
Véronique Cortier and Stéphanie

Delaune

Safely composing security protocols

Research Report LSV-08-06

March 2008

Safely composing security protocols ⋆

Véronique Cortier1 and Stéphanie Delaune1,2

1 LORIA, CNRS & INRIA project Cassis, Nancy, France
2 LSV, CNRS & INRIA project Secsi & ENS de Cachan, France

Abstract. Security protocols are small programs that are executed in
hostile environments. Many results and tools have been developed to
formally analyze the security of a protocol in the presence of an active
attacker that may block, intercept and send new messages. However even
when a protocol has been proved secure, there is absolutely no guarantee
if the protocol is executed in an environment where other protocols are
executed, possibly sharing some common identities and keys like public
keys or long-term symmetric keys.
In this paper, we show that security of protocols can be easily composed.
More precisely, we show that whenever a protocol is secure, it remains
secure even in an environment where arbitrary protocols satisfying a
reasonable (syntactic) condition are executed. This result holds for a
large class of security properties that encompasses secrecy and various
formulations of authentication.

1 Introduction

Security protocols are small programs that aim at securing communications over
a public network like the Internet. Considering the increasing size of networks
and their dependence on cryptographic protocols, a high level of assurance is
needed in the correctness of such protocols. The design of security protocols is
difficult and error-prone; many attacks have been discovered even several years
after the publication of a protocol. Consequently, there has been a growing in-
terest in applying formal methods for validating cryptographic protocols and
many results have been obtained. The main advantage of the formal approach
is its relative simplicity which makes it amenable to automated analysis. For
example, the secrecy preservation is co-NP-complete for a bounded number of
sessions [29], and decidable for an unbounded number of sessions under some ad-
ditional restrictions (e.g. [19, 2, 7, 11, 31]). Many tools have also been developed
to automatically verify cryptographic protocols (e.g. [6, 5, 24, 32, 30, 17]).

However even when a protocol has been proved secure for an unbounded
number of sessions, against a fully active adversary that can intercept, block
and send new messages, there is absolutely no guarantee if the protocol is ex-
ecuted in an environment where other protocols are executed, possibly sharing
some common identities and keys like public keys or long-term symmetric keys.

⋆ This work has been partly supported by the RNTL project POSÉ and the ARA
SSIA Formacrypt.

This is however very likely to happen since a user connected to the Internet for
example, usually uses simultaneously several protocols with the same identity.
The interaction with the other protocols may dramatically damage the security
of a protocol. Consider for example the two following naive protocols.

P1 : A→ B : {s}pub(B)
P2 : A→ B : {Na}pub(B)

B → A : Na

In protocol P1, the agent A simply sends a secret s encrypted under B’s
public key. In protocol P2, the agent sends some fresh nonce to B encrypted
under B’s public key. The agent B acknowledges A’s message by forwarding A’s
nonce. While P1 executed alone easily guarantees the secrecy of s, even against
active adversaries, the secrecy of s is no more guaranteed when the protocol P2 is
executed. Indeed, an adversary may use the protocol P2 as an oracle to decrypt
any message. More realistic examples illustrating interactions between protocols
can be found in e.g. [22].

Main contributions. The purpose of this paper is to investigate sufficient and
rather tight conditions for a protocol to be safely used in an environment where
other protocols may be executed as well. Our main contribution is to show that
whenever a protocol is proved secure when it is executed alone, its security is
not compromised by the interactions with any other protocol, provided that any
two encrypted sub-messages coming from two different protocol specifications
cannot be unified. This can be easily achieved by tagging protocols, that is by
assigning to each protocol an identifier (e.g. the protocol’s name) that should
appear in any encrypted message.

We introduce a fragment of the logic PS-LTL (defined in [14]) for which our
composition result holds. This fragment allows us to specify a class of security
properties that encompasses e.g. secrecy and various formulation of authenticity.

Continuing our example, let us consider the two slightly modified protocols.

P ′1 : A→ B : {1, s}pub(B)
P ′2 : A→ B : {2, Na}pub(B)

B → A : Na

Our main composition theorem ensures that P ′1 can be safely executed together
with P ′2, without compromising the secrecy of s.

The idea of adding an identifier in encrypted messages is not novel. It follows
the spirit of the rules proposed in the paper of Abadi and Needham on prudent
engineering practice for cryptographic protocols [1] (Principle 10). The use of
unique protocol identifiers is also recommended in [22, 9] and has also been used
in the design of fail-stop protocols [20]. However, to the best of our knowledge, it
has never been proved that it is sufficient for securely executing several protocols
in the same environment. Note that some other results also use tags for different
purposes. For instance, Blanchet uses tags to exhibit a decidable class [7] but his
tagging policy is stronger since any two encrypted subterms in a protocol have
to contain different tags.

2

Related work. A result closely related to ours is the one of Guttman and Thayer [21].
They show that two protocols can be safely executed together without damag-
ing interactions, as soon as the protocols are “independent”. The independence
hypothesis requires in particular that the set of encrypted messages that the
two protocols handle should be different. As in our case, this can be ensured
by giving each protocol a distinguishing value that should be included in the
set of encrypted messages that the protocol handles. However, the major differ-
ence with our result is that this hypothesis has to hold not only on the protocol
specification but also on any valid execution of the protocol. In particular, con-
sidering again the protocol P ′2, an agent should not accept a message of the
form {2, {1,m}k}pub(B) while he might not be able to decrypt the inside encryp-
tion and detect that it contains the wrong identifier. A more detailed comparison
can be found in Section 5.1.

Another result has been recently obtained by Andova et al. for a broader
class of composition operations and security properties [3]. Their result do not
allow one to conclude when no typing hypothesis is assumed (that is, when
agents are not required to check the type of each component of a message) or
for protocols with ciphertext forwarding, that is, when agents have to forward
unknown message components.

Datta et al. (e.g. [18]) have also studied secure protocol composition in a
more broader sense: protocols can be composed in parallel, sequentially or pro-
tocols may use other protocols as components. However, they do not provide
any syntactic conditions for a protocol P to be safely executed in parallel with
other protocols. For any protocol P ′ that might be executed in parallel, they
have to prove that the two protocols P and P ′ satisfy each other invariants.
Their approach is thus rather designed for component-based design of protocols.

Our work is also related to those of Canetti et al. who, using a different
approach, study universal composability of protocols [8]. They however require
stronger security properties for their protocols to be composable.

A preliminary version of our results has been presented at FSTTCS’07 [15].
However, in the conference version we prove composability for tagged protocols
and secrecy property only. We now consider a weaker hypothesis (non unifiable
encrypted messages) and a much larger class of security properties.

Plan of the paper. After some preliminaries (Section 2), we describe the model
of protocols in Section 3. In Section 4, we define the logic of security properties
for which our composition result holds. Then, in Section 5, we formally state
our composition result (Theorem 1) providing examples and discussion. The
remaining of the paper is devoted to the proof of this composition result by
relying on constraint solving techniques. We first show in Section 6 that we
can control the form of minimal attacks. Actually, this result is of independent
interest since we provide a decision procedure for solving constraint systems
which is more efficient than the one proposed in [16]. Then we explain in Section 7
how to simplify the formula representing the security properties. The final proofs
are in Section 8. To ease the understanding of the result, we postpone some of
the proofs in the Appendix.

3

2 Messages and Intruder Capabilities

2.1 Syntax

Cryptographic primitives are represented by function symbols. More specifically,
we consider the signature F = {enc, enca, sign, 〈 〉, init, h, pub, priv} together with
arities of the form ar(f) = 2 for the four first symbols and ar(f) = 1 for the
three last ones. The symbol init is a special function symbol of arity 0, namely a
constant. The symbol 〈 〉 represents the pairing function. The terms enc(m, k) and
enca(m, k) represent respectively the message m encrypted with the symmetric
(resp. asymmetric) key k whereas the term sign(m, k) represents the message
m signed by the key k. The function symbol h models a hash function and the
terms pub(a) and priv(a) represent respectively the public and private keys of
an agent a. We fix an infinite set of names N = {a, b . . .} and an infinite set of
variables X = {x, y . . . , X, Y . . .}. The set of Terms is defined inductively by

t ::= term
| x variable x
| init special constant init

| a name a
| f(a) application of symbol f ∈ {pub, priv} on a name or init

| h(t) application of h
| f(t1, t2) application of symbol f ∈ {enc, enca, sign, 〈 〉}

As usual, we write vars(t) (resp. names(t)) for the set of variables (resp.
names) occurring in t. A term is ground if and only if it has no variables. We
write St(t) for the set of subterms of a term t. For example, let t = enc(〈a, b〉, k),
we have that St(t) = {t, 〈a, b〉, a, b, k}. This notion is extended as expected
to sets of terms. Extended names are names or terms of the form pub(a),
priv(a). The set of Extended names associated to a term t, denoted n(t), is
n(t) = names(t) ∪ {pub(t), priv(t) | pub(t) or priv(t) ∈ St(t)}. For example, we
have that n(enc(a, pub(b))) = {a, b, pub(b), priv(b)}. Substitutions are written
σ = {x1 7→ t1, . . . , xn 7→ tn} with dom(σ) = {x1, . . . , xn}. The substitution σ is
closed if and only if all the ti are ground. The application of a substitution σ
to a term t is written σ(t) or tσ. Two terms t1 and t2 are unifiable if t1σ = t2σ
for some substitution σ, otherwise there are non-unifiable. Lastly, we assume a
set P of predicates together with their arities.

2.2 Intruder capabilities

The ability of the intruder is modeled by a deduction system described in Fig-
ure 1 and corresponds to the usual Dolev-Yao rules. The first line describes
the composition rules. The two last lines describe the decomposition rules and
the axiom. Intuitively, these deduction rules say that an intruder can compose
messages by pairing, signing, hashing, encrypting messages provided he has the
corresponding keys. Conversely, it can decompose messages by projecting or de-
crypting provided it has the decryption keys. For signatures, the intruder is also

4

Pairing Signature Hash Sym./Asym. encryption

T ⊢ u T ⊢ v

T ⊢ 〈u, v〉

T ⊢ u T ⊢ v

T ⊢ sign(u, v)

T ⊢ u

h(u)

T ⊢ u T ⊢ v
f ∈ {enc, enca}

T ⊢ f(u, v)

1st Projection Verification (optional) Symmetric decryption

T ⊢ 〈u, v〉

T ⊢ u

T ⊢ sign(u,priv(v))

T ⊢ u

T ⊢ enc(u, v) T ⊢ v

T ⊢ u

2nd Projection Axiom Asymmetric decryption

T ⊢ 〈u, v〉

T ⊢ v

u ∈ T
T ⊢ u

T ⊢ enca(u,pub(v)) T ⊢ priv(v)

T ⊢ u

Fig. 1. Intruder deduction system.

able to verify whether a signature sign(m, k) and a message m match (provided
she has the verification key), but this does not give her any new message. That is
why this capability is not represented in the deduction system. We also consider
an optional rule (Verification)

T ⊢ sign(u, priv(v))

T ⊢ u

that expresses that an intruder can retrieve the whole message from its signature.
This property may or may not hold depending on the signature scheme, and that
is why this rule is optional. Our results hold in both cases (that is, when the
deduction relation ⊢ is defined with or without this rule).

A term u is deducible from a set of terms T , denoted by T ⊢ u if there exists
a proof, i.e. a tree such that the root is T ⊢ u, the leaves are of the form T ⊢ v
with v ∈ T (axiom rule) and every intermediate node is an instance of one of
the rules of the deduction system.

Example 1. The term 〈k1, k2〉 is deducible from the set T1 = {enc(k1, k2), k2}.
A proof of T1 ⊢ 〈k1, k2〉 is:

T1 ⊢ enc(k1, k2) T1 ⊢ k2

T1 ⊢ k1 T1 ⊢ k2

T1 ⊢ 〈k1, k2〉

3 Models for security protocols

In this section we give a language for specifying protocols and define their exe-
cution in the presence of an active adversary.

5

3.1 Syntax

We consider protocols specified in a language allowing parties to exchange mes-
sages built from identities and randomly generated nonces using public key,
symmetric encryption and digital signatures. The individual behavior of each
protocol participant is defined by a role describing a sequence of events. The
main events we consider are communication events (i.e. message receptions and
message transmissions) and new events to model random numbers generation.
To be able to specify a large class of security properties (a logic of properties is
given in Section 4), we also consider status events. Those events are issued by
participant to denote their current state in the execution of a protocol role.

Definition 1 (event). An event is one of the following:

– a communication event, i.e. a message reception, denoted by rcv(m) or a
message transmission, denoted by snd(m), where m is a term; or

– a new event, denoted by new X where X is a variable; or

– a status event of the form P (t1, . . . , tn) where each ti is a term (not neces-
sarily ground) and P ∈ P is a predicate symbol of arity n.

Typically status events give information about the state of the principal. For
instance, we will consider a status event that indicates that the principal has
started or finished an execution. The set of variables of an event is defined as
expected, considering all the terms occurring in the event’s specification.

Definition 2 (roles). A role is a finite sequence of events e1, . . . , eℓ such that

1. for any sent or status event ei, for any variable x ∈ vars(ei), we have that
x ∈
⋃

1≤j<i vars(ej), and

2. a variable occurring in a new event does not appear previously in the se-
quence.

