

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

IEEE Transactions on Software Engineering

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa26037

Paper:

Thimbleby, H. (2015). Safer User Interfaces: A Case Study in Improving Number Entry. IEEE Transactions on

Software Engineering, 41(7), 711-729.

http://dx.doi.org/10.1109/TSE.2014.2383396

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

http://cronfa.swan.ac.uk/Record/cronfa26037
http://dx.doi.org/10.1109/TSE.2014.2383396
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

1

Safer user interfaces:
A case study in improving number entry

Harold Thimbleby

Swansea University

harold@thimbleby.net

Cite as: IEEE Transactions on Software Engineering, DOI 10.1109/TSE.2014.2383396, 2015

Abstract—Numbers are used in critical applications, including
finance, healthcare, aviation, and of course in every aspect of
computing. User interfaces for number entry in many devices
(calculators, spreadsheets, infusion pumps, mobile phones, etc)
have bugs and design defects that induce unnecessary use errors
that compromise their dependability.

Focusing on Arabic key interfaces, which use digit keys

(0 – 9) usually augmented with correction keys, this paper
introduces a method for formalising and managing design prob-
lems.

Since number entry and devices such as calculators have been
the subject of extensive user interface research since at least
the 1980s, the diverse design defects uncovered imply that user
evaluation methodologies are insufficient for critical applications.
Likewise, formal methods are not being applied effectively. User
interfaces are not trivial and more attention should be paid to
their correct design and implementation.

The paper includes many recommendations for designing safer
number entry user interfaces.

“The most important property of a program is

whether it accomplishes the intentions of its

user.” Tony Hoare [13]

D.2.17.e: Error processing, Software/Software Engineering.

D.2.14.a: User interfaces, Human Factors in Software Design.

H.5.2: User Interfaces, Information Interfaces and Represen-

tation (HCI).

I. INTRODUCTION

PROGRAMMING IS DIFFICULT. Over fifty years ago

what are now called formal methods were developed

so programs could be implemented that reliably achieved

what their designers intended. Dijkstra memorably argued that

debugging could only find bugs [6]: being unable to find bugs

did not mean there were no bugs — no amount of debugging

can prove the absence of bugs. One therefore needs to prove

a program is correct. Hoare and others developed various

rigorous formal techniques to reason correctly about programs

without relying on debugging.

Dijkstra’s comment recalls Popper’s scientific philosophy of

refutation [28]: Popper defined criteria for scientific theories

and showed it is impossible to prove a theory correct by

experiment. Both Dijkstra and Popper are right for the same

reasons. It follows that in principle one cannot use empirical

experiments to establish a user interface is correct.

Yet, according to the international standard ISO 9241,

which defines best practice [14], user interfaces should be

implemented, tested on users, bugs fixed, and then re-tested

in an iterative, experimental cycle. This empirical process

involves human participants and statistics to ensure sufficiently

reliable conclusions are drawn despite natural variation in

human behaviour and performance. Particular care has to be

taken to ensure that the participants appropriately represent the

final users of the system.

Building user interfaces to be used by people is a very

different type of problem than building programs to be run

by computers. Designers cannot plausibly anticipate all user

needs and requirements in detail, so a prototype is developed

and tested on users. Indeed, users may change how they behave

or change what they want after they start using a prototype,

so the process has to be iterated.

Yet some user interfaces are safety critical and must be

developed in ways that must avoid or mitigate safety issues.

A balance needs to be struck: formal methods should be

used to assure correctness and the absence of defects, and

conventional usability experiments should be used to polish

user interfaces and identify classes of defect that should then

be proved absent. For example user experiments or expert

heuristic analysis might identify the need for undo, then formal

methods can be used to ensure that undo is available and works

correctly in every state of the system.

Unfortunately, most user interface experts think formal

methods are inaccessible and inapplicable, and most formal

methods experts think user interfaces are trivial (which is an

ironic consequence of “ease of use”). And a third group, many

designers and programmers, just build user interfaces that are

subject to neither usability nor formal scrutiny because they

seem so simple they “obviously” work. User interfaces for

number entry are a case in point.

The present paper is concerned with user interfaces for num-

ber entry, and specifically number entry using conventional

Arabic numeric keys, as illustrated in figure I, or as can be used

with standard QWERTY keyboards. Such user interfaces are

used for many purposes: dates and times, telephone numbers,

passcodes for security systems, cash machines, finance and

mathematics generally, as well as in numerous computer

applications, from setting tab positions in word processors to

scaling images.

Handheld calculators are a very familiar application of

number entry, so they will be used to illustrate many design

issues in this paper. By using real, clearly identified devices

we demonstrate the techniques discussed scale to design issues

2

0.

7 8 9

4 5 6

1 2 3

0 • C

Fig. 1. Sketch of a simple numeric user interface of the type explored in this
paper. Many alternative keyboard layouts are shown in figure 2. Note that a
layout does not specify any interaction design decisions. For example, it is
not possible to tell what the key C does; after pressing it, will or 0 or

nothing be displayed? Perhaps the C means “correct” rather than “cancel”
and the display will change to an earlier display, say 123 or 12. . . . ?

that arise in real systems; the discussion is not limited to ide-

alised systems. Furthermore, as consumer products, calculators

are very easy to obtain to replicate and explore the defects

examined in this paper. A note at the end of this paper briefly

summarises all devices mentioned in this paper.

A. Contributions of this paper

We use the term rule to mean a design property that can be

used to express interaction properties precisely and that can

be reasoned with. If a user interface is correctly implemented,

then it will obey its rules, which in turn were derived from

design requirements, themselves established by empirical ex-

periments (or based in the relevant literature or experience

of the domain of application). Crucially, designers (or the

design tools they use) should be able to think clearly about

rules, for example considering whether they are consistent and

cover all possible cases of interaction. Rules cannot be seen

by users, thus designers have an obligation to carefully select

and implement appropriate rules.

We will show that rules user interfaces could obey can

be stated using a simple notation, which we will introduce.

One can then reason how to design safer and more consistent

number entry user interfaces. Our notation is based on and is

equivalent to Hoare triples [13]. It would have been possible

to express the same issues in many other notations, such as

HOL, PVS, SMV, TLA and VDM. However, many formal

methods have steep learning curves, and there is a tendency to

promote one over another because once you know a notation,

using it seems much easier than learning an alternative. In

contrast, our lightweight notation takes little effort to learn and

can be used immediately. The disadvantage is that there is no

tool support; there is no automatic way to ensure coverage,

type correctness or other properties. Nevertheless, it is trivial

to translate the notation into a tool-supported notation or

programming language (like SPARK, which has assertions).

The real contribution, then, is not so much the notation, but

demonstrating that user interfaces are not designed rigorously,

and that they could be and should be.

II. MOTIVATING EXAMPLES

We start with some broad-ranging motivating examples,

which illustrate common design defects. Then, in contrast,

section III, shows that analogous problems were recognised

over fifty years ago in programming, and for which there are

now many ways to manage them or avoid them. Putting user

interface design and programming one-after-the-other high-

lights that user interface design has not adopted the established

benefits of formal methods.

A. Problems of unclear, unstated design requirements

Fu [7] points out a surprising lack of regard for the

specification of requirements in medical device software, even

though the field is safety critical and regulated. Devices that

are not safety critical in a regulatory sense (such as handheld

calculators), even though they may be used in medical and

other safety critical applications, fare even worse.

User interfaces implementing unstated, incomplete or incon-

sistent requirements will have defects, and probably unnec-

essary and confusing variation. Number entry has interesting

problems: it appears to be simple, so designers may not bother

to specify and analyse it adequately.

Numerical issues such as overflow interact with concrete

display representations, such as field widths. Many number

interfaces ignore excess input after the “end” of a number and

some ignore “incorrect” keystrokes — if the user interface ex-

pects integers, 1.5 may be misread as either 1 or 15 depending

on the implementation. Numbers may be syntactically invalid

or out of range, but most user interfaces ignore errors (e.g.,

two decimal points) and happily process some valid number

(e.g., the prefix up to the second decimal point, ignoring it and

anything beyond it). No number entered may be converted to

a default value (typically zero or a previous value) without the

user being aware. And so on.

Except when the display is full, number entry displays

behave as if digits are appended to whatever is displayed. This

behaviour can be implemented in many ways: primarily, either

as a string operation or as a numerical operation. As string

concatenation, the meaning of the decimal point is that it is

just a character. Alternatively, as a numerical operation, the

decimal point is typically implemented as a flag (or a transition

in control flow) that changes the meaning of subsequent digits.

Amongst other differences, the behaviour of two decimal

points will be different in the two methods of implementation.

As a user will only rarely enter two decimals, these differences

will be unfamiliar and possibly a surprise. Unpredictability is

arguably one of the last things a user wants after an error.

Many users spend most of their time in general purpose

environments, such as word processors and web browsers. In

these environments, all input is simple text, so decimal points

are treated no differently to digits, and the delete key deletes

the previous keystroke. The user’s model that is acquired and

reinforced in this environment does not work on number-based

user interfaces: the keys • (decimal point), ± (change

sign) and ← (delete) all behave differently.

Even simple-looking requirements for number entry may

be inconsistent. The Institute of Safe Medication Practices

3

(ISMP) has rules to improve the legibility of numbers [17]:

“naked decimal points” are forbidden (e.g., because .5 may

be mistaken as 5), and trailing zeros after a decimal point are

forbidden (e.g., because 5.0 may be mistaken as 50). Unfor-

tunately these well-meaning requirements cannot be invariant:

as a number is entered in a user interface it may go through

error-prone intermediate stages. If a user enters 5 • 5

and pauses while entering it (for how long?), what should

be displayed? If the ISMP rules are rigorously followed, the

intermediate number should be displayed as 5 , but this makes

the behaviour of the next keystroke, whether a digit or a

delete key, ambiguous — which defeats the point of the ISMP

requirements! One solution is for the display to flash or change

colour so that invalid syntax can be visible [43]. In other

words, despite their goals, unmodified ISMP requirements

cannot be considered user interaction requirements: they are

problematic in any number display that can be interacted with.

B. Problems of logs

Many devices record a log of what they do, and this may be

used to help understand incidents involving use of the device.

For example, in a hospital if a patient receives an overdose

of a drug, then the log of the infusion pump (a device that

delivers drugs automatically) may be consulted to see if the

pump delivered the overdose. This would then be evidence

that the user instructed the device to do so.

Unfortunately if the infusion pump has a user interface

design (as many do) like the Casio HR-150TEC calculator

the following scenario is plausible:1

User keyed 0 • • ← 5 — that is, the user

accidentally keyed two decimal points and pressed ← to

delete the second decimal point.

User thought 0 • • ← 5 = 0.5 , because ←

would delete the preceding keystroke, as it does on any PC

application.

Device logged The calculator records that the user entered

the number 5 on its log.

