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ABSTRACT Safety-critical systems are becoming larger and more complex to obtain a higher level of

functionality. Hence,modeling and evaluation of these systems can be a difficult and error-prone task. Among

existing safety models, Fault Tree Analysis (FTA) is one of the well-known methods in terms of easily

understandable graphical structure. This study proposes a novel approach by using Machine Learning (ML)

and real-time operational data to learn about the normal behavior of the system. Afterwards, if any abnormal

situation arises with reference to the normal behavior model, the approach tries to find the explanation of the

abnormality on the fault tree and then share the knowledge with the operator. If the fault tree fails to explain

the situation, a number of different recommendations, including the potential repair of the fault tree, are

provided based on the nature of the situation. A decision tree is utilized for this purpose. The effectiveness

of the proposed approach is shown through a hypothetical example of an Aircraft Fuel Distribution System

(AFDS).

INDEX TERMS Fault tree, reliability, safety modeling, model repair, machine learning, artificial intelli-

gence.

I. INTRODUCTION

Safety critical systems are systems for which human life,

environmental health, and financial assurance need to be

guaranteed. Medical and surgery equipment, aviation and air

traffic control, hazardous and toxic chemical processes and

nuclear power plant are among safety-critical systems [1].

Different key performance indices such as reliability, safety,

availability, and security have been introduced as a measure

for the evaluation of safety-critical systems [2]. Reliability of

a system can be defined as the probability of its functioning

as expected without any malfunctioning or failure during

a certain and pre-defined period of time [3], [4]. For the

safety attribute, different definitions exist. For instance, the

probability of either a system functioning correctly without

any fault during the mission time or terminating its ser-

vice(s) through a safe procedure can be called safety [5].

Another example would be aircraft emergency landing safety.

Considering the possibility of an aircraft engine failure,
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the probability of either reaching the destination without

crashing or having a successful emergency landing can be

considered as a safety measure for the aircraft.

Because of the criticality of the system functioning, a rigor-

ous reliability and safety evaluation requires comprehensive

and certified model(s) that are usually provided by a team

of high-level experts. A variety of approaches are developed

for modelling and evaluation of dependability attributes,

notably reliability and safety. The existing approaches can

be classified into four categories; I) state-space modelling

such as Continuous-Time Markov Chains (CTMCs), Semi-

Markov Processes (SMPs) and Markov Regenerative Process

(MRGP) [6], II) Non-State-Space (Combinatorial) Models

like Reliability Block Diagram (RBD) and Fault Tree Anal-

ysis (FTA) [7], III) Numerical methods like Monte Carlo

Simulations, and IV) multi-level models that can be cre-

ated through a combination of mentioned methods [8], [9].

It should be noted that safety models can also be categorized

in terms of qualitative and quantitative analysis.

As fault trees feature easy to understand structure and

widespread use, in this paper, we will consider fault trees
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as an example of safety artefacts. Fault Trees are one of the

well-known deductive techniques in which the systems’ fail-

ures and their combinations can be modeled in a logical

and hierarchical manner. A Fault Tree (FT) consists of dif-

ferent levels; top level and top event: usually, in the top

level of a Fault Tree, there is a top event representing the

failure of the whole system or mission. Intermediate level(s):

this level includes the failure of sub-systems. As an exam-

ple, the failure of an aircraft is a top event and the failure

of its sub-systems such as the propulsion system, naviga-

tion system, etc. are the intermediate events located at an

intermediate level. Basic events: in the FTA, a system can

decompose to sub-systems and each sub-system can decom-

pose to sub-sub-systems. This procedure will continue to the

level that no more decomposition is affordable or possible.

The events in the final decomposition level are called basic

events. A failure of a GPS in a navigation system or a short

circuit in an electronic board can be considered as exam-

ples of basic events. Gates: as mentioned before, the com-

bination of failures in Fault Tree illustrates through logic

gates [10].

FTA is widely used in many industries as a mean of provid-

ing evidence while assuring safety through certification. The

process typically begins with an argument about the safety of

a system. For instance, in the automotive industry, such an

argument for a braking system could be ‘‘it is guaranteed that

the braking system will provide service at ASIL level D’’.

To support this argument, as a basis of the above guarantee,

the analyst may show the result of an FTA. Therefore, the cor-

rectness of FTA plays a vital role in the integrity of the of

safety certificate. An error in the model (e.g. FT) used for

providing evidence can make the safety guarantee void, thus

make safety certificate invalid.

