
SAFER K{64: One Year Later

James L. Massey

Signal & Information Processing Laboratory
Swiss Federal Institute of Technology

ETH Zentrum
CH-8092 Zurich, Switzerland

1 Introduction

Since we introduced the cipher SAFER K{64 (an acronym for Secure and Fast
Encryption Routine with a user{selected Key of 64 bits) one year ago at the
predecessor to this workshop [MAS94], we have been pleasantly surprised by the
rapidity of its acceptance within the cryptographic users' community. Undoubt-
edly the foremost reason for this is the non-proprietary character of SAFER K{
64, which makes it unusally attractive to users. Although our design of SAFER
K{64 was sponsored by Cylink Corporation (Sunnyvale, CA, USA), Cylink has
explicitly relinquished any proprietary rights to this algorithm. This largesse on
the part of Cylink was motivated by the reasoning that the company would gain
more from new business than it would lose from competition should many new
users adopt this publicly available cipher. SAFER K{64 has not been patented
and, to the best of our knowledge, is free for use by anyone without fees of any
kind and with no violation of any rights of ownership, intellectual or otherwise.
Indeed, one way in which we have become aware of applications of SAFER K{
64 is via the requests that we have received from users for written assurance of
the non{proprietary character of SAFER K{64 (and of SAFER K{128 that is
described in the next section).

Almost immediately upon the announcement of SAFER K{64, we began to
receive requests for a version of this cipher with a 128{bit user{selected key. In
many ways, 128 is a natural key length because the cipher uses 128 bits from the
key schedule within each round. The Special Projects Team of the Ministry of
Home A�airs, Singapore, took the initiative to design a key schedule to be used
with the basic SAFER algorithm for a 128{bit user{selected key. We found their
key schedule to be very attractive because, when the two halves of the 128{bit
key are the same 64{bit string, it produces the same round keys as does the
key schedule for SAFER K{64 when its user{selected key is this same 64{bit
string. The designers have renounced all proprietary rights to this 128{bit key
schedule and have authorized us both to announce their key schedule and to
standardize its use. We do this in Section 2 of this paper where we refer to the
resultant cipher as SAFER K{128. Hereafter, we will say simply `SAFER' when
our remarks apply to both SAFER K{64 and SAFER K{128.

A second factor in the quick popularity of SAFER is its byte orientation.
Within the enciphering and deciphering processes, all operations are on bytes,
which makes SAFER especially attractive for implementation on smart cards

with 8-bit internal processors. This fact played an important role in the tenta-
tive selection by Singaporean planners of SAFER K{128 as the standard cipher
within the island{wide information system being planned for the turn of the
century. A prototype smart-card implementation of SAFER was found there to
run about 2.5 times as fast as a fully optimized smart-card implementation of
the Data Encryption Standard (DES).

We have received several enquiries about our reasons for choosing the `loga-
rithm' and `exponential' functions to provide the `nonlinearities' in SAFER that
are required for good `confusion'. To answer these questions, we give in Section 3
an analysis to show that these functions well resemble `randomly chosen' func-
tions. Further justi�cation for the choice of these nonlinearities is given in the
paper [VAU95] in this volume, which shows that other choices would have given
a much weaker cipher.

One of the novel features of SAFER was the use of a new linear transform
to provide the \di�usion" that a good cipher requires, i.e., to ensure that small
changes in each round input result in large changes in the round output. We
called this transform the Pseudo-Hadamard Transform (PHT) as it di�ers from
the conventional Hadamard (or Walsh-Hadamard) transform only enough to
make it invertible over the ring of integers modulo 256. Again we have been
questionned, sometimes skeptically, as to how good this di�usion is. In Section
4, we give a detailed discussion of the di�using capability of the PHT, not only
to answer these questions but also because the results are essential to the crypt-
analysis in Section 6. We were remiss in [MAS94] in not mentionning two earlier
applications in cryptography of transform techniques similar to the Hadamard
transform and we are pleased to remedy this omission here. Huber [HUB90]
also used the \buttery with decimation" structure of the Hadamard transform
within an encryption round to provide di�usion, but replaced the linear \but-
terys" with two{input two{output nonlinear functions to obtain the required
invertibility of the transform. Schnorr, in a paper presented in the rump session
at CRYPTO '91, cf. [SCH92], used the \buttery with decimation" structure of
the fast Walsh-Hadamard transform to obtain di�usion within a hashing func-
tion.

For a cipher to gain popularity, there must be a general belief that it is
`secure'. The resistance of a cipher to di�erential cryptanalysis, introduced by
Biham and Shamir [BIH90], is perhaps the best measure available today of its
security.We are aware of several privately conducted and proprietary di�erential
cryptanalyses of SAFER, all of which have reached the conclusion that SAFER
is secure against di�erential cryptanalysis, but there has been some disagreement
about how many rounds of SAFER are required for this security. In [MAS94],
we recommended the use of six rounds in SAFER K{64 but allowed optionally
up to ten rounds. In Section 6 we give our own detailed di�erential cryptanaly-
sis, which shows that six rounds of SAFER K{64 su�ces for protection against
di�erential cryptanalysis. The next best measure today of a cipher's security is
its resistance to linear cryptanalysis, introduced by Matsui [MAT93, ?]. We have
had no reports from others on the strength of SAFER against linear cryptanaly-

sis, but together with our students [PER94, ?, ?] we have undertaken the linear
cryptanalysis of SAFER. Because of the lengthy treatment that is required to
do justice to the di�erential cryptanalysis of SAFER, we will not discuss this
work further here, except to mention that it indicates that SAFER is even more
secure against linear cryptanalysis than against di�erential cryptanalysis, which
is the reverse of the situation for DES.

Very recently, Knudsen [KNU95] has pointed out a `weakness' in SAFER
when this cipher is used within a public hashing scheme. We discuss this `weak-
ness' in Section 7 where we also give a speci�cation for its avoidance. We close
in Section 8 with some remarks.

2 SAFER K{128

SAFER K{64 with r rounds uses 2r+1 64{bit subkeys that are derived from the
64{bit user{selected key according to the key schedule shown in Fig. 1. We now
de�ne SAFER K{128 as the cipher whose encryption round structure, output
transformation and key biases are identical to those of SAFER K{64 but whose
2r + 1 64{bit subkeys are derived from the 128{bit user{selected key according
to the key schedule shown in Fig. 2. As mentioned above, this latter key schedule
was designed by the Special Projects Team of the Ministry of Home A�airs, Sin-
gapore. We recommend that r = 10 rounds of encryption be used with SAFER
K{128 and specify that not more than 12 rounds be used.

The left and right halves of the 128{bit user{selected key are denoted as Ka

and Kb, respectively, in Fig. 2 where, as in [MAS94], we abide by the convention
that more signi�cant bits and bytes are to the left. Upon comparing Figs. 1 and
2, one sees immediately that if the righthalf key Kb in Fig. 2 coincides with the
64{bit user{selected key K1 in Fig. 1, then the same subkeys K1, K3, K5, ...
are generated by both key algorithms. Similarly, if the lefthalf key Ka in Fig. 2
coincides with the 64{bit user{selected key K1 in Fig. 1, then the same subkeys
K2, K4, K6, ... are generated by both key algorithms. Thus, when both Ka and
Kb in Fig. 2 coincide with the 64{bit user{selected key K1 in Fig. 1, then all
subkeys produced by both key schedules are the same. This is a very desirable
feature as it permits a user with an implementation of SAFER K{128 to encipher
and decipher for SAFER K{64 whenever desired.

Appendix B contains a TURBO PASCAL program that implements encryp-
tion for the full r-round SAFER K{128 cipher. This program should be taken
as the o�cial de�nition of the SAFER K{128 encryption algorithm. Appendix
C gives two examples of 12{round encryption (i.e., r = 12) that the reader may
�nd useful in checking his or her own implementation of this cipher.

Fig. 1. Key Schedule for SAFER K{64.

3 The Nonlinearities of SAFER

We begin by recalling the encryption round structure of SAFER shown in Fig. 3.
The �rst step within the i-th round is the Mixed XOR/Byte-Addition of the
round input with the subkey K2i�1. The eight resulting bytes are then individu-
ally subjected to one of two di�erent transformations, namely: (1) the operation
labelled \45(:)" in Fig. 3 to denote that if the input byte is the integer j then
the output byte is 45j modulo 257 (except that this output is taken to be 0 if
if the modular result is 256, which occurs for j = 128) and (2) the operation
labelled \log45" in Fig. 3 to denote that if the byte is the integer j then the
output byte is log45(j) (except that this output is taken to be 128 if the input
is j = 0), i.e., the power to which one must raise 45 to obtain j modulo 257.
Because 257 is a prime, arithmetic modulo 257 is the arithmetic of the �nite
�eld GF(257). The element 45 is a primitive element of this �eld, i.e., its �rst
256 powers generate all 256 non{zero �eld elements. Thus the mapping 45(:) is
an invertible mapping from one byte to one byte. The mapping log45(:) is just
the inverse of the mapping 45(:).