If the user keyed something like this, continuing with the

calculation would update the display and these keystrokes

would be lost; the final result would be incorrect, and the

log would show the user made an uncorrected mistake. The

point of using a calculator is that you do not know what

the answer is, and therefore few users would be able to tell

the difference between a calculation based on 0.5 and one

unexpectedly based on 5. Many devices are similar: a number

the user enters (e.g., a drug dose) is generally part of a larger

interaction sequence, and in general it is very hard to spot an

intermediate error.

One can imagine an incident investigator confronting a

nurse with the log: “You told the infusion pump to deliver

5 mL of the drug, which killed the patient.” The nurse might

say, “I thought I’d entered 0.5, but if the log says 5, I suppose

1As explained in the introduction, we use concrete examples from specific
devices, briefly summarised at the end of the paper, so that they may be easily
replicated by the reader. Casio is a leading manufacturer and its devices are
widely available and much easier to obtain than infusion pumps. All problems
discussed arise on a wide variety of devices and are not restricted to any one
manufacturer.

I must have made a mistake.” Thus the nurse incriminates

themselves. In fact, the device may have implemented delete

like the HR-150TEC and, if so, its behaviour would have

induced the fatal error and misdirected blame on the user.

Until user interfaces are implemented correctly, their logs

cannot be believed.

In fact, the HR-150TEC displays a decimal point all the

time, regardless of whether the user has keyed one. It is likely,

then, that the program code implementing the number entry

user interface does not represent decimal points explicitly, and

therefore it was problematic to implement the delete key as a

general delete key. Rather, it is easier to implement it as an

operation on a numeric value, ignoring the decimal point. This

is exactly how delete behaves on the Casio.

Interestingly, the entire explanation of the delete key in

the HR-150TEC user manual is the single concrete example

“7 8 9X → 7 8” just correcting a single digit, and from which

a user would certainly be justified generalising its behaviour

to deleting other keystrokes. Perhaps the detailed behaviour of

the delete key was overlooked?

C. Problems of design variation

There is considerable variability in user interface design

for managing error: almost all user interfaces handle correct

numbers correctly, but they vary widely on how they handle

error, as illustrated in the examples above. Such arbitrary

approaches to handle error will induce transfer errors: that is,

over time, users acquire low level skills to correct error: doing

such-and-such corrects an error and the user can continue.

These strategies become automated and drop out of conscious

attention. Hence on a system that behaves in a different way,

in particular in any way that does not draw the user’s attention

to the differences, the user is likely to automatically correct an

error and make the situation worse. From the perspective of the

present paper, it appears that the lack of consistency follows

from failing to think through error handling; for example, we

can imagine simple program code that implements “read a

number” and, say, simply terminates when it parses an unex-

pected character as if it was the end of the number. In section

III, below, we consider a classic programming problem, much

simpler than reading a number, but nevertheless an error-prone

example that illustrates the need for clearer thinking.

The Casio fx-85GT implements the delete key so it deletes

both digits and decimal points; in the example above (section

II-B), the user would have entered 0.5, not 5, after correcting

multiple decimal points. This variation in user interface design

will induce transfer errors. A user familiar with one Casio

calculator will be induced to have problems with another.

Unnecessary design variation for the same task seems to be

confirmation that delete key behaviour has been overlooked.

Variation also occurs between device manufacturers. Below,

three devices are compared handling the same sequence of

keystrokes:

4

Key Casio Casio Apple

press fx-85GT HR-150TEC iPhone

AC 0. 0

0 0 0. 0

• 0. 0. 0.

• 0.. 0. 0.

← 0. 0. 0

5 0.5 5. 5

D. Problems of ambiguous display feedback

Part of the problem with decimal points is that the display

does not unambiguously show the user how many decimal

points have been keyed. Many number user interfaces display
0. when they are switched on or cleared, and the display

does not change when the user keys 0 or • . Unfortu-

nately, this is ambiguous: if the user keys 5 next, the display

may change to 0.5 or to 5. .

The fx-85GT has a left-justified display, which ensures

that deleting a key always removes the right-most character

from the display, whereas on the more common right-justified

displays deleting a key moves the entire display contents right.

Deletion when the display shows 55. cannot provide

unambiguous feedback to show whether the 50 digit or the

05 digit was deleted.

Some calculators, including the HR-150TEC, use ◮ as

their representation of the delete key, which makes sense

as pressing ◮ moves the display contents to the right as

it deletes the right-most digit (provided the display is not

showing just 0.). However, on the HR-150TEC, the key
◮ will move the display right even when it is an answer

to a calculation, in which case ◮ is not deleting what the

user keyed!

E. Problems of negative numbers

Not all number entry user interfaces support negative values,

but for those that do there is a potential conflict with conven-

tional mathematical notation. On many calculators starting a

new expression with an operator like + adds the next value

to the previous result, which implies that starting a calculation

with − is ambiguous: it could mean start a negative number

or subtract a number from the previous result. Most calculators

resolve the problem by providing an unconventional key for

negating numbers, like ± or (-) .

Every calculator examined allows ± to be used anywhere

within a number. Thus ± 5 0 , 5 ± 0 and 5

0 ± are equivalent ways to enter −50. However, there

are major variations with how ± interacts with delete (see

table 1):

• On the Hewlett Packard EasyCalc 100 calculator, the

delete key ignores the ± key and deletes any

preceding digit. Hence 6 7 ± ← is −6, not 67.

• On the Apple iPhone, AC ± 0 ← displays
-NaN (“NaN” stands for “not a number,” and being

visible to the user indicates a bug).

• On Apple OSX, the calculator does not allow this: it

will not display -0 ; entering ± 9 results in 9 , so

a prefix ± is ignored; yet 9 ± ← 8 results in
-8 , even though immediately after the delete the

display is an unsigned 0 . The internal negative flag is

incorrectly programmed.

• C 9 ± ← ± results in NaN on OSX but
Error on the iPhone. Two pieces of code with the

“same” functionality from the same manufacturer

exhibit different bugs.

• When we tried to understand the behaviour of − on

the HR-150TEC, it froze until it was switched off and

on again.

• On the HR-150TEC, the sequence 4 – 5 =

results in 1 (when perhaps -1 was expected),

because the – keystroke turns the 4 to -4 , then the
5 is the next number added to it. This unusual

behaviour ensures that learning one calculator will be of

little help for using another.

It is interesting that two Apple calculators work in different

ways for something so “simple,” but this is not unusual

— elsewhere in this paper different models from the same

manufacturer have incompatible user interfaces, and figure 2

shows the “same” model from a single manufacturer may be

available in several incompatible variations.

The mixture of incompatible, confusing user interface de-

sign and actual bugs suggests that manufacturers have not

attempted to specify the requirements for negative numbers,

made careful design trade-offs, nor attempted to implement

them carefully or correctly.

F. Problems of input field overflow

Grete Fossbakk made a typing slip and accidentally trans-

ferred $100,000 of her money to an unknown person who

spent it [26]. With an accidentally repeated 5, she typed 12

digits into an account field, but unfortunately the first 11 digits

of the number was a valid Norwegian account number, even

though the full 12 digit number itself was an invalid account

number.

The repeated 5 may have been caused by a faulty keyboard

or software rather than a keying slip, though presumably she

was using her own PC and did not use the bank’s PC, so the

keybounce may have been technically her responsibility (if

one agrees with the various waivers manufacturers impose on

users). In other areas, key bounce is recognised by regulators

as a regular and serious problem, which has resulted in product

recalls and seizures [15].

In user studies to explore how Fossbakk made the error [26],

41% of numbers entered were too long. It is surprising that the

bank does not check for such a common error. Amusingly, in

its defence the bank argued that there should not be different

rules of responsibility depending on the length of a number!

In 2013, my own Lloyds Bank internet account uses an

HTML text field for account numbers, defined as:

<input type="text" autocomplete="off" ...

maxlength="8"

/>

The parameter maxlength="8" ensures the browser will

discard any characters typed in excess of 8. Again, the logs

5

Canon HP HP Apple Apple Casio Samsung
Key sequence F-502G EasyCalc 100 SmartCalc 300s iPhone OSX OfficeCalc 100 Android

± 9 9 9 -9 -9 9 9 -9

6 7 ± ← -6 -6 67 -6 -6 -6 -6

± 0 ← 0 0 any number -NaN 0 0 Wrong format

9 ± ← ± 0 -0 Syntax ERROR Error NaN 0

9 ± ← 8 8 8 98 -NaN -8 8 -8

Table 1. There is no common way of handling negative numbers (section II-E). “Any number” arises because the SmartCalc inserts Ans , a
variable denoting the previous answer, making the input syntatically correct but numerically arbitrary. “NaN” means “not a number,” a bug

that should have been detected by the device and reported (e.g., as Error to the user) or should have been avoided altogether.

cannot show an auditor whether the user typed an invalid

account number that should have been rejected.

Number overflow can occur for many reasons. We might

be interested what proportion of the world’s population is

Welsh (I live in Wales). The population of Wales divided by

the population of the world can be found using a calculator:

3, 063, 500 ÷ 7, 300, 000, 000. The following results are ob-

tained:

Casio HS-8V 0.04. . .

Apple iPhone portrait 0.004. . .

Apple iPhone landscape 0.0004. . .

Hewlett Packard EasyCalc 100 0.0004. . .

All ignore digits that do not fit into the display — and none

report an error when they discard digits. The display is 8 digits

on the Casio HS-8V, but the world is 10 digits, so the division

is out by a factor of 100; the iPhone in portrait has a display

with 9 digits, so the answer is out by a factor of 10; and the

iPhone landscape display is larger than 10 digits, so it gets the

answer right. The EasyCalc would have similar problems with

calculations involving more than 12 digits, but the calculation

here does not reveal it.

Whatever is going on inside the Apple iPhone, arguably it

could have detected an error since it provides two different

answers. It could report an error when there is a discrepancy.

Probably the iPhone has a single “calculator engine” and in

portrait mode the user interface fails to tell the engine what the

user keyed after the first 9 digits. In this case, the engine cannot

do any better, as it is being let down by the user interface,

which in turn is letting the user down — it is discarding input

without any warning.

G. Problems of behaviour depending on value

The Baxter Colleague 3 volumetric infusion pump has a

numeric user interface: if the user enters 1 0 • 1

then the display shows 10.1 ; if the user enters 1 0 0

• 1 then the display shows 1001 , with no warning or

error sound that the decimal point has disappeared. In other

words, when the number entered is “large” the user interface

silently ignores decimal points — the number entered will be

a factor of 10, 100, etc, higher than the intended. This is a

design defect found on many medical devices [22].

Instead of using numerical values, the Sigma Spectrum uses

a character count limit, so it might accept 1 0 0 0

but if 1 0 0 • is keyed, it will not accept further

digits; thus forcing the number displayed to end in a decimal

point (forbidden under Institute of Safe Medication Practices

rules [17]). Despite numeric rounding being well known (and

appropriate in the domain) it will treat 100.9 as 100 not 101.

