Safety Analysis Using Petri Nets

IEEE Transactions on Software Engineering (1987)
Nancy G. Leveson and Janice L. Stolzy

Park, Ji Hun
2010.06.21

KAIST-

SE LA

© KAIST SE LAB 2010 KAIST Software Engineering Lahnratury

“* Introduction

“» Background

= Petri net
= Time petri net

«» Safety analysis

<» Adding failure to the analysis
<» Example of safety analysis
“» Conclusion

» Discussion

© KAIST SE LAB 2010 2 /27

Introduction

<* Motivation
= Safety Is iImportant especially when it involves serious
danger to human life and property

= Software safety should be considered as a whole
system including hardware and human, and they can
be represented by Petri net

= |n real-time safety critical system, timing information is
very important

«» Goal of this paper

= Suggest how to identify high-risk states and eliminate
them

= Suggest how to analyze failure using Petri net

© KAIST SE LAB 2010 3/27

Background (1/3)

< Petri net
= Places P
= Transitions T
= |nput functions |
= QOutput functions O
= Initial marking

© KAIST SE LAB 2010

e

tl

enabled e
(firable) B
— €nabled

(firable)

enabled o
(firable)

P :{Pp P, Ps}

T :{'[1,'[2,'[3}

Ho =11,0,0}

| (tl) :{P1} O(tl) ={P2, P3}
| (tz) :{Pz} O(tz) ={}

| (ts) :{Ps} O(ts) ={}

4/ 27

Background (2/3)

» Petri net(cont'd) ol O
= Reachability graph
= Next-state function §

tl

t1 @ {2 t3
O

t3

>
()
6(o, 1) =0,
6(0,,1;) =0

5(0'2’t2) =0y
© KAIST SE LAB 2010 5/ 27

t2

Background (3/3)

< Time petri net

Places P
Transitions T @ T4 :
o ! < When the transition ; is enabled,
Iofi_tplut fur:(?tionsﬂo = Must wait at least during Min(t;)
nitial marking 4o _ _
Reachability graph = |f wait more than Max(ti) . It should be fired
Next state function
= M|n and Max Can’t be fired Firable Must be fired

A A

Vv

e enabled Min(t,) Max(t,)

—(%
0 Max(t,) < Min(t,)
m

© KAIST SE LAB 2010 6/ 27

Safety analysis (1/6)

“*Mishap and hazard

= Mishap : An unplanned event or series of events that
results in death, injury or damage to property or
equipment

= Hazard : A set of conditions which could cause a
mishap

“» Properties of hazard

= Severity : High-risk and low-risk
= Probability : Not considered in this paper

© KAIST SE LAB 2010 7/ 27

Safety analysis (2/6)

<» Example of safety-critical system

Approach 6
Before

Crossing

Within “%'

Past

Train

P10

A A t7

.E Down

Railroad
Crossing

Computer

© KAIST SE LAB 2010

Gate

Hazardous and high-risk when both
P3 and P11 have tokens : Gate is
up when the train is passing

8 /27

Safety analysis (3/6)

“» Rechability graph

<P1P6P11>

<é 2P5P6P1? A

P3P5P6P11 P2P7P9P11
J N t/
t3
<___P4P5P6P8P11 > P3P7P9P11 P2P7P12 O

\ 14 /B3 7\ 2

__P4PT7P8P9P11 > P3P7P12 O
5 7\ t3

<__P4P6P9P10P11 > __P4P7P8P12 O
7 N s
< P4P6P10P12 >

t6
< P4P6P11 >

: Hazardous state

9/27

Safety analysis (4/6)

< Identifying high-risk state

Problem of creating full reachability graph
Size of the graph is impractically large for a complex system

< &

Backward analysis
Testing whether the high-risk states are reachable
Using Inverse Petri net which is inversed each transition’s input places
with output places

Problem of Backward analysis
Useful only considering small number of high-risk states J

