Safety Analysis Using Petri Nets

IEEE Transactions on Software Engineering (1987)
Nancy G. Leveson and Janice L. Stolzy

Park, Ji Hun 2010.06.21

Contents

- Introduction
- Background
 - Petri net
 - Time petri net
- Safety analysis
- Adding failure to the analysis
- Example of safety analysis
- Conclusion
- Discussion

Introduction

Motivation

- Safety is important especially when it involves serious danger to human life and property
- Software safety should be considered as a whole system including hardware and human, and they can be represented by Petri net
- In real-time safety critical system, timing information is very important

Goal of this paper

- Suggest how to identify high-risk states and eliminate them
- Suggest how to analyze failure using Petri net

Background (1/3)

- Petri net
 - Places P
 - Transitions T
 - Input functions I
 - Output functions O
 - Initial marking μ_0

$$P = \{P_1, P_2, P_3\}$$

$$T = \{t_1, t_2, t_3\}$$

$$\mu_0 = \{1, 0, 0\}$$

$$I(t_1) = \{P_1\} \qquad O(t_1) = \{P_2, P_3\}$$

$$I(t_2) = \{P_2\} \qquad O(t_2) = \{\}$$

$$I(t_3) = \{P_3\} \qquad O(t_3) = \{\}$$

Background (2/3)

- Petri net(cont'd)
 - Reachability graph
 - Next-state function δ

$$\delta(\sigma_1, t_1) = \sigma_2$$

$$\delta(\sigma_2, t_3) = \sigma_3$$

$$\delta(\sigma_2, t_2) = \sigma_4$$

• • •

Background (3/3)

Time petri net

- Places P
- Transitions T
- Input functions I
- Output functions O
- Initial marking μ_0
- Reachability graph
- Next state function

- \clubsuit When the transition t_i is enabled,
 - Must wait at least during $Min(t_i)$
 - If wait more than $Max(t_i)$, It should be fired

Safety analysis (1/6)

Mishap and hazard

- Mishap: An unplanned event or series of events that results in death, injury or damage to property or equipment
- Hazard : A set of conditions which could cause a mishap

Properties of hazard

- Severity : High-risk and low-risk
- Probability : Not considered in this paper

Safety analysis (2/6)

Example of safety-critical system

Safety analysis (3/6)

Safety analysis (4/6)

Identifying high-risk state

Problem of creating full reachability graph

Size of the graph is impractically large for a complex system

Backward analysis

Testing whether the high-risk states are reachable Using Inverse Petri net which is inversed each transition's input places with output places

Problem of Backward analysis

Useful only considering small number of high-risk states Possibly as large as or even larger than original graph

The author's solution

Using particular type of state named 'critical state' Don't need entire backward reachability graph

Safety analysis (5/6)

Critical states

- Low-risk states which has both transitions toward highrisk states and low-risk states
- By selecting for low-risk states way, high-risk states can be avoided

Safety analysis (6/6)

Eliminating high-risk state

- Inter lock
 - One event always precedes another events
- Time constraint

Computer

- $Max(t_2) < Min(t_1)$
- Determined using reachability graph

Adding failures to the analysis (1/9)

- Type of control failures
 - A required event that does not occur
 - An undesired event
 - An incorrect sequence of required events
 - Timing failures in event sequences

- ✓ IEEE definition of failure (IEEE Std1633-2008)
 - The inability of a system or system component to perform a required function within specified limits

Adding failures to the analysis (2/9)

- Representation of control failure
 - Previous work Loss of tokens
 - Hard to know circumstance of the failure
 - Author's suggestion Failure transition and place
 - Legal transition (T_L) and Failure transition (T_F)
 - Legal place(P_L) and Failure place(P_F)

Desired event does not occur

Undesired event occurs

Adding failures to the analysis (3/9)

- Representation of control failure(cont'd)
 - Legal and faulty state
 - Legal state $\sigma \text{ is legal state, iff from initial state } \sigma_0$ $\exists path(sequence \text{ of transition}) \text{ s, s} \in T_L^*, \delta^*(\sigma_0, s) = \sigma$
 - Faulty state

 σ is faulty state, iff from initial state σ_0

 $\forall path(sequence\ of\ transition)\ s,\delta*(\sigma_0,s)=\sigma,$

 $\exists t_f \in T_f and \ t_f \in S$

Fault reachability graph

Adding failures to the analysis (4/9)

Qualities of design associated with failure

- Recoverability
 - After failure, the control of process is not lost and will return to normal execution within an acceptable amount of time
- Fault-tolerance
 - The system continues to provide full performance and functional capabilities in the presence of faults
- Fail-safe
 - The system limits the amount of damage caused by failure and functional requirement could be not satisfied

Adding failures to the analysis (5/9)