To see just how \nonlinear" these two mappings are or, better, how closely

Fig. 2. Key Schedule for SAFER K{128.

Fig. 3. Encryption round structure of SAFER.

they resemble a \randomly chosen" mapping, we consider for each mapping the
boolean functions that determine each output bit in terms of the eight input
bits. Any boolean function of 8 input bits, say f(:), has an algebraic normal
form (ANF) of the type

f(x1; x2; . . .x8) = a0 + a1x1 + a2x2 + � � �+ a8x8

+a1;2x1x2 + a1;3x1x3 + � � �+ a7;8x7x8

+ � � �+ a1;2;3;4;5;6;7;8x1x2x3x4x5x6x7x8 : (1)

The coe�cients on the right are elements of the �nite �eld GF(2) and the ad-
dition is addition in this �eld, which is just the XOR operation. The nonlinear
order of a product of variables is the number of variables in that product; the
nonlinear order of the function itself is the maximum nonlinear order of a prod-
uct of variables appearing with a non{zero coe�cient in its ANF. Each boolean
function of eight bits uniquely determines the coe�cients of its ANF and, con-
versely, any choice of these coe�cients determines such a function. Choosing
such a function f uniformly at random from the set of all 2256 such functions is
thus equivalent to choosing the coe�cients on the right in (1) by coin{tossing.

It follows that, in a randomly chosen function, the number of terms of nonlinear
order i that appear is binomially distributed from 0 to

�
8
i

�
with mean

�
8
i

�
=2. In a

randomly chosen function, the number of terms of nonlinear order i that appear
should be rather close to this mean.

Table 1. The number of terms of nonlinear order i, 0 � i � 8, in the boolean functions
corresponding to the eight output bits of the exponential mapping 45(:).

order i
�
8
i

�
bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8

0 1 0 0 0 0 0 0 0 1
1 8 3 4 5 3 4 2 2 6
2 28 17 22 16 17 16 14 11 9
3 56 36 27 29 27 33 30 14 13
4 70 52 40 38 39 28 32 10 15
5 56 35 25 22 24 24 18 8 8
6 28 15 16 8 15 12 11 1 4
7 8 2 4 3 5 2 1 0 0
8 1 0 0 0 0 0 0 0 0

Table 1 shows the number of terms of each nonlinear order i that appear in
the boolean function for the j-th output bit in the function 45(:) where j = 1
and j = 8 denote the most signi�cant and least signi�cant bits of the output,
respectively, for i = 1; 2; . . . ; 8. The maximum possible number of terms

�
8
i

�
is

also indicated. One sees immediately that, in each output bit position j, the
number of terms appearing is remarkably close to the mean number

�
8
i

�
=2 for

a randomly chosen function. Table 2 is a similar table for the function log45(:)
and again the agreement is remarkably close.

Table 2. The number of terms of nonlinear order i, 0 � i � 8, in the boolean functions
corresponding to the eight output bits of the logarithmic mapping log45(:).

order i
�
8
i

�
bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8

0 1 1 0 0 0 0 0 0 0
1 8 5 4 4 4 0 0 0 0
2 28 12 12 13 14 22 9 11 18
3 56 26 25 27 28 24 24 38 19
4 70 39 38 34 33 43 34 26 38
5 56 25 27 18 28 29 30 19 22
6 28 13 16 15 14 17 11 9 11
7 8 1 4 2 2 3 2 1 2
8 1 0 0 0 0 0 0 0 0

It is interesting to observe that the number of terms of nonlinear order i in
the least signi�cant bit (bit 8) function for the mapping log!(:) is invariant to
the choice of primitive element ! in GF (257). The reason is that, independently
of the choice of !, !k is a quadratic residue (or \square") just when k is even
and hence its logarithm will have least signi�cant bit 0 just in this case. But if
! is primitive in GF (257), � = !i is also primitive if and only if i is odd. Hence
any non{zero in GF (257) is an even power of ! if and only if it is an even
power of � and thus the least sign�cant bit functions in the mappings log!(:)
and log�(:) coincide. In general, however, all the other output bit functions of

the mapping log!(:) and all the output bit functions of the mapping !(:) will
depend on the choice of !. However, the variation with ! is not substantial|
our conclusions about Tables 1 and 2 would still apply had we chosen any other
primitive element, say ! = 3, of GF (257) to de�ne the exponential and logarith-
mic mappings and SAFER so modi�ed would be essentially as secure as for our
choice of ! = 45. This choice was rather arbitrary and was motivated primarily
by the apparent \randomness" in the sequence of key biases that it produces,
cf. [MAS94].

4 Pseuo-Hadamard Transform

The purpose of the Pseudo-Hadamard Transform (PHT) section in Fig. 3 is to
provide SAFER with di�usion, i.e., to ensure that small changes in round inputs
cause large changes in round outputs. Because the PHT is linear over the ring of
integers modulo 256 and because \di�erences" can be taken conveniently as byte
di�erences modulo 256 at the output of the eight nonlinear channels in Fig. 3,
di�usion is well measured by how well the PHT converts low weight inputs into
high weight inputs. Here and hereafter, weight means the number of non-zero
bytes. We now treat this question in some detail as the results are essential to
the di�erential cryptanalysis that will be carried out in Section 6.

If the input to the PHT is the eight-byte row v = [v1; v2; . . . v8], then the
output is the eight-byte row

V = [V1; V2; . . .V8] = vM ;

where

M =

2
66666666664

8 4 4 2 4 2 2 1
4 2 4 2 2 1 2 1
4 2 2 1 4 2 2 1
2 1 2 1 2 1 2 1
4 4 2 2 2 2 1 1
2 2 2 2 1 1 1 1
2 2 1 1 2 2 1 1
1 1 1 1 1 1 1 1

3
77777777775

(2)

is the 8� 8 matrix that we will refer to as the PHT matrix. The i-th row of M
is just the PHT V of the input row v that is all-zero except in the i-th byte

where it contains a 1. From (2), the action of the PHT matrix M on the inputs
v of weight 1 is evident. These results are given in Table 4 of Appendix A for
outputs with weight up to 4. The only weight{1 input v giving an output also of
weight 1 is [128; 0; 0; 0; 0; 0; 0; 0] as follows from the facts that only the �rst row
of M contains a single 1 and that for non{zero a 2a = 0 if and only if a = 128.
Similarly, it is easy to check that there are 3 di�erent weight{1 inputs that give
weight{2 outputs, none whatsoever that give weight{3 outputs, and only 5 that
give weight{4 outputs. One sees from Table 4 that the PHT di�uses weight{1
inputs exceedingly well.

The situation is not so much di�erent for weight{2 inputs. In Table 6 we list
all 33 weight{2 inputs that produce a PHT of weight between 1 and 3 inclusive.
In particular, we note that only three weight{2 inputs produce an output of
weight 1. There are nine weight{2 inputs that produce outputs also of weight 2,
the most interesting of these being [0; 128; 0; 128; 0; 0; 0; 0], [0; 0; 128; 0; 0; 0; 128; 0]
and [0; 0; 0; 0; 128; 128; 0; 0], all of which reproduce themselves. Such replicating
patterns might well represent a \weakness" that one could exploit in di�erential
cryptanalysis were it not for the fact, which will be seen in Section 6, that byte
di�erences of 128 cannot propagate unchanged through the nonlinear section of
SAFER. From Table 4 one must conclude that the PHT also di�uses weight{2
inputs admirably well.

There are roughly 213 weight{2 inputs, which is a fraction about 2�9 of
the total number of weight{2 inputs, that produce PHT outputs of weight 4.
There are 9 \isolated" weight{2 inputs, listed in Table 5, that produce weight{4
outputs, but these are of little use in di�erential cryptanalysis because of the
plethora of 128's in the output|here "isolated" refers to the fact that the only
non{zero multiples of these inputs that have weight 4 and produce weight{4
outputs are the trivial multiples by 1 and �1. The remaining weight{2 inputs
play a rather important role in the di�erential cryptanalysis of SAFER in Section
6|we call them one-dimensional weight{2 inputs to emphasize that they appear
in sets containing all the non{zero multiples of some weight{2 input, excluding
possibly the non{zero multiples by 64, 128 and -64 when these have the e�ect
of reducing either the weight of the input or the weight of the output, or both.
This makes it possible to tabulate all these inputs in a compact way as we have
done in Table 7. The last entry in this table indicates, for example, that all the
non{zero multiples of [0; 0; 0; 0; 0; 0;�1; 2], whose PHT is [0; 0; 1; 1; 0; 0; 1; 1], are
weight{2 inputs, except the multiple by 128, and produce weight{4 outputs.