Possibly as large as or even larger than original graph

< &

The author’s solution
Using particular type of state named ‘critical state’
Don’t need entire backward reachability graph

Safety analysis (5/6)

«* Critical states

= Low-risk states which has both transitions toward high-
risk states and low-risk states

= By selecting for low-risk states way, high-risk states can

be avoided
Algorithim
G.et possible Get p953|ble \dentifying
prior states of descending states .
: . : critical states
high-risk states of prior states
Critical state Critical state

Before

P3P10P1> B

QP8P10P1> u

Low-risk state High-risk state Low-rlsk state

11/ 27

Safety analysis (6/6)

< Eliminating high-risk state
= Inter lock

* One event always precedes
another events "] .

= Time constraint

. Max(t,) < Min(t)

« Determined using reachability graph
Example using interlock

P1P6P11
tl

P2P5P6P11

. t4

It

L..—‘ P2P7P9P11
Drown

t7

PAP7P8P12

t5

P4P6P10P12

t6

P4P6P11

No hazardous state!!

Adding failures to the analysis (1/9)

< Type of control failures
= A required event that does not occur
= An undesired event
= An incorrect sequence of required events
= Timing failures in event sequences

v |EEE definition of failure (IEEE Std1633-2008)

= The inablility of a system or system component to
perform a required function within specified limits

© KAIST SE LAB 2010 13/ 27

Adding failures to the analysis (2/9)

“» Representation of control failure

= Previous work — Loss of tokens
 Hard to know circumstance of the failure

= Author’s suggestion — Failure transition and place
- Legal transition(,) and Failure transition{T .)
* Legal place(,) and Failure place@;)

Counter
E’G_/ -
\ 4
t, —— 1, t, t

faulf

Desired event does not occur Undesired event occurs 14 / 27

Adding failures to the analysis (3/9)

“» Representation of control failure(cont'd)

= Legal and faulty state

« Legal state
o is legal state, iff from initial state o,

dpath(sequence of transition)s,seT,*, 0*(o0,,S)=0
- Faulty state
o is faulty state, iff from initial state o,

Vpath(sequence of transition) s, 6 *(o,,S) = o,
dt, eT,and t; €s

Fault reachability graph

Initial
state

Faulty
state

Faulty

Legal state

state

15/ 27

Adding failures to the analysis (4/9)

< Qualities of design associated with failure

= Recoverability

« After failure, the control of process is not lost and will return to
normal execution within an acceptable amount of time

= Fault-tolerance

* The system continues to provide full performance and
functional capabilities in the presence of faults

= Falil-safe

* The system limits the amount of damage caused by failure and
functional requirement could be not satisfied

© KAIST SE LAB 2010 16 / 27

Adding failures to the analysis (5/9)

“» Recoverability
= Definition
* Number of faulty states are finite
* There are no terminal faulty node

* There are no directed loops including only faulty states

* The sum of maximum times on all paths from the failure
transition to correct state is less than a predefined acceptable
amount of time =

= Problem
* Once a permanent failure has occurred, the state cannot return

to normal unless some repair action has taken place

Sl
@@

_SALEO

@@

Normal state(with spare tire) Failure(flat tire) Recovered but not normal
(no spare tire)

Adding failures to the analysis (6/9)

«» Correct behavior path
= Definition
« Path in reachability graph which contains no failure transition

o(c. ,t.)=0,fori=1l.nandt T,

< Fault-tolerant
= Definition
* A correct behavior path is a subsequence of every path from
initial to any terminal state
« Sum of maximum times on all paths is less than predefined
acceptable amount of time

for patht,..t, fromo,to o,
D> Max(t;) < T,eepapte fOr j=1...1

18 / 27

Adding failures to the analysis (7/9)

» Fault-tolerant(cont’d)
= Correct behavior path : t1t2t4t8t10

= |nitial to final path : ltltftZF:Rt4t8t1(i)
\
|

)

Takes time no more than Tacceptable

= Meaning of ‘Fault-tolerant’