Recoverability

Definition

- Number of faulty states are finite
- There are no terminal faulty node
- There are no directed loops including only faulty states
- The sum of maximum times on all paths <u>from the failure</u> <u>transition to correct state</u> is less than a predefined acceptable amount of time

Problem

 Once a permanent failure has occurred, the state cannot return to normal unless some repair action has taken place

Adding failures to the analysis (6/9)

Correct behavior path

- Definition
 - Path in reachability graph which contains no failure transition

$$\delta(\sigma_{i-1}, t_i) = \sigma_i$$
, for $i = 1..n$ and $t_i \in T_L$

Fault-tolerant

- Definition
 - A correct behavior path is a subsequence of every path from initial to any terminal state
 - Sum of maximum times on all paths is less than predefined acceptable amount of time

for path
$$t_1...t_n$$
 from σ_0 to σ_n ,
$$\sum Max(t_j) < T_{acceptable} \text{ for } j = 1...n$$

Adding failures to the analysis (7/9)

Fault-tolerant(cont'd)

- Correct behavior path : $t_1 t_2 t_4 t_8 t_{10}$
- Initial to final path : $t_1 t_2 t_1 t_2 t_2 t_1$

Takes time no more than $T_{acceptable}$

- Meaning of 'Fault-tolerant'
 - Even if some initial to terminal path has failure transition, the system should be recovered and perform adequately
 - Even if there is failure transition, sum of execution times is less than predefined time

Adding failures to the analysis (8/9)

Example of fault-tolerant system

- When failure occurs, R could fire then it puts token in P1
- R is firable any time after firing of t1
 - Time constraint is needed

$$Min(R) \ge Max(t_2) + Max(t_3) + Max(t_4)$$

Adding failures to the analysis (9/9)

Fail-safe

- Definition
 - All paths from a failure F contain only low-risk states

$$\forall \sigma_f \text{ and sequences } s_1 \text{ such that } \delta^*(\sigma_0, s_1 F) = \sigma_f$$

 $\neg \exists \text{ sequence } s_2 \text{ and } \sigma_h \in high-risk \text{ states } \delta^*(\sigma_f, s_2) = \sigma_h$

- Property
 - The system may never get back to a legal state
- Possible way to design the system
 - The system may be n-fault-tolerant and n+1 fail-safe
 - The system may be fault-tolerant but not fail-safe

Example of safety analysis (1/3)

Analysis approach

Consider only those failures with the most serious consequences

➤ Add fault-detection and recovery devices to minimize the risk of a mishap (fault-tolerant)

➤ If risk can not be lowered, (e.g., unacceptable probability it fails or uncontrollable variables such as human error involved)

Add hazard-detection and risk-minimization mechanisms (fail-safe)

Example of safety analysis (2/3)

Adding failure example

controlling computer

Example of safety analysis (3/3)

Failure analysis example with recovery transition

R1: lower gate when it should be down

R2: ignore spurious control signal

Conclusion

Contribution

- Suggest 'critical state' algorithm eliminating high-risk states without generating whole reachability graph
- Suggest model to analysis failure using Petri net

Future work

- Considering probability of hazard occurring not only its severity
- Verifying formally whether the algorithm really generate high-risk free design

Discussion

Limitation

- Because of the time, the meaning of each words are little bit different
- In the failure analysis, how to represent of timeassociated failure is not suggested
- There is no example of fail-safe mechanism
- Lack of formal verification

Thank You

About author

- She was a computer science professor of UC Irvine, University of Washington
- Now she is professor of MIT
- Authority on software safety(safety critical real time system)
- [safe ware: System safety and computers] is published 1995

Definition of terms

Failure

 Nonperformance or inability of the system or component to perform its intended function for a specified time under specified environmental conditions

Accident

 An undesired and unplanned event that result in a specified level of loss

Hazard

 A state or set of conditions of a system that will lead inevitably to an accident(loss event)

Recoverability

Recoverability

- Formal definition
 - Number of states are finite

$$cardinality(\sum_{F}) < \infty$$

There are no terminal faulty node

$$for \forall \sigma \in \sum_{F}, \exists t \in T \text{ such that } \delta(\sigma, t_i) = \sigma'$$

There are no directed loops including only faulty states

$$\neg \exists sequence \ t_1...t_n \ such that for \ \sigma_i \in \sum_F$$

$$\delta(\sigma_i, t_i) = \sigma_{i+1}$$
 for $i = 1..n - 1$ and $\sigma_1 = \sigma_{n+1}$

 The sum of maximum times on all paths <u>from the failure</u> transition to correct state is less than a predefined acceptable amount of time

for
$$\forall path (t_1...t_n)$$
 from $\sigma_1 \in \sum_F to \sigma_2 \in \sum_L$

$$\sum Max(t_i) < T_{acceptable} for j = 1..n$$