H. Problems of changing or editing values

Often a user will want to change a number; typically the

device will display the last number accepted in the same

place the user will edit or enter the new number. The Alaris

PC illustrates one problem: if the display shows 9 from

previous use, then pressing 0 • 1 will change the

display to 0.1 , but if the 9 is a number currently being

entered, then pressing 0 • 1 will change it to 90.1 .

Confusion arises because the Alaris PC does not distinguish

the previous and current numbers.

This is a failure of equal opportunity [30], which says input

and output should be exactly the same; here they look the

same but behave differently, which is a recipe for confusion.

If the user enters a number that is out of range the device

will not accept it, yet the number is displayed in the same

place as the previous number, which was in range. Thus the

Alaris PC discards the final digit the user keys; if the user tries

to enter 88888 when 9999 is the maximum, the display will

show 8888, dropping the last keystroke. Underflow presents

similar problems: the display might show 0. , warn that 0.

is less than the minimum (perhaps set at 0.1), yet forbid the

user keying 9 which would make the number larger than the

minimum — the problem is that once underflow is detected,

the number displayed has been “accepted” and is no longer

the number the user is entering (yet the display is identical)!

The Alaris PC requires fractional numbers to be entered

starting with a decimal point; a leading zero is therefore an

error. Hence if the display is 123 and the user keys 0 , it

is ignored except for a beep. Yet continuing and pressing •

changes the display to 0. as if the discarded zero was in fact

processed. (This design flouts the Institute of Safe Medication

Practices rules; see section II-A.)

The user interface would be simpler and more consistent if

the old values were never displayed when a user is entering

(or about to enter) a new value, and if the number the user is

keying is always faithfully displayed, regardless of overflow —

then the standard correction keys will work as the user expects.

As implemented on the Alaris PC, the device provides some

correction, but thus making its behaviour unpredictable.

6

I. Problems of unusual behaviour on errors

Many numeric user interfaces (such as the HS-8V) ignore

excess decimal points, so 1 • 2 • 3 is treated

as 1.23 without any error warning. The Graseby 3400 is

unusual: it treats decimal points as clearing the decimal part

of a number, so 1 • 2 • 3 is treated as 1.3

[38]. In Excel, 1 • 2 • 3 is treated as zero

without warning if it occurs in a SUM expression. Many PC

applications end a number at the first non-numeric character,

thus ignoring the error — JavaScript, which underlies most

web applications, treats 1..2 as 1, because an unexpected

decimal point ends a number without warning. Many examples

are provided in [40], which more generally illustrates the large

problem of system design that is heedless to error of all sorts.

J. Problems of confusing key clicks

Many devices (e.g., the Alaris PC) provide different sounds

when keys do different things; in particular an attentive user

can tell by the different sounds whether a key press is being

ignored. The Sigma Spectrum provides a “key click” sound

when any key is pressed whether or not the key does anything;

so (for example) keying 0.15 sounds exactly the same as if all

keys were handled correctly, but the device only shows 0.1 .

K. Problems of terminating number entry

Typically there is a key OK to confirm a number has been

completed; when this is pressed, the device records the number

and goes on to its next activity. Often any non-numeric key

confirms the number, but on some devices that allow many

numbers to be entered, such as the Sigma Spectrum, pressing
H changes the selected number — except that it does not

“confirm” any number. Instead, the number reverts to the

previous value before the user started entering it. In other

words, while a user might think H is just a “passive” cursor

movement (i.e., with no side-effects) it behaves instead like
C OK .

L. Problems of time-outs

Devices cannot tell whether a user has given up interact-

ing with them. Battery-powered devices have battery life to

conserve. Walk-up-and-use devices (like cash machines) do

not want the next user to continue with the interaction started

by the previous user. The solution is typically for the device

to switch off or revert to standby after no use for so-many

minutes.

The EasyCalc, despite having a photocell to provide power,

switches off after 5 minutes of inactivity. It does not beep

or otherwise warn the user it is about to switch off, and on

switching on the displayed number is lost but, strangely, the

memory register is not lost — so there is no technical reason

not to save the displayed number too. At least the display goes

blank so the user can see the device has reset.

In contrast, the Graseby 3400 [38] has a 4 second time-out

that zeros the number currently being entered. Hence, entering

0 • [delay] 5 will enter 5 instead of 0.5 .2

If there is an argument for n second time-outs, then there is

a pretty good argument for n+1 seconds — and so on! Since

there is no perfect time-out interval, a better idea may be to

flash and beep and try hard to recover the user’s attention;

if necessary there then might be a hard time-out, when the

device has reason to give up hope.

M. Problems of feature interaction

Features seem useful, so combining features seems even

more useful. Yet features may interact with each other detri-

mentally.

The HR-150TEC has a double-zero key 00 feature, to

speed up entering numbers with repeated zeros. Unfortunately

the key is handled specially by the delete key: pressing 00

then ← is treated as 0 . The reasoning is presumably that

the 00 may be pressed when 0 was intended, so ←

corrects that specific error rather than deleting the previous

keystroke, which is its normal meaning. Do the new types

of error and confusion offset the gains of the button? Unfor-

tunately, having a key 00 might sell more calculators, and

design trade-offs may then be secondary to sales.

N. Problems of transient error warnings

Eye tracking experiments [25] show that the user does not

pay perfect attention to the display. It is therefore advisable

that error states are persistent and cannot be unset accidentally,

and it may be advisable for errors to be associated with noises

or vibration so that the user is made aware of them more

effectively than just displaying a visual symbol.

The Apple iPhone calculator given the incorrect calculation

1÷0.+42 = will present the answer 42 — but it transiently

displays Error when the key + is pressed. The user

is likely to miss this warning, as they are concentrating on

pressing the correct keys not on tracking the display. If the

calculator had persistent error warnings, the warning would

still be there when the user is ready to read the answer: the

answer should be Error not 42 .

Many calculators display E (meaning “error”) on the far

left and will display any number right-justified in the main part

of the display. It is possible for a user to read the number and

think it is the answer without noticing the E at the other end

of the display. Therefore the main part of the display should

either be blank or, preferably, display Error or equivalent

warning. In some applications it may help the user further

to display Error! Press AC , or otherwise clearly prompt

the user that to proceed they must clear the error. (The word

“Error” can easily be written using seven segment displays, so

it could be reprogrammed for existing systems.)

O. Problems of inconsistent ergonomics

The ergonomics, layout, and presentation of number entry

user interfaces is clearly critical — poor lighting, poor tactile

2A 4 second time-out seems very short for this user interface. It is plausible
that internal hardware uses a 4 second time-out (e.g., to check that the motor
has not stalled) and inappropriately, as a side-effect, the same mechanism
resets the user interface if it has “stalled.”

7

feel, poor font have all be criticised (e.g., [41]). There is

classic research such as [5] which could inform design (or

more research) so the diversity evident in figure 2 suggests that

criteria other than usability and dependability drive user inter-

face design for number entry — the diversity must increase

transfer errors. Plausible design considerations in use must

include branding, compactness (i.e., weight, cost), business

engineering (once a user is familiar with a particular user

interface, any other user interface will seem hard and error-

prone in comparison), confusion marketing, etc.

When a user presses a key, the device should provide feed-

back. Many devices have physical keys that feel they “click”

when they are pressed, and many devices generate an audible

click either from the mechanical movement or generated by

software. Of course, successfully pressing a key is different

from successfully achieving the intended action on the device.

For example, it would be confusing if the display was full,

but pressing 2 gave all the feedback as if it had been

successfully entered. Devices should therefore provide more

than “mechanical” feedback, and should make appropriate

non-keyclick sounds when keys fail to work normally — if the

display does not change when a key is pressed, there should

be a warning.

P. Idiosyncratic variations

Burglar alarms are “walk up and use” user interfaces, so the

user might break off or start entering a number at any point,

and they are therefore often permissive [37] in when a number

starts. Since a typical alarm code is 4 digits the last four digits

the user keys is taken to be the number entered. Thus there

is no overflow; the most significant digit just disappears when

the next digit is keyed. This style of “scrolling” interface is

also surprisingly common in other contexts where it is clearly

inconsistent with the rest of the user interface design, and

where there is no walk up and use requirement.

Other variations are common too. Although the Apple OSX

System Preferences allows Arabic number entry, it sets times

in an idiosyncratic way. The display shows a valid time, such

as 9:45 , and when the user selects it to enter a number,

either the hours or minutes is selected. For example, 9: 45

shows the minutes is selected. Pressing digits now replace the

selected number; thus pressing 9 will change the display

to 9: 09 ; not to 59, and with the 4 silently lost. To enter

a time like 12:45 they have to select hours, press 1 2

then change the selection, then 4 5 . Moreover, there

is a time dependency: if 2 is entered, the time becomes
9: 2 then a moment later, 9: 02 ; if before a time-

out, pressing 3 will change the display to 9: 23 , but

pressing it after the time-out, there is a beep and the display

is unchanged. Within each component, digits move leftwards,

suggesting one might start entering a time like 12:45 in the

minutes component, but the colon does not work and just

beeps. If the user enters 12:45 with a delay between the 4

and 5 , the display becomes 12:04, then pressing the 5

will make it display 12:05 .

Then there are erroneous examples: if the user tries entering

a “time” such as 57:96 the display will be 07:09 — the

second digit of the first erroneous component is kept, but the

first digit of the second component is kept. If the user enters

1259, it may be displayed as 09:30 , with an unchanged

minutes setting. And so on.

We have not explained all of its features, and we are not

sure we have understood what we have explained. A user has

to read the display to check whether their intended number has

been entered correctly. Similar problems occur in date setting

user interfaces, with the added complication that day, month

and year numbers mutually interact in a way that minutes and

hours do not.

Q. It is not just numeric keypads . . .

This paper focuses on numeric keypads, but there are many

other forms of user interface for number entry. For example:

• The GE Dash 4000 uses a knob to adjust number

values; turning the knob clockwise will increase values,

anticlockwise will decrease values. So if a number

displayed is 40, turning the knob clockwise will show

successively 41, 42, 43, 44, 45, then 50, 55, 60. Turning

the number back, anticlockwise, will show 55, 50, 45,

40 — skipping values, not reversing the effects of the

preceding clockwise rotation.

• The BBraun Infusomat [4] uses four keys to enter

numbers: two allowing a cursor to be moved left and

right, and two for digits to be increased or decreased. If

the display shows 0 .__ a user can move the cursor

to the hundredths column, increase the digit by 1, yet
0.1 0 , not 0.0 1 , will be displayed — ten times

out from what the user entered, but without warning.

• Using handwriting with immediate recognition feedback

improves error rate [45].

