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Introduction

Motivation

 Safety is important especially when it involves serious 

danger to human life and property

 Software safety should be considered as a whole 

system including hardware and human, and they can 

be represented by Petri net

 In real-time safety critical system, timing information is 

very important
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Goal of this paper

 Suggest how to identify high-risk states and eliminate 

them

 Suggest how to analyze failure using Petri net



Background (1/3)

Petri net

 Places P

 Transitions T

 Input functions I

 Output functions O

 Initial marking 
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Background (2/3)

Petri net(cont’d)

 Reachability graph

 Next-state function
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Background (3/3)

Time petri net
 Places P

 Transitions T

 Input functions I

 Output functions O

 Initial marking 

 Reachability graph

 Next state function

 Min and Max
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Safety analysis (1/6)

Mishap and hazard

 Mishap : An unplanned event or series of events that 

results in death, injury or damage to property or 

equipment

 Hazard : A set of conditions which could cause a 

mishap

Properties of hazard

 Severity : High-risk and low-risk

 Probability : Not considered in this paper
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Safety analysis (2/6)

Example of safety-critical system
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Safety analysis (3/6)

Rechability graph
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Safety analysis (4/6)

Identifying high-risk state

Size of the graph is impractically large for a complex system

Problem of creating full reachability graph

Testing whether the high-risk states are reachable

Using Inverse Petri net which is inversed each transition’s input  places 

with output places

Backward analysis

Useful only considering small number of high-risk states

Possibly as large as or even larger than original graph

Problem of Backward analysis

Using particular type of state named ‘critical state’

Don’t need entire backward reachability graph

The author’s solution



Safety analysis (5/6)

Critical states

 Low-risk states which has both transitions toward high-

risk states and low-risk states

 By selecting for low-risk states way, high-risk states can 

be avoided
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Safety analysis (6/6)

Eliminating high-risk state

 Inter lock

• One event always precedes 

another events

 Time constraint

•

• Determined using reachability graph
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Adding failures to the analysis (1/9)

Type of control failures

 A required event that does not occur

 An undesired event

 An incorrect sequence of required events

 Timing failures in event sequences

 IEEE definition of failure (IEEE Std1633-2008)

 The inability of a system or system component to 

perform a required function within specified limits
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Adding failures to the analysis (2/9)

Representation of control failure

 Previous work – Loss of tokens

• Hard to know circumstance of the failure

 Author’s suggestion – Failure transition and place

• Legal transition(   ) and Failure transition(   )

• Legal place(   ) and Failure place(   )
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Adding failures to the analysis (3/9)

Representation of control failure(cont’d)

 Legal and faulty state

• Legal state

• Faulty state
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Adding failures to the analysis (4/9)

Qualities of design associated with failure

 Recoverability

• After failure, the control of process is not lost and will return to 

normal execution within an acceptable amount of time

 Fault-tolerance

• The system continues to provide full performance and 

functional capabilities in the presence of faults

 Fail-safe

• The system limits the amount of damage caused by failure and 

functional requirement could be not satisfied
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Adding failures to the analysis (5/9)

Recoverability

 Definition

• Number of faulty states are finite

• There are no terminal faulty node

• There are no directed loops including only faulty states

• The sum of maximum times on all paths from the failure 

transition to correct state is less than a predefined acceptable 

amount of time

 Problem

• Once a permanent failure has occurred, the state cannot return 

to normal unless some repair action has taken place

Normal state(with spare tire) Failure(flat tire) Recovered but not normal
(no spare tire)



Adding failures to the analysis (6/9)

Correct behavior path

 Definition

• Path in reachability graph which contains no failure transition

Fault-tolerant

 Definition

• A correct behavior path is a subsequence of every path from 

initial to any terminal state

• Sum of maximum times on all paths is less than predefined 

acceptable amount of time
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Adding failures to the analysis (7/9)

Fault-tolerant(cont’d)

 Correct behavior path :

 Initial to final path :

 Meaning of  ‘Fault-tolerant’

• Even if some initial to terminal path has failure transition, the 

system should be recovered and perform adequately

• Even if there is failure transition, sum of execution times is less 

than predefined time
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Adding failures to the analysis (8/9)

Example of fault-tolerant system
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Adding failures to the analysis (9/9)
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Fail-safe

 Definition

• All paths from a failure F contain only low-risk states

 Property

• The system may never get back to a legal state

 Possible way to design the system

• The system may be n-fault-tolerant and n+1 fail-safe

• The system may be fault-tolerant but not fail-safe
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Example of safety analysis (1/3)

Analysis approach

 If risk can not be lowered, (e.g., unacceptable probability it fails 

or uncontrollable variables such as human error involved)

 Add fault-detection and recovery devices to minimize the risk of 

a mishap (fault-tolerant)

Add hazard-detection and risk-minimization mechanisms 

(fail-safe)

 Consider only those failures with the most serious 

consequences



Example of safety analysis (2/3)

Adding failure example
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Example of safety analysis (3/3)

Failure analysis example with recovery transition
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Conclusion

Contribution

 Suggest ‘critical state’ algorithm eliminating high-risk 

states without generating whole reachability graph

 Suggest model to analysis failure using Petri net

Future work

 Considering probability of hazard occurring not only its 

severity

 Verifying formally whether the algorithm really generate 

high-risk free design
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Discussion

Limitation

 Because of the time, the meaning of each words are 

little bit different

 In the failure analysis, how to represent of  time-

associated failure is not suggested

 There is no example of fail-safe mechanism

 Lack of formal verification
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Definition of terms

Failure

 Nonperformance or inability of the system or 

component to perform its intended function for a 

specified time under specified environmental conditions

Accident

 An undesired and unplanned event that result in a 

specified level of loss

Hazard

 A state or set of conditions of a system that will lead 

inevitably to an accident(loss event)

From Safeware(1995, NG. Leveson)



Recoverability
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Recoverability

 Formal definition

• Number of states are finite

• There are no terminal faulty node

• There are no directed loops including only faulty states

• The sum of maximum times on all paths from the failure 

transition to correct state is less than a predefined acceptable 

amount of time
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