
Safety Analysis Using Petri Nets

IEEE Transactions on Software Engineering (1987)

Nancy G. Leveson and Janice L. Stolzy

Park, Ji Hun

2010.06.21

ⓒ KAIST SE LAB 2010

Contents

Introduction

Background
 Petri net

 Time petri net

Safety analysis

Adding failure to the analysis

Example of safety analysis

Conclusion

Discussion

2 / 27ⓒ KAIST SE LAB 2010

Introduction

Motivation

 Safety is important especially when it involves serious

danger to human life and property

 Software safety should be considered as a whole

system including hardware and human, and they can

be represented by Petri net

 In real-time safety critical system, timing information is

very important

3 / 27ⓒ KAIST SE LAB 2010

Goal of this paper

 Suggest how to identify high-risk states and eliminate

them

 Suggest how to analyze failure using Petri net

Background (1/3)

Petri net

 Places P

 Transitions T

 Input functions I

 Output functions O

 Initial marking

4 / 27ⓒ KAIST SE LAB 2010

0

P1

P2

P3

t1

t3

t2

}{)(

}{)(

}{)(

}0,0,1{

},,{

},,{

33

22

11

0

321

321

PtI

PtI

PtI

tttT

PPPP















{})(

{})(

},{)(

3

2

321







tO

tO

PPtO

enabled

(firable)

enabled

(firable)

enabled

(firable)

Background (2/3)

Petri net(cont’d)

 Reachability graph

 Next-state function

5 / 27ⓒ KAIST SE LAB 2010



P1

P2

P3

t1

t3

t2

P1

P2P3

P2 P3

t1

t2t3

t2 t3

211),( t

1

2

3 4

5

422),( t

332),( t

...

Background (3/3)

Time petri net
 Places P

 Transitions T

 Input functions I

 Output functions O

 Initial marking

 Reachability graph

 Next state function

 Min and Max

6 / 27ⓒ KAIST SE LAB 2010

0

P1

P2

P3

t1

t3

t2enabled

enabled

When the transition is enabled,

 Must wait at least during

 If wait more than , It should be fired

)(itMin

it

)(itMax

)()(32 tMintMax 

)(itMin)(itMaxenabled

Can’t be fired Firable Must be fired

Safety analysis (1/6)

Mishap and hazard

 Mishap : An unplanned event or series of events that

results in death, injury or damage to property or

equipment

 Hazard : A set of conditions which could cause a

mishap

Properties of hazard

 Severity : High-risk and low-risk

 Probability : Not considered in this paper

7 / 27ⓒ KAIST SE LAB 2010

Safety analysis (2/6)

Example of safety-critical system

8 / 27

P1

P2

P3

P4

P6

P5

P7

P8

P9

P10

P11

P12

t1

t2

t3

t4

t5

t6

t7

Approach

Before

Crossing

Within

Past

Train Computer

Up

Down

Railroad

Crossing

Gate

Hazardous and high-risk when both

P3 and P11 have tokens : Gate is

up when the train is passing

ⓒ KAIST SE LAB 2010

Safety analysis (3/6)

Rechability graph

9 / 27

P2P7P9P11

P2P5P6P11

P1P6P11

P3P7P9P11

P3P5P6P11

P4P7P8P9P11

P4P5P6P8P11 P2P7P12

P3P7P12

P4P7P8P12P4P6P9P10P11

P4P6P10P12

P4P6P11

t1

t4t2

t3
t4 t2 t7

t2t7t3t4

t5 t7 t3

t5t7

t6
: Hazardous state

Safety analysis (4/6)

Identifying high-risk state

Size of the graph is impractically large for a complex system

Problem of creating full reachability graph

Testing whether the high-risk states are reachable

Using Inverse Petri net which is inversed each transition’s input places

with output places

Backward analysis

Useful only considering small number of high-risk states

Possibly as large as or even larger than original graph

Problem of Backward analysis

Using particular type of state named ‘critical state’

Don’t need entire backward reachability graph

The author’s solution

Safety analysis (5/6)

Critical states

 Low-risk states which has both transitions toward high-

risk states and low-risk states

 By selecting for low-risk states way, high-risk states can

be avoided

11 / 27

Get possible

prior states of

high-risk states

Get possible

descending states

of prior states

Identifying

critical states

P3P11*

P3P10P12*

P4P8P10P12*

P2P11*

P2P12*

t6 t2
t7t3

High-risk state Low-risk stateLow-risk state

Critical state Critical state

Algorithm

Safety analysis (6/6)

Eliminating high-risk state

 Inter lock

• One event always precedes

another events

 Time constraint

•

• Determined using reachability graph

I
t1

t2

)()(12 tMintMax 

P1P6P11

P2P5P6P11

P2P7P9P11

IP2P7P12

P3P7P12

P4P7P8P12

P4P6P10P12

P4P6P11

t1

t4

t7

t2

t3

t5

t6

Example using interlock

No hazardous state!!