A. MOTIVATION AND CONTRIBUTIONS

The correctness of the safety artefacts is very important for

providing the right level of safety assurance. An error in these

models may lead to a false safety assurance provision. It is

important to note that every step of safety artifact construction

process heavily relies on the expertise of the analysts. The

IET has developed a brand-new set of standards [11] by

defining three levels of competency of an analyst such as

supervised practitioner, practitioner, and an expert. There also

exists a possibility of no established confidence. Under this

condition, when the analyst has no or very limited evidence

in hand, the developed FT could be inferior, and any safety

guarantee provided based on this FT is highly likely to be of

very low quality.

In the literature, some researchers have pointed out the

flaws in safety artefacts. For instance, Manion [12] critically

scrutinized the FTA and correctness of the FT-based safety

analysis. He mentioned FTA as a flawed approach based on a

series of false assumptions and pointed out what can gowrong

in five different steps of FT construction. Moreover, a num-

ber of flaws of safety analysis methods and processes have

been reported in [13], [14]. One of the limitations is related

to the completeness of the hazard identification process of

safety analysis. It is not possible to guarantee that all possible

hazards are identified during the safety analysis process.

Suokas and Pyy [15] and Carter and Smith [16] investigated

several incidences in the process industry and construction

industry respectively, to find the relation between hazards

that were identified during the analysis and hazards that were

identified during operation. Based on their investigation, they

found significant gaps between these two sets of hazards list.

Fig. 1 shows a typical safety analysis where a group of

safety analysts use the system design and safety requirements

FIGURE 1. A typical safety analysis process.
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to identify the possible causes of system failure. However,

because of the limited knowledge of the experts, unpredicted

causes of failure can exist that are unforeseen, thus not

considered in the safety model(s). Generally, the mentioned

issue can occur and cause catastrophes when an unpredicted

failure event with low probability and high impact happens.

The Fukushima Daiichi nuclear disaster [17] initiated by the

tsunami following an earthquake on 11 March 2011 is an

example of a case where the designer of the nuclear facil-

ity failed to foresee the environmental circumstances that

may cause the system failure. The statement ‘‘We can only

work on precedent, and there was no precedent. When I

headed the plant, the thought of a tsunami never crossed my

mind’’ [18] given by Tsuneo Futami, a former director of

Fukushima Daiichi plant, makes it clear that sometimes it is

not possible to foresee all possible failure modes, especially

if the failure modes represent infrequent events. However,

such events are often discovered during the operation of the

system.

As argued in [19], a system can have behaviours which

are not non-conformant to the specifications but are still

unsafe. These kinds of situations are usually not captured by

safety artefacts because of the nature of the behavior of the

system. For instance, according to Leveson [20], the Mars

Polar Lander accident and Ariane 5 launch failure are two

industrial incidences where the system components operated

exactly as they were planned to work, however, the systems

still failed because of the wrong perception of the effects of

their behavior. Therefore, it is obvious that the safetymodel of

the systems where the behavior of the components is wrongly

perceived is bound to be incorrect. If we consider this issue

from the point of view of creating a FT, then this may lead

to inserting wrong logic in the FT, i.e., using a wrong gate

to model the relationship between events. Moreover, analysts

may make such mistakes by not following systematic ways of

creating a FT. For instance, consider that the failure behavior

of a system is depicted by the FT of Fig. 2. The outcomes

of qualitative and quantitative analysis of this FT depend on

the logical structure of the tree. Changing the type of a gate,

i.e., the logical relationship between events may significantly

FIGURE 2. An example FT.

change the safety and reliability of the system. If we replace

one of the AND gates by an OR gate, then we will achieve a

completely new failure behavior of the system. Consider the

AND gate in red color, which says that the system will fail

if all BE4, BE5, and BE6 occur. However, if we replace this

gate with an OR gate, then this will mean that the system will

fail if any of the above-mentioned BE occurs.

In addition to the above-mentioned issues, we can have

invalid assumptions, such as statistical independence of basic

events. This can also produce misleading results. It is impor-

tant to note that, not all the accidents are caused due to a

problem with safety analysis, but in many cases, improper

actions taken by system operators cause the accident. A sur-

vey on aircraft accidents conducted by Lloyd and Tye [21]

suggested that almost 50% of those accidents were caused

due to the improper actions of crews. For instance, in the

Kegworth air disaster on January 1989, there was a delay

in alerting the pilot about the occurrence of the fault and its

causes. As a result, the pilots made a misjudgement and took

the wrong action, causing the accident. In another fatal acci-

dent caused partially due to a misleading alarm annunciation,

the Airbus A330 of the Air France flight AF447 crashed in the

Atlantic, killing all 228 people on board. As the information

about the blocked pitot tube and the information about the

angle of attack reading were not properly conveyed to the

crews, they were not able to take the appropriate actions.