There are no weight{3 inputs that give a PHT of weight 1. The lists of
weight{3 inputs that produce PHT outputs with weights 2 and 3 are given in
Tables 9 and 10, respectively. It is evident that the PHT di�uses even weight{3
inputs very well.

We will also have use in the di�erential cryptanalysis of SAFER for the list
of weight{4 inputs that give a PHT of weight 1. There are only �ve of these and
they are listed in Table 8.

5 Recognition of Certain Markov Ciphers

Di�erential cryptanalysis, originated by Biham and Shamir [BIH90], is a general
attack on iterated ciphers, i.e., on ciphers that consist of many applications in
cascade of the same round function. Our discussion of di�erential cryptanalysis
will follow the treatment in [LAI91], which introduced and exploited the notion
of a Markov cipher.

Di�erential cryptanalysis requires that one specify a notion of di�erence for
round inputs and round outputs. In an iterated cipher, the round input and
round output must take values in the same set G. In general, one can specify
the di�erence �X between two round inputs (or two round outputs) X and X?

in the manner

�X = X
 (X?)�1 (3)

where
 is a group operation on G and where (X?)�1 denotes the group inverse
of X?. The cipher is then said to be a Markov cipher if, when the round key
is chosen uniformly at random and applied to two distinct round inputs X and
X?, the conditional probability P (�Y = � j �X = �;X =) for the di�erence
of the corresponding distinct round outputs Y and Y ? is independent of . In
other words, the conditional probability of an output di�erence depends only
on the input di�erence and not on the particular value of either input. It was
shown in [LAI91] that, for a Markov cipher in which the round keys are chosen
independently and uniformly at random [which is the universal assumption in
di�erential cryptanalysis], the sequence of round di�erences is a Markov chain for
which the uniform probability distribution is a stationary distribution. It follows
that if this Markov chain has a steady-state probability distribution, then this
must also be the uniform distribution.

We now prove a proposition that is very useful in identifying many commonly
used block ciphers as Markov ciphers.

Proposition 1. An iterated cipher in which the round input X and round output
Y take values in a set G and for which the round function has the form

Y = f(S;Zb) where S = X
 Za ;

where
 is a group operation on G and where Z = (Za; Zb) is the round key,
is a Markov cipher for di�erences de�ned by �X = X
 (X?)�1 and �Y =
Y
 (Y ?)�1. Moreover, if � is any other group operation on G and the output
di�erence ~�Y is de�ned as ~�Y = Y �(Y ?)�I , where (Y ?)�I is the group inverse
of Y ? with respect to the group operation �, then the conditional probability
P (~�Y =� j �X=�;X=) is also independent of .

Remark 1: Because a cipher must be decryptable, it follows that the function
f(S;Zb) in this proposition, for every value of the partial key Zb, must be an
invertible function of S. No other assumption on this function is needed.
Remark 2: The latter part of the proposition, which seems unmotivated at this
point, will be seen to be useful in the di�erential cryptanalysis of SAFER.

Proof: It su�ces to prove that P (~�Y =� j �X=�;X=) is independent of ,
since choosing � =
 implies the �rst claim of the proposition. To do this, we
begin by noting that

P (~�Y =� j �X=�;X=) =X
�2G

P (~�Y =�; Za=� j �X=�;X=) =

X
�2G

P (Za=� j �X=�;X=)P (~�Y =� j �X=�;X=; Za=�) :

(4)

But Za is uniformly random over G and jointly independent of X and X? so
that

P (Za=� j �X=�;X=)=1=N (5)

where N is the cardinality of G. Moreover, because S = X
 Z, it follows that

�S = (X
 Z)
 (X?
 Z)�1 = X
 Z
 Z�1
 (X?)�1 = X
 (X?)�1 = �X

where we used the fact that the inverse of a group product is the product of the
inverses in reverse order. Thus,

P (~�Y =� j �X=�;X=; Za=�) =

P (~�Y =� j �X=�;X=;�S=�; S=
 �; Za=�) =

P (~�Y =� j �S=�; S=
 �) (6)

because, given �S and S, ~�Y has no further dependence on X and �X. Sub-
stituting (5) and (6) into (4) gives

P (~�Y =� j �X=�;X=) = (1=N)
X
�2G

P (~�Y =� j �S=�; S=
 �) ;

which, because
 � ranges over all the elements of G in this sum, is equivalent
to

P (~�Y =� j �X=�;X=) = (1=N)
X
g2G

P (~�Y =� j �S=�; S=g)

and hence is independent of , as was to be shown. 2

6 Di�erential Cryptanalysis of SAFER

As can be seen from Fig. 3, at the beginning of a round, SAFER combines the
8{byte round input X = [X1; X2; . . .X8] bytewise with the 8{byte �rst half
Za = [Za1; Za2; . . .Za8] of the round key to produce the 8- byte input S =
[S1; S2; . . .S8] to the nonlinear operations in the manner that S = X
Za where

 = [�;+;+;�;�;+;+;�] ;

here � denotes the bitwise XOR operation on bytes and + denotes usual byte
addition, i.e., addition modulo 256. It follows that
 is a group operation on
the set G of 8{byte words. We then obtain as an immediate consequence of
Proposition 1:

Corollary 2. SAFER is a Markov cipher when the di�erence �V between 8{
byte words V and V? is de�ned in the manner �V = [V1 � V ?

1 ; V2 � V ?
2 ; V3 �

V ?
3 ; V4 � V ?

4 ; V5 � V ?
5 ; V6 � V ?

6 ; V7 � V ?
7 ; V8 � V ?

8]

We now draw upon the latter part of Proposition 1 to establish a fact that
will be especially useful in the di�erential cryptanalysis of SAFER.

Corollary 3. When all output di�erences in SAFER are de�ned as byte di�er-
ences modulo 256, i.e., ~�V = [V1�V ?

1 ; V2�V ?
2 ; V3�V ?

3 ; V4�V ?
4 ; V5�V ?

5 ; V6�
V ?
6 ; V7 � V ?

7 ; V8 � V ?
8]; then P (~�Y =� j �X=�;X=) is independent of .

6.1 Byte di�erentials and quasi-di�erentials

The detailed di�erential cryptanalysis of SAFER is facilitated by consideration
of the input S = [S1; S2; . . .S8] to the PHT section in 3. Note that Sj is given
by

Sj = 45(Xj�Zaj) + Zbj ; j 2 f1; 4; 5; 8g (7)

where Za and Zb are the left and right halves of the round key, respectively. We
thus refer to bytes 1, 4, 5, and 8 as the exponential bytes. Similarly, one notes
that

Sj = log45(Xj + Zaj)� Zbj ; j 2 f2; 3; 6; 7g (8)

and we thus refer to bytes 2, 3, 6 and 7 as the logarithmic bytes. We will call a pair
(�; �), considered as the value of (�Xj ; �Sj), an exponential byte di�erential
for j 2 f1; 4; 5; 8g and a logarithmic byte di�erential for j 2 f2; 3; 6; 7g. Of
interest greater than that of the exponential byte di�erentials are the exponential
byte quasi{di�erentials where the output di�erence is taken as the modulo 256
di�erence ~�Sj rather than as the XOR di�erence �Sj .

The principal properties of the byte di�erentials and quasi{di�erentials are
summarized in Table 3. When a di�erence �V or ~�V is a modulo 256 di�erence,
then interchanging the inputs X and X? negates this di�erence but has no e�ect
on di�erences �V that are XOR di�erences. It follows that for logarithmic byte
di�erentials, where both input and output di�erences are modulo 256 di�erences,

P (�S=� j �X=�) = P (�S=�� j �X=��) :

Similarly for exponential byte quasi{di�erentials, where only the output di�er-
ence is modulo 256,

P (�S=� j �X=�) = P (�S=�� j �X=�) :

These two facts are stated in the �rst section of Table 3. The other entries in
this table were determined by direct computation of the transition probabilities
P (�S=� j �X=�) and P (~�S=� j �X=�) with the help of (7) and (8) when
the bytes Zaj and Zbj are chosen uniformly at random over the 256 possible
byte values.