The length of a role is the number of events in its sequence.

We denote by Roles the set of roles. A k-party protocol is given by k such
a role. More formally, a k-party protocol is a mapping Π : [k] → Roles, where
[k] = {1, 2, . . . , k}. The condition stated in Definition 2 ensures that each variable
which appears in a sent or status event is either a nonce or has been introduced
in a previously received message. The set of variables, names or extended names
of a protocol is defined as expected, considering all the terms occurring in the
role’s specification.

The composition of two protocols Π1 and Π2, denoted by Π1 | Π2 is simply
the protocol obtained by the union of the roles of Π1 and Π2. If Π1 : [k1]→ Roles

and Π2 : [k2]→ Roles, then Π = Π1 | Π2 : [k1 + k2]→ Roles with Π(i) = Π1(i)
for any 1 ≤ i ≤ k1 and Π(k1 + i) = Π2(i) for any 1 ≤ i ≤ k2 .

6

Example 2. Consider the famous Needham-Schroeder protocol [28].

A→ B : {Na, A}pub(B)

B → A : {Na, Nb}pub(A)

A→ B : {Nb}pub(B)

The agent A sends to B his name and a fresh nonce (a randomly generated
value) encrypted with the public key of B. The agent B answers by copying A’s
nonce and adds a fresh nonce NB, encrypted by A’s public key. The agent A
acknowledges by forwarding B’s nonce encrypted by B’s public key. For instance,
let a, b, and c be three agent names. The role Π(1) corresponding to the first
participant played by a talking to c and the role Π(2) corresponding to the
second participant played by b with a are described below.

Π(1) := new X;
snd(enca(〈X, a〉, pub(c)));
rcv(enca(〈X,x〉, pub(a)));
snd(enca(x, pub(c))).

Π(2) := rcv(enca(〈y, a〉, pub(b)));
new Y ;
snd(enca(〈y, Y 〉, pub(a)));
rcv(enca(Y, pub(b))).

Note that, since our definition of role is not parametric, we have also to
consider a role corresponding to the first participant played by a talking to b for
example. If more agent identities need to be considered, then the corresponding
roles should be added to the protocol. It has been shown however that two agents
are sufficient (one honest and one dishonest) for proving security properties such
as those we consider in this paper [12]. In this example, we chose to not use status
event. Actually, they are meaningful to specify the security properties and have
no real interest for the description of the protocol itself. We will illustrate the
usefulness of status events in Section 4.

Clearly, not all protocols written using the syntax above are meaningful.
In particular, some of them might not be executable. For instance, a k-party
protocol where Π(1) := rcv(h(x)); snd(x) is not executable since an agent is not
able to extract the content of a hash. A precise definition of executability is
not relevant for our result. We use instead a weaker hypothesis (see Theorem 1,
Condition 2). In particular, our combination result also holds for non executable
protocols such as the one given above.

3.2 Semantics

We start with the description of the execution model of the protocol in the
presence of an active attacker. The model we consider is rather standard. The
parties in the system execute a (potentially unbounded) number of protocol ses-
sions with each other. A role may be executed in several sessions, using different
nonces at each session. Moreover, since the adversary may block, redirect and
send new messages, all the sessions might be interleaved in many ways. This is
captured by the notion of scenario.

7

Definition 3 (scenario). A scenario for a protocol Π : [k] → Roles is a se-
quence sc = (r1, s1) · · · (rn, sn) such that 1 ≤ ri ≤ k, si ∈ N, the number of
identical occurrences of a pair (r, s) is smaller than the length of the role r, and
whenever si = sj then ri = rj.

The numbers ri and si represent respectively the involved role and the session
number. An occurrence of (r, s) in sc means that the role r of session s executes
its next action. The condition on the number of occurrences of a pair ensures
that such an action is always available. The last condition ensures that a session
number is not reused on other roles.

Let Π = Π1 | Π2 be a protocol obtained by composition of Π1 and Π2 and
let sc be a scenario for Π. The scenario sc|Π1

is simply the sequence obtained
from sc by removing any element (r, s) where r is a role of Π2.

Given a protocol Π and a scenario sc, we can define the symbolic trace, i.e.
a sequence of events, associated to Π and sc. It corresponds to the sequence of
events in the order defined by the scenario. Variables occurring in new events are
instantiated by fresh names while the other variables are left unchanged. This
symbolic trace represents a potentially infinite number of concrete traces. Intu-
itively, the variables can be instantiated in potentially infinite ways, depending
on the messages sent by the intruder. A trace is say ground if it contains no
variable.

Definition 4 (symbolic trace associated to Π and sc). Given a scenario
sc = (r1, s1) · · · (rn, sn) for a k-party protocol Π, the symbolic trace tr = e1, . . . , eℓ
associated to sc is defined as follows. Let Π(j) = e

j
1, . . . , e

j
kj

for 1 ≤ j ≤ k. Let

pi = #{(rj , sj) ∈ sc | j ≤ i, sj = si}, i.e. the number of previous occurrences
in sc of the session si. We have pi ≤ kri and ei = eripiσri,si where

– dom(σr,s) = {vars(eri) | 1 ≤ i ≤ kr and eri is a new or a received event}, i.e.
variables occurring in Π(r),

– σr,s(X) = nX,s if X ∈ {Y | 1 ≤ i ≤ kr and eri = new Y }, where nX,s is a
name.

– σr,s(x) = xs otherwise, where xs is a variable.

We assume that the names nx,s and the variables xs are fresh, that is, they are
supposed not to occur in any other protocol or security formula.

Example 3. Consider again the Needham-Schroeder protocol. LetΠ(1) andΠ(2)
be the two roles introduced in Example 2. Let s1 and s2 be two sessions numbers
(s1 6= s2) and sc = (1, s1)(1, s1)(2, s2)(2, s2)(2, s2)(1, s1)(1, s1). This is the sce-
nario allowing us to retrieve the famous attack due to Lowe [23]. The symbolic
trace associated to Π and sc is given below:

tr = new nX,s1
; snd(enca(〈nX,s1

, a〉, pub(c)));
rcv(enca(〈ys2

, a〉, pub(b))); new nY,s2
; snd(enca(〈ys2

, nY,s2
〉, pub(a)));

rcv(enca(〈nX,s1
, xs1
〉, pub(a))); snd(enca(xs1

, pub(c)))

8

Appending an event e to a trace tr is written tr; e. The function length has
the usual meaning: length([]) = 0 and length(tr; e) = 1 + length(tr). The prefix
trace consisting of the first i events is denoted as tri, with tr0 = [] and trn = tr

when n ≥ length(tr).

Definition 5 (knowledge of a trace tr). Let tr be a trace. The knowledge
of tr is the set of terms given by K(tr) = {init} ∪ {u | snd(u) ∈ tr}.

An execution trace is an instance of a such a symbolic trace. As usual, we are
only interested in valid execution traces - those traces where the attacker only
sends messages that he can compute from his knowledge and the messages he
has seen on the network.

Definition 6 (valid execution trace). Let T0 be a finite set of ground terms
(intuitively T0 represents the initial knowledge of the attacker). A ground ex-
ecution trace tr = e1, . . . , eℓ is valid w.r.t. T0 if for all 1 ≤ i ≤ ℓ, whenever
ei = rcv(m), we have that T0 ∪ K(tri) ⊢ m.

Example 4. Let T0 = {init, a, b, c,pub(a), pub(b), pub(c), priv(c)}. Let tr be the
symbolic trace described in Example 3 and σ = {ys2

7→ nX,s1
, xs1

7→ nY,s2
}.

The trace trσ is valid w.r.t. T0. Indeed, we have that

– T1
def
= T0, enca(〈nX,s1

, a〉, pub(c)) ⊢ enca(〈nX,s1
, a〉, pub(b)), and

– T1, enca(〈nX,s1
, nY,s2

〉, pub(a)) ⊢ enca(〈nX,s1
, nY,s2

〉, pub(a)).

In the next section, we define what it means for a protocol to satisfy a
security property. We introduce a logic for properties that encompasses classical
properties like secrecy and authentication.

4 Security Properties

In this section, we review a logic, called PS-LTL, for specifying security proper-
ties. This logic is actually a (syntactic) fragment of the logic proposed in [14]. The
logic is based on linear temporal logic (LTL) with pure-past operators. PS-LTL

provides adequate flexibility, allowing one to specify several security properties
like secrecy and different forms of authentication among them aliveness, weak
agreement and non-injective agreement. Its semantics is defined as usual on ex-
ecution traces.

4.1 PS-LTL: Syntax and Semantics

Compared to [14], we split off the status events (defined with predicates) from
the communication events (send, received or new events). Indeed, the first kind
of events are used to specify security properties while the others are internal
events describing the execution of the protocol. The temporal operators should
only concern status events. That is why we divided the logic into two layers

9

and (slightly) change the semantics accordingly. The first layer consists in for-
mula made up from status event, temporal operators and the classical ¬,∨,∧, ∃,
and ∀ logical operators. The second layer consists in formula made up from the
first layer, the special predicate learn and the classical ¬,∨,∧, ∃, and ∀ logical
operators.

Definition 7 (PS-LTL formula). A PS-LTL formula φ, is defined by the fol-
lowing grammar:

ψ, ψi := true | P (t1, . . . , tn) | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | Yψ | ψ1 Sψ2 | ∃x.ψ | ∀x.ψ

φ, φi := ψ | learn(m) | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃x.φ | ∀x.φ

where the ti’s and m are terms (not necessarily ground)

Standard formulas true, ¬φ, φ ∧ φ and φ ∨ φ carry the usual meaning. The
formula learn(m) states that the attacker knows the termm whereas P (t1, . . . , tn)
is a status event. The formula Yψ means that ’yesterday ψ held’, while ψ1 Sψ2

means that ’ψ1 held ever since a moment in which ψ2 held’. When x is a variable,
we write ∃x.φ and ∀x.φ to bind x in φ, with the quantifiers carrying the usual
meaning. Other operators can be represented using the above defined operators.

The abbreviations false and ⇒ are defined by false
def
= ¬true and φ1 ⇒ φ2

def
=

¬φ1 ∨ φ2. We also used �ψ as a shortland for true Sψ.

In the sequel, we assume that PS-LTL formulas are closed, i.e. they contain
no free variables, and that each variable is quantified at most once (this can be
easily ensured by using renaming). We also assume that the variables occurring in
a formula φ are disjoint from the variables occurring in the considered execution
trace tr. Given a trace tr, we denote by tr the sequence of status events obtained
by removing from tr all the communication and new events. PS-LTL formulas
are interpreted at some position along a trace as stated in Definition 8.

Definition 8 (concrete validity). Let φ be a closed PS-LTL formula, tr be
a ground execution trace and T0 be a finite set of ground terms. We define
〈tr, T0〉 |= φ as:

〈tr, T0〉 |= true

〈tr, T0〉 |= learn(m) iff T0 ∪ K(tr)∪ ⊢ m
〈tr, T0〉 |= ¬φ iff 〈tr, T0〉 6|= φ
〈tr, T0〉 |= φ1 ∧ φ2 iff 〈tr, T0〉 |= φ1 and 〈tr, T0〉 |= φ2

〈tr, T0〉 |= φ1 ∨ φ2 iff 〈tr, T0〉 |= φ1 or 〈tr, T0〉 |= φ2

〈tr, T0〉 |= ∃x.φ iff ∃t ∈ Terms such that 〈tr, T0〉 |= φ[x 7→ t]
〈tr, T0〉 |= ∀x.φ iff ∀t ∈ Terms we have that 〈tr, T0〉 |= φ[x 7→ t]

For the temporal formulas, only the status events are meaningful.

〈tr, T0〉 |= P (t1, . . . , tn) iff tr = tr′; P (t1, . . . , tn)
〈tr, T0〉 |= Yψ iff tr = tr′; e and 〈tr′, T0〉 |= ψ
〈tr, T0〉 |= ψ1 Sψ2 iff ∃i ∈ [0, length(tr)] such that

− 〈tri, T0〉 |= ψ2, and
− ∀j ∈ [i+ 1, length(tr)], we have 〈trj , T0〉 |= ψ1

10

We now define the subset of PS-LTL formulas, namely PS-LTL-, over which
our composition result holds. We say a PS-LTL formula is quantifier-free if it
does not contain any quantifier (neither ∃, nor ∀). We will only consider se-
curity formulas of the form ∀x1.∀xn.φ′ where φ′ is quantifier-free. Note
that, this means that the attack formulas we consider are those of the form
∃x1, . . . ,∃xn.¬φ′. We also need to control the occurrences of learn(m). We say
that a formula φ is positive (resp. negative) if every occurrence of learn(m) in φ
appears under an even (resp. odd) number of negations. This restriction allows
us to avoid negated deducibility constraints.

Definition 9 (PS-LTL
+, PS-LTL

-). We say that φ is a universal negative
formula (resp. existential positive formula) if φ is of the form ∀x1.∀xn.φ′

(resp. ∃x1.∃xn.φ
′) where φ′ is quantifier-free and negative (resp. positive).