Moreover, there were no clear guidelines available of the

crews regarding those particular emergency situations [22].

From these two cases, we can see that the lack of knowl-

edge about some particular events and delay in the alarm

communication contributed significantly to the occurrence

of the accidents. Therefore, timely communication of alarms

and more knowledge (information) might help the users of a

system to take more informed and appropriate actions during

an unforeseen scenario.

To address the above-mentioned issues related to unfore-

seen events and misunderstanding about system behavior,

in this paper, we propose a data-driven approach using

machine learning to provide assistance when an unknown or

unconsidered scenario encountered during system operation.

The aim of our approach is to crosscheck the real time

operational behavior of the systemwith the safety artefacts (in

this case fault tree) created for the system during design time

to see if the current operational scenario is explained by the

FT of the system. To achieve this, we used a machine learning

based method for forming the normal behavior model of a

system based on operational data. Afterward, we provide

the process of identifying anomalies in the behavior of the

system at any time instance during system operation by cross

checking with the data-driven nominal behavior model of

the system formed earlier. Finally, a decision-making system

is provided for verifying whether an abnormal behavior

detected based on the operational data is explained by the

fault tree of the system. If the explanation is not found in

the existing FT, recommendation about potential update of

the safety artifact of the system is provided.
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II. BACKGROUND AND RELATED WORKS

In this section, the background has been divided into two sub-

section; I) A brief literature survey on model repair and II)

Machine learning approaches associated with safety models.

A. MODEL REPAIR AND PROCESS MINING

Process mining enables analysts to extract insights from log

data and create a performance model of an industrial plant.

It is also possible to repair or update existing models through

datamining [23]. Regarding this area, substantial research has

been done and a brief literature review will be provided in

what follows.

An approach based on the alpha algorithm has been pro-

posed in [24] to generate a Petri net model of the process

from its workflow log. However, the inability to extract a

model from processes with arbitrary workflow was a limi-

tation of the proposed method. A hierarchical and iterative

process-mining technique has been introduced in [25] to

refine the process model. The paper constructed the orig-

inal system model and verified this model based on the

incoming data. At each iteration, the steady-state behavior

of the model is checked regarding any changes in data.

van der Aalst et al. [26] emphasized the importance of align-

ing the system model and the workflow log file, which repre-

sents data from the system deployment. These relationships

have been used to check the conformity of the system and to

evaluate the performance of the system as well. From a com-

putational point of view, these alignments are the challenging

problem, which is an open challenge to find the optimal

alignment.

Authors in [27] identified all possible variants of the sys-

tem model, by applying a clustering algorithm from data

of the logs file (execution traces). The paper proposed a

greedy method to make an exhaustive search of possible

behaviours, and at each step try to cluster traces sharing

similar behaviours. Augusto et al. [28] presented a literature

review of automated process discovery methods, and the

outcome of the paper revealed that some methods suffer from

the lack of scalability and inconsistent performance results.

B. MACHINE LEARNING ASSOCIATED WITH SAFETY

MODELS

Safetymodels are one of themost important pillars in reliabil-

ity and safety assessment that can represent the failure com-

binations of a system, and they need to be created by certified

designers and experts. In the following, research works that

combined Fault Tree Analysis (FTA) with Machine learning

approaches will be discussed.

Hurdle et al. [29] used a non-coherent Fault Tree for the

fault diagnosis of a water tank system. The limitations in this

method was a need for consistency checks from observation

points. Two years later, the approach has been updated by

combining the FTA and Bayesian Belief networks in [30].

Cai et al. [31] proposed a new method for real-time relia-

bility analysis through a combination of traditional Bayesian

networks derived from root cause diagnosis and dynamic

Bayesian networks. In fact, this study updates prior reliability

knowledge of the system (failure distributions) via dynamic

Bayesian networks. A subsea pipe ram BOP system has been

addressed as a case study in this paper.

