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Abstract

Safety analysis is an algorithm for determining if a term in the
untyped lambda calculus with constants is safe, i.e., if it does not
cause an error during evaluation. This ambition is also shared by
algorithms for type inference. Safety analysis and type inference are
based on rather different perspectives, however. Safety analysis is
based on closure analysis, whereas type inference attempts to assign
a type to all subterms.

In this paper we prove that safety analysis is sound, relative to
both a strict and a lazy operational semantics, and superior to type
inference, in the sense that it accepts strictly more safe lambda terms.

The latter result may indicate the relative potentials of static pro-
gram analyses based on respectively closure analysis and type infer-
ence.



1 Introduction

In this paper we compare two techniques for analyzing the safety of terms in
the untyped lambda calculus with constants. The safety we are concerned
with is the absence of “constant misuse”’, such as an attempt to compute

v true.

E:=z | .E| E\Ey|0|succ F

Figure 1: The lambda calculus.

One way of achieving this is to perform a standard type inference [7]; if a
term is typable, then safety is guaranteed. We propose another technique,
which we shall simply call safety analysis; it is based on closure analysis
[10, 2] and does not perform a type reconstruction. We show that this new
technique is sound and superior to type inference, in the sense that it can
accept strictly more safe terms. These results are illustrated in figure 2.

Safety analysis may be an alternative to type inference for implementations of
untyped functional languages. Apart from the safety property, type inference
also computes the actual type information, which may be useful for improving
the efficiency of implementations. Safety analysis similarly computes closure
information, which is also useful for improving efficiency.

Type inference can be implemented in linear time. Safety analysis can be
implemented in worst-case cubic time.

Type inference can analyze terms with respect to an arbitrary type environ-
ment. Safety analysis requires the type environment of the “main” term to
bind variables to only base types. For simplicity, we will prove the soundness
of safety analysis for only closed terms.

The language that we are concerned with is shown in figure 1. It is the
untyped lambda calculus with two constants: 0 and succ. The techniques
and results presented in this paper generalize without problems to arbitrary
constants. For technical reasons it is convenient for succ to always require an
argument; if desired, a combinator version can be programmed as \x.succ x.



safe relative to a strict semantics

accepted by safety analysis

accepted by pure terms
type inference

terms in normal form

safe relative to a lazy semantics

Figure 2: Sets of safe lambda terms.

2 Type Inference

The most common notion of practical type inference (TI), with which we
shall compare our safety analysis, is simple type inference. Note that ML-
polymorphism conceptually is just a syntactic expansion of named defini-
tions, followed by a simple type inference. This expansion, which may ex-
ponentially increase the size of the program, could similarly be performed
before a safety analysis.

Ti=allnt|n — 7

Figure 3: Type Schemes.

A straightforward presentation of simple type inference, due to Wand [12],



is as follows. First, the lambda term is a-converted so that every A-bound
variable is distinct. Second, a type variable [E] is assigned to every subterm
E; these variables range over type schemes, shown in figure 3. Third, a finite
collection of constraints over these variables is generated from the syntax.
Finally, these constraints are solved.

The constraints are generated inductively in the syntax, as shown in figure
4.

Phrase: Constraint

BBy, [E ]] [[ ]] — [E1Es]
0 [[O Int

succ £ [succ E] = [E] = Int

Figure 4: Constraints on type variables.

A finite collection of constraints can be solved by unification yielding a most
general solution. If no solution exists, then the program is not typable.
Soundness and syntactic completeness of this algorithm is due to Milner [7].

3 Safety Analysis

Safety analysis (SA) is based on a novel algorithm for closure analysis, which
slightly improves the algorithm used in the SIMILIX partial evaluator [2].
Safety analysis based on SIMILIX’s algorithm corresponds to primitive SA,
which in section 5 is shown to be weaker than SA.

The closures of a term are simply the subterms corresponding to lambda
abstraction. A closure analysis approximates for every subterm the set of
possible closures to which it may evaluate.

The SA algorithm shares many similarities with that for T1. First, the lambda
term is a-converted so that every A-bound variable is distinct. This means
that every closure A\z.E can be denoted by the unique token Axz. Second,
a type variable [FE] is assigned to every subterm E; these variables range



Figure 5: Local nodes in a parse tree.

over sets of closures and the simple “type” Int. Third, a finite collection of
constraints over these variables is generated from the syntax, Finally, these
constraints are solved.

The two algorithms differ in the domain over which constraints are specified,
and in the manner in which these are generated from the syntax.

In the remaining we consider a fixed lambda term Ej,. We denote by LAMBDA
the finite set of all lambda tokens in Ej. Consider the parse tree for any sub-
term E of Ey. We shall call a parse tree node local, if it can be reached from
the root without passing through a lambda abstraction. This is illustrated
in figure 5.