Table 3. Properties of byte di�erentials for SAFER.

logarithmic exponential exponential
conventional quasi-

input di�erence: mod 256 input di�erence: XOR input di�erence: XOR
output di�erence: mod 256 output di�erence: XOR output di�erence: mod 256
P (� j �) = P (�� j ��) P (� j �) = P (�� j �)

P (128 j 128) = 0 P (128 j 128) = 0 P (128 j 128) = 0
P (128 j �) = 2�7 P (� j 128) = 2�7 P (� j 128) = 2�7

for � odd for � odd for � odd
P (128 j �) = 0 avg[P (128 j �)] = 2�8:2

for � even for � odd
maxP (� j �) = 2�6:4 maxP (� j �) = 2�5 maxP (� j �) = 2�4:7

occurs for (�; �) 2 occurs for (�; �) 2 occurs for (�; �) 2
f(128; 48); (128;�48)g f(�16; 32); (103; 64); f(79; 68); (79;�68) g

(18; 128); (�108; 128);
(48; 128); (�78; 128);
(54; 128); (�115; 128);
(�23; 128); (102; 128);
(�2; 128); (103;�64)g

maxP (� j 128) = 2�6:2 maxP (128 j �) = 2�5 maxP (128 j �) = 2�5

occurs for � 2 f48;�48g occurs for � 2 occurs for � 2
f18; 48; 54; 102;�115; f18; 48; 54; 102;�115;
�108;�78;�23;�2g �108;�78;�23;�2g

It will be convenient in the di�erential cryptanalysis of SAFER to have avail-
able the relations between byte di�erentials and byte quasi-di�erentials that are
given in the following proposition.

Proposition 4. For byte di�erences �V = V � V ? and ~�V = V � V ?,
a) ~�V = 0 if and only if �V = 0;
b) ~�V = 128 if and only if �V = 128; and
c) ~�V is odd if and only if �V is odd.

Proof: Relation a) is trivial. Relation b) follows from the fact that �V = 128
if and only if V and V ? di�er in the most signi�cant bit only, which is also the

necessary and su�cient condition for ~�V = 128. Finally, �V is odd if and only
if V and V ? di�er in the least signi�cant bit only, which is also the necessary
and su�cient condition for ~�V to be odd. 2

6.2 The PHT and byte di�erentials

We have already de�ned S = [S1; S2; . . .S8] as the input to the PHT section in 3.
Thus, the round output Y = [Y1; Y2; . . .Y8] is given by Y = SM whereM is the
PHT matrix of (2) and where all the arithmetic is modulo 256. It follows that
when each component of �S is a modulo 256 di�erence, i.e., when �Sj = Sj�S

?
j

as is the case in the logarithmic bytes and as is also the case in the exponential
bytes when quasi-di�erences are used, then

~�Y = SM� S?M = (~�S)M : (9)

The simple relation (9) is the primary reason that it is more natural to use quasi-
di�erentials rather than ordinary di�erentials in the di�erential cryptanalysis of
SAFER.

6.3 One{round and two{round quasi-di�erentials

We now get to the heart of the di�erential cryptanalysis of SAFER, i.e., to the
�nding of the most probable (r � 1)-round quasi-di�erentials for r = 2; 3; It
was shown in [LAI91] that an r-round cipher is immune from di�erential crypt-
analysis just when all its (r � 1)- round di�erentials (or quasi-di�erentials) are
essentially equally likely. Thus, SAFER is immune from di�erential cryptanaly-
sis when (�X; ~�Y(r � 1)) takes on every possible value (�; �) with probability
about 1=(264 � 1) � 2�64 when X = Y(0) = � is the plaintext and Y(i) is
the output of the i-th round. It is convenient for a one-round quasi-di�erential
(�X(i); ~�Y(i)) to consider also the PHT input S(i) at mid{round. To empha-
size the role of S(i), we will write one{round quasi{di�erentials in expanded view
as (�X(i); ~�S(i); ~�Y(i)). It follows from (9) that

~�Y(i) = (~�S(i))M

whereM is the PHT matrix of (2). The probability of the transition from �X(i)
to ~�Y(i) is just the probability of the transition from �X(i) to ~�S(i) because
the transition from ~�S(i) to ~�Y(i) is deterministic. Note that the probability of
a transition from �X(i) to ~�S(i) is the product of the probabilities of the byte
di�erentials (in the logarithmic bytes) and the byte quasi{di�erentials (in the
exponential bytes) for the corresponding bytes of �X(i) and ~�S(i). It follows
then from consideration of Table 3 that the probability of such a transition
decreases as the number of bytes speci�ed in ~�S(i) increases, which number
will generally be the same as the weight of �X(i). Finding high probability
quasi{di�erentials for several rounds is thus mostly a matter of �nding quasi{
di�erentials whose evolution has input di�erences of weight as small as possible

in every round. To a good �rst approximation, the probability of an i{round
quasi{di�erential decreases as the total weight of the round inputs increases.

Table 3, which directly gives the probability of one{round byte di�erentials
and quasi{di�erentials, immediately provides the justi�cation of the following
two claims in which, for brevity here and later, we have written 0j to denote j
successive zero bytes.

Claim 1 The 1{round quasi{di�erential with the expanded view

([79; 07]; [68; 07]; [32; 16; 16;�120; 16;�120;�120; 68])

has probability 2�4:7 and is a most likely 1{round quasi{di�erential for SAFER.

It follows from Table 3 that there are 8 such most probable quasi{di�erentials
since any of the four exponential bytes could be chosen as the single non{zero
byte and since a value of �68 in this byte of ~�S(1) would do just as well as the
value 68.

Claim 2 The 1{round di�erential with the expanded view

([18; 07]; [128; 07]; [07; 128])

has probability 2�5 and is a most likely 1{round di�erential for SAFER.

It follows from Table 3 that there are 48 such most probable di�erentials since
again any of the four exponential bytes could be chosen as the single non-zero
byte and since there are 12 pairs of values for these non-zero bytes of �X(1)
and ~�S(1) that have this same maximum probability.

Claims 1 and 2 illustrate interestingly that the most likely one{round quasi{
di�erential is slightly more probable than the most likely one{round di�erential,
which is another argument in favor of considering the former type of `di�erential'
rather than the latter.

Finding the most probable two-round quasi{di�erential is not much more
di�cult.

Claim 3 The 2{round quasi-di�erential ([18; 07]; [1; 1; 1; 1; 1; 1; 1; 1]) with the ex-
panded view
(round 1) ([18; 07]; [128; 07]; [07; 128])
(round 2) ([07; 128]; [07; 1]; [1; 1; 1; 1; 1; 1; 1; 1])

has probability 2�12 and is a most likely 2{round quasi{di�erential for SAFER.

This claim requires more justi�cation. Recall from the discussion in Section 5
that di�erences at round inputs must be of the type �X rather than of the type
~�X. Thus, one cannot immediately set ~�Y(1) equal to �X(2). However, when
each component of ~�Y(1) is either 0 or 128, it follows from Proposition 4 that
this equality does hold. From Table 4, we recall that there is a unique PHT
input of weight 1, namely [128; 07], that gives an output also of weight 1, namely
[07; 128]. Thus, the two-round quasi-di�erential in Claim 3 is the unique (up to
the choice of an odd byte value for the bytes of �Y(2), which we have arbitrarily

taken as 1) such two-round quasi-di�erential that has weight{1 inputs to each
round|thus it has maximum probability. This probability is the product of the
transition probability 2�5 from the 18 in the �rst byte (which is an exponential
byte) of�X(1) to the 128 in the �rst byte of ~�S(1) and the transition probability
2�7 from the 128 in the eighth byte (which is also an exponential byte) of �X(2)
to the 1 in the eighth byte of ~�S(2). There are 9�128 = 1152 such most probable
two-round quasi-di�erentials, corresponding to the 9 choices seen in Table 3 for
the �rst byte of �X(1) and to the 128 choices of an odd number for the eighth
byte of ~�S(2).

6.4 Three{round quasi{di�erentials

Finding the most probable three{round quasi{di�erential is a much more intri-
cate matter. We begin by stating the solution.

Claim 4 The 3{round quasi{di�erential ([03; 18; 04]; [03; 128; 04]) with the ex-
panded view
(1) ([03; 18; 04]; [03; 128; 04]; [0; 128; 0; 128; 0; 128; 0; 128])
(2) ([0; 128; 0; 128; 0; 128; 0; 128]; [0; b; 0;�b; 0;�b; 0; b]: b odd, [b; 0; b; 05])
(3) ([c; 0; b; 05]: c odd, [128; 0; 128; 05]; [03; 128; 04]);

has probability 2�41:6 and is a most likely 3{round quasi{di�erential for SAFER.