Askarian et al. [32] proposed a new method for fault

diagnosis through a fusion of micro-macro data. In this paper,

the FTA and Bayesian networks have been combined to gain

the advantages of both prior probability distribution in FTA

and real-time data in Bayesian networks. Remaining Useful

Life (RUL) is a parameter usually estimated throughMachine

learning approaches [33]. A method for combining failure

rate and RUL as the basic event in Dynamic Fault Tree has

been proposed in [34], [35].

A hierarchical Bayesian network-based model has been

provided for process monitoring and decision making in [36].

This article used a data-driven algorithm to update the sub-

Bayesian networks in the model. Getir et al. [37] focused

on semi-automated and co-evaluated process as a case study

and defined a number of intra- and inter-model rules of

transformation to cover the evaluation scenarios. The out-

come of this study has shown that realizing the co-evolution

of the proposed approach required fewer user interactions.

The potential challenges and opportunities of using machine

learning in a safety-critical application have been reviewed

in [38]. The paper illustrated how missing casualties in the

model can be reduced through the incorporation of safety

models and data-driven knowledge.

A conceptual idea regarding the combination of artificial

intelligence methods with safety models has been presented

in [39]. In this report, examples of golf-shot on the moon

and Falcon launch from SpaceX have been demonstrated.

Cheng et al. [40] proposed an Imitation Medical Diagnosis

Method (IMDM) in which three types of Bayesian networks

have been used; Machine Learning BN, Expert empirical

BN, and maintenance decision BN. The method also applied

the fuzzy theorem to achieve uncertainties and conditional

probabilities.

From the above discussion, all the works related to model

repair and/or machine learning for safety analysis consider

the system models and based on the conformity analy-

sis or model checking different potential actions such as to

repair a model, update a model, upgrade a model, etc. are

recommended. However, to the best of the authors’ knowl-

edge, no work has considered the same for the safety artefacts

that are used to safety certification of the system models.

Therefore, in this paper, we aim to combine machine learning

with safety analysis for runtime evaluation of correctness of

safety models developed during the design time.

III. THE PROPOSED APPROACH

The approach proposed in this paper considers that at design

time, safety analysts have knowledge about the systemmodel

and behavior, and they have already created a fault tree of

the system based on their knowledge about the foreseeable

failure events. It also considers that at runtime the system is
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FIGURE 3. A classification for safety models associated with machine learning.

continuouslymonitored for some parameters, i.e., operational

data is available. The basic idea of the approach is to use

the real time operational data of the system to learn the

normal behavior of the system. Afterwards, when a new set of

operational data is available, the knowledge about the normal

behavior of the system is used to see if there exists any

anomaly in the new record. If any anomaly is detected in the

behavior, then the existing system fault tree is consulted to see

if it can explain the reason for abnormal behavior, i.e., if the

FT contains a node that is associated with this current event.

If no explanation is found in the fault tree, different recom-

mendations are provided based on the perceived severity of a

scenario. The framework of the proposed approach is shown

in Fig. 4. It can be seen that the approach is divided into two

parts: the anomaly detection (AD) part and the decision mak-

ing (DM) part. The AD part is responsible for formulating

the normal behavior model of the system and for checking

for anomaly in the newly arrived record. We used One Class

Support Vector Machine (OC-SVM) to accomplish this task.

If an abnormal behavior is detected, the DM part processes

the information made available by the machine learning part

to suggest appropriate actions. A detailed description of the

AD and DM parts of the approach is provided in the next

two sections.

A. ANOMALY DETECTION

Anomaly detection is the process of abnormal behavior iden-

tification. The abnormal behavior can be an item, object,

observation or any unusual pattern from the expected behav-

ior [41]. For example, in the banking sector, to check if a bank

card has been stolen or an account is hacked, we can identify

any abnormal transaction made from the bank account by

generating the normal behavior of the account holder from

his/her previous transactions and comparing it with the new

transaction. Fig. 5 graphically represents the anomaly detec-

tion process, where the blue region (dots) represents datasets

forming the expected behavior of a system and the red circle

represents an anomalous dataset. In this illustrative example,

we showed the behavior formed based on three arbitrary

parameters such as FTV, Tmp, and PFT. Each point in the

graph represents an observation on these three parameters at

different point in time.