* Even if some initial to terminal path has failure transition, the
system should be recovered and perform adequately

* Even if there is failure transition, sum of execution times is less
than predefined time

© KAIST SE LAB 2010 19 / 27

Adding failures to the analysis (8/9)

“» Example of fault-tolerant system

t3 = When failure occurs, R could

fire then it puts token in P1

= R s firable any time after
firing of t1
= Time constraint is needed
Min(R) > Max(t,) + Max(t,) + Max(t,)

tl || 14

© KAIST SE LAB 2010 20 / 27

Adding failures to the analysis (9/9)

< Fall-safe
= Definition
 All paths from a failure F contain only low-risk states
Vo, and sequences s, suchthat 6*(o,,s,F) =o;
—3sequence s, and o, € high —risk states 6 * (o, ,S,) =0,

= Property
* The system may never get back to a legal state

= Possible way to design the system
* The system may be n-fault-tolerant and n+1 fail-safe
* The system may be fault-tolerant but not fail-safe

© KAIST SE LAB 2010 21/ 27

Example of safety analysis (1/3)

“» Analysis approach

» Consider only those failures with the most serious
consequences

R

» Add fault-detection and recovery devices to minimize the risk of
a mishap (fault-tolerant)

(

» If risk can not be lowered, (e.g., unacceptable probability it fails
or uncontrollable variables such as human error involved)

e

»Add hazard-detection and risk-minimization mechanisms
(fail-safe)

Example of safety analysis (2/3)

< Adding failure example

Gate failure :

premature gate
/ ralsmg

F'ii

f2
v

Ciowrn

Human failure
> ignoring
warning signal

N

\
Program failure:
Fake signal from
controlling computer

© KAIST SE LAB 2010 23 / 27

Example of safety analysis (3/3)

< Fallure analysis example with recovery transition

® R v Up R1 : lower gate
@ when it should be

down

P12
Down

R2 :ignore
spurious control
signal

t3

P10

N
Counter

Computer for failure

OraOsgOnsd

24 /27

Conclusion

<+ Contribution
= Suggest ‘critical state’ algorithm eliminating high-risk
states without generating whole reachability graph
= Suggest model to analysis failure using Petri net

< Future work
= Considering probability of hazard occurring not only its
severity

= Verifying formally whether the algorithm really generate
high-risk free design

© KAIST SE LAB 2010 25/ 27

Discussion

<+ Limitation
= Because of the time, the meaning of each words are
little bit different

= |n the failure analysis, how to represent of time-
associated failure is not suggested

= There Iis no example of fail-safe mechanism
= Lack of formal verification

© KAIST SE LAB 2010 26 / 27

Thank You
Q&A

HAISTO
SE LAB »

© KAIST SE LAB 2010 KAIST Software Engineering Laboratory

About author

“*She was a computer science professor of UC
Irvine, University of Washington

“* Now she is professor of MIT

<» Authority on software safety(safety critical real
time system)

<+ [safe ware : System safety and computers] is
published 1995

© KAIST SE LAB 2010 28 / 27

Definition of terms

“» Failure
= Nonperformance or inability of the system or

component to perform its intended function for a
specified time under specified environmental conditions

«* Accident

= An undesired and unplanned event that result in a
specified level of loss

<+»Hazard

= A state or set of conditions of a system that will lead
Inevitably to an accident(loss event)

From Safeware(1995, NG. Leveson)

Recoverability

<» Recoverability

= Formal definition
* Number of states are finite

cardinality(}_ () <oo
* There are no terminal faulty node
forvoe) ., 3teT suchthat 5(o.t;) =0
* There are no directed loops including only faulty states

—3sequence t,..t, such that for o; € > .,
6(o.t) =0

* The sum of maximum times on all paths from the failure
transition to correct state is less than a predefined acceptable
amount of time

for vpath (t,..t,) fromo,e) too,e) |
Z Max(tj) <T acceptable for j=1..n

fori=1.n-1land o, =0, ,

i+1

. 30/ 27