The constraints relating to SA are best explained by means of a trace graph.
It has a node for each closure, denoted by the corresponding lambda token,
and one for Ey, denoted MAIN. The edges will reflect possible applications.
An example trace graph is sketched in figure 6.

With every trace graph node we associate a set of local constraints; some
of those will be called local safety constraints. The trace graph node corre-
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Figure 6: Trace graph for (Af.(f(Az.succ z))(f 0))(A\y.y).

sponds to a closure. The local constraints are generated from its local parse
tree nodes as indicated in figure 7.

Phrase: Constraint

At .E [Az.E] 2 {\x}

0 [0] = Int

succ £ [succ E] = [E] = Int

Phrase: Constraint
£ B, [E1] € LAMBDA
succ £ [E] C{Int}

Figure 7: Local constraints.

The outgoing trace graph edges arise from local applications. For every F; FEy
we have an edge to any other trace graph node. With each trace graph edge



we associate a condition and two connecting constraints. The condition is
simply \x € [E;]; it states that this edge is only relevant if the closure of
the indicated trace graph node is a possible result of E;. The connecting
constraints reflect the relationship between formal and actual arguments and
results. They are [Es] C [z] and [EyEs] 2 [E]. The situation is illustrated
in figure 8.

Ax € [E]
E\Ey ——— K
[E2] C []
[E1Es] 2 [E]

Figure 8: Trace graph edges.

From the trace graph we derive a finite set of global constraints. Each of
these is a conditional inclusion of the form

Ari €Y., r, €Y, =XCY

Each path in the trace graph from the MAIN node gives rise to global con-
straints as follows. Suppose the path is

)\xIEYleQEYz Az, €Y,

The corresponding global constraints are
Ay €Yy,..., \r, €Y, = LOCAL U CONNECT

where LOCAL are the local constraints of the final node (Ay,) and CONNECT
are the connecting constraints of the final edge (Ay,—1 — Ayn)-

We let SA denote the global constraint system. If the local safety constraints
are excluded, then we denote the remaining constraint system by CA (for
Closure Analysis). We have some simple observations.
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Proposition 3.1: CA is always solvable.
Proof: Since we have no inclusion of the form X C {...}, we obtain a
maximal solution by assigning LAMBDA U {Int} to every variable. O

This means that closure information always can be obtained for every lambda
term. In contrast, SA need not be solvable, since not all lambda terms are
safe.

Proposition 3.2: If SA has a solution, then it has a unique minimal one.
Proof: The result follows from solutions being closed under intersection.
To see this, consider any conditional inclusion of the form Az; € Yi, Axy €
Yo, ..., Az, € Y, = X CVY, and let {L;} be all solutions. We shall show
that N;L; is a solution. If a condition Az; € N;L;(Y;) is true, then so are
all of A\z; € L;(Y;). Hence, if all the conditions of X C Y are true in N;L;
then they are true in each L;. Furthermore, since they are solutions, X C Y
is also true in each L;. Since in general A, C B, implies N A, C N By it
follows that N;L; is a solution. Hence, if there are any solutions, then N;L;
is the unique smallest one. O

There is a cubic time algorithm that given Ey computes the minimal solution
of SA, or decides that none exists. We omit the details; the algorithm is based
on an incremental fixed-point computation.

4 Soundness

We now show that SA is sound, i.e., if a term is accepted, then it is safe. We
show the soundness with respect to both a strict (call by value, applicative
order reduction) and a lazy (call by name, normal order reduction) semantics
of the lambda calculus.

To see that neither of the strict and lazy cases imply the other, consider the
two lambda terms in figure 9. Applicative order reduction of the first yields
an infinite loop, whereas normal reduction of it yields an error. In contrast,
applicative order reduction of the second yields an error, whereas normal
reduction of it yields an infinite loop. Thus, the soundness with respect to
one of the reduction strategies does not imply the soundness with respect to
the other.



1) (Az.err)(loop)
2) (Azx.loop)(err)

where err = 00 and loop = AA, with A = (\z.zx)

Figure 9: Two lambda terms.

The two semantics of the untyped lambda calculus will be given as natural
semantics [6, 4], involving sequents and inference rules. The two proofs of
soundness have the same structure, as follows.

First, the soundness of environment lookup is proved, by induction in the
structure of derivation trees. Second, the soundness of closure analysis of
a term in a so-called FEy-well-formed environment is proved, by structural
induction. Third, the Ey-well-formedness of all environments occurring in
a sequent in a derivation tree is proved, by induction in the depth of se-
quents. From these lemmas, the soundness of closure and safety analysis
easily follows.