Based on the testing data, the anomaly detection problem

can be formulated as a supervised, unsupervised or semi-

supervised classification problem. In supervised anomaly

detection, the data set is labeled as ‘normal’ or ‘abnormal’,

and the algorithm will learn the model of each class and

provide a separator for the classification engine. The data will

help the algorithm to identify the importance of each feature

to the problem in hand. In contrast, the unsupervised anomaly

detection techniques use unlabeled test data. Therefore, there

is no straightforward technique to evaluate the quality of the

results. Semi-Supervised learning anomaly detection uses a

mixture of labeled and unlabeled data for the learning phase.

In most anomaly detection problems, the data is unlabeled

with the assumption that the system is by default most likely

to perform its normal expected behavior.

In order to detect anomalies in the system behavior, the first

step is to generate the normal behavior of the system after a

dataset is received from the real-time operation of the system.
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FIGURE 4. Framework of the proposed approach for abnormality detection and warning notification.

This means this step should wait for a sufficient number of

records to be available. The incoming data from the system

is considered to be normal, i.e., all data are labeled with one

class. Regarding that, the normal behavior generation prob-

lem is formulated as a one-class classification problem using

only data from the assigned class. The One Class Support

Vector Machine (OC-SVM) classifier [40] has been used to

generate normal behavior. OC-SVM uses a pattern analy-

sis algorithm to study the general type of relations among

the instances of data. This type of algorithm is known as

a ‘Kernel’, which represents a similarity measure between

any two inputs, also known as a weighting factor. There are

different types of kernel functions such as linear, Gaussian,

polynomial, and hyperbolic tangent. A kernel function is

used inside the decision function. Usually, the selection of a

particular type of kernel is problem-specific and contributes

considerably to the success of the learning algorithm. SVM

uses the kernel to map the data into the feature space H and

tries to converge the data points into a hypersphere in feature

space.

The OC-SVM can be formulated as follows: Let

X = {x1, x2, x3, . . . , xn}
m be a set of instances with one

label ‘Normal’ representing the streaming data coming con-

tinuously in real time from the system. n is the number of

all parameters of the system (data captured from the different

system’s sensors) and m is the number of instances at a time

instant t.

Let K : Rn → H be the kernel function that trans-

forms the input data to the features space H . The OC-SVM

is in general an optimization problem, which tries to min-

imize the distance between points on the same class and

maximize the distance between points inside the class and
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FIGURE 5. Graphical representation of anomaly detection process.

the origin [42].
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where δi is the relaxation parameter, which is used to balance

the experienced risk minimisation. ω, b parameters are used

for deciding the separating line (hyperplane), which defines

the decision distance that separates points assigned to the

normal behavior to other points.

vn sets upper bound of the out-of-class training examples

and lower bound on the number of training used as support

vector. n is the number of points in the training dataset.

The problem of finding the optimal hyperplane, which

makes separation between classes of data, is a quadratic prob-

lem. The main objective of the quadratic problem is to find

the optimal separating hyperplane between classes. A general

quadratic programming problem can be described as:

Min Q (α) =
1

2

n
∑

i,j

αiαjK
(

xi, xj
)

Subject to: 0 ≤ αi ≤
1

vn
,

∑n

i
αi = 1 (2)

where αi is the influence of example i.

f (x) = sign ((ω,K (x)) − ρ) (3)

where sign function is the derivative of the absolute value

function (−1, +1).

ρ =

n
∑

j=0

αiK
(

xi, xj
)

(4)

The kernel is a positive symmetric function where it

projects input vectors into a feature space allowing for non-

linear decision boundaries. Let ϕ denote the feature mapping,

which maps from the attributes to the features. The kernel

uses a featuremapping ϕ, whichmaps the data to a new space.

The construction of the mapping function is very expensive

in very high dimensional spaces.

∅ : X → RN, K
(

xi, xj
)

= ∅ (xi)
T · ∅

(

xj
)

∅ (xi) =





x

x2

x3



 (5)

After the initial normal behavior model is formed, when-

ever a new monitoring dataset is received from the sensors of

system, this new record is checked against the normal behav-

ior model of the system to detect anomalies. If no anomaly is

detected, the record is saved in a central repository. Note that,

to keep the normal behavior model of the system updated,

it is regenerated after a certain number of new normal records

have arrived. This number can be defined by the user. In this

paper, we regenerated the model after receiving 10 normal

records.

If an anomaly is detected in the new record, correlations

are generated among the different parameters within the

record. Correlation is a measure of change between two

variables. Correlation between variables does not necessarily

mean causality, but this measurement is used to provide extra

knowledge for the decision-making process. Two variables X

and Y are highly correlated if any variation (positive or neg-

ative) in X corresponds (or does not correspond) to a similar

variation in Y, and vice versa. The correlation between two

variables can be interpreted as one of the variables influenced

by the other one, or both of them being influenced by a third

variable. The interpretation of the correlation can be used as

a parameter to the overall decision-making process.