III. PROGRAMMING MAXIMUM

The preceding section raised concerns with user interfaces,

yet analogous concerns in programming are taken very se-

riously. In this section we present a familiar programming

example to contrast the type of formal thinking routinely

applied to program code to gain the sorts of detailed insights

that are evidently lacking in user interface design. We take it

for granted that we should reason formally about programs to

ensure they are correct; we should not balk at reasoning about

user interfaces.

We could have chosen reading a number as an example,

but the code to do so would be distractingly long; instead,

suppose we wish to write some code in Java to simply find

the maximum value of an array a of integers. Here is how it

might be written:

1.1 int max = 0;

1.2 for(int i = 1; i < a.length; i++)

1.3 if(a[i] > max) max = a[i];

Testing is not sufficient. Many tests of this code will show

that it finds the maximum value correctly. It is possible

that “thorough” testing overlooks the critical cases that are

incorrect. Indeed, there is a problem of circularity: if you write

a program to find the maximum value of an array, how are

8

1 2 3

4 5 6

7 8 9

△• 0 ▽

Abbott Gemstar

7 8 9

4 5 6

1 2 3

△• 0 ▽

Abbott AimPlus

1 △2 3

4 5 6

7 8 9

• ▽0
CME BodyGuard 545

1 2 3 4 △5 •
6 7 8 9 ▽0

CME BodyGuard 545

△1 2 ▽3
4 5 6

7 8 9

0 •
Graseby 500

1 2 3 4

5 6 7 8

9 0 • C

Graseby Omnifuse

1 2 3

4 5 6 •
7 8 9 0

SK Medical SK-500III

7 8 9

4 5 6

1 2 3

0 •
SK Medical SK-600III

1 2 3 4

5 6 7 8

C 9 0 △
• ▽

Upreal UPR-900

1 2 3 •
4 5 6 0

7 8 9

Upreal CTN-TCI-V

1 2 3

4 5 6

7 8 9

0

Apple iPhone (phone)

C

7 8 9

4 5 6

1 2 3

0 •
Apple iPhone (calculator)

7 8 9 0

4 5 6 C

1 2 3 •
BBraun Vista Basic

7 8 9 0

4 5 6 •
1 2 3 C

DRE SP1500 Plus

1 2 3 4

5 6 7 8 C

• 0 9

DRE Avanti Plus

0 1 2 3

• 4 5 6

7 8 9

Sigma Spectrum

7 8 9

4 5 6

1 2 3

0 •
Sigma 6000 Plus

1 2 3

4 5 6

7 8 9

0 •
Sigma 8000 Plus

7 8 9

4 5 6

C 1 2 3

0 00 •
Casio MU-120T

7 8 9

4 5 6

C 1 2 3

0 00 000 •
Casio DJ-120D

7 8 9

4 5 6

1 2 3

C 0 00 •
Casio HR-150TEC

C

7 8 9

4 5 6

1 2 3

0 •
Casio HS-8V

1 2 3 4 5 6 7 8 9 0

.

•
QWERTY keyboard (not showing separate numeric keypad)

Fig. 2. Keyboard layout on a selection of number entry systems, showing that the same manufacturer and even the same model use different layouts (e.g.,
see the two variants of the CME BodyGuard 545, top right). The variety of keyboard designs will cause confusion in use, training and maintenance. The
schematics make the decimal point much clearer than on most devices; the schematics do not show the variety of uses of the “spare” button locations, which

are variously blank, “info,” etc. The and ▽represent up/down keys, in many cases dual uses for numeric keys, which is known to cause confusion [16]. Note
that telephones generally have a top line of 123 in contrast to calculators, which generally have a top line 789; on mobile phones and wristwatches (which
can run calculators as applications) this is likely to cause unnecessary confusion.

you going to check it is doing the right thing, since checking

is subject to the same blindspots that led to any errors in

the program in the first place? One might resort to multi-

version programming (i.e., using many “independent” teams

of programmers), but this has been robustly criticised as a

flawed approach [19].

Formal reasoning is essential. Thinking mathematically

about a program is more reliable than testing. Here, it would

reveal two flaws that testing may overlook. First, if the array

consists of only negative numbers, the code cannot give a

maximum value less than 0; it is therefore incorrect. Secondly,

the value a[0] is ignored. Both problems can be corrected

by replacing line 1.1 with int max = a[0].

In fact, with line 1.1 as int max = a[0] the invariant

max = maximum(a[0..0]) is established, and each itera-

tion of the for loop ends with max = maximum(a[0..i])

established, and i increases in steps of 1 up to a.length-1,

so on termination of the loop we have max = maxi-

mum(a[0..a.length-1]), which is what we want.

Formal reasoning would also beg to include the requirement

“and the array a is unchanged,” as the faulty code

2.1 int max = 0;

2.2 for(int i = 0; i < a.length; i++)

2.3 a[i] = 0;

is otherwise a correct way to ensure that max is the

maximum value of the array!

In summary, we have shown, as is well known, that

programming is deceptively hard, and that formal reasoning

increases the confidence that programs indeed implement what

9

they are required to do and, concurrently, we also improve

our understanding of what we want them to do. Conversely,

without formal reasoning it is unlikely — literally, there is

no reason — a program will do what is or should have been

intended, although it might deceptively look like it does.

A. Lessons from programming and formal methods

We conclude section III with four insights:

• User testing is not thorough (it does not guarantee

coverage) and it does not identify all possible problems

of a design. Although user interface evaluation is, or

should be routine, it focuses on what users can

experience in a short time. This will help identify

confusions and help improve user experience (UX), but

it does not have the reach to identify all bugs that will

eventually affect some users.

• Without rigorous reasoning it is very unlikely any user

interface will do what it is intended to do. Bugs in user

interfaces are hard to see and understand — and unlike

program code, the behaviour of a user interface cannot

be seen or read as a text. It has to be represented in

other ways.

• Formal methods is not just reasoning rigorously about

programs, but also about what we want them to do. In

the maximum example, an “obvious” invariant was not

tight enough to specify what the intended requirement

of the program really was.

• An intermediate approach, between user testing and

formal methods, is to employ stochastic testing based

on human error models. Here, simulated user trials

explore large, complex state spaces. This has speed and

coverage advantages over human evaluation, and is

simpler than formal methods; its twin disadvantages are

that a simulation cannot have the qualitative insights

human users will have, and unlike formal methods, it

cannot help design out errors as it can only help find

them — and to find an error, one needs a preconceived

concept of what the error might be. We do not discuss

stochastic methods in the present paper, but see [2],

[39], [4].

IV. PREVIOUS WORK

For many years around the 1980s, calculators were a

standard object for research in human-computer interaction

(HCI); notable papers include [47], [9], [23]. The primary

concern was usability and understanding the relation of the

user’s model to the device model. It is surprising that the

problems reported in the present paper were not highlighted

by this original 1980s research. In fact, HCI techniques seem

insufficient to identify safety problems. Moreover, the devices

that are studied in HCI are often devices that the experimenters

are very familiar with, and therefore there is a possibility

that both experimenters and experimental participants share

the same blindspots.

Thimbleby and Cairns [3] showed that many user interfaces

for numeric data entry ignore syntactic issues (for exam-

ple, allowing numbers with more than one decimal point).

They showed that restricting user input to syntactically valid

numbers would reduce unnoticed errors. The numeric syntax

of [3] was later generalised to arbitrary regular expressions

[43]. Thimbleby [36], [35] reviewed problems with calculators

specifically, and with W Thimbleby [46], [45] proposed novel

solutions that overcome many of the identified problems with

calculators.

A. Formalising user interfaces

Since the 1980s there have been attempts to formalise user

interface requirements [11], but these have not become main-

stream because the level of mathematical sophistication seems

out of proportion to the potential gains in user interface design

quality. More recently developments in automated reasoning

tools, such as theorem provers, have meant that original user

interface program code can be semi-automatically checked

for user interface properties like “predictability” [21], [22].

There is an important conference series on formal methods and

user interfaces, the ACM SIGCHI Symposium on Engineer-

ing Interactive Computing Systems [27] and its predecessor

DSVIS [8]. While exciting that user interface properties can

be formally verified, the skill required is still considerable and

the resulting research remains opaque to many practitioners.

The present paper focuses on formal reasoning for number

entry user interfaces. It identifies and solves many problems

that both the preceding HCI literature and the formal methods

literature has missed. This is an interesting blindspot: if

people cannot see problems, it does not matter whether formal

methods or empirical methods are used — there is still a

blindspot!

Our present interest in number entry user interfaces arose

through very detailed examination of user interfaces for hos-

pital infusion pumps, “simple” devices that deliver drugs

automatically to patients after nurses have entered relevant

dosages. After our first study [38], we have found that almost

all infusion pumps have number entry problems, and the

problem extends to almost all number entry interfaces of all

sorts [3]. While our previous papers identified the problem and

discussed its impact, we did not present a way to reason more

reliably about user interfaces so the problems would not arise

in the first place.

B. Human error

Reason’s Human Error [29] is a landmark book. He tax-

onimises human error: violations are actions that should not

happen (for example, the user sets out to perform a criminal

activity); then other forms of error can be broadly classified

as intentional or unintentional. An intentional error occurs

when the user mistakenly intends to do the wrong thing; in

the context of the present paper, intending to set an infusion

pump to 28.8 mL per hour and successfully doing so — when

the correct rate should have been 1.2 mL per hour — is an

intentional error.

Mistakes occur when the user correctly does the wrong

thing, perhaps due to a misunderstanding or lack of knowl-

edge. For example, a user might mistakenly believe that DEL

10

deletes the last key they press. They would then be mistaken

on many (but not all) devices — see section II-B for examples.

In contrast, slips and lapses are unintentional errors that the

user is unaware of. If a user performs the wrong operation,

this is a slip (e.g., pressing the wrong key because their finger

slipped); and if the user omits an action (e.g., by oversight)

then this is a lapse.

These are human taxonomies; from the engineering perspec-

tive, the issue is whether the errors can be blocked or managed,

and if so, whether the computer or other agent manages the

error. For example, a violation is typically a security problem

that can be mitigated by requiring passwords and keeping

logs (if the latter, so that if a user chooses to perform a

violation they know they will have to face recorded evidence).

Accidental errors can be mitigated by practice, redundancy,

safety checks, undo functions, and so on. An example of

redundancy would be to require two users to enter a critical

number, and to have a reconciliation process if the numbers

do not agree. Another example would be setting an infusion

pump not just to a rate, but also specifying the drug, the patient

weight, the concentration and the intended duration, etc; if the

infusion pump can work out that a drug is to be infused at an

inappropriate rate for a patient it can block it.

An intentional error can follow an unintentional error and

vice versa. For example, making a slip or lapse while using

a calculator will result in the calculator showing the wrong

result. This result may then be the number that is subsequently

used. The use of the incorrect number is then an intentional

error.

Reason additionally defines latent errors, oversights in a

design that “wait” for unanticipated conditions. Program bugs

are obvious latent errors, but many are more subtle and lie in

the requirements.