We denote by PS-LTL
- (resp. PS-LTL

+) such a fragment.

In the remainder, we consider universal negative security formulas
(PS-LTL-fragment), i.e. existential positive attack formulas (PS-LTL+fragment).

Definition 10 (Π |= φ). Let φ be a closed PS-LTL formula, tr be a symbolic
trace and T0 be a set of ground terms. We say that 〈tr, T0〉 |= φ if 〈trσ, T0〉 |= φ
for every substitution σ such that trσ is a valid execution trace.

Let Π be a protocol and T0 be a set of ground terms. We say that Π |= φ
w.r.t. T0, if 〈tr, T0〉 |= φ for all symbolic trace tr associated to some scenario
of Π.

4.2 Writing Security Properties with PS-LTL

In this section, we show how to specify several security properties in PS-LTL-.
We illustrate this with the Needham-Schroeder protocol presented in Example 2.

Secrecy. We can easily specify the standard notion of secrecy, which is the in-
ability of an attacker to obtain the value of the secret. The secrecy of a long-term
key, e.g. priv(a), can be checked by the PS-LTL- formula ¬learn(priv(a)). We can
also express the secrecy of a nonce, e.g. the nonce generated by b for a in the
role Π(2) described in Example 2. For this, we have to introduce a status event,
say nonce. Thus, we modify the role of Π(2) by adding the status event nonce(Y)
just after the event new Y . We obtain the two following roles:

Π(1) := new X;
snd(enca(〈X, a〉, pub(c)));
rcv(enca(〈X,x〉, pub(a)));
snd(enca(x, pub(c))).

Π(2) := rcv(enca(〈y, a〉, pub(b)));
new Y ;
nonce(Y);
snd(enca(〈y, Y 〉, pub(a)));
rcv(enca(Y, pub(b))).

Thus, now, we can require that the nonces generated by b for a has to be
kept secret. This can be done by the following PS-LTL- formula

∀x. (� nonce(x))⇒ ¬learn(x).

11

Consider the trace tr′ obtained from tr (described in Example 3) by inserting
the status event nonce(nY,s2

) just after the event new nY,s2
, i.e.

tr′ = new nX,s1
; snd(enca(〈nX,s1

, a〉, pub(c))); rcv(enca(〈ys2
, a〉, pub(b)));

new nY,s2
; nonce(nY,s2

); snd(enca(〈ys2
, nY,s2

〉, pub(a)));
rcv(enca(〈nX,s1

, xs1
〉, pub(a))); snd(enca(xs1

, pub(c)))

Consider the substitution σ and the set of ground terms T0 given in Exam-
ple 4. We have that 〈trσ, T0〉 |= ∃x.(� nonce(x)) ∧ learn(x). It is indeed easy to
see that 〈trσ, T0〉 |= (� nonce(nY,s2

)), and 〈trσ, T0〉 |= learn(nY,s2
). This means

that the protocol Π (modified version) does not satisfies the secrecy property
stated above.

We also cover various form of authentication except injective agreement,
which would require counting events in a trace. This would require an extension
of the logic.

Aliveness. This property is the weakest form of authentication in Lowe’s hier-
archy [25].

A protocol satisfies aliveness if, whenever an honest agent completes a
run of the protocol, apparently with another honest agent B, then B has
previously run the protocol.

Note that B may not necessarily have believed that he was running the
protocol with A. Also, B may not have been running the protocol recently. The
aliveness of principal B to initiator A can be specified in our formalism. First, we
have to consider two status events start and end. We insert them at the beginning
and at the end of each role respectively. For instance, in Π(1), we insert start(a)
at the beginning and end(a, c) at the end. This expresses the fact that the role is
executed by a with c. We insert start(b) and end(b, a) in Π(2). Now, the aliveness
property can be specified as follows:

(end(a, b)⇒ � start(b)) ∧ (end(b, a)⇒ � start(a))

This corresponds to the fact that the property end(x, y) ⇒ start(y) has to be
satisfied when x and y are both honest agents. For the Needham-Schroeder
public-key protocol, the aliveness property is satisfied.

Weak agreement. Weak agreement is slightly stronger than aliveness.

A protocol guarantees weak agreement if, whenever an honest agent com-
pletes a run of the protocol, apparently with another honest agent B,
then B has previously been running the protocol, apparently with A.

The weak agreement property can also been expressed in our formalism. We
have again to add status events start and end in our specification. However, the

12

predicate start will have also two parameters: start(a, c) expresses the fact that a
has started a session with c. Now, the weak agreement property can be specified
as follows:

(end(a, b)⇒ � start(b, a)) ∧ (end(b, a)⇒ � start(a, b))

For the Needham-Schroeder public-key protocol, it is well-known that this prop-
erty is not satisfied: b can complete a session apparently with a whereas a has
never started a session with b.

We can also express some refinements of these properties by distinguishing
the case where an agent starts a session as an initiator or as a responder. More-
over, we can also express the fact that the two agents agreed on some data D.
This allows us to express the non-injective agreement security property.

5 Composition result

Even if a protocol is secure for an unbounded number of sessions, its security
may collapse if the protocol is executed in an environment where other protocols
sharing some common keys are executed. A first example has been informally
given in Introduction. In Sections 5.1 and 5.2, we introduce and discuss the
hypotheses we need to safely compose protocols, providing counter-examples
that justify the necessity of our hypotheses. Our main result is formally stated
in Section 5.3.

5.1 Disjoint encryption

To avoid a ciphertext from a protocol Π1 to be decrypted in an another proto-
col Π2, we consider protocols that satisfies disjoint encryption. This notion is
formally defined below (see Definition 11) and relies on the following notion of
encrypted subterms.

An encrypted term is a term of the form enc(u, v), enca(u, v), sign(u, v) for
some terms u, v or h(u) for some term u. Given a set of terms T , we denote by
EncSt(T) the set of encrypted subterms of T , i.e.

EncSt(T) = {t′ ∈ St(T) | t is an encrypted term}.

This notation is extended as expected to events and PS-LTL formula. Given a
protocol Π, consider the substitution σ such that dom(σ) = {X | newX ∈ Π}
and Xσ = nX for any X ∈ dom(σ). We define EncSt(Π) as follows:

EncSt(Π) = {EncSt(e)σ | e ∈ Π}.

Note that we instantiate the variables under new events. This reflects that
parties will check the nonces they have generated on their own. For example,
consider the two following protocols. Let Π1 be a protocol with only one role:

Π1(1) := new X; snd(enca(X, pub(a))); rcv(enca(〈X,X〉, pub(a))); Fail

13

The agent sends to itself a message of the form enca(N, pub(A)) and waits for
enca(〈N,N〉, pub(A)), in which case he raises the status event Fail, where Fail

is a predicate of arity 0. The protocol Π1 will never reach the status event Fail.
Let now Π2 be a protocol with only one role:

Π2(1) := new Y ; snd(enca(〈Y, Y 〉, pub(a)))

Even if Π1 is composed with Π2, Π1 will never reach the status event Fail.
However, if we did not instantiate variables under new events, the two encrypted
terms enca(〈X,X〉, pub(a)) and enca(〈Y, Y 〉, pub(a)) would be unifiable.

Definition 11 (disjoint encryption). Let T1 and T2 be two sets of terms.
We say that T1 and T2 have disjoint encryption if vars(T1) ∩ vars(T2) = ∅ and
for every encrypted terms t′1 ∈ EncSt(T1) and t′2 ∈ EncSt(T2), we have that t′1
and t′2 are non-unifiable.

Two protocols Π1 and Π2 (we assume that they do not share any variable)
have disjoint encryption if EncSt(Π1) and EncSt(Π2) have disjoint encryption.

Example 5. The role Π(1) and Π(2) described in Example 2 do not have dis-
joint encryption since enca(〈nX , x〉, pub(a)) and enca(〈y, nY 〉, pub(a)) are unifi-
able. Anyway, we know that these two roles can not be safely composed (Lowe’s
attack). However, two protocols having disjoint key material, e.g. Needham-
Schroeder-Lowe public key protocol and Needham-Schroeder symmetric key pro-
tocol have disjoint encryption.

However, protocols that use common keys (e.g. common public keys) may
not enjoy the disjoint encryption property. A way to force disjoint encryption is
to use tag. Requiring that two protocols satisfy disjoint encryption can be very
easily achieved in practice: it is sufficient for example to add the name of the
protocol in each encrypted term.

Definition 12 (well-tag, α-tag). Let α be a ground term. A term t is α-tagged
if EncSt(t) ⊆ {f(〈α, t1〉, t2), h(〈α, t1〉) | f ∈ {enc, enca, sign}, t1, t2 ∈ Terms}. A
term is said well-tagged if it is α-tagged for some ground term α.

A protocol Π is α-tagged is any term occurring in the role of the protocol is
α-tagged. A protocol is said well-tagged if it is α-tagged for some ground term α.

The following proposition is an easy consequence of the previous definition
since two terms which are respectively α and β-tagged (α 6= β) have necessarily
disjoint encryption.

Proposition 1. Let Π1 and Π2 be two well-tagged protocols such that Π1 is
α-tagged and Π2 is β-tagged with α 6= β. Then the protocols Π1 and Π2 have
disjoint encryption.

Proof. Since Π1 and Π2 are respectively α-tagged and β-tagged, we have that

– EncSt(Π1) ⊆ {f(〈α, t1〉, t2), h(〈α, t1〉) | f ∈ {enc, enca, sign}, t1, t2 ∈ Terms},
– EncSt(Π2) ⊆ {f(〈β, t1〉, t2), h(〈β, t1〉) | f ∈ {enc, enca, sign}, t1, t2 ∈ Terms}.

14

Now, since α and β are not unifiable, it is easy to conclude. �

Note that (as opposite to [21]) we do not require that the agents check that
nested encrypted terms are correctly tagged. For example, let Π be a protocol
with one role as follows:

Π(1) = rcv(enca(〈α, x〉, pub(a))); snd(enca(〈α, x〉, pub(b))).

The message enca(〈α, enc(a, k)〉, pub(a)) (which is not correctly tagged) would
be accepted by the agent playing the role.

5.2 Controlling the position of critical long-term keys

Disjoint encryption is not a sufficient condition. Indeed critical long-term keys
should not be revealed in clear. Consider for example the following two protocols.
Note that they satisfy disjoint encryption since P4 has no encrypted subterm.

P3 : A→ B : {α, s}kab P4 : A→ B : kab

The security of protocol P3 is compromised by the execution of P4. Thus
we will require that long-term private keys (except possibly the public ones)
do not occur in plaintext in the protocol. This is not a real restriction since
not disclosing the long term private keys in plaintext (even under encryption)
corresponds to a prudent practice.

Definition 13 (plaintext). The set plaintext(t) of plaintext of a term t is the
set of extended names and variables that occurs in plaintext. It is recursively
defined as follows.

plaintext(u) = {u} if u is a variable or a name
plaintext(f(u)) = {f(u)} for f ∈ {pub, priv}
plaintext(〈u1, u2〉) = plaintext(u1) ∪ plaintext(u2)
plaintext(h(u)) = plaintext(u)
plaintext(f(u1, u2)) = plaintext(u1) for f ∈ {enc, enca, sign}

This notation is extended to set of terms and events. For protocols, we define
plaintext(Π) as follows:

plaintext(Π) = {plaintext(e) | e ∈ Π and e is a communication event}.

Using our syntax, some protocols may still reveal critical keys in a hidden
way. Consider for example the following one role (α-tagged) protocol.

Π(1) = snd(enc(〈α, a〉, kab)); rcv(enc(〈α, a〉, x)); snd(x).

While the long-term key kab does not appear in plaintext, the key kab is revealed
after simply one normal execution of the role. This protocol is however not
realistic since it cannot be executed. Indeed, an unknown value cannot be learned
(and sent) if it does not appear previously in plaintext. Thus we will further
require (Condition 2 of Theorem 1) that a variable occurring in plaintext in a
sent message, has to previously occur in plaintext in a received message.

15

5.3 Composition result

We show that two protocols can be safely composed as soon as they satisfy the
disjoint encryption assumption and that critical long-term keys do not appear in
plaintext. We also require that PS-LTL formulas also enjoy disjoint encryption
with Π2.

Theorem 1 (Main result). Let Π1 = [k1]→ Roles, Π2 = [k2]→ Roles be two
protocols having disjoint encryption and such that Π2 contains no status event.
Let T0 (intuitively the initial knowledge of the intruder) be a set of extended
names. Let KC = (n(Π1) ∪ n(Π2)) r T0 be the set of critical extended names
and φ be a closed PS-LTL

- formula. Moreover, we assume that

1. critical extended names do not appear in plaintext, i.e.

KC ∩ (plaintext(Π1) ∪ plaintext(Π2)) = ∅.

2. for any role e1, . . . , eℓ of Π1 or Π2, for any i such that ei is a sent event,
for any variable x ∈ plaintext(ei), we have that x ∈ plaintext(ej) for some
new or received event ej such that j < i.

3. EncSt(φ) and EncSt(Π2) have disjoint encryption.

If Π1 |= φ for T0 then Π1 | Π2 |= φ for T0.