4.1 Strict Semantics

We present in figure 10 a strict operational semantics which explicitly deals
with constant misuse. An evaluation that misuses constants yields the result
wrong.

The semantics uses environments and values, which are simultaneously de-
fined in figure 11.

The entire soundness argument is for a fixed lambda term FEjy, in which each
A-bound variable is distinct. Throughout, Es denotes an arbitrary subterm
of Ey. We need some terminology. Let Ly be any solution of CA. For all
subterms E of Ey, we let ambiguously [E] denote Lo([E]). We will say that
asequent p = E : v or p by x:vis active, if it occurs in a derivation tree
for Fpain Fo @ w, for some w, and if E or x occur in a trace graph node N
where there exists a path from the main node to N whose conditions all hold
in Ly. The predicate ABS(_, -) is defined on a constraint variable and value.
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Figure 10: Strict semantics.

Intuitively, ABS([£], v) means that [E] is an abstract description of v. The
precise requirement is that

o if v = succ™ 0 then {Int} C [E], and

o if v =< A\z.E', p > then {A\z} C [E].

Notice that ABS([E], wrong) always holds.

The Ep-well-formedness (FEo-wf) of environments and values is defined in
figure 12. It intuitively states that the environment or value may occur
during a safe evaluation of Ej.

Lemma 4.1: If p is an Ey-wf environment and p ., = : v is active, then v
is Ep-wf and ABS([z], v).

Proof: We proceed by induction in the structure of a derivation of p .  :
v. In the base case, consider rule 10. From z — v - p being Fy-wf, it follows
that v is Eop-wf. Since x +— v-p by @ @ v is active, it follows that ABS([z], v).
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1. a. () is an environment
b. x+ w - pis an environment, iff
e w is a value
e p is an environment
2. a. succ™ 0 is a value, called a number, for all n
b. < \x.E,p > is a value, called a closure, iff
e p is an environment
c. wrong is a value

Figure 11: Environments and values.

In the induction step, consider rule 11. From y +— w - p being Fy-wf, it
follows that p is Ep-wf. From y — w - p kv @ @ v being active, it follows
that p Fya x @ v is active. We can then apply the induction hypothesis, from
which the conclusion is immediate. O

Lemma 4.2: If p is an Ey-wf environment and p = Eg : v is active, then v
is either Ey-wf or wrong, and ABS([Es], v).

Proof: We proceed by induction in the structure of Fg. In the base, we
consider x, 0, and succ E. First, consider rule 2, the one for x. Since
p v is active, so is p Fyy 2 : v, and the conclusion follows from lemma
4.1.

Second, consider rule 7, the one for 0. Since p - 0 : 0 is active, the constraint
[0] 2 {Int} is satisfied, so ABC([0] : 0). It is immediate that 0 is Fo-wf.

Third, consider rules 8 and 9, those for succ E. If rule 9 has been applied,
then the conclusion is immediate. If rule 8 has been applied, then we use that
p bk succ E : v is active to conclude that the constraint [succ E] O {Int} is
satisfied, so ABS([succ E], succ™™0). Tt is immediate that succ™10 is Eo-wf.

In the induction step we consider Az.E and E; Es.

First, consider rule 3, the one for Ax.E. Since p F \x.F < \x.E,p >
is active, the constraint [Az.E] D {\z} is satisfied, so ABS([Az.E], < \z.FE,
p >). To prove that < Az.E, p > is Ep-wf, we apply the induction hypothesis
to E, from which the conclusion is immediate.

Second, consider rules 4, 5, and 6, those for FyFEs. If rule 5 or 6 has been
applied, then the conclusion is immediate. If rule 4 has been applied, then

11



1. a. 0is Eyp-wf
b. x+— w-pis Ey-wi, iff
e 1 is A\-bound in Ej
e w is Fy-wf
e pis Fy-wf
o if v — w-phkyy x: wis active, then
ABS([z], w)
2. a. succ" 01is Eo-wf, for all n
b. < Ax.E,p>is Eyp-wf, iff
e \z.F is a subterm of Ej
e pis Ey-wt
o if wis an Ey-wf value
and x — w - p is Eyp-wf
and r — w - pk E :vis an active, then
e v is either Fy-wf or wrong, and
e ABS([E],v)

Figure 12: Ey-well-formedness.