Many human errors occur predictably. For example, if we

say we will see you at 7:00, that is all we need to say to

you. But if we tell our alarm clock “the same thing” namely

to ring at 7:00 it will take additional steps for it to register

the instruction. The alarm clock cannot tell the difference

between entering 7:00 and entering 7:00 and finishing. As it

were, it might be “thinking” that we might still adjust the

time so we have to explicitly confirm it, even though it is an

unnecessary step in human-human interaction. Similarly, on

most calculators, one cannot calculate 4 + 5 by just pressing
4 + 5 , as a final step = is required. There is evidence

that “device oriented steps” are more error prone [1], but this

research does not define device oriented steps (e.g., is pressing
= a requirement of the task, or a device oriented requirement

of a calculator?). Avoiding the step makes users more accurate

[45].

In this paper, focusing specifically on number entry, viola-

tions and intentional errors are out of scope (they are typically

handled either before or after a number has been entered);

slips and lapses, on the other hand, occur frequently during

number entry, and we need engineering techniques to help the

user detect and manage them.

C. Error correction

While human factors research focuses on the sources of

error, what happens next is often more important. A user may

make a slip for any reason, but if it is noticed and there is

a way to correct it, the final outcome will be correct. Hence

designers should focus on reducing adverse outcomes (e.g.,

patient harm) [42]. Viewed from this perspective, an important

distinction is whether error is noticed or not and whether the

user or the system first notices it, and if so, what can be done

about it.

An error may lead to a bad outcome. How this may be

quantified to inform design trade-offs depends on the domain.

For example, an incorrect bank account number is either

invalid or another account number (see section II-F) whereas if

the number is a drug dose the relative error or a measure of the

patient outcome (e.g., in quality adjusted life years, QALYs) is

more insightful. Elsewhere we have compared user interfaces

using expected relative error [4], [25], [3].

V. RULES FOR NUMBER ENTRY

A computer program executes a sequence of statements,

much like a user executes a sequence of commands to control

a user interface, typically by pressing keys or tapping a screen.

The program code A; B; C behaves like the user “program”
A B C . Hoare’s insight [13] was that a formalised

process can be used to prove that if certain conditions P

hold and a program Q is executed and terminates, then

certain conditions R will hold. The relation may be written

{P}Q{R} in the modern Hoare triple notation. Depending on

the application, we may wish to prove R holds, we may wish

to derive a correct program Q, or we may want to weaken P

in some way so the program can be used in more situations

(so it is more robust), and so on. Notably, the triple notation

defines the relation between program code and logic, and all of

formal methods follows: one can refine a formal specification

to a program, one can talk about invariants, assertions and so

on with rigor and clarity.

We introduce the use of Hoare triples to help designers,

developers and programmers to reason about user interfaces.

Now note that the precondition P is a fact the user “knows”

and the goal the user wishes to achieve is a postcondition

R. More precisely what the user knows should imply P ,

and R should imply what the user wishes to achieve. In

general the user will have to learn (mainly by experimenting

with interactive systems) how to translate their tasks into

sequences of Q to incrementally achieve subgoals that col-

lectively achieve their tasks. There is a lot of complex human

factors qualifying all those claims [18] — including the fact

that the user may not often look at the display so will rely

on keystroke rules alone [25] — but the converse can be

expressed without qualification: if the designer does not know

the triples, the user has no grounds for valid reasoning, and the

user interface cannot be used dependably. It cannot be relied

on to accomplish the intentions of its user [13].

User actions Q are simple but P and R are complex:

Hoare’s notation then becomes hard to read as Q, often being

just a single keystroke, gets lost in the details. Therefore

11

we use an equivalent notation, inspired by the elegant visual

layout of Z schemas [32], [11], but with a wavey line to avoid

confusion with Z itself:

Hoare triple Equivalent schema notation

{P}Q{R}

Q

P

✿✿✿✿✿✿

R

We will occasionally need local definitions to declare names

and types, and we write these below the schema, e.g.:

Q

P

✿✿✿✿✿✿

R

s ∈ String

These definitions are not visible to the user: they allow us

to write triples concisely.

Next we show a very simple example, defining what hap-

pens when the user presses 5 when the display shows 0. :

5

display = 0.

✿✿✿✿✿✿

display = 0.5

Few devices behave like this. Instead, to remain faithful to

what real devices typically do, we must tighten the precondi-

tion:
5

display = 0. ∧ decimal point pressed after last AC

✿✿✿✿✿✿

display = 0.5

or relax the postcondition:
5

display = 0.

✿✿✿✿✿✿

display = 0.5 ∨ display = 5.

Complex preconditions or postconditions show how the

notation highlights uncertainty that can cause confusion for

users. In the example here, the confusion can easily be

prevented by better design.

Most program code uses variables. Thus considering max =

a[i] as an example: while the program code does not change,

its meaning changes depending on the values of the variables

a and i. In contrast, users always execute a concrete sequence

of actions or commands with no variables. A user cannot do x

as they have to do something specific; so a variable like x can

be used in our notation to represent what a user could do. In

particular, the user pressing x and the user pressing X are

different — in the former case, the notation means that user

presses some key, namely the key that is the value of x, and

in the latter case, the notation means that the user presses the

specific key X itself.3

In user interfaces, we are looking for the meanings of user

actions such as X and programming language concepts like

“scope” become concepts like “mode” and “window.” In the

present paper, we focus on the mode of number entry. More

general analysis must be left for further work — except to

note that a reason for the success of object orientation is

that programming scope becomes tightly related to modes

that make sense to the user. For example, a user interface

field in which the user enters numbers will also be a program

object that encapsulates the implementation of user actions in

that field: that is, the meaning of, say, a := b in the object

determines the semantics of X in the field.

We will often want to be more specific than “any key” as a

user action Q. Typically we will write x ∈ {0123456789}, for

example, requiring x to be any digit key. For convenience we

define numerickey = {0123456789•}, so a numeric key (as

defined) is a decimal digit or a decimal point. More generally

we could use Hartson’s User Action Notation (UAN) [12], but

it would introduce a notational complexity beyond the needs

of the present paper. The generality of UAN is not needed

here, nor explained here, though if the notation used in this

paper was implemented in a tool it would make sense to use

such an existing standard.

We distinguish between mathematical variables, which are

written in italics (like x, y, z) and user interface properties

(like Display, Error, On), which are capitalised and written

in Roman. A mathematical variable anywhere in the triple

{P}Q{R} denotes the same value everywhere in the triple.

However, a user interface property mentioned in P means its

state before the action Q, and mentioned in R means its state

after the action. It would be counter-intuitive to refer to, for

example, the display after the user’s action in a precondition

before it has occurred, and our notation makes this complex

idea impractical to express. Hence what might have been

written using just a postcondition, On′ = ¬On (meaning On

is flipped by Q, say by pressing an On/Off button), has to

be written as a precondition On = s and a postcondition

On = ¬s.

Further conventions are familiar from programming lan-

guage notations:

’x’ means the literal symbol x. The notation

generalises in the usual way: ’abc’ means the

sequence of symbols a then b then c.4 We use the

term string to be the type of a sequence of

symbols, of any (natural number) length, including

’’ which is the string of length 0.

3A user interface might be used to edit a computer program that has
variables, or a web form might have fields whose values can be changed, or a
user might refer to a knob as “variable” — but turning it cannot be variable,
it has to be turned a specific angle. Thus applications may have variables, but
user actions are never variables; they are always concrete instances.

4Invisible symbols, like tabs, and symbols such as ’ are conventionally
represented using backslash notations (e.g., ’\’’) but this paper is not
concerned with these lexical issues.

12

On (i.e., written in Roman) are variables representing

the state of persistent objects in the user interface.

x (i.e., written in italic) is a local variable

representing a value used in the specification of a

user action. The variable has no significance

beyond of the scope of the specification.

|x| means the string x has this number of symbols;

hence |’’| = 0 and |’900’| = 3. (In the Java

program code above, the notation was x.length.)

∈. . . finally we take some liberties. Generally e ∈ S

means the element e is in the set S or is of type S

(a type can be thought of as the set of every

possible value of that type), but we will use ∈ on

collections that are not sets, such as strings.

Sequences of symbols ’abc’ can either mean the user

pressed these keys or that these symbols are displayed for

the user to read. It is mnemonic to represent keys the user

pressed as a b c , and symbols the user sees displayed

as abc . Hence we may write Display = 3 as a way of

writing Display = ’3’ or Display = meaning the display

is initially blank (showing ’’).

The display on a typical device for number entry will

be composed of a numeric display (the main display) and

various indicators, such as error flags. We will refer to these

as Display, Error, etc, and treat them as variables; for example

a precondition Display = d means it is true that the display is

showing d before the user starts pressing keys.

In this paper we are not concerned with various ergonomic

issues, even though they are clearly important; for example:

• The difference between zero, nothing and space is

complicated. The display notation would be

inappropriate if the user interface has a space key (or

uses spaces instead of commas to separate digit groups).

One might use the conventional representation of space,

but it is unlikely a user would understand as

“nothing” — without a symbol for nothing a user

cannot distinguish a display that is off or broken from

one that is on but displaying nothing. Some user

interfaces blink zeros when they are showing “nothing.”

• We assume that if we write Display = d we mean the

display shows d and the user actually sees d. In some

cases, however, the display may be truncated or have

some sort of scrolling feature so that the user sometimes

sees a substring of d — the display 456 may mean

123456 or 456789, or almost anything. We consider this

unacceptable, but there are clearly conditions where

showing less than d is unavoidable. Some

ergonomically-designed cue should be used to indicate

that there is additional information that is not displayed.

• The decimal point may be different on the keys and on

the display (e.g., • and . or , in some countries).

• Decimal digits after a decimal point may be smaller

[41].

VI. RULES FOR COMMON DESIGN DECISIONS

We now create rules that represent typical properties of

number entry user interfaces. If we were developing or

analysing an actual system we would create rules for each

possible action. Here we will discuss representative rules for

a range of real devices to explore what they say users must

know and whether they may be poor design decisions as a

result.

A. Doing nothing — time-outs

If the user does nothing, then usually nothing happens. Our

convention will be that if nothing changes we do not need to

say so. Thus the following

Nothing

Display = x

✿✿✿✿✿✿✿✿✿✿

Display = x

x ∈ String

is unnecessarily cluttered, and is more satisfactorily repre-

sented by

Nothing

✿✿✿✿✿✿✿✿✿✿

which looks much more like a definition of doing nothing!

For some user interfaces, if the user does nothing for five

minutes (or so) something happens, which might be expressed

informally as:

Nothing for 5 minutes

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

¬On

In this example, the precondition is true under all circum-

stances so it does not need specifying explicitly, and it has been

left blank. The postcondition ¬On means that after completion

of the action, “nothing for 5 minutes,” it will be the case that

the device is not on (On is false). Switching the device off

(¬On) may be a safer choice than the design choice of the

Graseby 3400 (section II-L), where the device remains on but

the number displayed is set to zero without warning the user.