One of the well-known correlation measures is the corre-

lation coefficient (Pearson r). The advantage of this measure

is that it is sensitive to outliers. Therefore, a high correlation

means the two variables match each other with high proba-

bility over an observation period. The formula for computing

the Pearson r is as follows:

rXY =

∑n
i=1

(

Xi − X
) (

Yi − Y
)

√

∑n
i=1

(

Xi − X
)2

√

∑n
i=1

(

yi − Y
)2

(6)

The correlation among different variables are utilised to

identify the system parameters that have pushed the system

outside the boundary of its normal behavior. This information

is used in the decision-making process as follows for recom-

mending actions.

B. DECISION-MAKING PROCESS

The result of the anomaly detection part is a set of parameters;

these parameters are divided into categories. Some parame-

ters are pushing the behavior of the system to the abnormal

region, and other parameters that are highly correlated to

the first category’s parameters. The decision-making process

will take this relevant information as input. Based on this

information, several alternative decision paths are identified

(see Fig. 6). The decision process will use some external
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FIGURE 6. A decision tree for scenario classification.
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FIGURE 7. A schematic of aircraft fuel distribution system.

resources, such as the system fault tree, to check if the current

abnormal scenario has been taken into consideration during

the offline analysis. If not, action should be taken and warn-

ings based on the system situation (fail or not) should be

issued. After that, based on the final step of the branches,

the system user is notified. Note that the warning is given

immediately or on request based on the criticality of the

scenario. If the detected anomalous behavior represents a

system failure, then it is considered as critical. On the other

hand, if it does not represent system failure, then the sce-

nario is considered as less critical. When an abnormal system

behavior is detected, the following two cases are possible.

Case 1: The fault tree of the system can explain this abnor-

mal scenario. Although an explanation is found, the fault tree

may ormay not contain all the event(s) corresponding to these

observed anomalies. If the fault tree contains all the related

events, the decision-making block does not suggest any repair

action for the fault tree. On the other hand, if there are

some events missing in the fault tree then a recommendation

is provided to check the fault tree for a potential repair to

include the newly discovered events which were not seen

during design stage. Note that whenever a recommendation

is provided it is saved in a central repository for future use in

a similar case.

Case 2: The fault tree cannot explain this abnormal behav-

ior. That could either mean that during the design time cre-

ation of the fault tree the analysts were not able to foresee

some events that are identified now, or they were able to

identify all the events, but the logical relationships among

the events were wrongly set in fault tree. Therefore, it is

recommended either to repair the fault tree by including

newly identified events or by correcting the logic of the fault

tree. Note that, in this case, before generating any recommen-

dation, the decision-making process first checks the warning

FIGURE 8. Fault tree of omission of fuel to the PE.

repository to see if this particular scenario has been addressed

in the past. If it was addressed before, then the warning is

retrieved from the repository for reuse. If it is a new case,

then a new appropriate warning event is created, and the

required notification is provided based on the system situation

(fail or not).
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FIGURE 9. Readings from sensors under normal operating condition.

IV. CASE STUDY EVALUATION

To illustrate the concept proposed in this paper, we use a

simplified version of an Aircraft Fuel Distribution System

(AFDS) used in [43]. The system shown in Fig. 7 has two

primary functions: storing fuel and distributing fuel to the

engines. These functions are provided in refueling and con-

sumption phases, respectively. During refueling, the fuel is

first loaded in the Central Reservation Tank and then dis-

tributed to the Front and Rear Tanks. In the consumption

phase, the two engines receive adequate level of fuel from

the appropriate tanks. For instance, the Port Engine (PE) will

receive fuel from Front Tank and the Starboard Engine (SE)

will receive fuel from Rear Tank. Each of the tanks have a

level sensor and a temperature sensor. They measure the level

of fuel and the temperature of the tank, respectively.When the

fuel level reaches to a pre-specified level in the Front and the

Rear Tank, they can draw fuel from the central reservation

tank. Similar to the tanks, the valves have their own sensor

to measure the rate of flow through them. Additionally, there

are flow sensors attached to the pipes to measure flow rate

through the pipes.