We first discuss the hypotheses of the theorem. We have seen in Sections 5.1
and 5.2 that conditions 1 and 2 are necessary conditions. Note that condition 2 is
actually satisfied by any realistic (executable) protocol since a party can send in
plaintext only values that he knows already in plaintext. Condition 1 ensures that
constant names that are not public do not appear in plaintext in Π1 nor Π2. This
applies typically to the long-term private keys of protocols. These keys should
indeed not be sent in plaintext. Note that this restriction does not apply to fresh
keys or nonces generated during the execution of the protocols. Fresh keys and
nonces are of course allowed to be sent in plaintext.

Condition 3 on the formula is not a real restriction since the security property
should talk about protocol Π1 thus if encrypted terms appear in the security
property, they should be encrypted terms from Π1, which have disjoint encryp-
tion with Π2. We also require that Π2 does not contain status event since we
are interested to establish a security property on Π1. It is a necessary condition
as shown by the example below:

Example 6. Consider the two following 1-party protocols Π1 and Π2:

Π1 = rcv(x1); event(x1); snd(enc(〈α, x1〉, k)) Π2 = new X; snd(enc(〈β,X〉, k)).

Let T0 = {α, β} and φ = ∃x.event(enc(〈β, x〉, k)). The conditions 1 and 2 stated
in Theorem 1 are satisfied whereas condition 3 is not. We have that Π1 | Π2 |= φ
for the initial knowledge T0 whereas Π1 6|= φ. Thus we have that ¬φ is a PS-
LTL- formula and Π1 |= ¬φ while Π1 | Π2 6|= ¬φ.

16

We prove our combination result by contradiction and we first need to show
that messages from two combined protocols do not need to be mixed up to mount
an attack. For this purpose, we refine in Section 6 an existing decision procedure
that allows us to control the form of the execution traces. Second, we show in
Section 7 how to simplify the fragment of PS-LTL+ formula. Lastly, we provide
a full proof of Theorem 1 in Section 8.

5.4 Applications

Security protocols can be analyzed using several existing tools, e.g. [6, 5]. The
security of a protocol Π is however guaranteed provided that no other protocols
share any of the private data of Π. Our result shows that, once the security of
an isolated protocol has been established, this protocol can be safely executed
in environments that may use some common data provided disjoint encryption
is satisfied (and that long term private keys are not sent in plaintext). This
condition is easy to check but might not be satisfied by existing protocols. A
simple way to ensure it is to add the name of the protocol (that is, a bitstring)
each time a party performs an encryption.

For example, the SSL protocol should contain the bitstring “ssl2.0” in any of
its encrypted messages. This would ensure that no armful interaction can occur
with any other protocols even if they share some data with the SSL protocol,
provided that these other protocols are also tagged. In other words, to avoid
armful interaction between protocols, one should simply use a tagged version of
them.

6 Simplifying Constraint Systems

6.1 Constraint Systems

Constraint systems are quite common (see e.g. [29, 13, 16]) to model the execu-
tion of security protocols. We recall here their formalism.

Definition 14 (constraint system). A constraint system C is either ⊥ or a
finite sequence of expressions (Ti
 ui)1≤i≤n, called constraints, where each Ti,
called the left-hand side of the constraint, and each ui is a term, called the
right-hand side of the constraint, such that:

– init ∈ T1 and Ti ⊆ Ti+1 for every i such that 1 ≤ i < n;

– if x ∈ vars(Ti) then ∃ j < i such that Tj = min{T | (T
 u) ∈ C, x ∈ vars(u)}
(for the inclusion relation) and Tj (Ti.

A solution of C is a closed substitution θ with dom(θ) = vars(C) such that for
every (T
 u) ∈ C, we have that Tθ ⊢ uθ. The empty constraint system is always
satisfiable whereas ⊥ denotes an unsatisfiable system.

17

A constraint system C is usually denoted as a conjunction of constraints
C =
∧

1≤i≤n(Ti
 ui) with Ti ⊆ Ti+1, for all 1 ≤ i < n. The second condition
in Definition 14 says that each time a new variable is introduced, it first occurs
in some right-hand side. The left-hand side of a constraint system usually rep-
resents the messages sent on the network, while the right-hand side represents
the message expected by the party.

Definition 15. Let Π be a protocol and sc be a scenario of Π. Let tr be a sym-
bolic trace associated to Π and sc and T0 be a finite set of terms. The constraint
system C(tr) associated to tr and T0 is defined as follows:

C(tr) := {T0 ∪ K(tri)
 u | tri = tri−1; rcv(u) and 0 ≤ i ≤ length(tr)}.

Note that C(tr) satisfies the requirements given in Definition 14. In particular,
the second condition is ensured thanks to the condition 1 of Definition 2. It is
easy to establish the following result:

Lemma 1. Let tr be a symbolic trace associated to a protocol Π and a sce-
nario sc. Let σ be a substitution and T0 be a finite set of terms. We have that

trσ is valid if and only if σ is a solution to C(tr).

6.2 Simplification Rules

To prove our combination result, we first refine an existing decision procedure
for solving constraint systems. Several decision procedures exist [27, 13, 16, 29,
10] for solving constraint systems. Some of them [27, 13, 16, 10] are based on
a set of simplification rules allowing a general constraint system to be reduced
to some simpler one, called solved, on which satisfiability can be easily decided.
A constraint system is said solved [16] if it is different from ⊥ and if each of
its constraints is of the form T
 x, where x is a variable. Note that the empty
constraint system is solved. Solved constraint systems are particularly simple
since they always have a solution. Indeed, let T1 be the smallest (w.r.t. inclusion)
left-hand side of a constraint. From the definition of a constraint system we have
that init ∈ T1 and has no variable. Then the substitution τ defined by xτ = init

for every variable x is a solution since T ⊢ xθ for any constraint T
 x of the
solved constraint system. Given a constraint system C, we say that Ti is a minimal
unsolved left-hand side of C if Ti is a left-hand side of C and for all T
 u ∈ C
such that T (Ti, we have that u is a variable.

The simplification rules we consider are given below. These are the simplification
rules proposed in [16] except that we forbid unification between terms headed
by pairs.

18

R1 : C ∧ T
 u C if T ∪ {x | T ′
 x ∈ C, T ′ (T} ⊢ u
R2 : C ∧ T
 u σ Cσ ∧ Tσ
 uσ if σ = mgu(t, u) where t ∈ St(T), t 6= u,

and t, u are neither variables nor pairs
R3 : C ∧ T
 u σ Cσ ∧ Tσ
 uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T), t1 6= t2,

and t1, t2 are neither variables nor pairs
R4 : C ∧ T
 u ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u
R5 : C ∧ T
 f(u1, . . . , un)

C ∧ {T
 ui | 1 ≤ i ≤ n} for f ∈ {〈〉, enc, enca, sign, h}

All the rules are indexed by a substitution (when there is no index then
the identity substitution is assumed). We write C ∗σ C

′ if there are constraint
systems C1, . . . , Cn such that C σ0

C1 σ1
. . . σn C

′ and σ = σ0σ1 . . . σn.

Since our rules are a subset of the rules of [16], our rules still transform a con-
straint system into a constraint system. Similarly, correction and termination are
also ensured by [16]. It remains to show that they still form a complete decision
procedure. This is formally stated in Theorem 2. Intuitively, unification between
pairs is useless since pairs can be decomposed in order to perform unification
on its components. Then, it is possible to build again the pair if necessary. Note
that this is not always possible for encryption since the key used to decrypt or
encrypt may be unknown by the attacker. Proving that forbidding unification
between pairs still leads to a complete decision procedure required in particular
to introduce a new notion of minimality for tree proofs for deduction. The fact
that unification between pairs is useless has also been proved in [10] for another
set of simplification rules.

Let T1 ⊆ T2 ⊆ . . . ⊆ Tn. We say that a proof π of Ti ⊢ u is left-minimal if for
any j < i such that Tj ⊢ u, π′ is a proof of Tj ⊢ u where π′ is obtained from π
by replacing Ti with Tj in the left-hand side of each node of π.

Definition 16 (simple). We say that a proof π is simple if

1. any subproof of π is left-minimal,

2. a composition rule of the form
u1 u2

u
is not followed by a decomposition

rule leading to u1 or u2,
3. any term of the form 〈u1, u2〉 obtained by application of a decomposition rule

or an axiom rule is directly followed by a projection rule.

Example 7. Let T1 = {a} and T2 = {a, enc(〈a, b〉, k), k}. We have that T2 ⊢ 〈a, b〉.

T2 ⊢ enc(〈a, b〉, k) T2 ⊢ k

T2 ⊢ 〈a, b〉

However, this proof is not a simple proof of T2 ⊢ 〈a, b〉. The term 〈a, b〉 has been
obtained by an application of a decomposition rule. Thus we have to decompose

19

it. A simple proof of T2 ⊢ 〈a, b〉 is described below:

T2 ⊢ a

T2 ⊢ enc(〈a, b〉, k) T2 ⊢ k

T2 ⊢ 〈a, b〉

T2 ⊢ b

T2 ⊢ 〈a, b〉

Then, we are able to prove completeness by relying on this notion of simple
proof and on the following lemmas whose proofs are given in Appendix A. Our
proof of Lemma 2 is similar to the one given in [16] with their own notion of
simple proof (incomparable with the one we consider here). Nevertheless, we
recall its proof in appendix for the sake of completeness. The proof of Lemma 3
is more involved and strongly relies on our notion of simple proof.

Lemma 2. Let C be an unsolved constraint system, θ be a solution of C and
Ti
 ui be a minimal unsolved constraint of C. Let u be a term. If there is a
simple proof of Tiθ ⊢ u having the last rule an axiom or a decomposition then
there is t ∈ St(Ti) r X such that tθ = u.

Lemma 3. Let C be an unsolved constraint system, θ be a solution of C and
Ti
 vi be a minimal unsolved constraint of C such that for all t1, t2 ∈ St(Ti)
such that t1 6= t2

t1θ = t2θ implies t1 or t2 is a variable or a pair

Assume ui ∈ St(Ti) rX and Tiθ ⊢ uiθ. Then Ti ∪ {x | T
 x ∈ C, T (Ti} ⊢ ui.

Theorem 2. Let C be an unsolved constraint system.

1. (Correctness) If C ∗σ C
′ for some constraint system C′ and some substitu-

tion σ and if θ is a solution of C′ then σθ is a solution of C.
2. (Completeness) If θ is a solution of C, then there exist a solved constraint

system C′ and substitutions σ, θ′ such that θ = σθ′, C ∗σ C
′ and θ′ is a

solution of C′.
3. (Termination) There is no infinite chain C σ1

C1 . . . σn Cn.

Proof. Correction and termination are still ensured by [16]. Thus, we only have
to show that the rules still form a complete decision procedure. Let C be an
unsolved constraint system and θ be a solution of C. We show that there is a
constraint system C′ and a solution τ of C′ such that C σ C′ and θ = στ .
Together with the termination property, this allows us to conclude that there
exist a solved constraint system C′′ and substitutions σ′, θ′ such that θ = σ′θ′,
C ∗σ′ C

′′ and θ′ is a solution of C′′.

Consider the minimal unsolved constraint Ti
 ui. We have that ui is not a
variable whereas uj is a variable for all j < i. Firstly, assume that ui = 〈v1, v2〉

20

for some terms v1, v2. In such a case, let C′ be the constraint system obtained
from C by applying R〈〉 and τ = θ. Since Tiθ ⊢ uiθ, we have also that Tiθ ⊢ v1θ
and Tiθ ⊢ v2θ meaning that τ = θ is a solution of C′.

Now, assume that ui is neither a variable nor a pair and consider a simple
proof of Tiθ ⊢ uiθ. Depending on the last applied rule in this proof, we consider
two cases.

1. The last rule is a composition.
Suppose that it is the symmetric encryption rule. Hence, there are w1, w2

such that Tiθ ⊢ w1 and Tiθ ⊢ w2 and enc(w1, w2) = uiθ. Since ui is not a
variable, there exist v1, v2 such that ui = enc(v1, v2). Let C′ be the constraint
system obtained from C by applying the simplification rule Renc on the con-
straint Ti
 enc(v1, v2). Since v1θ = w1 and v2θ = w2, the substitution θ is
also a solution to C′. For the other composition rules the same reasoning
holds, applying this time the corresponding Rf rule.

2. The last rule is an axiom or a decomposition.
Applying Lemma 2 we obtain that there is t ∈ St(Ti)rX such that tθ = uiθ.
We distinguish two cases:

– t 6= ui. Note that ui is neither a pair nor a variable. Since tθ = uiθ and
t is not a variable, we easily deduce that t is not a pair. Hence, we can
apply the simplification rule R2.

– t = ui. In such a case, we have that ui ∈ St(Ti). Either there are two
distinct non variable and non pair terms t1, t2 ∈ St(Ti) such that t1θ =
t2θ and we apply the simplification rule R3. Otherwise, we deduce from
Lemma 3 that the simplification rule R1 can be applied. �

Note that this result is of independent interest. Indeed, we provide a more
efficient decision procedure for solving constraint systems, thus for deciding se-
crecy for a bounded number of sessions. Of course, the theoretical worst-case
complexity remains the same (NP). Our complete set of simplification rules has
also been used in [4] to improve existing decidability results in the context of
verification protocols for an unbounded number of sessions. They allow them to
bound the size of messages “for free” under a reasonable (syntactic) assumption
on protocols. This condition is very similar to our notion of disjoint encryption.