While we do not think time-outs are necessarily a good idea,

not reasoning about them and their applicability to the domain

the number entry is intended for is worse; here, the time-out

has an explicit rule designers can consider carefully.

B. Clear rule

The next simplest rule is that pressing the All Clear key AC

clears the display; on most calculators, pressing AC makes the

display show 0. . Hence

{true} AC { Display = 0. }

or in our notation (and simplifying the true precondition):

13

AC

✿✿✿✿✿✿

Display = 0.

In fact, AC also switches the device on — perhaps it seems

obvious that if the display shows something the device is on,

but we should make it clear:

AC

✿✿✿✿✿✿

Display = 0. ; On

The semicolon above is an useful way of writing “and”

with a low operator precedence; had ∧ been used, brackets

would have been needed to write (Display = 0.) ∧ On. The

semicolon does not mean the display shows 0. then the

calculator is on; it means that after AC has been pressed,

then the post conditions — the display shows 0. and the

calculator is on are both true.

C. Basic append rule

If the user presses a numeric key x (a digit or decimal point)

we would expect the key to appear in the display. Expressed

more formally:

x ∈ numerickey

Display = d

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Display = dx

This simple rule does not capture what most devices do. If

the device is off, then it will display nothing and after pressing

x it will still display nothing. Hence:

x ∈ numerickey

On; Display = d

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Display = dx

This is still incomplete. If the display is full when it shows

d, it cannot show d and x together. Let us suppose max is

the maximum capacity of the display (for example, max = 8

characters on the HS-8V), then we can consider two possible

solutions for the rule:

(a.1)

x ∈ numerickey

On; Display = d; |d| < max

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Display = dx

(a.2)

x ∈ numerickey

On; Display = d; |d| ≥ max

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

or

(b)

x ∈ numerickey

On; Display = d

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Display =

{

|d| < max : dx

|d| ≥ max : d

In form (a), two rules are required, whereas (b) combines

the two rules into a single rule where the ambiguity is more

obvious. The bracket notation is syntactic sugar:

a : b

c : d

. . .

≡ (a ∧ b) ∨ (c ∧ d) ∨ . . .

The point of the schemas is to help us reason clearly about

a user interface, analogously to how a user would think —

certainly if we cannot express our thoughts precisely, the user

will not be able to! In particular, if a user wishes to think

clearly, the notation captures everything that is in principle

relevant to their reasoning. We notice than in case (a) we are

assuming the user knows whether the display is full before

pressing a key; we suspect that is unlikely. Case (b) is preferred

as it makes clear that when the user presses x, there may be

either of two outcomes. Whether these are desirable outcomes

we will return to in a moment.

We ignored that on many displays the decimal point oc-

cupies no extra space. On the EasyCalc, the seven segment

display is large enough for 12 digits and 12 decimal points,

one per digit (though it displays only one decimal point at

any given time). If we wanted to be precise about the size of

the display and the ability to include an “extra” decimal point,

instead of using the notation |d| we should define a function

like width(d). This would also be useful for displays that use

variable-width digit fonts (e.g., where 1 is narrower than 2).

D. Numeric append rule and ambiguity

A number entry user interface displays numeric values, and

the append rule described above is naı̈ve. For example in the

special case that the initial display is the 0 , we have

x ∈ numerickey

On; Display = 0

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Display = x

This is correct even in the special case x is 0 , though

if x = • then the final display would probably be 0.

As we explained above, assumptions in the precondition are

awkward. The rule is complex and better expressed as follows:

14

(c)

x ∈ numerickey

On; Display = d

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Display =

{

|z| ≤ max : z

|z| > max : d

where z = canonicalise(d, x)

Here canonicalise(string, keypress) is a function that takes

a displayed string and a key press and yields a string repre-

senting the canonical numerical value of its argument. Here

are some examples of its behaviour:

• canonicalise(0 , 0) = 0

• canonicalise(0 , 1) = 1

• canonicalise(0.00 , 0) = 0.000

• canonicalise(12 , 3) = 123

The function canonicalise is not only a function that could

be implemented as some program code but it also represents

rules in the user model. The user models the device as

“if the display is x and I press y then the display will

become canonicalise(x, y).” Of course the user model won’t

be expressed in such words, but the meaning will be — or

should be — equivalent.

What does canonicalise do with repeated decimal points?

Many calculators ignore extra decimal points, so we have cases

like:

• canonicalise(1.2 , •) = 1.2

Unfortunately the display 0. is ambiguous; we do not

know, for instance, whether

• canonicalise(0. , 0) =

{

0.0

0.

In other words, canonicalise is not functional. Being non-

functional means that what canonicalise does depends on more

than its parameters (the display and the key pressed) — in

other words, it becomes non-deterministic or unpredictable.

Therefore the triple (c) above needs correcting.

The reason the ambiguity occurs is that when Display =
0. the user cannot tell whether • has already been pressed

or not. If a decimal point has been pressed, the next digit is

a fractional decimal digit, whereas if the decimal point has

not been pressed yet, the next digit will be a units digit. The

following two triples make this clear:

5

Display = 0. ; Decimal pressed = false

✿✿✿✿✿✿✿✿

Display = 5.

5

Display = 0. ; Decimal pressed = true

✿✿✿✿✿✿✿✿

Display = 0.5

As mentioned above, hiding ambiguity in the preconditions

is poor practice, not least because it creates two rules for one

user action in this case;5 a clearer formalisation is as follows:
5

Display = 0.

✿✿✿✿✿✿✿✿

Display =

{

Decimal pressed = true : 0.5

Decimal pressed = false : 5.

Now we have one rule, and the now obvious choice in the

postcondition highlights a problem for a user. Most calculators

always display a decimal point, which is the cause of this

ambiguity. Ambiguity is bad [24], and it is encouraging to

see how easy it is to avoid in this case. There is an obvious

solution: do not display a decimal point when one has not been

pressed. If we do this, Display = 0. implies the decimal point

has been pressed, and hence the condition “decimal pressed”

is true, and conversely when Display = 0 then the condition

“decimal pressed” is false.

E. Persistent error

The HS-8V and the EasyCalc behave differently when the

display is full. When the display is full on the HS-8V, further

keystrokes are ignored and there is no error; on the EasyCalc

E is displayed to indicate an error. We can represent this thus:

x ∈ numerickey

On; Display = d; ¬Error

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
{

|z| ≤ max : Display = z

|z| > max : Error = true

where z = canonicalise(d, x)

The EasyCalc is somewhat more sophisticated than this:

if a decimal point has been entered, then the excess digits

(or further decimal points for that matter) are treated as

“insignificant” and ignored (as would happen on the HS-8V

too) but if a decimal point has not been entered, an error

occurs since discarding a digit would display a number that

was wrong by a factor of about 10.

We could write either Error = true or Error = E , etc,

meaning more specifically that a region of the display reserved

for error notifications is displaying E. We prefer to use the

logic form as it does not presuppose a particular way of

representing errors to the user (E or Error etc), and it

allows the variable Error to appear in logical expressions

directly without referring to the concrete choice of warning.

Now we have introduced Error in the modelling, all previous

rules for the EasyCalc need modifying:

x except AC

On; ¬Error; . . .

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

. . .

5In fact, if written in this style, there are lots of rules for 5 because these

are only the two rules for when the display is 0. , and they say nothing
about what happens when it displays other values.

15

and the rule for AC more specifically becomes:

AC

✿✿✿✿✿✿

On; ¬Error; Display = 0.

So on the EasyCalc, when an error is detected, the user is

warned and the warning is persistent until the user clears the

error condition by pressing AC . Or so it seems . . .

F. Delete rule

The EasyCalc has a delete key, ← , which deletes numeric

keys. One would imagine its behaviour is as follows:

←

On; ¬Error; Display = zd

✿✿✿✿✿✿

Display = z

z ∈ String; d ∈ numerickey

Notice that in this triple we had to specify the types of

z and d since they cannot be inferred from the context. The

triple does not specify what happens when Display cannot

be partitioned as zd — which happens when the display is

showing nothing — but in fact if the EasyCalc is switched on

it always can be.

However, the EasyCalc does not work like this: the delete

key ignores the decimal point. Its definition is therefore more

complex, and at a first attempt might first be written as follows:

←

On; ¬Error; Display = z

✿✿✿✿✿✿

Display = delete(z)

We illustrate the behaviour of the Easycalc delete() with a

few cases:

• delete(0.) = 0.

• delete(1.) = 0.

• delete(1.2) = 1.

• delete(23.) = 2.

This quirky behaviour has the result that a sequence of

keystrokes xd ← for any digit d will be equivalent to x

(i.e., the single digit d was deleted), as expected, but that any

sequence equivalent to xd • n ← will be equivalent to x

too. In other words, the delete key deletes more than the last

keystroke if the last keystroke was a decimal point. If the user

tries to correct the slip of keying n = 2 decimal points instead

of the single one intended by pressing ← once, the preceding

digit will disappear! Even pressing a single decimal point in

error cannot be corrected. Ironically, the delete key is there to

correct errors, not add to them.

Delete on the EasyCalc is quirky in another way too. If the

display is full, then the delete key resets the error — however,

others types of error are not reset by the delete key.

←

On; Display = z

✿✿✿✿✿✿

{

¬Error : Display = delete(z)
Error : Error = false

The EasyCalc does not count how many excess keystrokes

the user keyed. So for example if the user keyed 15 keystrokes

(much larger than max = 12) then a single ← is sufficient

to clear the error — yet strictly the user should have pressed

delete at least 3 = 15− 12 times to clear the error.

G. Rules for consistency

While the schemas bring out the meanings of individual

user actions, they have the disadvantage that they do not help

describe consistent features across an interface. We might want

error handling to be consistent, but if it is repeated in every

schema then there is a danger that clerical errors will slip in.

There are two solutions, to use theorem proving tools (to

establish the consistency properties) or to use abstraction.

We have already used abstraction in using features like the

function canonicalise: it appears in many places but in each

case has the same meaning. Abstraction introduces named

features that can be instantiated in multiple schemas.

If a user performs any action, presumably they want an

effect, or possibly the action was in error (say, pressing a

letter key during number entry) and they want assurance there

was no effect. Instead of repeating this rule in many schemas,

it could be stated once:
define warnNoEffect(action)

Display = d

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Warn = (Display = d)

This says Warn is true if the user’s action does not change

the display.

Earlier (section VI-E) we proposed persistent errors: when

an error flag is set, actions are inhibited. Whatever choice is

made, it should be consistent. For example:

define persistentErrorBlock(action)

¬Error

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

false

This schema also asserts that if a device is off nothing

happens anyway, regardless of whether there is an error.