As seen in the figure, the fuel flow paths to the PE and

SE are identical and they only use a different set of compo-

nents. For this reason, for illustrative purposes, in this paper

we only consider the fuel flow path of the PE for further

analysis. It was also assumed that the sensors are reliable;

therefore, their failures are not considered in the analysis.

A fault tree is derived by considering the ‘‘Omission of Fuel

to the Port Engine’’ as the top event and shown in Fig. 8.

Table 1 describes the meaning of the basic events and their

associated components.

To illustrate the proposed idea, we consider that eight

different sensors are used to monitor the real time behavior

of the fuel flow path to the PE. The sensors are FTL and FTT

(level and temperature sensor of front tank), CRTL and CRTT

(level and temperature sensor of central tank), FTF and CLF

(two flow sensors attached to two different points in the

pipes), FTV-S (sensor on valve FTV), and CLV-S (sensor on

valve CLV).

TABLE 1. Description of the basic and intermediate events of the fault
tree in figure 8.

FIGURE 10. Correlation heat map for different variables in the normal
operating condition.

Fig. 9 shows the readings from different sensors when the

system works normally. Note that all the data used in this

paper is hypothetical and used only for illustrative purposes.

135864 VOLUME 7, 2019



Y. Gheraibia et al.: Safety + AI: Novel Approach to Update Safety Models Using Artificial Intelligence

FIGURE 11. Readings from sensors in abnormal scenario 1.

FIGURE 12. Correlation heat map for different variables in the scenario 1.

However, we believe that the real operational data from a

practical system can be used in the same fashion. As seen

in Fig. 9, it is assumed that in normal operating conditions,

temperatures of the fuel in the front and the central tank are

kept at−20◦C. It is also seen that the front tank keeps provid-

ing fuel to the PE, without drawing any fuel from the central

tank, until its fuel level drops to 50%. At time interval 10,

the fuel level of front tank reaches to 50%, where it starts

drawing fuel from the central tank, which is evident from the

drop in the fuel level in the central tank and availability of

fuel flow through CLF and CLV-S sensors. The central tank

fuel level drops sharply compared to the left tank because it

was assumed that both the left and right tanks are drawing

fuel from the central tank at the same time. Moreover, after

the time interval 10, the fuel level of the left tank drops less

sharply than before because of the support it is receiving from

the central tank. The correlation among different variables in

the normal scenario is shown in Fig. 10.

To illustrate how the proposed approach will identify

abnormal scenarios and suggest appropriate actions, we con-

sider four different scenarios. Fig. 11 shows the first scenario.

In this case, after time interval 13, the operators of the system

notice that the port engine is starving of fuel. Independent

of what the operators observe, the approach proposed in

this paper detects an anomaly after time interval 13. The

approach detects that the change in the readings fromFTF and

FTV-S cause the system to go outside its operational

boundary. Given the abnormal behavior and the detected

parameters, the approach finds correlations between these

parameters with other parameters (see Fig. 12). From the

FIGURE 13. Readings from sensors in abnormal scenario 2.
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FIGURE 14. Readings from sensors in abnormal scenario 3.

FIGURE 15. Correlation heat map for different variables in scenarios 2 and 3 (a) correlation heat map for different variables in the scenario 2
(b) correlation heat map for different variables in the scenario 3.

correlation heat map, it is seen that in this abnormal con-

dition, the variables FTF and FTV-S themselves are highly

correlated, i.e., a change in one of the variables may cause

the problem in other variables. Moreover, these variables are

highly correlated with CTL and FTL, which could potentially

mean that the reduced rate of flow through pump FTP and

valve FTV is responsible for reduced level of consumption

from the front and central tank, consequently the reason for

starvation of the port engine. The fault tree of Fig.8 can

explain this scenario. This scenario corresponds to a case

where the top event of the fault tree becomes true because of

the occurrence of any of the BEs 1 to 4 (BEs associated with

FTP and FTV). However, as Fig. 11 shows that the reduced

fuel flow is detected by the FTF first, the position of this

sensor in system (see Fig. 7) suggests that it is highly likely

that the problem was with the pump FTP, i.e., BE 1 and/or

BE2 in the fault tree of Fig. 8.