We �rst show that this three{round quasi{di�erential has the claimed prob-
ability 2�41:6. From Table 3 we see that the transition from 18 to 128 in an
exponential byte has probability 2�5, which is thus the probability of the �rst{
round transition. Because each byte of ~�Y(1) is either 0 or 128, it follows from
Proposition 4 that �X(2) coincides with ~�Y(1). The second round requires
transitions in logarithmic bytes 2 and 6 from 128 to b and �b, respectively,
where b can be any odd number. All byte transitions are independent because
the corresponding keys for each byte are independent. A direction computation
gives X

b odd

Plog(b j 128)Plog(�b j 128) = 2�7:4

where Plog(b j a) is the probability of the byte quasi{di�erential (�X; ~�S) =
(a; b). Again from Table 3 we see that the transitions from 128 to b and �b (which
is also odd) in exponential bytes 4 and 8 each have probability 2�7. Thus the
transition in round two has probability 2�(7:4+7+7) = 2�21:4. It follows further
from Proposition 4 that an odd value b in exponential byte 1 of ~�Y(2) will
give an odd value c, not necessarily the same as b, in byte 1 of �X(3). From
Table 3, we see that the transition from b in (logarithmic) byte 3 of �X(3) to
128 in byte 3 of �S(3) has probability 2�7. The probability of the transition
from the odd c in exponential byte 1 of �X(3) to 128 in byte 1 of ~�S(3) can
be well approximated by the average probability for such c, which from Table 3
is seen to be 2�8:2. Hence, the transition in round 3 has probability essentially
equal to 2�15:2. The probability of the 3{round di�erential in the claim is thus
2�5 � 2�21:4 � 2�15:2 = 2�41:6, as was to be shown.

It is interesting to note that the above 3{round di�erential consists of 128
di�erent "characteristics" [to use the language of Biham and Shamir [BIH90]],
one for each odd byte value b that speci�es the four non{zero bytes of ~�S(2).
An i{round characteristic is a sequence consisting of the �rst{round input and
the outputs of rounds 1, 2, ... i. The probability of a di�erential is the sum of the
probabilities of all the characteristics of which it is composed. It is often the case
that the probability of a di�erential is dominated, and thus well approximated,
by the probability of its most likely characteristic. However, many of its 128
characteristics contribute substantially to the probabilility of the di�erential in
Claim 4.

We now begin the rather tedious, but essential, task of showing that the 3{
round di�erential in Claim 4 does indeed have maximum probability. Note that
the sum of the weights of the three round inputs is 7|thus our task is to show
that there exists no 3{round di�erentials having round inputs whose weights sum
to 6 or less and that any whose weights sum to 7 have probability no greater
than that in Claim 4.

We begin by considering di�erentials for which the �rst{round input has
weight 1. If the second{round input also has weight 1, then the second{round
output must have weight 8|as follows from the proof of Claim 3|and hence the
di�erential has very low probability. Suppose then that the second{round input
has weight 2. From Table 4 we see that the two non{zero bytes must be bytes
4 and 8, or bytes 6 and 8, or bytes 7 and 8. But the third{round input cannot
then have weight 1 since, by Table 6, the two non{zero bytes in the round{2
input would then have had to be bytes 1 and 2, or bytes 1 and 3, or bytes 1
and 5. Nor could the third{round input have weight 2, since Table 6 shows that
the two non{zero bytes in the round{2 input would then have had to be bytes 2
and 3, or bytes 2 and 4, or bytes 2 and 5, or bytes 2 and 6, or bytes 3 and 4, or
bytes 3 and 5, or bytes 3 and 7, or bytes 5 and 6, or bytes 5 and 7. Nor could
the third{round input have weight 3, since Table 6 shows that the two non{zero
bytes in the round{2 input would then have had to be bytes 1 and 2, or bytes 1
and 3, or bytes 1 and 4, or bytes 1 and 5, or bytes 1 and 6, or bytes 1 and 7. The
third{round input can indeed have weight 4, which gives round{input weights
that sum to 7, but to give larger probability than the di�erential in Claim 4 at
least three of the non{zero bytes would have to be logarithmic bytes|Table 7
shows that all four bytes then must be logarithmic bytes (bytes 2, 3, 6 and 7) and
that the two non{zero bytes in the round{2 input would have had to be bytes 2
and 5, or bytes 4 and 7, which is again a contradiction. That the second{round
input cannot have weight 3 follows immediately from Table 4. Still considering
a weight{1 �rst{round input, suppose that the second{round input has weight
4. From Table 4, these non{zero bytes must be bytes 4, 6, 7 and 8, or bytes 2,
4, 6 and 8, or bytes 3, 4, 7 and 8, or bytes 5, 6, 7 and 8. It follows then from
Table 8 that the third{round input cannot have weight 1. The third{round input
can indeed have weight 2, which gives round input weights that again sum to
7, but the probability of such a di�erential will not be larger than that of the
di�erential in Claim 4 since only two of the four non-zero bytes in the round{2

input are logarithmic bytes. We conclude that no three{round di�erential with
a weight{1 �rst{round input can have larger probability than the di�erential in
Claim 4.

We now consider the case where the �rst{round input has weight 2. Suppose
that the second{round input has weight 1. From Table 6 it follows that this
non{zero byte must be byte 4, or byte 6, or byte 7. It then follows further from
Table 4 that the input to round three must have weight at least 4|when this
weight is 4, the di�erential is less probable than that in Claim 4 because there
is no \one{dimensional" intermediate set of mid-round outputs. Suppose next
that the second{round input has weight 2. It then follows from Table 6 that the
two non{zero bytes in the second{round input must be bytes 2 and 4, or bytes
2 and 6, or bytes 3 and 4, or bytes 3 and 7, or bytes 4 and 6, or bytes 4 and
7, or bytes 5 and 6, or bytes 5 and 7, or bytes 6 and 7. None of these pairs can
give a third{round input of weight 1 or weight 3 as follows from Table 6. Several
of these pairs can be seen from Table 6 to admit third-round inputs of weight 2
but require byte transitions from 128 to 128 in the second round and hence, by
Table 3, give probability 0 for the second{round transition. The second{round
input can indeed have weight 4 and, in fact, the di�erential of Claim 4 is of this
type and was chosen to give a round{3 input of weight 1 via a one{dimensional
intermediate set of mid{round outputs so as to maximize its probability in this
class.

We now must consider the case when the �rst{round input has weight 3.
Table 9 shows that weight 1 is impossible for the second{round input and that
weight 2 is possible only if the two non-zero bytes are bytes 2 and 8, or bytes 3
and 8, or bytes 4 and 8, or bytes 5 and 6, or bytes 6 and 8, or bytes 7 and 8.
But, according to Table 6, none of these pairs can lead of a third{round input
with weight less than 4. Hence, a three{round di�erential with �rst{round input
of weight 3 will be much less probable than that in Claim 4.

That weight{4 �rst{round inputs cannot give a three{round di�erential with
probability larger than that in Claim 4 will be evident from the treatment of 4{
round di�erentials that follows. First{round inputs of weight 5 or more obviously
need not be considered.

6.5 Four{round quasi{di�erentials

In light of the lengthy argument required to establish Claim 4 for three{round
di�erentials, the reader will be pleasantly surprised to see that the four{round
case follows from the former with very little additional work. In fact, the most
likely four{round di�erential begins with the previously determined most likely
three{round di�erential.

Claim 5 The 4-round quasi-di�erential ([03; 18; 04]; [2; 1; 2; 1; 2; 1; 2; 1]) with the
expanded view
(1) ([03; 18; 04]; [03; 128; 04]; [0; 128; 0; 128; 0; 128; 0; 128])
(2) ([0; 128; 0; 128; 0; 128; 0; 128]; [0; b; 0;�b; 0;�b; 0; b]: b odd, [b; 0; b; 05])
(3) ([c; 0; b; 05]: c odd, [128; 0; 128; 05]; [03; 128; 04]);
(4) ([03; 128; 04]; [03; 1; 04]; [2; 1; 2; 1; 2; 1; 2; 1]

has probability 2�48:6 and is a most likely 4{round quasi{di�erential for SAFER.

The probability of the fourth{round transition is the probability of the byte
quasi{di�erential (128, 1) [where 1 could be replaced by any odd byte value],
which from Table 3 is seen to be 2�7. Thus, this four{round di�erential has
probability 2�41:6�2�7 = 2�48:6 as claimed. Because the additional fourth round
has a weight{1 input, essentially the same arguments as were just used for the
3{round case establish that this four{round di�erential likewise has maximum
probability.