In section VI-E there were two rules for errors, one for AC

and one for all other keys. Instead, the rules can be combined:

define persistentErrorBlock(action)

action = AC ∨ (On ∧ ¬Error)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

action 6= AC ∨ (On ∧ ¬Error ∧ Display = 0.)

16

In contrast to a definition of a function like canonicalise,

this definition has pre and post-conditions. The rule can now

be applied to any action:

persistentErrorBlock:x

. . .

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

. . .

The definition {Pa}define Qa(x){Ra} applied in a triple

{P}Qa:Q{R} means {P ∧ Pa}Q{R ∧ Ra}, with the usual

renaming of x as Q within Pa and Ra.

H. A rule for sequence

In many programming languages, the semicolon separates

statements that are executed in sequence. The Hoare triple for

it, {P}Q;S{T}, follows from the premises {P}Q{R} and

{R}S{T}, sharing the midterm R. The rule of inference for

semicolon is written out in standard form as:

{P}Q{R} ∧ {R}S{T}
{P}Q;S{T}

Now consider a program

readAndDo(Q); readAndDo(S)

which uses the standard ; operator to implement a program

enabling a user doing Q followed by doing S. Hence, the rule

for the meaning of the user doing Q then S must be

Q

P

✿✿✿✿✿✿

R

∧

S

R

✿✿✿✿

T

QS

P

✿✿✿✿✿✿

T

This rule states that a properly specified user interface

remains properly specified as the user performs a sequence

of actions.

VII. DISCUSSION

Section III argued that it is deceptively easy to write

program code to find the maximum value of an array. Bugs

in program code can be avoided using formal methods, a

familiar point that has been widely presented in the literature

(e.g., [6]), however the advantages are only achieved if we

have formal requirements. For maximum the requirements

are so obvious we did not define maximum! But in user

interface design, the requirements are often implicit, complex,

and partially unknown. Unsurprisingly, there are numerous

bugs and inconsistencies in user interfaces (section II), for

the same reasons as any other bugs in programs (section III)

— lack of clear requirements combined with lack of formal

reasoning. Section V then showed how formal reasoning can

be used in user interface design, hence helping avoid bugs.

The formalisation made requirements and trade-offs between

requirements explicit, but it left begging the question what

requirements do we really want?

A. What do we want?

User interfaces seem simple because one cannot see every-

thing that can happen: this is a problem for users, designers

and programmers. It is not clear we really know what we want

to do, nor that we can reliably implement it. Often users cannot

articulate exactly what they want to do, and even if they did, it

might be different from what they need since many properties

of human behaviour are unavailable to consciousness.

We were critical of user interface design defects because

we claimed they were obviously the consequences of poor

programming practices, needing but showing little evidence of

formal reasoning. This is a superficial stance. We could equally

have tried to formally specify what numeric user interfaces

actually do, and then we could have presented these specifi-

cations as correctly implemented. Indeed, formal methods has

no value system it imposes: it does not judge what the right

system is, merely that if you decide what the right system

is you can more reliably obtain the system you wanted. It is

therefore useful to distinguish between epistemology (knowing

what we want to do) and logic (knowing we are reasoning

correctly about what we want to do) [31]. Indeed Aristotle

would go further: knowledge is only useful if we act on it.

Hence, how do we persuade others to do good (rhetoric) and

how do we act appropriately in the communities of designers

and developers (politics) so better user interfaces are designed

and manufactured (and out-sell the worse ones)? These critical

topics build on the foundation of formal methods, reliable

reasoning about user interfaces.

Evidently, our discussion glossed the value system. We

took it as self-evident and not needing elaboration that a user

interface for number entry should be predictable. Having made

that value judgment, we can then refine it into some logical

framework, then design user interfaces that are predictable in

the chosen sense. A formal methods approach then facilitates

this second process: correctly implementing what one wants

to implement.

What, then, is predictability? We have discussed predictabil-

ity and its variations at length elsewhere and successfully

linked it to formal reasoning [34], [21], [22], [11]. For our

present purposes we can summarise predictability informally

[33]:

Predictability: A user can successfully use the

system with their eyes shut right until the moment

they want answers.

This simple formulation is consistent with eye tracking

experiments [25]: users infrequently fixate on (look at) the

display because they need to fixate on finding and pressing

the right keys. Effectively, their “eyes are shut” in terms of

reading information on the display.

17

If the user thinks “ X does something,” it should always

do that thing; otherwise they would have to open their eyes

to see the difference. In other words the user interface has no

modes that change the meaning of the user’s actions, and there

must be features like a key C that completely resets the user

interface so that the user can start fresh without having to read

the display. Realistically, we also know users will make slips,

occasionally pressing the wrong keys. When they press the

wrong key, they will want to correct what they have done.

Thus, the delete and clear keys must be predictable, and not

depend on the last or previous keystrokes (e.g., whether they

were decimal points or not). If the user makes a slip that they

do not notice, then the device should (if possible) keep track

of the error until the users metaphorically open their eyes.

This form of predictability favours the string interpretation of

number entry user interfaces (section II-A).

Predictability does not apply only to isolated devices: pre-

dictability is with reference to what the user knows, and

what the user has learned from use of other related systems.

We need to reduce transfer errors, which occur when a

user performs the right actions on the wrong device. We

should be developing a new, more dependable and predictable

user interface standard. Perhaps there should be a conformity

certificate or badge with all new, improved user interfaces? The

certificate or other identifying markings should be indelible so

that they are present not just during purchase or procurement,

but to reassure users any time in the future life of the product

[44]. Ideally, in critical domains, only certified improved user

interfaces should be used.

B. Completeness of requirements

Always, the completeness of what we want must be ques-

tioned. Requirements and specification may seem correct and

consistent, but there are often additional factors that have not

been considered — “unknown unknowns.” They will be imple-

mented following arbitrary and often unnoticed choices. For

example, on many devices, when the delete key is pressed the

display content visually moves right. In the special case that

all digits displayed are the same, “moving right” is visually

indistinguishable from deleting the left-most digit, which is

unfortunate because the right-most digit has been deleted. This

confusion is eliminated by left-justifying the display, or by

animating it moving right (which is not possible on seven

segment displays). Indeed, the Hewlett-Packard 20S (produced

1988–2003) had a left-justified display and a delete key, so

there is a precedent. The point is that a design choice can be

made with no representation in the program or requirements.

Too often design decisions are justified after the fact for no

reason better than avoiding the cost of improving them.

When a program fails to work this cannot be denied: the

program code must be wrong; but when a user interface fails

there is a temptation to say the user is wrong, then the program

behind the user interface does not need correcting, since the

user needs to learn how to use it properly. Neither users nor

designers want to be told they are “wrong” and it is easy to see

that a culture of denial arises. Moreover, people do not make

mistakes they notice — mistakes happen because the errors

are unnoticed: all of us are therefore very weakly aware of

problems with user interfaces.

Another reason for denial is that finding user interface bugs

is tedious, and few users (or empirical experiments) are per-

sistent enough to uncover bugs thoroughly — and when bugs

are found they may be hard to notice and are certainly hard to

reproduce from memory. Often users think bugs are their own

fault and having problems with computers is embarrassing,

so bugs are under-reported and hence requirements persist in

being incomplete.

C. Misconceptions of usability

After just programming and not thinking about user inter-

face properties, the next most common problem is confusing

speed, error tolerance and flexibility for usability. For example,

allowing a user to change the sign of a number anywhere might

appear to be more usable than a more restictive approach.

However, occasionally, the user (and, as we have seen, the

programmer too) will get confused and the consequence is an

error which might result in a catastrophe. The minor delay

treating change sign properly is negligible compared to the

delay of sorting out a catastrophe. In other words, usability

has to be seen in a larger context: speeding up number entry

should not be confused with usability.

D. The need for experiments and standards

The HR-150TEC has a double zero key 00 that probably

speeds up number entry. It reduces keystrokes needed for

numbers with consecutive zeros, but it slows down the user

because there are more keys to choose from and the user has

to be more careful to press the correct key from the larger

number of keys. It also introduces a new uncertainty: what

does 00 ← do? Potentially, correcting errors is so slow

that on average any gain is lost; we do not know.

The HR-150TEC implements delete as deleting digits ig-

noring decimal points, so 00 ← = 0 (except when the

display is too small to display all the zeros). I happen to think

this is wrong, but the HR-150TEC is marketed to accountants,

and I am not an accountant and I have insufficient insight into

how they expect numbers to work. One should do experiments

to establish how the intended users actually work: find out

which design lowers errors; secondly, establish whether the

potential confusion of a feature warrants removing the feature

from the design. One should also conform to standards: for

medical devices, placing 0 next to • is known to be a

bad design choice [10]; the HR-150TEC places 00 next to it

(see figure 2 and section II-M), and may be a worse decision.

VIII. CONCLUSIONS

User interfaces for number entry present a confusing variety

of inconsistent design decisions, even across models from the

same manufacturer. One imagines that user interface design

for number entry is thought to be so easy that it is “just” pro-

grammed, and what happens happens without further thought.

User interface design has long emphasised “user centred

design” where improvements are sought through experiments

18

with users [20]. Our example of number entry shows that for

at least 30 years, user experiments with many number entry

systems have failed to identify easily-fixed defects.

• User interface design — HCI, human computer

interaction — needs to mature and include formal

methods in its armoury of tools.

This paper introduced a notation to help do this. Moreover,

the solutions suggested here can be implemented with little

disruption, little more than upgrading firmware.

There is nothing special about number entry, other than fre-

quently occurring in safety critical applications. Number entry

seems simple, but few user interfaces manage to implement

it well, even though the syntax for Arabic numerals is theo-

retically sorted out. Many other types of user interface, from

TV remote controls to spreadsheets, from wifi to document

processing, all have defective user interfaces, but their bugs

are harder to articulate and perhaps much harder to reach

consensus over: it is easy to say that 2 7 • 5 should

behave like 27.5, but it is much more tedious to write down

rules for a user’s wifi configuration. The user interface should

not be ignored by formal methods.

• Formal methods needs to develop notations and tools to

help specify and manage user interaction.

If we do this, and in particular design out errors users are

unlikely to notice, then we will get closer to Hoare’s vision,

“it will be possible to place great reliance on the results of the

program” [13].

Acknowledgements: This research was funded by the UK

Engineering and Physical Sciences Research Council (EPSRC)

Grant numbers [EP/G059063, EP/K504002, EP/L019272/1].

Paul Cairns, Abigail Cauchi, Michael Harrison, Paolo Masci,

Gordon Pace and Richard Young all made many very valuable

comments for which the author is grateful. The Medical De-

vice PnP group at Massachusetts General provided laboratory

facilities for which we are grateful.

REFERENCES

[1] M. G. A. Ament, A. L. Cox, A. E. Blandford & D. P. Brumby,
“Making a Rask Difficult: Evidence that Device-oriented Steps are
Effortful and Error-prone,” Journal of Experimental Psychology:

Applied, 19(3):195–204, 2013.
[2] P. Cairns, M. Jones and H. Thimbleby, “Usability Analysis with

Markov Models,” ACM Transactions on Computer-Human Interaction,
8(2):99–132, 2001.