7 Simplifying PS-LTL Formulas

In order to establish our combination result for the PS-LTL formulas, we proceed
in two steps. Following the approach of [14], we first show how to translate
a closed PS-LTL+ formula into an equivalent elementary formula (EF) (see
Section 7.1) using the transformation T described in Section 7.2. Then, we will
show in Section 8 how to prove our combination result for the corresponding
fragment of the translated formulas.

21

7.1 Elementary Formulas

Definition 17 (Elementary formula). Elementary formulas EF are defined
by the grammar:

π := true | t1 = t2 | T
 m | ¬π | π ∨ π | π ∧ π | ∃x. π

where t1, t2 and m are terms, T is a finite set of terms and x is a variable.

The set of free variables of π, denoted by free(π), is defined as usual. Sometimes,
we write t1 6= t2 instead of ¬[t1 = t2].

Definition 18. Let π be an EF formula and σ be a closed substitution such that
dom(σ) = free(π). Then σ |=′ π is defined inductively as follows:

σ |=′ true

σ |=′ t1 = t2 iff t1σ = t2σ
σ |=′ T
 m iff Tσ ⊢ mσ
σ |=′ ¬π iff σ 6|=′ π
σ |=′ π1 ∨ π2 iff σ |=′ π1 or σ |=′ π2

σ |=′ π1 ∧ π2 iff σ |=′ π1 and σ |=′ π2

σ |=′ ∃x.π iff ∃t ∈ Terms such that σ |=′ π[x 7→ t]

7.2 Translating PS-LTL
+ Formulas

We consider the fragment PS-LTL+ that is made up of existential and posi-
tive PS-LTL formulas and we provide a translation in elementary formula for this
fragment. Hence, we assume that φ is of the form ∃x̃.φ′ where the formula φ′ is
quantifier-free. We define a translation T(φ, tr, T0) from a PS-LTL+ formula φ,
a symbolic trace tr and an initial intruder knowledge T0 into an EF formula.
T(φ, tr, T0) is the EF formula resulting from applying the transformation de-
scribed below.

T(true, tr, T0) → true

T(learn(m), tr, T0) → T0 ∪ K(tr)
 m
T(¬φ, tr, T0) → ¬T(φ, tr, T0)

T(φ1 ∧ φ2, tr, T0) → T(φ1, tr, T0) ∧T(φ2, tr, T0)
T(φ1 ∨ φ2, tr, T0) → T(φ1, tr, T0) ∨T(φ2, tr, T0)

T(∃x.φ, tr, T0) → ∃x.T(φ, tr, T0)

For the temporal formulas, we first replace the 2nd parameter tr by tr.

T(P (t1, . . . , tn), [], T0)→ ¬true

T(P (t1, . . . , tn), tr; Q(t′1, . . . , t
′
m), T0)→ ¬true if P 6= Q or n 6= m

T(P (t1, . . . , tn), tr; P (t′1, . . . , t
′
n), T0)→ t1 = t′1 ∧ . . . ∧ tn = t′n

T(Yψ, [], T0)→ ¬true

T(Yψ, tr :: e, T0)→ T(ψ, tr, T0)
T(ψ1 Sψ2, [], T0)→ T(ψ2, [], T0)

T(ψ1 Sψ2, tr; e, T0)→ T(ψ2, tr; e, T0)∨
(T(ψ1, tr, T0) ∧T(ψ1 Sψ2, tr, T0))

22

The following lemma states that the translation T is correct, i.e. it preserves the
semantics of PS-LTL+ w.r.t. the semantics of EF .

Lemma 4. Let φ be a closed PS-LTL
+ formula, tr be a (symbolic) trace, T0 be a

finite set of ground terms and σ be a closed substitution with vars(tr) = dom(σ).
Then we have that

〈trσ, T0〉 |= φ if and only if σ |=′ T(φ, tr, T0).

Moreover, atomic formula of the form T
 m occurs positively in T(φ, tr, T0),
i.e. any occurrence of T
 m in T(φ, tr, T0) appears under an even number of
negation.

The proof can be easily done by induction on the number of rewriting steps
to obtain the EF formula associated to T(φ, tr, T0). This has been done in [14]
in a rather similar setting.

8 Proof of our combination result

This section is devoted to the proof of Theorem 1. The proof is done in three
main steps. First, Theorem 2 serves as a key result for proving that if there exists
a substitution σ such that trσ is valid and 〈trσ, T0〉 |= φ, then there exists one,
say θ, where messages from Π1 and Π2 are not mixed up. Second, conditions 1-3
allow us to control the position of the critical extended names KC: those names
may only occur in plaintext position. This is the purpose of Section 8.1. Third,
thanks to the two previous steps, we prove that terms issued from Π2 are not
useful for deducing terms issued from Π1. This is formally stated and proved in
Section 8.2. In Section 8.3, we complete the proof of Theorem 1.

8.1 Existence of a solution without any mixing

In this subsection, we show that when there exists a solution, there is one,
say θ, satisfying some particular conditions (see Proposition 2). First of all,
messages from Π1 and Π2 are not mixed-up. This is obtained by observing that
the simplification rules enable us to build θ step by step through unification of
subterms of Π1 and Π2. Now, since unification between pairs is forbidden, the
rules R2 and R3 only involve subterms issued from the same protocol (thanks to
the disjoint encryption hypothesis). Second, conditions 1-3 allow us to control
the position of the critical extended names KC.

The left-hand side of a constraint system C, denoted by lhs(C), is the max-
imal left-hand side of the constraints of C. The right-hand side of a constraint
system C, denoted by rhs(C), is the set of right-hand sides of its constraints.

Definition 19 (well-formed). Let T be a set of terms and KC be a set of
extended names. A constraint system C is well-formed w.r.t. T and KC if

– lhs(C) ∪ rhs(C) ⊆ T ,

23

– the constraint system C satisfies the plaintext origination property, that is if
x ∈ plaintext(T ′) ∩ X for some (T ′
 u′) ∈ C then

T px
def
= min{T ′′ | (T ′′
 u′′) ∈ C and x ∈ plaintext(u′′)}

exists and T px (T ′.
– KC ∩ plaintext(lhs(C)) = ∅.

Lemma 5. Let T1 and T2 be two sets of terms having disjoint encryption and KC

be a set of extended names. Let C be a well-formed constraint system w.r.t.
St(T1) ∪ St(T2) and KC. Let C′ and σ be such that C σ C

′ with C′ satisfiable.
Then, we have that

1. T1σ and T2σ have disjoint encryption,
2. n(Tiσ) ⊆ n(Ti) for i = 1, 2, and
3. the constraint system C′ is well-formed w.r.t. St(T1σ) ∪ St(T2σ) and KC.

We define the set Sinit of terms of the form 〈init, 〈init . . .〉〉. Formally, Sinit is
the smallest set such that init ∈ Sinit and for any t ∈ Sinit, 〈init, t〉 ∈ Sinit.

Lemma 6. Let C be a constraint system in solved form and DEq be a finite set
of disequations such that τ is a solution of C ∧ DEq. There exists a solution τ ′

of C ∧ DEq such that for every variable x ∈ dom(τ ′), we have that xτ ′ ∈ Sinit.

The proof of the two lemmas above can be found in Appendix B.1.

Proposition 2. Let T0 and KC be two set of extended names. Let T1 and T2 be
two sets of terms having disjoint encryption and C be a well-formed constraint
system w.r.t. T0∪T1∪T2 and KC. Let DEq be a finite set of disequations and Eq

be a finite set of equations such that {t1, t2 | t1 = t2 ∈ Eq} ⊆ T1. Let θ be a
solution of C ∧ Eq ∧ DEq. There exists a solution θ′ of C ∧ Eq ∧ DEq such that

1. T1θ
′ and T2θ

′ have disjoint encryption, and
2. n(Tiθ

′) ⊆ n(Ti) ∪ {init}.

Proof. Let T0, T1, T2, KC, C, DEq, Eq and θ as explained above. Let ρ and σ
be two substitutions such that θ = ρσ and ρ = mgu(Eq). Thanks to our com-
pleteness result (Theorem 2), we know that there exists a constraint system C′

in solved form and a substitution σ′ such that Cρ ∗σ′ C
′. Moreover, we know

that there exists τ solution of C′ such that σ = σ′τ . The substitution τ is also
a solution of DEqρσ′. Hence, by applying Lemma 6, we know that there exists
a solution τ ′ of C′ ∧ DEqρσ′ such that xτ ′ is a pair of init for any x ∈ dom(τ ′).
Let θ′ = ρσ′τ ′. By construction, we have that θ′ is a solution of C ∧Eq∧DEq. It
remains to show the two points stated in the proposition.

By hypothesis, the sets T1 and T2 have disjoint encryption. Since we have
that {t1, t2 | t1 = t2 ∈ Eq} ⊆ T1, we can easily show (by relying on the unification
algorithm given in [26]) that St(T1ρ) ⊆ (St(T1) r X)ρ. Thus, we have that T1ρ
and T2ρ = T2 have disjoint encryption. Then, thanks to Lemma 5, we obtain
that:

24

– T1ρσ
′ and T2ρσ

′ = T2σ
′ have disjoint encryption,

– n(Tiρσ
′) ⊆ n(Tiρ) ⊆ n(Ti) ∪ X , and

From these facts, we easily deduce that T1θ
′ and T2θ

′ have disjoint encryption
and also that n(Tiθ

′) ⊆ n(Ti) ∪ {init} for i = 1, 2. �

8.2 Getting rid of the terms coming from Π2

In this subsection, we prove that terms issued fromΠ2 are not useful for deducing
terms issued from Π1. For this, we establish that T ⊢ u implies T ⊢ u where · is
a function that keep the terms issued from Π1 unchanged and projects the terms
issued from Π2 on the special constant init. The proof is done by induction on
the proof witnessing T ⊢ u. It requires in particular the introduction of a new
locality lemma for deduction of ground terms (Lemma 7).

Given a set Names of names and a set ETerms of terms, we define the function ·
inductively as follows:

– u = init if u ∈ Names,
– u = u if u is a name and u 6∈ Names,
– f(u1, . . . , un) = init if f(u1, . . . , un) ∈ EncSt(ETerms)
– f(u1, . . . , un) = f(u1, . . . , un) otherwise

In the remaining we assume given a set of names Names and a set of terms
ETerms. The function · is defined w.r.t. to these two sets. Intuitively, Names will
be the fresh names introduced by Π2 and ETerms will be the encrypted terms
introduced by Π2. Thanks to the disjoint encryption property, these terms will
be disjoint from the terms coming from Π1.

Our locality lemma relies on the following definition. The proofs of Lemmas 7
and 8 can be found in Appendix B.2.

Definition 20 (Stplain(t)). Let t be a ground term. The set Stplain(t) of sub-
terms of t that appear at a plaintext position is inductively defined as follows:

– Stplain(u) = {u} if u is an extended name
– Stplain(f(u1, u2)) = {f(u1, u2)} ∪ Stplain(u1) if f ∈ {enc, enca, sign}
– Stplain(h(u)) = {h(u)} ∪ Stplain(u)
– Stplain(〈u1, u2〉) = {〈u1, u2〉} ∪ Stplain(u1) ∪ Stplain(u2).

Lemma 7 (locality). Let T be a set of terms and u be a term such that T ⊢ u.
Let π be a proof of T ⊢ u which is minimal w.r.t. its number of nodes. Then π
only involves terms in St(T ∪ {u}). Moreover, if π ends with a decomposition
rule or the axiom rule then π only involves terms in St(T) and u ∈ Stplain(T).

Lemma 8. Let T0 be a set of terms such that n(T0) ∩ Names = ∅ and init ∈ T0.
Let v be a term such that plaintext(v) ⊆ T0 ∪ Names and EncSt(v) ⊆ EncSt(ETerms).
Then, we have that T0 ⊢ v.

25

Proposition 3. Let T0 be a set of extended names such that n(T0)∩Names = ∅
and init ∈ T0. Let T1 and T2 be two sets of terms such that:

– n(T1) ∩ Names = ∅ and EncSt(T1) ∩ EncSt(ETerms) = ∅,
– plaintext(T2) ⊆ T0 ∪ Names and EncSt(T2) ⊆ EncSt(ETerms).

Let u be a term such that T0, T1, T2 ⊢ u. We have also that T0, T1 ⊢ u.

Proof. We first establish that T0, T1, T2 ⊢ u. Let π be a proof of T0, T1, T2 ⊢ u
which is minimal w.r.t. its number of nodes. We will show that T0, T1, T2 ⊢ u by
induction on the proof, depending on the last rule that has been applied.

– If the last rule is an axiom. In such a case, we have that u ∈ T0 ∪ T1 ∪ T2.
We easily deduce that u ∈ T0 ∪ T1 ∪ T2. This allows us to conclude.