Adding failures to the analysis (1/9)

Type of control failures

 A required event that does not occur

 An undesired event

 An incorrect sequence of required events

 Timing failures in event sequences

 IEEE definition of failure (IEEE Std1633-2008)

 The inability of a system or system component to

perform a required function within specified limits

13 / 27ⓒ KAIST SE LAB 2010

Adding failures to the analysis (2/9)

Representation of control failure

 Previous work – Loss of tokens

• Hard to know circumstance of the failure

 Author’s suggestion – Failure transition and place

• Legal transition() and Failure transition()

• Legal place() and Failure place()

14 / 27

1t ft ft
1t

fault

Desired event does not occur Undesired event occurs

Counter

place

LT FT

FPLP

Adding failures to the analysis (3/9)

Representation of control failure(cont’d)

 Legal and faulty state

• Legal state

• Faulty state

15 / 27





),(**,,)(

,

0

0

sTsstransitionofsequencepath

stateinitialfromiffstatelegalis

L

standTt

sstransitionofsequencepath

stateinitialfromiffstatefaultyis

fff 

 ,),(*,)(

,

0

0





Initial

state

Legal

state

Faulty

state

Faulty

state

Fault reachability graph

ft ft

ft

Adding failures to the analysis (4/9)

Qualities of design associated with failure

 Recoverability

• After failure, the control of process is not lost and will return to

normal execution within an acceptable amount of time

 Fault-tolerance

• The system continues to provide full performance and

functional capabilities in the presence of faults

 Fail-safe

• The system limits the amount of damage caused by failure and

functional requirement could be not satisfied

16 / 27ⓒ KAIST SE LAB 2010

Adding failures to the analysis (5/9)

Recoverability

 Definition

• Number of faulty states are finite

• There are no terminal faulty node

• There are no directed loops including only faulty states

• The sum of maximum times on all paths from the failure

transition to correct state is less than a predefined acceptable

amount of time

 Problem

• Once a permanent failure has occurred, the state cannot return

to normal unless some repair action has taken place

Normal state(with spare tire) Failure(flat tire) Recovered but not normal
(no spare tire)

Adding failures to the analysis (6/9)

Correct behavior path

 Definition

• Path in reachability graph which contains no failure transition

Fault-tolerant

 Definition

• A correct behavior path is a subsequence of every path from

initial to any terminal state

• Sum of maximum times on all paths is less than predefined

acceptable amount of time

18 / 27

Liiii Ttandnifort  ..1,),(1 

njforTtMax

tofromttpathfor

acceptablej

nn

...1)(

,... 01





Adding failures to the analysis (7/9)

Fault-tolerant(cont’d)

 Correct behavior path :

 Initial to final path :

 Meaning of ‘Fault-tolerant’

• Even if some initial to terminal path has failure transition, the

system should be recovered and perform adequately

• Even if there is failure transition, sum of execution times is less

than predefined time

19 / 27ⓒ KAIST SE LAB 2010

108421 ttttt

108421 ttttttt Rf

Takes time no more than acceptableT

Adding failures to the analysis (8/9)

Example of fault-tolerant system

20 / 27ⓒ KAIST SE LAB 2010

F

W

P4

P1

P2

P3

t4t1

t2

t3

R

 When failure occurs, R could

fire then it puts token in P1

 R is firable any time after

firing of t1

 Time constraint is needed

)()()()(432 tMaxtMaxtMaxRMin 

ft

Adding failures to the analysis (9/9)

21 / 27ⓒ KAIST SE LAB 2010

Fail-safe

 Definition

• All paths from a failure F contain only low-risk states

 Property

• The system may never get back to a legal state

 Possible way to design the system

• The system may be n-fault-tolerant and n+1 fail-safe

• The system may be fault-tolerant but not fail-safe

hfh

ff

sstatesriskhighandssequence

Fsthatsuchssequencesand









),(*

),(*

22

101

Example of safety analysis (1/3)

Analysis approach

 If risk can not be lowered, (e.g., unacceptable probability it fails

or uncontrollable variables such as human error involved)

 Add fault-detection and recovery devices to minimize the risk of

a mishap (fault-tolerant)

Add hazard-detection and risk-minimization mechanisms

(fail-safe)

 Consider only those failures with the most serious

consequences

Example of safety analysis (2/3)

Adding failure example

23 / 27ⓒ KAIST SE LAB 2010

Human failure

: ignoring

warning signal

Program failure:

Fake signal from

controlling computer

Gate failure :

premature gate

raising

Example of safety analysis (3/3)

Failure analysis example with recovery transition

24 / 27

P1

P2

P3

P4

P6

P5

P7

P8

P9

P10

P11

P12

t1

t2

t3

t4

t5

t6 t7

Train

Computer

Up

Down

I

f5

P14

Counter

for failure

R1

R2 R1 : lower gate

when it should be

down

R2 : ignore

spurious control

signal

Conclusion

Contribution

 Suggest ‘critical state’ algorithm eliminating high-risk

states without generating whole reachability graph

 Suggest model to analysis failure using Petri net

Future work

 Considering probability of hazard occurring not only its

severity

 Verifying formally whether the algorithm really generate

high-risk free design

25 / 27ⓒ KAIST SE LAB 2010

Discussion

Limitation

 Because of the time, the meaning of each words are

little bit different

 In the failure analysis, how to represent of time-

associated failure is not suggested

 There is no example of fail-safe mechanism

 Lack of formal verification

26 / 27ⓒ KAIST SE LAB 2010

ⓒ KAIST SE LAB 2010

About author

She was a computer science professor of UC

Irvine, University of Washington

Now she is professor of MIT

Authority on software safety(safety critical real

time system)

[safe ware : System safety and computers] is

published 1995

28 / 27ⓒ KAIST SE LAB 2010

Definition of terms

Failure

 Nonperformance or inability of the system or

component to perform its intended function for a

specified time under specified environmental conditions

Accident

 An undesired and unplanned event that result in a

specified level of loss

Hazard

 A state or set of conditions of a system that will lead

inevitably to an accident(loss event)

From Safeware(1995, NG. Leveson)

Recoverability

30 / 27

Recoverability

 Formal definition

• Number of states are finite

• There are no terminal faulty node

• There are no directed loops including only faulty states

• The sum of maximum times on all paths from the failure

transition to correct state is less than a predefined acceptable

amount of time

)(Fycardinalit

'),(,    iF tthatsuchTtfor

111

1

1..1),(

,...

 

 
niii

Fin

andnifort

forthatsuchttsequence





njforTtMax

tofromttpathfor

acceptablej

LFn

..1)(

)...(211







 