[3] P. Cairns & H. Thimbleby, “Reducing Number Entry Errors: Solving a
Widespread, Serious Problem,” Journal Royal Society Interface,
7(51):1429–1439, 2010.

[4] A. Cauchi, A. Gimblett, P. Curzon, P. Masci & H. Thimbleby, “Safer
“5-key” Number Entry User Interfaces using Differential Formal
Analysis,” Proceedings BCS Conference on Human-Computer
Interaction — BCS-HCI, XXVI:29–38, 2012.

[5] R. L. Deininger, “Human Factors Engineering Studies of the Design
and Use of Pushbutton Telephone Sets,” Bell System Technical

Journal, 39(4):235–255, 1960.
[6] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.
[7] K. Fu. “Trustworthy Medical Device Software,” in Public Health

Effectiveness of the FDA 510(k) Clearance Process, Institute of
Medicine, National Academies Press, 2011.

[8] S. W. Gilroy & M. D. Harrison, Interactive Systems, Design

Specification, and Verification: 12th International Workshop, DSVIS
2005, Lecture Notes in Computer Science, 3941, Springer-Verlag New
York, 2005.

[9] F. G. Halasz & T. P. Moran, “Mental Models and Problem Solving in
Using a Calculator,” Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems, CHI’83, 212–216, 1983.

[10] S. Halls, Design for patient safety: A guide to the design of electronic

infusion devices, National Patient Safety Agency, 2010.
[11] M. D. Harrison & H. Thimbleby, Formal Methods in Human

Computer Interaction, Cambridge University Press, 1990.
[12] H. R. Hartson, P. D. Gray, “Temporal Aspects of Tasks in the User

Action Notation,” Human-Computer Interaction, 7(1):1–45, 1992.
[13] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”

Communications of the ACM, 12(10):576–580 & 583, 1969.
[14] International Standards Organization, Ergonomics of Human-system

Interaction — Part 210: Human-centred Design for Interactive

Systems, ISO 9241–210, 1st ed., 2010.
[15] Institute for Safe Medication Practices, “ALERT: Potential for “Key

Bounce” with Infusion Pumps,” ISMP Canada Safety Bulletin,
6(6):September 7, 2006. www.ismp-canada.org

[16] Institute for Safe Medication Practices, Fluorouracil Incident Root

Cause Analysis, 2007. www.ismp-canada.org
[17] Institute for Safe Medication Practices, List of Error-prone

Abbreviations, Symbols and Dose Designations,
www.ismp.org/tools/abbreviations, (Accessed December 2013).

[18] P. N. Johnson-Laird, Human and Machine Thinking, Lawrence
Erlbaum Associates: Hillsdale, NJ. 1993.

[19] J. C. Knight & N. G. Leveson, “A Reply to the Criticisms of the
Knight & Leveson Experiment,” SIGSOFT Software Engineering

Notes, 15:24–35, 1990.
[20] T. K. Landauer, The Trouble with Computers, MIT Press, 1995.
[21] P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P.

Curzon & H. Thimbleby, “The Benefits of Formalising Interactive
Number Entry Case Studies with Drug Infusion Pumps,” Innovations

in Systems and Software Engineering, 1–21, 2013.
[22] P. Masci, Y. Zhang, P. Jones, P. Curzon & H. Thimbleby, “Formal

Verification of Medical Device User Interfaces Using PVS,”
Proceedings 17th International Conference, Fundamental Approaches
to Software Engineering, FASE 2014, Lecture Notes in Computer

Science, 8411:200–214, 2014.
[23] R. E. Mayer & P. Bayman, “Psychology of Calculator Languages: A

Framework for Describing Differences in Users’ Knowledge,”
Communications of the ACM, 24(8):511–520, 1981.

[24] D. A. Norman, “Design Rules Based on Analyses of Human Error,”
Communications of the ACM, 26(4):254–258, 1983.

[25] P. Oladimeji, A. Cox & H. Thimbleby, “Number Entry Interfaces and
their Effects on Errors and Number Perception,” Proceedings IFIP
Conference on Human-Computer Interaction — Interact 2011,
178–185, 2011.

[26] K. A. Olsen, “The $100,000 Keying Error,” IEEE Computer,
41(4):1005-108, 2008.

[27] F. Paternò, C. Santoro & J. Ziegler, eds., EICS’14: Proceedings of the

2014 ACM SIGCHI Symposium on Engineering Interactive Computing

Systems, ACM, New York, NY, USA, 2014.
[28] K. R. Popper, Conjectures and Refutations: The Growth of Scientific

Knowledge, Routledge, 2nd ed, 2002.
[29] J. Reason, Human Error, Cambridge University Press, 1990.
[30] C. Runciman & H. Thimbleby, “Equal Opportunity Interactive

Systems,” International Journal of Man-Machine Studies,
25(4):439–451, 1986.

[31] , J. Rushby, “Logic and Epistemology in Safety Cases,” SafeComp
2013: Proceedings of the 32nd International Conference on Computer
Safety, Reliability, and Security, Lecture Notes in Computer Science,
8153:1–7, Springer-Verlag, 2013.

[32] J. M. Spivey, Z. Notation: A Reference Manual, Prentice Hall
International series in Computer Science, 1988.

[33] H. Thimbleby, “Guidelines for ‘Manipulative’ Text Editing,”
Behaviour and Information Technology, 2(2):127–161, 1983.

[34] H. Thimbleby, User Interface Design, Addison-Wesley, 1990.
[35] H. Thimbleby, “A New Calculator and Why it is Necessary,”

Computer Journal, 38(6):418–433, 1995.
[36] H. Thimbleby, “Calculators are Needlessly Bad,” International Journal

of Human-Computer Studies, 52(6):1031–1069, 2000.
[37] H. Thimbleby, “Permissive User Interfaces,” International Journal of

Human-Computer Studies 54(3):333–350, 2001.
[38] H. Thimbleby, “Interaction Walkthrough: Evaluation of Safety Critical

Interactive Systems,” Proceedings Design, Specification, and
Verification of Interactive Systems — DSVIS, Lecture Notes in
Computer Science, 4323:52–66, 2007.

[39] H. Thimbleby, Press On, MIT Press, 2007.

19

[40] H. Thimbleby, “Heedless Programming: Ignoring Detectable Error is a
Widespread Hazard,” Software—Practice & Experience,
42(11):1393–1407, 2012.

[41] H. Thimbleby, “Reasons to Question Seven Segment Displays,”
Proceedings ACM Conference on Computer-Human Interaction —
CHI, 1431–1440, 2013.

[42] H. Thimbleby, “Improving safety in medical devices and systems,”
Proceedings of the IEEE International Conference on Healthcare

Informatics (ICHI 2013), 1–13.
[43] H. Thimbleby & A. Gimblett, “Dependable Keyed Data Entry for

Interactive Systems,” Proceedings FMIS 2011, 4th International
Workshop on Formal Methods for Interactive Systems, Electronic

Communications of the EASST, 45:1/16–16/16, 2011.
[44] H. Thimbleby, A. Lewis & J. G. Willians, “Making Healthcare Safer

by Understanding, Designing and Buying Better IT,” Clinical

Medicine, 2015 (in press).
[45] W. Thimbleby, “A Novel Pen-based Calculator and its Evaluation,”

Proceedings third Nordic Conference on Human-Computer Interaction,
NordiCHI’04, 445–448, 2004.

[46] W. Thimbleby & H. Thimbleby, “Mathematical Mathematical User
Interfaces,” Proceedings Engineering Interactive Computer Systems —
EICS2007/DSVIS, Lecture Notes in Computer Science, 4940:519–535,
2008.

[47] R. M. Young, “The Machine Inside the Machine: Users’ Models of
Pocket Calculators,” International Journal of Man-Machine Studies,
15(1): 51–85, 1981.

Harold Thimbleby PhD, CEng, FIET, FLSW,

FRCP (Edinburgh), Hon. FRSA, Hon. FRCP is
at Swansea University, Wales. His research focuses
on human error and computer system design, partic-
ularly for healthcare.

In addition to over 388 peer reviewed publica-
tions, Harold has written several books, including
Press On (MIT Press, 2007), which winner of the
American Association of Publishers best book in
computer science award. He won the British Com-
puter Society Wilkes Medal. He is emeritus Gresham

Professor of Geometry (a chair founded in 1597), and has been a Royal
Society-Leverhulme Trust Senior Research Fellow and a Royal Society-
Wolfson Research Merit Award holder. He has been a member of the UK
Engineering and Physical Sciences (EPSRC) research council Peer Review
College since 1994.

See his web site, www.harold.thimbleby.net, for more details.

BRIEF DESCRIPTION OF USER INTERFACE MODELS

In addition to common PC user interfaces, a variety of

devices were referenced in the body of the paper. All devices

discussed in this paper, summarised in the table below, have

number entry user interfaces with numeric keys very similar to

that shown in figure I, except the BBraun Infusomat (which

has four arrow keys) and the GE Dash 4000 (which has a

knob).

Infusion pumps and syringe drivers are medical devices

used for automatically delivering drugs to patients. They may

contain calculators to calculate doses and delivery rates. A

syringe driver holds a syringe whereas an infusion pump is

typically used to deliver drugs from a bag. A syringe driver

typically knows the length, diameter and make of the syringe

and possibly the drug itself, whereas with an infusion pump

the drug bag is separate, so typically an infusion pump only

knows the rate of flow, not the volume or drug.
Device Type

Abbott Gemstar Infusion pump

Abbott AimPlus Infusion pump

Alaris PC Infusion pump

Apple iPhone Smart phone (touch screen)

Baxter Colleague 3 Infusion pump

BBraun Infusomat Infusion pump (arrow keys)

BBraun Vista Basic Infusion pump

Canon F-502G Calculator

Casio DJ-120D Calculator

Casio fx-85GT Calculator

Casio HR-150TEC Calculator (paper roll record)

Casio HS-8V Calculator

Casio MU-120T Calculator

Casio OfficeCalc 100 Calculator

CME BodyGuard 545 Infusion pump

DRE Avanti Plus Infusion pump

DRE SP1500 Plus Syringe pump

GE Dash 4000 Patient monitoring system (knob)

Graseby 500 Infusion pump

Graseby 3400 Syringe driver

Graseby Omnifuse Syringe driver

HP 20S Calculator

HP EasyCalc 100 Calculator

HP SmartCalc 300s Calculator

Samsung Android Tablet (touch screen)

Sigma 6000 Plus Infusion pump

Sigma 8000 Plus Infusion pump

Sigma Spectrum Infusion pump

SK Medical SK-500III Syringe driver

SK Medical SK-600III Infusion pump

Upreal UPR-900 Infusion pump

Upreal CTN-TCI-V Syringe driver