Note that the last three rounds of the above four{round di�erential constitute
a three{round di�erential whose �rst{round input has weight 4. This is the most
probable three-round di�erential of this type, but its probability 2�43:6 is smaller
by a factor of 4 than the di�erential in Claim 4.

6.6 Five{rounds and more quasi{di�erentials

It is an unrewardingly tedious task to try to determine precisely the most prob-
able di�erentials for SAFER for �ve or more rounds. The four{round di�erential
of Claim 5 ends with a weight-8 output and hence cannot be extended with an
additional round to obtain a highly probable �ve{round di�erential. Nor can an
additional low{weight round be placed before these four rounds. The analysis
that we have done suggests that one will need to specify at least two more byte
transitions to create a good �ve{round di�erential than were necessary to spec-
ify in order to create the most likely four{round di�erential. One expects very
conservatively that the probability of the most probable �ve{round di�erential
di�ers by a factor of 2�8 [the average probability of a byte transition] or less
from that of the most probably four{round di�erential. With virtually no doubt
then, the most probable �ve{round di�erential for SAFER will have probabil-
ity at most 2�57. This is close enough to the average di�erential probability of
2�64 that the attack to �nd the key of six{round SAFER K{64 by di�erential
cryptanalysis would require more computation than a brute{force exhaustive key
search. For this reason, we abide by our original recommendation of six rounds
(with a maximum of ten rounds) for SAFER K{64. For six{round SAFER K{128,
however, exhaustive key search would be much more complex than the attack
by di�erential cryptanalysis, which is why we have recommended at least ten
rounds (with a maximum of twelve rounds) be used with this cipher. It could
mislead users were we to allow a 128{bit key rather than a 64{bit key when the
security against di�erential cryptanalysis would not be substantially enhanced
by the longer key.

7 A Hashing `Weakness' in SAFER

Having announced a freely available and non{proprietary cipher, we consider it
our responsibility to inform present and prospective users of this cipher should
any signi�cant weaknesses be found in it. The �rst such `weakness' of which

we are aware was discovered by Knudsen [KNU95] two months after the oral
presentation of this paper and concerns the use of SAFER for hashing.

It is not uncommon to use secret-key ciphers within a public hashing scheme,
cf. [LAI93]. The strength of the cipher for such hashing depends on the di�culty
of producing `collisions', i.e., of �nding two distinct plaintext/key pairs that yield
the same ciphertext. When the plaintext and ciphertext are 64 bit strings, the
median number of distinct plaintext/key pairs that must be chosen uniformly
at random before such a collision is found is about 232. By some very clever
cryptanalysis, Knudsen devised a method to produce such collisions for six{round
SAFER K{64 after choosing only about 224 distinct plaintext/key pairs, i.e.,
about 256 times as fast as by random guessing. (Because SAFER K{128 reduces
to SAFER K{64 when the two halves of the 128{bit key coincide, Knudsen's
attack also applies to SAFER K{128.)

Knudsen exploited the fact, which can be seen from Fig. 1 for SAFER K{
64, that changing one byte of the secret key K1 changes only the byte in this
same position in all 2r + 1 round keys. This fact appears to be irrelevant for
encryption because of the di�using e�ect of the PHT, cf. Section 4, but it has
signi�cant implications for hashing. Two round keys di�ering in only one byte
will sometimes encrypt a round input to the the same round output. Knudsen
was able to select two secret keys di�ering in only one byte in such a way that
both keys encrypt between 222 and 228 plaintexts in the same way for six rounds.
This is the phenomenon that he exploited to produce collisions about 256 times
faster than by random guessing when six{round SAFER is used within standard
hashing schemes. He also found pairs of secret keys that encrypt about 215

plaintexts in the same way for eight rounds, but this is not enough to give an
advantage over random guessing in producing collisions. H also determined that
there are no pairs of secret keys that encrypt many plaintexts in the same way
for ten or more rounds.

Knudsen [KNU95] suggested a new key schedule that could be used with
\SAFER" and would completely remove the hashing `weakness' that he ex-
ploited, but that is somewhat more complicated than the original key schedules,
which are described in Section 2. Although adopting Knudsen's key schedule
would certainly be a more elegant cure for the hashing `weakness' in SAFER, it
seems preferable to us (in deference to the many users who have already imple-
mented SAFER in software or in silicon) to abide by the original and simpler key
schedules and merely to specify that at least ten rounds of SAFER be used when-
ever SAFER is embedded in a hashing scheme so that the hashing `weakness'
vanishes.

8 Concluding Remarks

We have attempted in the above to give a fairly complete picture of present
knowledge concerning the security of SAFER. We will continue our own analysis
of SAFER and will disseminate as rapidly as possible any `weaknesses' in SAFER
that we ourselves �nd or that are brought to our attention.

It is a pleasure here to acknowledge the contributions of the following Ar-
menian scientists to the di�erential cryptanalysis of SAFER that was reported
here: G. H. Khachatrian, M. K. Kuregian, and S. S. Martirossian. Their earlier
studies, to which we were privy, were very helpful to us, but the responsibility
for any errors in the analysis given in this paper rests of course with us.

A Tables of PHT correspondences

Table 4. Weight{1 inputs giving a PHT of weight 1, 2, 3 or 4.

input input PHT PHT
byte value bytes values

1 64 4 6 7 8 128 128 128 64
1 128 8 128
1 -64 4 6 7 8 128 128 128 -64
2 128 6 8 128 128
3 128 4 8 128 128
4 128 2 4 6 8 128 128 128 128
5 128 7 8 128 128
6 128 5 6 7 8 128 128 128 128
7 128 3 4 7 8 128 128 128 128

Table 5. Isolated weight{2 inputs giving a PHT of weight 4.

input input PHT PHT
bytes values bytes values
1 2 64 64 2 5 6 8 128 128 -64 128
1 2 -64 -64 2 5 6 8 128 128 64 128
1 3 64 64 2 3 4 8 128 128 -64 128
1 3 -64 -64 2 3 4 8 128 128 64 128
1 5 64 64 3 5 7 8 128 128 -64 128
1 5 -64 -64 3 5 7 8 128 128 64 128
2 7 128 128 3 4 6 7 128 128 128 128
3 6 128 128 4 5 6 7 128 128 128 128
4 5 128 128 2 4 6 7 128 128 128 128

Table 6. Weight{2 inputs giving a PHT of weight 1, 2 or 3.

input input PHT PHT
bytes values bytes values
1 2 64 128 4 7 8 128 128 -64
1 2 64 -64 2 5 6 128 128 64
1 2 128 128 6 128
1 2 -64 64 2 5 6 128 128 -64
1 2 -64 128 4 7 8 128 128 64
1 3 64 128 6 7 8 128 128 -64
1 3 64 -64 2 3 4 128 128 64
1 3 128 128 4 128
1 3 -64 64 2 3 4 128 128 -64
1 3 -64 128 6 7 8 128 128 64
1 4 64 128 2 7 8 128 128 -64
1 4 128 128 2 4 6 128 128 128
1 4 -64 128 2 7 8 128 128 64
1 5 64 128 4 6 8 128 128 -64
1 5 64 -64 3 5 7 128 128 64
1 5 128 128 7 128
1 5 -64 64 3 5 7 128 128 -64
1 5 -64 128 4 6 8 128 128 64
1 6 64 128 4 5 8 128 128 -64
1 6 128 128 5 6 7 128 128 128
1 6 -64 128 4 5 8 128 128 64
1 7 64 128 3 6 8 128 128 -64
1 7 128 128 3 4 7 128 128 128
1 7 -64 128 3 6 8 128 128 64
2 3 128 128 4 6 128 128
2 4 128 128 2 4 128 128
2 5 128 128 6 7 128 128
2 6 128 128 5 7 128 128
3 4 128 128 2 6 128 128
3 5 128 128 4 7 128 128
3 7 128 128 3 7 128 128
5 6 128 128 5 6 128 128
5 7 128 128 3 4 128 128

Table 7. One dimensional weight{2 inputs giving a PHT of weight 4.

