
pp. 1–12.

[2] CHERNOFF, A., HERDEG, M., HOOKWAY, R., REEVE, C.,
RUBIN, N., TYE, T., YADAVALLI, S. B., AND YATES, J. FX!32: A pro-
file-directed binary translator. IEEE Micro 18, 2 (Mar.slash Apr.
1998), 56–64. Presented at Hot Chips IX, Stanford University, Stan-
ford, California, August 24–26, 1997.

[3] CMELIK, B., AND KEPPEL, D. Shade: A fast instruction-set
simulator for execution profiling. In Proceedings of the 1994 ACM

SIGMETRICS Conference on the Measurement and Modeling of Com-

puter Systems (May 1994), pp. 128–137.

[4] COWAN, C., PU, C., MAIER, D., HINTON, H., BAKKE, P.,
BEATTIE, S., GRIER, A., WAGLE, P., , AND ZHANG, Q. Stackguard:
Automatic adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 1998 USENIX Security Symposium

(1998).

[5] DELINE, R., AND FÄHNDRICH, M. Enforcing High-Level pro-
tocols in Low-Level software. In Proceedings of the ACM SIGPLAN

’01 Conference on Programming Language Design and Implementa-

tion (PLDI-01) (N.Y., June 20–22 2001), C. Norris and J. J. B. Fen-
wick, Eds., vol. 36.5 of ACM SIGPLAN Notices, ACMPress, pp. 59–
69.

[6] DITZEL, D. R. Transmeta’s Crusoe: Cool chips for mobile
computing. In Hot Chips 12: Stanford University, Stanford, California,

August 13–15, 2000 (1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 2000), IEEE, Ed., IEEE Computer Society Press.

[7] EBCIOGLU, K., AND ALTMAN, E. DAISY: Dynamic compila-
tion for 100% architectural compatibility. In 24th Annual International

Symposium on Computer Architecture (1997), pp. 26–37.

[8] ENGLER, D., CHELF, B., CHOU, A., AND HALLEM, S. Checking
system rules using system-specific, programmer-written compiler
extensions. In Symposium on Operating Systems Design and Imple-

mentation (OSDI 2000) (San Diego, CA, 23–25 Oct. 2000).

[9] ERLINGSSON, Ú., AND SCHNEIDER, F. B. SASI enforcement of
security policies: A retrospective. In New Security Paradigms Work-

shop (Caledon Hills, Ontario, Canada, Sept. 1999), ACM SIGSAC,
ACM Press, pp. 87–95.

[10] EVANS, D., AND LAROCHELLE, D. Improving security using
extensible lightweight static analysis. IEEE Software 19, 1 (Jan./ Feb.
2002), 42–51.

[11] FRASER, T., BADGER, L., AND FELDMAN, M. Hardening
COTS software with generic software wrappers. In IEEE Symposium

on Security and Privacy (1999), pp. 2–16.

[12] GHORMLEY, D. P., PETROU, D., RODRIGUES, S. H., AND

ANDERSON, T. E. SLIC: An extensibility system for commodity oper-
ating systems. pp. 39–52.

[13] GOLDBERG, I., WAGNER, D., THOMAS, R., AND BREWER, E. A
secure environment for untrusted helper applications: Confining the
wily hacker. In Proceedings of the 1996 USENIX Security Symposium

(1996).

[14] JONES, M. B. Interposition agents: Transparently interposing
user code at the system interface. In Symposium on Operating Systems

Principles (1993), pp. 80–93.

[15] LAROCHELLE, D., AND EVANS, D. Statically detecting likely
buffer overflow vulnerabilities. In Proceedings of the 2001 USENIX

Security Symposium (2001).

[16] LINDHOLM, T., AND YELLIN, F. The Java Virtual Machine

Specification, 1 ed. Addison-Wesley, Reading/Massachusetts, 1996.

[17] NECULA, G. C. Proof-carrying code. In Conference Record of

POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages (Paris, France, jan 1997), pp. 106–
119.

[18] SCHNEIDER, F. B. Enforceable security policies. Information

and System Security 3, 1 (2000), 30–50.

[19] SCOTT, K., AND DAVIDSON, J. Low-overhead software
dynamic translation. Tech. Rep. CS-2001-18, 2001.

[20] SCOTT, K., AND DAVIDSON, J. Strata: A software dynamic
translation infrastructure. In IEEE Workshop on Binary Translation

(2001).

[21] UNG, D., AND CIFUENTES, C. Machine-adaptable dynamic
binary translation. In Proceedings of the ACM Workshop on Dynamic

Optimization Dynamo ’00 (2000).

[22] VIEGA, J., BLOCH, J. T., KOHNO, T., AND MCGRAW, G. ITS4:
A static vulnerability scanner for C and C++ code. In 16th Annual

Computer Security Applications Conference (Dec. 2000), ACM.

[23] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. ACM SIGOPS Operat-

ing Systems Review 27, 5 (December 1993), 203–216.

[24] WITCHEL, E., AND ROSENBLUM, M. Embra: Fast and flexible
machine simulation. In Proceedings of the ACM SIGMETRICS Inter-

national Conference on Measurement and Modeling of Computer Sys-

tems (May 1996), pp. 68–79.