– If the last rule is a composition. Either u = init and we easily conclude.
Otherwise, suppose for example that the last rule is the symmetric decryp-
tion rule. In such a case, we have that u = enc(u1, u2) and u = enc(u1, u2).
By induction hypothesis, we know that T0, T1, T2 ⊢ u1 and T0, T1, T2 ⊢ u2.
Hence, we deduce that T0, T1, T2 ⊢ enc(u1, u2), that is T0, T1, T2 ⊢ u.

– If the last rule is a decomposition, for example the symmetric decryption
rule. In such a case, we have that

π1 =

{ . . .

T0, T1, T2 ⊢ enc(u, v) π2 =

{ . . .

T0, T1, T2 ⊢ v

T0, T1, T2 ⊢ u

If enc(u, v) 6∈ EncSt(T2), then by applying our induction hypothesis, we eas-
ily conclude since enc(u, v) = enc(u, v). Now, we have to consider the case
where enc(u, v) ∈ EncSt(T2), i.e. enc(u, v) = init. By minimality of the proof
we know that π1 ends either with an axiom rule or with a decomposition rule.
Hence, we have that enc(u, v) ∈ Stplain(T0 ∪ T1 ∪ T2) thanks to Lemma 7.
Since enc(u, v) ∈ EncSt(T2) and EncSt(T1) ∩ EncSt(T2) = ∅, we deduce
that enc(u, v) ∈ Stplain(T2), thus u ∈ Stplain(T2). Since plaintext(T2) ⊆
T0 ∪ Names, we deduce that plaintext(u) ⊆ T0 ∪ Names. Since enc(u, v) ∈
EncSt(T2), we also have that EncSt(u) ⊆ EncSt(T2) ⊆ EncSt(ETerms).
Lemma 8 allows us to conclude that T0 ⊢ u. For the asymmetric decryption
rule and the optional signature rule, a similar reasoning holds. For the pro-
jection rules, the reasoning is even easier since we have 〈u1, u2〉 = 〈u1, u2〉
thus we can always applied the induction hypothesis.

Hence, we have shown that T0, T1, T2 ⊢ u. By hypothesis, we know that T0 is
a set of extended names such that n(T0) ∩ Names = ∅. Thus, we easily deduce
that T0 = T0. By hypothesis, we have that n(T1) ∩ Names = ∅ and EncSt(T1) ∩
EncSt(ETerms) = ∅. Thus, we have that T1 = T1. Now, by applying Lemma 8
on each term v ∈ T2, we easily obtain that T0 ⊢ v. From all these facts, we easily
deduce that T0, T1 ⊢ u. �

26

8.3 Proof of Theorem 1

Our main composition result relies on the following proposition, which relates
the traces of Π1 | Π2 with the traces of Π1.

Proposition 4. Let Π1 = [k1]→ Roles and Π2 = [k2]→ Roles be two protocols
having disjoint encryption and such that Π2 contains no status event. Let T0

(intuitively the initial knowledge of the intruder) be a set of extended names. Let
KC = (n(Π1) ∪ n(Π2)) r T0 be the set of critical extended names and φ be a
closed PS-LTL

+ formula. Moreover, we assume that

1. critical extended names do not appear in plaintext, i.e.

KC ∩ (plaintext(Π1) ∪ plaintext(Π2)) = ∅.

2. for any role e1, . . . , eℓ of Π1 or Π2, for any i such that ei is a sent event,
for any variable x ∈ plaintext(ei), we have that x ∈ plaintext(ej) for some
new or received event ej such that j < i.

3. EncSt(φ) and EncSt(Π2) have disjoint encryption.

Let k = k1 + k2 and sc be a scenario for Π1 | Π2. Let tr be the symbolic trace
associated to sc and T0. Let sc′ = sc|Π1

and tr′ be the symbolic trace associated
to sc′ and T0. If there exists σ such that trσ is valid and 〈trσ, T0〉 |= φ then there
exists σ′ such that tr′σ′ is valid and 〈tr′σ′, T0〉 |= φ.

Proof. Let Π1 : [k1]→ Roles, Π2 : [k2]→ Roles, T0 and φ defined as in Proposi-
tion 4. Let k = k1 + k2 and sc be a scenario for Π1 | Π2. Let tr be the symbolic
trace associated to Π1 | Π2 and sc. Let sc′ := sc|Π1

and tr′ be the symbolic trace
associated to Π1 and sc′. Since φ is a PS-LTL+ formula, we have that φ is of the
form ∃x̃.φ0 for some PS-LTL+ formula φ0 without any quantifier.

Let σ be a substitution such that trσ is valid and 〈trσ, T0〉 |= φ. Thus, thanks
to Lemma 4, we have that σ |=′ T(φ, tr, T0). We have that T(φ, tr, T0) = ∃x̃.ψ0

for some EF formula ψ0 without any quantifier. Moreover, thanks to Lemma 4
we have that atomic formulas of the form T
 m appear under an even num-
ber of negations. We transform ψ0 into its disjunctive normal form, thus ψ0 =
∨

1≤j≤ℓ ψj We know that there exists j such that trσ is valid and σ |=′ ∃x̃.ψj .
Moreover, the EF formula ψj can be written as Ded ∧ Eq ∧ DEq where:

– Ded is a finite set of deduction constraints of the form T0 ∪ K(tr)
 m for
some term m,

– Eq (resp. DEq) is a finite set of equations (resp. disequations) of the form
t1 = t2 (resp. t1 6= t2) where t1 ∈ St(φ) and t2 ∈ St(e) for some e ∈ tr.

We assume that the variables x̃ do not occur in tr. Thus, we have that:

– σ is a solution of C := C(tr); Ded. (Lemma 1). Note also that C is a constraint
system which satisfies the plaintext origination property. This is due to the

27

fact that the protocols we consider satisfy condition 2 (stated in Proposi-
tion 4).

– t1σ = t2σ for every t1 = t2 ∈ Eq,
– t1σ 6= t2σ for every t1 6= t2 ∈ DEq.

Let C′ = C(tr′); Ded′ where Ded′ = {(T0∪K(tr′)
 m) | (T0∪K(tr)
 m) ∈ Ded}.
We have to show that C′ ∧ Eq ∧ DEq has a solution which would mean that Π1

does not satisfy ∃x̃.ψj , and thus Π1 does not satisfies φ.

The constraint systems C and C′ are as follows:

C :=







































T0
 u1

T0, v1
 u2

T0, v1, v2
 u3

· · ·
 · · ·
T0, v1, . . . , vn
 m1

· · ·
 · · ·
T0, v1, . . . , vn
 mk

C′ :=







































T0
 ui1
T0, vi1
 ui2
T0, vi1 , vi2
 ui3
· · ·
 · · ·
T0, vi1 , . . . , vin
 m1

· · ·
 · · ·
T0, vi1 , . . . , vin
 mk

where i1, . . . , in is a sequence obtained from 1 . . . n by removing the elements
corresponding to a step of the protocol Π2. The k last deduction constraints
correspond to those in Ded (resp. Ded′).

Before applying Proposition 2, we have to check that all the hypotheses are
satisfied. Let

– T1 = {ui1 , vi1 , . . . , uin , vin ,m1, . . . ,mk} ∪ {t1, t2 | t1 = t2 ∈ Eq}
– T2 = {uj , vj | 1 ≤ j ≤ n and j 6∈ {i1, . . . , in}}.

First of all, we have that T1 and T2 are two sets of terms having disjoint
encryption. This is because terms in T1 come from Π1 and φ whereas terms in
T2 come from Π2. We have also that C is well-formed w.r.t. T0∪T1∪T2 and KC.
Hence, we apply Proposition 2 in order to deduce that there exists a solution θ
solution of C ∧ Eq ∧ DEq and such that:

1. T1θ and T2θ have disjoint encryption, and
2. n(Tiθ

′) ⊆ n(Ti) ∪ {init}.

Let θ′ = θ|V where V is the set of variables which appear in C′ ∧ Eq ∧ DEq.
To conclude, it remains to show that θ′ is a solution of C′.

Let Names = {img(σr,s) ∩ N | (r, s) ∈ sc and r > k1}, i.e. all the names
generating during the execution of Π2 and ETerms = T2θ. We have that Names∩
n(T0) = ∅ and Names∩KC = ∅. Note also that EncSt(T1θ)∩EncSt(ETerms) = ∅
since T1θ and T2θ have disjoint encryption.

Let T ⊢ u be a constraint in C. Either the corresponding constraint has
been removed in C′. Otherwise, we have that T = T0 ∪ {v1, . . . , vj} for some j
and the corresponding constraint in C′ is T ′ ⊢ u where T ′ = T0 ∪ {vi1 , . . . , vij}.
Moreover, in such a case, we have that u ∈ T1, and thus uθ ∈ T1θ. Thanks to the

28

fact that θ is a solution of C, we know that: T0, v1θ, v2θ, . . . , vjθ ⊢ uθ. Thanks to
Proposition 3, we obtain that T0, vi1θ, . . . , vijθ ⊢ uθ, i.e. T ′θ′ ⊢ uθ′ since uθ = uθ
and θ′ = θ|vars(C′). �

We are now ready to complete the proof of Theorem 1.

Proof. Assume by contradiction that Π1 | Π2 6|= φ for the initial knowledge T0.
It means that there exists a scenario sc for which the symbolic trace tr associated
to Π1 | Π2 and sc satisfies the following requirement:

there exists a substitution σ such that trσ is valid and 〈trσ, T0〉 |= ¬φ.

Let sc′ = sc|Π1
and tr′ be the symbolic trace associated to Π1 and sc. Thanks to

Proposition 4 (note that ¬φ is a PS-LTL+ formula), we easily deduce that there
exists σ′ such that tr′σ′ is valid and 〈tr′σ′, T0〉 |= ¬φ. This means that Π1 6|= φ,
thus a contradiction. �

9 Conclusion

In this paper, we have shown that secure protocols can be safely executed in the
presence of other protocols, as soon as encrypted sub-messages from different
messages are not unifiable. This can be easily achieved by tagging protocols,
that is, adding a protocol identifier in each encrypted message. Our result holds
for a large class of security properties that encompasses secrecy and various
formulations of authenticity.

We foresee composition results in a more general way. In this paper, protocols
are composed in the sense that they can be executed in the same environment.
We plan to develop composition results where protocols can use other protocols
as sub-programs. For example, a protocol could use a secure channel, letting the
implementation of the secure channel underspecified. This secure channel could
be then possibly implemented by any protocol establishing session keys.

References

1. M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic
protocols. IEEE Trans. Software Eng., 22(1):6–15, 1996.

2. R. Amadio and W. Charatonik. On name generation and set-based analysis in
the Dolev-Yao model. In Proc. International Conference on Concurrency Theory
(CONCUR’02), volume 2421 of LNCS, pages 499–514. Springer-Verlag, 2002.

3. S. Andova, C. Cremers, K. G. Steen, S. Mauw, S. M. lsnes, and S. Radomirović.
Sufficient conditions for composing security protocols. Information and Computa-
tion, 2008. To appear.

4. M. Arapinis and M. Duflot. Bounding messages for free in security protocols.
In Proc. 27th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’07), volume 4855 of LNCS, pages 376–387, New Delhi,
India, 2007. Springer.

29

5. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H.
Drielsma, P. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Ohe-
imb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The
Avispa tool for the automated validation of internet security protocols and ap pli-
cations. In Proc. 17th International Conference on Computer Aided Verification
(CAV’05), volume 3576 of LNCS, 2005.

6. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules.
In Proc. 14th Computer Security Foundations Workshop (CSFW’01), pages 82–96.
IEEE Comp. Soc. Press, 2001.

7. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging en-
forces termination. In Proc. 6th International Conference on Foundations of Soft-
ware Science and Computation Structures (FoSSaCS’03), volume 2620 of LNCS.
Springer, 2003.

8. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42nd Annual Symposium on Foundations of Computer Science
(FOCS’01), pages 136–145, Las Vegas (Nevada, USA), 2001. IEEE Comp. Soc.

9. R. Canetti, C. Meadows, and P. F. Syverson. Environmental requirements for
authentication protocols. In Proc. Symposium on Software Security – Theories
and Systems, volume 2609 of LNCS, pages 339–355. Springer, 2002.

10. Y. Chevalier. Résolution de problèmes d’accessibilité pour la compilation et la
validation de protocoles cryptographiques. PhD thesis, Université Henri Poincaré,
Nancy (France), 2003.

11. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-
order logic and application to cryptographic protocols. In Proc. 14th Int. Conf. on
Rewriting Techniques and Applications (RTA’2003), volume 2706 of LNCS, pages
148–164. Springer-Verlag, June 2003.

12. H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient.
Science of Computer Programming, 50(1-3):51–71, 2004.

13. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and
insecurity decision in presence of exclusive or. In Proc. 18th Annual Symposium
on Logic in Comp. Sc. (LICS’03), pages 271–280. IEEE Comp. Soc. Press, 2003.

14. R. Corin. Analysis Models for Security Protocols. PhD thesis, University of Twente,
2006.

15. V. Cortier, J. Delaitre, and S. Delaune. Safely composing security protocols. In
Proceedings of the 27th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’07), volume 4855 of LNCS, pages 352–
363, New Delhi, India, 2007. Springer.