Figs. 13 and 14 represents two closely related scenarios. As

seen in Fig. 13, like the normal operation mode (see Fig. 9),

after time interval 10, the front tank starts drawing fuel from

the central tank. However, unlike the normal operation mode,

the temperature of the fuel in the front tank starts dropping

after time interval 10. After time interval 12, the temperature

recorded by FTT reaches to−45◦C and stays at the same level

afterwards. At the same time, after time interval 12, the fuel

flow rate recorded by FTF and FTV-S starts dropping. The

proposed approach detects that the values recorded by FTT

force the system to go outside its operational boundary. The

correlation heat map in Fig. 15(a) shows that in scenario 2,

FTT has very high correlation with FTF, FTV-S, CTL, and

FTL. That means the drop-in temperature recorded by FTT

is responsible for the abnormal system behavior. In this sce-

nario, as the fuel system is operating in a degraded mode,

a warning event would be generated by incorporating this

newly found knowledge, and the warning will be shown on

request.

Scenario 3, shown in Fig. 14, represents further degra-

dation from scenario 2, where the temperature recorded by

FTT dropped further to −65◦C. At the same time, unlike

scenario 2, the fuel flow rate recorded by FTF and FTV-S
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FIGURE 16. Readings from sensors in abnormal scenario 4.

FIGURE 17. Fault Tree correction based on the recommendation of the proposed method for scenario 4.

reaches to zero, meaning that there is no fuel flow to the

PE. The updated correlation heat map for this scenario is

shown in Fig. 15(b). According to the heat map, correlation

of FTT with FTF, FTV-S, and CTL increased further, which

suggests that the temperature of the fuel in the front engine

is responsible for this abnormality. An inspection of the fault

tree of Fig.8 reveals that this scenario is not explainable by the

fault tree because in the fault tree there is no event related to

temperature of fuel in the front engine. As a result, a warning

event is created with the suggestion to repair the fault tree by

including an event related to the temperature of the fuel.

The scenario 4 (see Fig. 16) shows that at time interval

10, the central fuel tank starts providing fuel to the front

tank, which is an expected behavior. However, after time

interval 12, the central tank stopped providing fuel to the front

tank as evidenced by no flow reading from CLF and CLV-S.

No flow reading from CLF and CLV-S could be attributed

to the failure of either or both of pump CLP and valve CLV.
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Because of this, the front tank has to feed the PE alone, which

results into very low fuel level at the front tank. Moreover,

throughout this time, the readings at FTT and CRTT remain

the same. In this case, an abnormal behavior is detected by the

proposed approach and the variables detected for this abnor-

mality are FTL, CLF, and CLV-S. Although an abnormality

is detected by the proposed approach and there are events

associated with all the detected abnormal parameters in the

fault tree, the fault tree of Fig. 8 was still not able to explain

this scenario. It is clear that this abnormality is because of the

low fuel level at the front tank, which corresponds to event I3

(front tank’s fuel level too low) in the fault tree. However, for

some reason this event does not become true. Therefore, there

may exist a problem with the logical relationship among the

events that can cause intermediate event I3. For this reason,

the proposed approach would create a warning event with the

suggestion to check the fault tree for the correctness of the

logic gate used for modelling the behavior of event I3 and

other events downwards.

Based on the recommendation, the fault tree of Fig. 8 is

corrected by replacing the AND gate below I3 by an OR gate

(see Fig. 17). After this correction, the fault tree was able to

explain the scenario 4.

V. CONCLUSION

This work utilises machine learning based approaches to

capture the real time behavior of a system based on real-

time operational data. During monitoring, if it is found that

the system deviates from its normal behavior, a number of

recommendations have been provided based on the nature of

the detected abnormality and the ability of the safety artefacts

of the system to explain the abnormality. These recommenda-

tions include the potential repair of the fault tree of the system

via the inclusion of new basic events and/or via the correction

of the logical structure of the fault tree.

From historical evidence, it is clear that during safety

analysis in the design phase of system development, it is

possible that the analysts may not foresee all possible causes

of failure and they may develop safety artefacts based on the

wrong assumptions and wrong understanding of the system

behavior. Such limitations can only be uncovered during the

operation of the system. The approach proposed in this paper

is an attempt to address these issues by taking into account

the monitoring data. The primary advantage of the approach

is that it can provide additional knowledge about the safety

model and the system behavior to the system user when an

unknown scenario is encountered.

Currently, we demonstrated the effectiveness of the

approach by applying it on a simplified aircraft fuel dis-

tribution system, based on hypothetical data and scenarios.

However, in the future, we plan to verify the usefulness and

scalability of the approach by applying it to more complex

systems with real operational data. One challenge in this case

would be the availability of operational data of a system and

the willingness of the system owners to share the data.
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