input input PHT PHT excepting these
bytes values bytes values values of a
1 2 a -a 1 2 5 6 4a 2a 2a a 0, 64, 128, -64
1 2 -a 2a 3 4 7 8 4a 2a 2a a 0, 64, 128, -64
1 3 a -a 1 2 3 4 4a 2a 2a a 0, 64, 128, -64
1 3 -a 2a 5 6 7 8 4a 2a 2a a 0, 64, 128, -64
1 4 -a 2a 1 2 7 8 -4a -2a 2a a 0, 64, 128, -64
1 5 a -a 1 3 5 7 4a 2a 2a a 0, 64, 128, -64
1 5 -a 2a 2 4 6 8 4a 2a 2a a 0, 64, 128, -64
1 6 -a 2a 1 4 5 8 -4a 2a -2a a 0, 64, 128, -64
1 7 -a 2a 1 3 6 8 -4a -2a 2a a 0, 64, 128, -64
2 3 a -a 3 4 5 6 2a a -2a -a 0, 128
2 4 a -a 1 2 3 4 2a a 2a a 0, 128
2 4 -a 2a 5 6 7 8 2a a 2a a 0, 128
2 5 a -a 2 3 6 7 -2a 2a -a a 0, 128
2 6 a -a 1 3 5 7 2a 2a a a 0, 128
2 6 -a 2a 2 4 6 8 2a 2a a a 0, 128
2 8 -a 2a 1 3 6 8 -2a -2a a a 0, 128
3 4 a -a 1 2 5 6 2a a 2a a 0, 128
3 4 -a 2a 3 4 7 8 2a a 2a a 0, 128
3 5 a -a 2 4 5 7 -2a -a 2a a 0, 128
3 7 a -a 1 3 5 7 2a a 2a a 0, 128
3 7 -a 2a 2 4 6 8 2a a 2a a 0, 128
3 8 -a 2a 1 4 5 8 -2a a -2a a 0, 128
4 6 a -a 2 4 5 7 -a -a a a 0
4 7 a -a 2 3 6 7 -a a -a a 0
4 8 a -a 1 3 5 7 a a a a 0
4 8 -a 2a 2 4 6 8 a a a a 0, 128
5 6 a -a 1 2 5 6 2a 2a a a 0, 128
5 6 -a 2a 3 4 7 8 2a 2a a a 0, 128
5 7 a -a 1 2 3 4 2a 2a a a 0, 128
5 7 -a 2a 5 6 7 8 2a 2a a a 0, 128
5 8 -a 2a 1 2 7 8 -2a -2a a a 0, 128
6 7 a -a 3 4 5 6 a a -a -a 0
6 8 a -a 1 2 3 4 a a a a 0
6 8 -a 2a 5 6 7 8 a a a a 0, 128
7 8 a -a 1 2 5 6 a a a a 0
7 8 -a 2a 3 4 7 8 a a a a 0, 128

Table 8. Weight{4 inputs giving a PHT of weight 1.

input input PHT PHT
bytes values byte value
1 2 3 4 128 128 128 128 2 128
1 3 5 7 128 128 128 128 3 128
1 2 5 6 128 128 128 128 5 128
1 2 3 5 -64 128 128 128 8 64
1 2 3 5 64 128 128 128 8 -64

Table 9. Weight{3 inputs giving a PHT of weight 2. (No such inputs give a PHT of
weight 1.)

input input PHT PHT
bytes values bytes values
1 2 3 64 128 128 7 8 128 64
1 2 3 -64 128 128 7 8 128 -64
1 2 5 64 128 128 4 8 128 64
1 2 5 -64 128 128 4 8 128 -64
1 2 7 64 128 128 3 8 128 64
1 2 7 -64 128 128 3 8 128 -64
1 3 5 64 128 128 6 8 128 64
1 3 5 -64 128 128 6 8 128 -64
1 3 6 64 128 128 5 8 128 64
1 3 6 -64 128 128 5 8 128 -64
1 4 5 64 128 128 2 8 128 64
1 4 5 -64 128 128 2 8 128 -64
2 3 4 128 128 128 2 8 128 128
2 4 6 64 128 128 6 8 64 64
2 4 6 -64 128 128 6 8 -64 -64
2 5 6 128 128 128 5 8 128 128
3 4 7 64 128 128 4 8 64 64
3 4 7 -64 128 128 4 8 -64 -64
3 5 7 128 128 128 3 8 128 128
5 6 7 64 128 128 7 8 64 64
5 6 7 -64 128 128 7 8 -64 -64

Table 10. Weight{3 inputs giving a PHT also of weight 3.

input input PHT PHT
bytes values bytes values
1 2 3 128 128 128 4 6 8 128 128 128
1 2 4 64 64 128 4 5 6 128 128 64
1 2 4 128 128 128 2 4 8 128 128 128
1 2 4 -64 -64 128 4 5 6 128 128 -64
1 2 5 128 128 128 6 7 8 128 128 128
1 2 6 64 64 128 2 6 7 128 64 128
1 2 6 128 128 128 5 7 8 128 128 128
1 2 6 -64 -64 128 2 6 7 128 -64 128
1 3 4 64 64 128 3 4 6 128 64 128
1 3 4 128 128 128 2 6 8 128 128 128
1 3 4 -64 -64 128 3 4 6 128 -64 128
1 3 5 128 128 128 4 7 8 128 128 128
1 3 7 64 64 128 2 4 7 128 64 128
1 3 7 128 128 128 3 7 8 128 128 128
1 3 7 -64 -64 128 2 4 7 128 -64 128
1 5 6 64 64 128 3 6 7 128 128 64
1 5 6 128 128 128 5 6 8 128 128 128
1 5 6 -64 -64 128 3 6 7 128 128 -64
1 5 7 64 64 128 4 5 7 128 128 64
1 5 7 128 128 128 3 4 8 128 128 128
1 5 7 -64 -64 128 4 5 7 128 128 -64
2 3 6 64 128 128 2 6 8 128 -64 64
2 3 6 -64 128 128 2 6 8 128 64 -64
2 3 7 128 64 128 2 4 8 128 -64 64
2 3 7 128 -64 128 2 4 8 128 64 -64
2 4 5 64 128 128 5 6 8 128 -64 64
2 4 5 -64 128 128 5 6 8 128 64 -64
2 5 7 128 64 128 5 7 8 128 -64 64
2 5 7 128 -64 128 5 7 8 128 64 -64
3 4 5 64 128 128 3 4 8 128 -64 64
3 4 5 -64 128 128 3 4 8 128 64 -64
3 5 6 128 64 128 3 7 8 128 -64 64
3 5 6 128 -64 128 3 7 8 128 64 -64

B Program for SAFER K{128

The following is a TURBO PASCAL program that implements encryption with
the cipher SAFER K{128:
PROGRAM Full r Rounds max 12 of SAFERK128 cipher;

VAR a1,a2,a3,a4,a5,a6,a7,a8, b1,b2,b3,b4,b5,b6,b7,b8, r: byte;
k: ARRAY[1..25,1..8] OF byte; ka, kb: ARRAY[1..8] OF byte;
i,j,ag: integer; logtab, exptab: ARRAY[0..255] OF integer;

PROCEDURE mat1(VAR a1, a2, b1, b2: byte);
BEGIN b2:= a1 + a2; b1:= b2 + a1; END; BEGIN
fThe powers of the primitive element 45 of GF(257) are computed and put in
table "exptab". Logarithms are put in table "logtab".g
logtab[1]:= 0; exptab[0]:= 1;
FOR i:= 1 TO 255 DO
BEGIN
exptab[i]:= (45 * exptab[i - 1]) mod 257; logtab[exptab[i]]:= i;

END;
exptab[128]:= 0; logtab[0]:= 128; exptab[0]:= 1;
ag:= 1; writeln;
writeln('Enter number of rounds r (max. 12) then hit CR.');
readln(r); writeln;
REPEAT
BEGIN
writeln('Enter plaintext in 8 bytes (integers from 0 to 255)');
writeln('separated by spaces, then hit CR.');
readln(a1, a2, a3, a4, a5, a6, a7, a8);
writeln('Enter left half of key (Ka) in 8 bytes then hit CR.');
readln(ka[1],ka[2],ka[3],ka[4],ka[5],ka[6],ka[7],ka[8]);
writeln('Enter right half of key (Kb) in 8 bytes then hit CR.');
readln(kb[1],kb[2],kb[3],kb[4],kb[5],kb[6],kb[7],kb[8]); writeln;
writeln('Key Ka is', ka[1]:4,ka[2]:4,ka[3]:4,ka[4]:4,

ka[5]:4,ka[6]:4,ka[7]:4,ka[8]:4);
writeln('Key Kb is', kb[1]:4,kb[2]:4,kb[3]:4,kb[4]:4,

kb[5]:4,kb[6]:4,kb[7]:4,kb[8]:4);
writeln('PLAINTEXT is ',a1:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,a8:4);
fThe next instructions implement the key schedule that derives keys
K1, K2, ... K2r+1 from the 128 bit input key (Ka, Kb).g
fK1 is set equal to Kb.g
FOR j:= 1 TO 8 DO k[1,j]:= kb[j];
fEach byte of the key Ka is right rotated by 3.g
FOR j:= 1 TO 8 DO ka[j]:= (ka[j] shr 3) + (ka[j] shl 5);
FOR i:= 1 TO r DO
BEGIN
FOR j:= 1 TO 8 DO
BEGIN
fEach byte of keys Ka and Kb is further left rotated by 6.g

ka[j]:= (ka[j] shl 6) + (ka[j] shr 2); kb[j]:= (kb[j] shl 6) + (kb[j] shr 2);
fThe key biases are added to give the keys K2i and K2i+1.g
k[2*i,j]:= ka[j] + exptab[exptab[18*i+j]];
k[2*i+1,j]:= kb[j] + exptab[exptab[18*i+9+j]];