16. V. Cortier and E. Zalinescu. Deciding key cycles for security protocols. In Proc.
13th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’06), volume 4246 of LNCS, pages 317–331. Springer, 2006.

17. C. Cremers. Scyther - Semantics and Verification of Security Protocols. Ph.D.
dissertation, Eindhoven University of Technology, 2006.

18. A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition logic (PCL).
Electr. Notes Theoretical Computer Science, 172:311–358, 2007.

19. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In Proc. of the Workshop on Formal Methods and Security
Protocols, 1999.

20. L. Gong and P. Syverson. Fail-stop protocols: An approach to designing secure pro-
tocols. In Proc. 5th International Working Conference on Dependable Computing
for Critical Applications, pages 44–55, 1995.

30

21. J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryp-
tion. In Proc. 13th Computer Security Foundations Workshop (CSFW’00), pages
24–34. IEEE Comp. Soc. Press, 2000.

22. J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the chosen pro-
tocol attack. In Proc. 5th International Workshop on Security Protocols, volume
1361 of LNCS, pages 91–104. Springer, 1997.

23. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol us-
ing FDR. In Proc. 2nd International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’96), volume 1055 of LNCS, pages
147–166, Berlin (Germany), 1996. Springer-Verlag.

24. G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc. 10th
Computer Security Foundations Workshop (CSFW’97). IEEE Comp. Soc. Press,
1997.

25. G. Lowe. A hierarchy of authentication specifications. In Proceedings of the 10th
Computer Security Foundations Workshop (CSFW’97), pages 18–30, Rockport
(Massachusetts, USA), 1997. IEEE Computer Society Press.

26. A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transac-
tions on Programming Languages and Systems, 4(2):258–282, 1982.

27. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In Proc. 8th ACM Conference on Computer and Com-
munications Security (CCS’01), pages 166–175, 2001.

28. R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. Communication of the ACM, 21(12):993–999, 1978.

29. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
and composed keys is NP-complete. Theoretical Computer Science, 299:451–475,
2003.

30. S. Schneider. Security properties and CSP. In Proc. of the Symposium on Security
and Privacy, pages 174–187, Oakland, 1996. IEEE Computer Society Press.

31. H. Seidl and K. N. Verma. Flat and one-variable clauses: Complexity of ver-
ifying cryptographic protocols with single blind copying. In Proc. 11th Interna-
tional Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’04), volume 3452 of LNCS. Springer, 2005.

32. D. X. Song. Athena: A new efficient automatic checker for security protocol anal-
ysis. In Proc. of the 12th Computer Security Foundations Workshop (CSFW’99),
Mordano, Italy, June 1999. IEEE Computer Society Press.

31

A Completeness of our simplification rules

Let T1 ⊆ T2 ⊆ . . . ⊆ Tn. Given a left-minimal proof π of Ti ⊢ u, we say that π is
a proof of level j if j = min{k | Tk ⊢ u and 1 ≤ k ≤ n}.

Lemma 9. If Ti ⊢ u then there is a simple proof of it.

Proof. The notion of simple proof given in [16] is different from ours. However,
a simple proof (according to the definition given in [16]) necessarily satisfies the
two first conditions of our definition. Hence by using their result, we know that
if Ti ⊢ u then there is a proof π of it which satisfies the conditions 1 and 2 of our
definition. Now, let π be a proof of level j that satisfies the conditions 1 and 2
of Definition 16. We show that there exists a simple proof π′ of Ti ⊢ u having
the same level, i.e. j. We show this result by induction on m where m represents
the number of nodes in π that violates condition 3.

Base case: m = 0. In such a case, we easily conclude. Indeed since m = 0, we
have that π satisfies the condition 3. Thus, by definition, π is a simple proof.

Induction step: m > 0. In such a case, we show that we can transform the
proof π into a proof π′ having the same level and such that the number of nodes
violating condition 3 is m − 1. Then, it will be easy to conclude by applying
the induction hypothesis. Let π1 be a subproof of π whose root corresponds
to the node that violates condition 3. We consider, among all these subproofs,
one which is minimal in the sense that in π1, the only node that violates the
condition is its root.

The term 〈u1, u2〉 that violates the condition is obtained by a decomposition
rule whereas it is not immediately followed by a projection rule. This means that
it is followed by a composition rule. We illustrate the situation when this last
rule is an encryption rule. The proof π1 has the following form:

π1 :=







. . .
decompo.

Ti ⊢ 〈u1, u2〉 Ti ⊢ v
compo.

Ti ⊢ {〈u1, u2〉}v

The idea is to replace this subproof π1 of π by π′1 obtained by decomposing the
term 〈u1, u2〉 with the projection rules until we obtain terms not headed with the
symbol 〈 〉. Then, by using the pairing rule, we can build again the term 〈u1, u2〉.
Lastly, we apply the composition rule as in π1. The proof π′1 obtained in this
way has the same level that π1. Hence, the proof π′, obtained from π by replac-
ing the subproof π1 by π′1, is left-minimal. It is also clear that condition 2 is
satisfied since the composition rules introduced in π′1 are not directly followed
by a decomposition rule. Lastly, we have removed one node violating condition 3
without introducing any such node. This allows us to conclude by applying our
induction hypothesis. �

Let C be a constraint system and x ∈ vars(C). We define Tx as follows

Tx = min{T | (T
 u) ∈ C and x ∈ vars(u)}.

32

Note that, by definition of a constraint system, Tx is well-defined.

Lemma 2. Let C be an unsolved constraint system, θ be a solution of C and
Ti
 ui be a minimal unsolved constraint of C. Let u be a term. If there is a
simple proof of Tiθ ⊢ u having the last rule an axiom or a decomposition then
there is t ∈ St(Ti) r X such that tθ = u.

Proof. Consider a simple proof π of Tiθ ⊢ u. Let j be minimal such that the
proof π′ obtained from π by replacing Ti with Tj is a proof of Tjθ ⊢ u. Depending
on the last applied rule in the proof, we consider two cases.

– Either the last rule is an axiom.
Then u ∈ Tjθ and hence there is t ∈ Tj such that tθ = u. If t is a variable
then Tt
 t is a constraint in C with Tt (Tj (thanks to the definition of a
constraint system). Hence Ttθ ⊢ tθ, that is Ttθ ⊢ u, which contradicts the
minimality of j.

– Or the last rule is a decomposition.
Suppose w.l.o.g. that it is a symmetric decryption. Then, in such a case, there
exists w such that Tjθ ⊢ enc(u,w) and Tjθ ⊢ w. By simplicity of the proof,
the last rule applied to obtain enc(u,w) can not be a composition. Hence, it is
either an axiom or a decomposition. Then, applying the induction hypothesis
we have that there is t ∈ St(Tj), t not a variable, such that tθ = enc(u,w).
It follows that t = enc(t′, t′′) with t′θ = u. If t′ is a variable then Tt′θ ⊢ t′θ,
that is Tt′θ ⊢ u which contradicts the minimality of j. Hence t′ is not a
variable. For the other decomposition rules, the same reasoning holds. �

Let t be a term, we denote by comp(t) the components of the term t. This
notion is formally defined as follows: comp(〈t1, t2〉) = comp(t1) ∪ comp(t2) and
comp(t) = t otherwise.

Lemma 3. Let C be an unsolved constraint system, θ be a solution of C and
Ti
 vi be a minimal unsolved constraint of C such that for all t1, t2 ∈ St(Ti)
such that t1 6= t2

t1θ = t2θ implies t1 or t2 is a variable or a pair

Assume ui ∈ St(Ti) rX and Tiθ ⊢ uiθ. Then Ti ∪ {x | T
 x ∈ C, T (Ti} ⊢ ui.

For any Ti left-hand side of a constraint system C, we define T+
i = Ti ∪

{x | T
 x ∈ C, T (Ti} ⊢ ui.

Proof. Let j be minimal such that Tjθ ⊢ uiθ. Thus j ≤ i and Tj ⊆ Ti. Consider
a simple proof of Tjθ ⊢ uiθ. We reason by induction on the depth of the proof.
We can have that:

– The proof is reduced to an application of the rule axiom possibly followed
by several application of the projection rules until the resulting term is not a

33

pair. Since the proof is a simple proof, we have that uiθ is not a pair. Hence,
ui is not a pair.
There exists t ∈ Tj such that uiθ ∈ comp(tθ). Either uiθ = t′θ for some
t′ ∈ comp(t) r X or uiθ ∈ comp(xθ) for some x ∈ comp(t) ∩ X . In the first
case, we easily deduce that neither ui nor t is a pair or a variable and hence
by hypothesis, we have that ui = t′ and hence T ′i ⊢ ui. In the second case,
we have that Txθ ⊢ xθ. Thus Txθ ⊢ uiθ which contradicts the minimality
of j, since Tx (Tj .

– The proof ends with an application of a decomposition rule possibly followed
by several applications of the projection rules until the resulting term is not
a pair. Note that, since the proof is a simple proof, we have that uiθ is not
a pair. Hence ui is not a pair.
Suppose for example that it is the symmetric decryption rule. That is, there
exist w1, w2 such that Tjθ ⊢ enc(w1, w2), Tjθ ⊢ w2 and uiθ ∈ comp(w1).
The last rule applied to obtain Tjθ ⊢ enc(w1, w2) was not a composition by
simplicity of the proof. We can hence apply Lemma 2 and obtain that there
is t ∈ St(Tj) r X such that tθ = enc(w1, w2). Since t is not a variable, we
have that t = enc(t1, t2) with t1θ = w1 and t2θ = w2. Either uiθ = pθ for
some p ∈ comp(t1) r X or uiθ ∈ comp(xθ) for some x ∈ comp(t1) ∩ X . In
the second case, we have that Txθ ⊢ xθ. Thus Txθ ⊢ uiθ which contradicts
the minimality of j, since Tx (Tj . In the first case, we easily deduce that
neither ui nor p is a variable or a pair and hence by hypothesis, we have that
ui = p. We can apply the induction hypothesis on Tjθ ⊢ enc(t1, t2)θ (this
subproof is simple) to obtain that T+

i ⊢ enc(t1, t2).
Now, it t2 is a variable then t2 ∈ T

+
i , thus T+

i ⊢ t2. Otherwise, if t2 is not a
variable then, by induction hypothesis on Tjθ ⊢ t2θ (this subproof is a simple
one), we obtain T+

i ⊢ t2. Hence, in both cases, we obtain that T+
i ⊢ t2. Then,

together with T+
i ⊢ enc(t1, t2) and ui ∈ comp(t1), it follows that T+

i ⊢ ui.
For the other decomposition rules the same reasoning holds.

– The last rule is a composition.
Suppose that it is the symmetric encryption rule. Then uiθ = enc(w1, w2)
and Tjθ ⊢ w1 and Tjθ ⊢ w2. Since ui is not a variable, we have that ui =
enc(v′1, v

′
2), v′1θ = w1 and v′2θ = w2. If v′1 (resp. v′2) is a variable then v′1

(resp. v′2) is in T+
i (this is because vj ∈ St(Ti)). Otherwise, we apply our

induction hypothesis (note that the two subproofs are simple). Hence, in
both cases, we have that T+

i ⊢ v
′
1 and also that T+

i ⊢ v
′
2. Hence, we easily

deduce that T+
i ⊢ ui. For the other composition rules the same reasoning

holds. �

B Proofs of our Composition Result

B.1 Existence of a solution without any mixing

Before proving Lemma 5, we first state some useful lemmas. Lemma 10 can be
proved by induction on the algorithm that computes the most general unifier
(see [26]).

34

Lemma 10. Let T1 and T2 be two sets of terms having disjoint encryption.
Let t, t′ ∈ EncSt(T1 ∪T2) two terms which are unifiable. Either t, t′ ∈ EncSt(T1)
or t, t′ ∈ EncSt(T2). Let σ = mgu(t, t′). Then T1σ and T2σ have disjoint encryp-
tion and n(Tiσ) ⊆ n(Ti) for i = 1, 2.

Lemma 11. Let T be a set of terms and u be a term such that T ⊢ u. Then, we
have that plaintext(u) ⊆ plaintext(T).

Proof. let π be a proof of T ⊢ u. We prove this result by induction on the depth
of π. We can have:

– The last rule is an axiom. Then u ∈ T , thus plaintext(u) ⊆ plaintext(T).
– The last rule is a composition. Suppose for example that it is the symmetric

encryption rule. Then u = enc(u1, u2), T ⊢ u1 and T ⊢ u2. By definition,
we have that plaintext(u) = plaintext(u1). Hence, we easily conclude by
applying our induction hypothesis on T ⊢ u1. The other cases are similar.

– The last rule is a decomposition. Suppose for example that it is the symmet-
ric decryption rule. In such a case, we have that T ⊢ enc(u, v) and T ⊢ v for
some term v. By induction hypothesis, plaintext(enc(u, v)) ⊆ plaintext(T).
Hence, we easily conclude that plaintext(u) ⊆ plaintext(T). The other cases
are similar. �

Lemma 12. Let KC be a set of extended names, C be a constraint system sat-
isfying the plaintext origination property such that KC ∩ plaintext(lhs(C)) = ∅
and σ be a substitution. If Cσ is satisfiable, then KC ∩ plaintext(lhs(Cσ)) = ∅.