END;
END;
FOR i:= 1 TO r DO fThe r rounds of encryption begin here.g
BEGIN
fKey 2i-1 is mixed bit and byte added to the round input.g
a1:= a1 xor k[2*i-1,1]; a2:= a2 + k[2*i-1,2];
a3:= a3 + k[2*i-1,3]; a4:= a4 xor k[2*i-1,4];
a5:= a5 xor k[2*i-1,5]; a6:= a6 + k[2*i-1,6];
a7:= a7 + k[2*i-1,7]; a8:= a8 xor k[2*i-1,8];
fThe result now passes through the nonlinear layer.g
b1:=exptab[a1];b2:=logtab[a2];b3:=logtab[a3];b4:=exptab[a4];
b5:=exptab[a5];b6:=logtab[a6];b7:=logtab[a7];b8:=exptab[a8];
fKey 2i is now mixed byte and bit added to the result.g
b1:= b1 + k[2*i,1]; b2:= b2 xor k[2*i,2];
b3:= b3 xor k[2*i,3]; b4:= b4 + k[2*i,4];
b5:= b5 + k[2*i,5]; b6:= b6 xor k[2*i,6];
b7:= b7 xor k[2*i,7]; b8:= b8 + k[2*i,8];
fThe PHT of the result is now computed to complete the round.g
mat1(b1, b2, a1, a2); mat1(b3, b4, a3, a4);
mat1(b5, b6, a5, a6); mat1(b7, b8, a7, a8);
mat1(a1, a3, b1, b2); mat1(a5, a7, b3, b4);
mat1(a2, a4, b5, b6); mat1(a6, a8, b7, b8);
mat1(b1, b3, a1, a2); mat1(b5, b7, a3, a4);
mat1(b2, b4, a5, a6); mat1(b6, b8, a7, a8);
writeln('after round',i:2,a1:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,a8:4);

END;
fKey 2r+1 is now mixed bit and byte added to form the cryptogram.g
a1:= a1 xor k[2*r+1,1]; a2:= a2 + k[2*r+1,2];
a3:= a3 + k[2*r+1,3]; a4:= a4 xor k[2*r+1,4];
a5:= a5 xor k[2*r+1,5]; a6:= a6 + k[2*r+1,6];
a7:= a7 + k[2*r+1,7]; a8:= a8 xor k[2*r+1,8];
writeln('CRYPTOGRAM is',a1:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,a8:4);writeln;
writeln('Type 1 & CR to continue, 0 & CR to stop.');readln(ag);

END
UNTIL ag = 0;

END.

C Examples of SAFER K{128 Encryption

Key Ka is 8 7 6 5 4 3 2 1
Key Kb is 8 7 6 5 4 3 2 1
after round 1 101 42 122 106 63 111 225 227
after round 2 102 122 66 171 75 196 228 30
after round 3 114 219 165 207 71 24 132 155
after round 4 117 53 164 99 161 204 201 48
after round 5 132 77 246 149 5 187 182 27
after round 6 199 89 95 137 71 106 55 152
after round 7 40 214 206 250 209 115 253 33
after round 8 166 126 11 244 39 244 4 61
after round 9 178 50 26 234 35 53 4 119
after round 10 107 97 193 179 197 19 126 173
after round 11 246 216 224 225 46 28 176 2
after round 12 47 211 218 110 13 45 17 209

Key Ka is 1 2 3 4 5 6 7 8
Key Kb is 8 7 6 5 4 3 2 1
after round 1 245 74 156 7 16 15 87 214
after round 2 154 238 95 247 240 190 143 127
after round 3 179 1 127 195 35 207 215 252
after round 4 25 120 166 188 225 251 99 51
after round 5 46 38 108 134 111 249 162 200
after round 6 130 171 126 19 101 109 29 199
after round 7 5 15 205 166 46 98 19 78
after round 8 37 162 212 102 129 250 124 2
after round 9 126 21 150 201 83 135 164 152
after round 10 204 215 66 130 100 178 191 96
after round 11 254 153 253 121 114 99 71 84
after round 12 224 39 89 225 161 235 19 140

References

[BIH90] E. Biham and A. Shamir, \Di�erential Cryptanalysis of DES-like Cryptosys-
tems," in Advances in Cryptology{CRYPT0 '90 (Eds. A. J. Menezes and S. A.
Vanstone), Lecture Notes in Computer Science No. 537. Heidelberg and New
York: Springer, 1991.

[BIH93] E. Biham and A. Shamir, Di�erential Cryptanalysis of the Data Encryption

Standard. New York: Springer, 1993.
[HAR95a] C. Harpes, \A Generalization of Linear Cryptanalysis Applied to SAFER,"

Technical Report, Signal and Info. Proc. Lab., Swiss Federal Inst. Tech.,
Zurich, March 9, 1995.
(http://www.isi.ee.ethz.ch/isiworld/isi/research/)

[HAR95b] C. Harpes, G. G. Kramer and J. L. Massey, \A Generalization of Linear
Cryptanalysis and the Applicability of Matsui's Piling{Up Lemma," to be
presented at EUROCRYPT '95.

[HUB90] K. Huber, \Neue Kryptographische Verfahren durch Kombination von Op-
erationen in endlichen K�orpern mit der schnellen Walshtransformation," un-
published manuscript, presented and distributed to participants at the Telesec
Arbeitskreis Kryptosysteme, Darmstadt, Germany, Oct. 2, 1990.

[KNU95] L. R. Knudsen, \A Weakness in SAFER K{ 64," manuscript submitted to
CRYPTO '95, Feb. 16, 1995.

[LAI91] X. Lai, J. L. Massey and S. Murphy, \Markov Ciphers and Di�erential Crypt-
analysis," pp. 17{38 in Advances in Cryptology{EUROCRYPT '91 (Ed. D.
W. Davies), Lecture Notes in Computer Science No. 547. Heidelberg and New
York: Springer, 1991.

[LAI93] X. Lai and J.L. Massey, \Hash Functions Based on Block Ciphers," Advances
in Cryptology{EUROCRYPT '92 (Ed. R. A. Rueppel), Lecture Notes in Com-
puter Science No. 658. Heidelberg and New York: Springer, 1993.

[MAS94] Massey, J. L., \SAFER K{64: A Byte-Oriented Block Ciphering Algorithm,"
pp. 1-17 in Fast Software Encryption (Ed. R. Anderson), Proceedings of the
Cambridge Security Workshop, Cambridge, U. K., Dec. 9{11, 1993, Lecture
Notes in Computer Science No. 809. Heidelberg and New York: Springer, 1994.

[MAT93] M. Matsui, \Linear Cryptanalysis Method for DES Cipher," pp. 386-397 in
Advances in Cryptology{ EUROCRYPT '93 (Ed. T. Helleseth), Lecture Notes
in Computer Science No. 765. New York: Springer, 1994.

[MAT94] M. Matsui, \The First Experimental Cryptanalysis of the Data Encryp-
tion Standard," pp. 1{11 in Advances in Cryptology{CRYPT0 '94 (Ed. Y.
G. Desmedt), Lecture Notes in Computer Science No. 839. Heidelberg and
New York: Springer, 1994.

[PER94] S. R. Perkins, \Linear Cryptanalysis of the SAFER K{64 Block Cipher,"
Diploma Thesis, Signal & Info. Proc. Lab., Swiss Fed. Inst. of Tech., Zurich,
15 July 1994.

[SCH92] C. P. Schnorr, \FFT{Hash II, E�cient Cryptographic Hashing," pp. 45{54
in Advances in Cryptology{EUROCRYPT '92 (Ed. R. A. Rueppel), Lecture
Notes in Computer Science No. 658. Heidelberg and New York: Springer, 1993.

[VAU95] S. Vaudenay, \On the Need of Multipermutations / Cryptanalysis of MD4
and SAFER," this volume.

This article was processed using the LaTEX macro package with LLNCS style