Proof. Suppose Cσ is satisfiable. Let θ be a solution of Cσ and let θ′ = σθ. We
show the result by contradiction. Assume that there exists a constraint T
 u ∈ C
such that KC ∩ plaintext(Tσ) 6= ∅. This implies that KC ∩ plaintext(Tσθ) 6= ∅,
thus there exists k ∈ KC such that:

– either k ∈ plaintext(T);
– or k ∈ plaintext(xθ′) for some x ∈ plaintext(T).

The first case is impossible by hypothesis. Let x be the minimal variable verifying
such a condition, that is the variable that is introduced in plaintext by the
minimal constraint. Let T ′
 u′ ∈ C be the minimal constraint such that x ∈
plaintext(u′). We have that T ′θ′ ⊢ u′θ′ since θ′ is a solution of C. We have that
k ∈ plaintext(u′θ′), thus by Lemma 11, we have that k ∈ plaintext(T ′θ′). Since
k 6∈ plaintext(T ′), this means that there exists y ∈ plaintext(T ′) (note that y is
smaller than x) such that k ∈ plaintext(yθ′), contradiction. �

Lemma 13. Let C be a constraint system satisfying the plaintext origination
property. Let σ be a substitution. Then Cσ satisfies the plaintext origination
property.

Proof. Let C = T1
 ui, . . . , Tn
 un and σ be a substitution. Let 1 ≤ i ≤ n
and x a variable such that x ∈ plaintext(Tiσ). Note that since T1 is necessarily
ground (by definition of a constraint system, Definition 14), we have that i > 1.
We have to show that there exists j < i such that x ∈ plaintext(ujσ). We
distinguish two cases:

35

– Either x is not introduced by σ, i.e. x 6∈ {vars(yσ) | y ∈ dom(σ)}. In
such a case, since C satisfies the plaintext origination property, we know
that there exists j < i such that x ∈ plaintext(uj). Thus, we have that
x ∈ plaintext(ujσ).

– Otherwise x is introduced by σ, i.e. x ∈ vars(yσ) for some y ∈ dom(σ). More-
over, since x occurs at a plaintext position, we have that x ∈ plaintext(yσ)
and y ∈ plaintext(Ti). Since C satisfies the plaintext origination property, we
have that there exists j < i such that y ∈ plaintext(uj). From this, we easily
conclude that x ∈ plaintext(ujσ). �

Lemma 5. Let T1 and T2 be two sets of terms having disjoint encryption and KC

be a set of extended names. Let C be a well-formed constraint system w.r.t.
St(T1) ∪ St(T2) and KC. Let C′ and σ be such that C σ C′ with C′ satisfiable.
Then, we have that

1. T1σ and T2σ have disjoint encryption,
2. n(Tiσ) ⊆ n(Ti) for i = 1, 2, and
3. the constraint system C′ is well-formed w.r.t. St(T1σ) ∪ St(T2σ) and KC.

Proof. We prove this result by case analysis on the simplification rule involved
in the reduction C σ C′.
Case of the rule R1: C = C′ ∧ T
 u C′. In such a case, we have that σ is the
identity. Thus, the two first requirements are satisfied by hypothesis. Moreover,
we have that

lhs(C′) ∪ rhs(C′) ⊆ lhs(C) ∪ rhs(C) ⊆ St(T1) ∪ St(T2).

Since lhs(C′) ⊆ lhs(C) and by hypothesis KC∩plaintext(lhs(C)) = ∅, we have also
that KC ∩ plaintext(lhs(C′)) = ∅. It remains to establish the fact that C′ satisfies
the plaintext origination property. Let T ′
 u′ ∈ C′ and x ∈ plaintext(T)∩X . Let
T ′′
 u′′ be the minimal constraint of C (w.r.t. inclusion of the left-hand side)
such that x ∈ plaintext(u′′) (note that x 6∈ plaintext(T ′′)). Either T ′′
 u′′ ∈ C′

and we easily conclude. Otherwise, we have that T ′′ = T and u′′ = u. By
hypothesis, we know that T ∪ {x | T ′
 x ∈ C and T ′ (T} ⊢ u. Thus, by
Lemma 11, we have plaintext(u) ⊆ plaintext(T) ∪ {x | T ′
 x ∈ C and T ′ (T}.
Since x 6∈ plaintext(T), we must have x ∈ {x | T ′
 x ∈ C and T ′ (T}, which
contradicts the minimality of T ′′
 u′′ and allows us to conclude.

Case of the rule R2 or R3: Thanks to Lemma 10, the two first requirements are
satisfied. We have that

lhs(C′) ∪ rhs(C′) = {tσ | t ∈ lhs(C) ∪ rhs(C)}
⊆ {tσ | t ∈ St(T1) ∪ St(T2)}
⊆ St(T1σ) ∪ St(T2σ)

The plaintext origination condition is stable by application of a substitution
thanks to Lemma 13. Thus, Cσ satisfies this condition. Lastly, we have that

36

C′ = Cσ is satisfiable. Thus, thanks to Lemma 12, we easily deduce that KC ∩
plaintext(lhs(C′)) = ∅.

Case of the rule R4: This rule leads to a constraint system C′ that is not satisfi-
able.

Case of the rule R5: In such a case, σ is the identity, thus the two first require-
ments are satisfied. Clearly, we have that lhs(C′) ∪ rhs(C′) ⊆ St(T1) ∪ St(T2).
Since plaintext(rhs(C′)) ⊇ plaintext(rhs(C)), the plaintext origination is satisfied.
Lastly, since lhs(C′) = lhs(C), we have that KC ∩ plaintext(lhs(C′)) = ∅. �

Lemma 6. Let C be a constraint system in solved form and DEq be a finite set
of disequations such that τ is a solution of C ∧ DEq. There exists a solution τ ′

of C ∧ DEq such that for every variable x ∈ dom(τ ′), we have that xτ ′ ∈ Sinit.

We define a transformation function · that simplifies conjunction of disequations
as follows:

φ ∧ [f(m1, . . . ,mk) 6= g(m′1, . . . ,m
′
l)] = true if f 6= g

φ ∧ [f(m1, . . . ,mk) 6= f(m′1, . . . ,m
′
k)] = φ ∧ ([m1 6= m′1] ∨ · · · ∨ [mk 6= m′k])

φ ∧ [x 6= m] =







¬ true if m = x

φ if x ∈ vars(m), x 6= m

φ ∧ [x 6= m] otherwise

We obtain a formula φ of the form true, ¬ true or

([x1,1 6= m1,1] ∨ · · · ∨ [x1,k1
6= m1,k1

])
∧ ([x2,1 6= m2,1] ∨ · · · ∨ [x2,k2

6= m2,k2
])

...
...

∧ ([xl,1 6= ml,1] ∨ · · · ∨ [xl,kl 6= ml,kl])

where xi,j /∈ vars(mi,j).

Now, we are able to establish Lemma 6.

Proof. Let T1 the smallest left-hand side of C. Note that, since init ∈ T1, we
have that T1 ⊢ t for any t ∈ Sinit and the set Sinit is infinite. Moreover, for
any substitution σ such that xσ ∈ Sinit for every variable x ∈ dom(σ), we have
that σ is a solution of C since C is in solved form.

We show that any formula of the form φ = [x1 6= mk] ∨ · · · ∨ [xn 6= mk]
such that xi /∈ vars(mi) has a solution σ such that xσ ∈ Sinit for every variable
x ∈ vars(φ). This is done by induction on the number of variables in φ. Note
that this allows to conclude the proof of Lemma 6.

Base case. If φ has exactly one variable, then φ = [x 6= m1] ∧ · · · ∧ [x 6= mk]
with x /∈ vars(mi). Thus all mi are ground terms. Consider a term m ∈ Sinit

such that m 6= mi for 1 ≤ i ≤ k. We have T1 ⊢ m. The substitution τ ′ such that
yτ ′ = m for any y ∈ vars(φ) is a solution of φ.

Inductive case. φ = [x 6= m1]∧ · · · ∧ [x 6= mk]∧ [x 6= t1]∧ · · · ∧ [x 6= tl]∧φ
′ where

37

– the mi are ground,
– x /∈ vars(ti) and vars(ti) is non empty,
– φ′ is of the form [x1 6= u1] ∧ · · · ∧ [xs 6= us] with xi /∈ vars(ui) and x 6= xi.

Consider m ∈ Sinit such that m 6= mi for 1 ≤ i ≤ k. We have T1 ⊢ m. Let
σ = {m/x}. We consider φσ.

– Each formula [x 6= mi]σ is true
– Let φ′′ = φ′σ. Note that φ′′ is of the right form, that is φ′′ is a conjunction

of formulas of the form [y 6= u] with y /∈ vars(u).
– Let I be initially the emptyset. For each 1 ≤ i ≤ l, we consider the formula
m 6= tiσ. There is a variable yi ∈ vars(tiσ). We choose one occurrence pi of yi
in tiσ, that is tiσ|pi = yi. If pi is not a path in m then the formula [m 6= tiσ]
is always true. Otherwise, we define m′i = m|pi and we let I := I ∪ {i}.

We consider the formula ψ = φ′′ ∧
∧

i∈I [yi 6= m′i]. We have that yi /∈ vars(m′i)
since m′i is ground. Moreover, ψ does not contain the variable x thus ψ has
strictly less variables than φ. We deduce by induction hypothesis that there is a
solution θ to ψ such that xθ ∈ Sinit for any x ∈ vars(ψ). Thus, we have that σθ
is a solution of the right form to φ, which concludes the proof. �

B.2 Getting rid of the terms coming from Π2

Lemma 7 (locality). Let T be a set of terms and u be a term such that T ⊢ u.
Let π be a proof of T ⊢ u which is minimal w.r.t. its number of nodes. Then π
only involves terms in St(T ∪ {u}). Moreover, if π ends with a decomposition
rule or the axiom rule then π only involves terms in St(T) and u ∈ Stplain(T).

Proof. Let π be a proof of T ⊢ u which is minimal w.r.t. to its number of nodes.
We show the result by induction on π. We can have that:

– The last rule is an axiom. In such a case, we easily conclude.
– The last rule is a composition. Suppose for example that it is the sym-

metric encryption rule. In such a case, we have that u = enc(u1, u2). Let π1

(resp. π2) be the subproof of π ending on T ⊢ u1 (resp. T ⊢ u2). By induction
hypothesis, we know that π1 (resp. π2) only involves terms in St(T ∪ {u1})
(resp. St(T ∪ {u2})). Hence, we easily deduce that π only involves terms
in St(T ∪ {u}). The same reasoning holds for the other composition rules.

– The last rule is a decomposition. Suppose for example that it is the symmet-
ric decryption rule. In such a case, we have that

π1 =

{ . . .

T ⊢ enc(u, v) π2 =

{ . . .

T ⊢ v

T ⊢ u

Note that, by minimality of π, the proof π1 necessarily ends with a decom-
position rule. Hence, by induction hypothesis, we know that π1 only involves

38

terms in St(T) and also that enc(u, v) ∈ Stplain(T). In particular, we have
v ∈ St(T). By induction hypothesis, we know that π2 only involves terms of
St(T ∪{v}) thus terms of St(T). Thus we easily deduce that π only involves
terms of St(T) and also that u ∈ Stplain(T). For the other decomposition
rules a similar reasoning holds. In the case of the asymmetric decryption
rule, we have that v ∈ St(T) since, by induction hypothesis, a term of the
form priv(v′) can only be obtained by the axiom rule or a decomposition
rule. �

Lemma 8. Let T0 be a set of terms such that n(T0) ∩ Names = ∅ and init ∈ T0.
Let v be a term such that plaintext(v) ⊆ T0 ∪ Names and EncSt(v) ⊆ EncSt(ETerms).
Then, we have that T0 ⊢ v.

The proof below relies on the notion of component which is formally defined in
Appendix A.

Proof. We show that for every p ∈ comp(v), we have that T0 ⊢ p. By definition
of · , we have that

{p | p ∈ comp(v)} = {p′ | p′ ∈ comp(v)}.

Then, we can easily deduce that T0 ⊢ p′ for every p′ ∈ comp(v), and thus T0 ⊢ v.

Let p ∈ comp(v). We distinguish three cases:

1. p is of the form enc(w1, w2), enca(w1, w2) or sign(w1, w2). In such a case,
since EncSt(v) ⊆ EncSt(ETerms), we have that p = init, thus T0 ⊢ p.

2. p is of the form pub(t) (or priv(t)), thus pub(t) ∈ T0 ∪Names. We have that
p ∈ T0 since p is not a name and thus p = p ∈ T0 since n(T0) ∩ Names = ∅.

3. p is a name. We have that p ∈ plaintext(v) and p ∈ T0 ∪Names, thus T0 ⊢ p.
This allows us to conclude. �

Remark. The condition T0 ∩ Names = ∅ is not sufficient to prove Lemma 8.
For instance, let v = pub(a), Names = {a} and T0 = {pub(a)}. We have that
v = pub(init) and v is not deducible from T0.

39