we use that p = E1 Es @ v is active to conclude that also p - Ey :< Az . E, p; >
and p - E5 : w are active, and that w # wrong. By applying the induction
hypothesis to F; and Es, we get that < Ax.FE, p; > and w are Ey-wf, and that
ABS([E1], < Az.E,p1 >) and ABS([E:], w). From ABS([E1], < Az.E,p; >)
we get that \x € [E;]. This means that x +— w - p; by E @ v is active,
and that the connecting constraints [Ey] C [z] and [EyEs] 2 [£] hold.
It follows from < Ax.E,p; > being Ey-wf that p; is Eyp-wf. To prove that
x +— w-pp is Ey-wf we need to prove that if x +— w-py Fya @ w is active, then
ABS([z],w). But ABS([z],w) is unconditionally true, because ABS([E,], w)
and [Es] C [z]. From < Az.E,p; > being Ey-wf, we then get that v is
either Ey-wf or wrong, and ABS([E],v). It thus remains to be shown that
ABS([E1 Es],v). This follows from ([E1Es] D [E]. O

Lemma 4.3: Any sequent, except the root, occurring in a derivation tree
for Fpain Fo : w, for some w, is active and has an environment component
that is Eg-wf.

Proof: Let there be given a w and a derivation tree for k., Fo @ w. It
suffices to prove that for all n > 1, the sequents in distance n from the root
are active and have environment components that are Ey-wf. We proceed by

12



induction in n.

In the base, we observe that only one sequent has distance 1 from the root,
see rule 1. The expression in this sequent occurs in the root node of the
trace graph, so the sequent is active. Its environment component is () which
is Eo-wi.

In the induction step, we consider the rules 2,4,5,6,8,9, and 11. In each case
we assume that the conclusion sequent is active and has an environment
component that is Ey-wf. We must then prove that the same holds for the
hypothesis sequents.

Consider first the six cases excluding rule 4. They all have one hypothesis
sequent, and in all cases its expression occurs in the same trace graph node
as the expression of the conclusion sequent. Hence, the hypothesis sequent
is also active. In cases 2,5,6,8, and 9, the environment components of the
conclusion and hypothesis sequents are identical, so, in particular, that of
the hypothesis sequent is Ey-wf. In case 11, it is also immediate that the
environment component of the hypothesis sequent is FEy-wf.

Now, consider rule 4. It is immediate the first two hypotheses are active
and have environment components that are Fy-wf. Then notice that in the
trace graph there is an edge from the node containing FyFEs to the \z.FE-
node, labeled with the condition Az € [E;]. By using lemma 4.2, we get
that < Az.E, p; > and w are Ey-wf, that ABS([Es], w), and that \x € [F1].
The last condition implies that also the third hypothesis is active, and that
the connecting constraint [E,] C [z] holds. It remains to be shown that
x +— w - pp is Ey-wf. From < Ax.E,p; > being Ey-wif, we get that p; is
Ey-wf. We then only need to show that if x — w - py Fya x 1 w is active, then
ABS([z],w). But ABS([z], w) is unconditionally true, since ABS([Es], w) and
[E;] C [z]. O

We first show that CA is sound.

Lemma 4.4: If p - E : v occurs in a derivation tree for ., Fo : w, for
some w, then ABS([E],v).

Proof: From lemma 4.3 it follows that p F E : v is active and that p is
Ey-wif. The conclusion then follows from lemma 4.2. O

We then show that SA is sound.

13



Theorem 4.5: If SA is solvable and F ., Eop : v, then v # wrong.

Proof: First note that any solution of SA is also a solution of CA. Now,
suppose that Fy.m Fo @ wrong. In the semantics, it is easy to see that wrong
must have been introduced by either rule 5 or rule 9.

Suppose first that it we by rule 5. Theorem 4.4 applied to p = E; : succ™0
gives that {Int} C [E;]. Lemma 4.3 gives that p - Ey Es : wrong is active, so
the local safety constraint [E;] € LAMBDA holds. This yields a contradiction.

Suppose next that it was by rule 9. Theorem 4.4 applied to p F E :<
Ax.E' p > gives that {\z} C [E]. Lemma 4.3 gives that p - succ E : wrong
is active, so the local safety constraint [E] C {Int} holdup This yields a
contradiction. O

4.2 Lazy Semantics

We present in figure 13 a lazy operational semantics which explicitly deals
with constant misuse, as did the strict semantics. There is no rule number
6, to keep the numbering consistent with that in the strict semantics.

The semantics uses environments and wvalues, which are simultaneously de-
fined in figure 14.

The new sort of value is that of thunks, defined in case 2.d in figure 14.
Thunks are used to capture that the evaluation of arguments can be delayed
and later resumed. In the semantics, thunks are introduced in rule 4, and
eliminated using rules 12 and 13. The two last rules may be understood as
defining an operation ‘res’” which evaluates a lambda term to a non-thunk
value. Notice that rules 1, 4, 5, 8, end 9 use the ‘res’ operation.

The soundness argument uses the same terminology as in the strict case.
We only need slight modifications of the notion of activeness, the predicate
ABS(_,_), and the notion of Ey-well-formedness, as follows.

A sequent p . F : v may be active in the same way as p F E : v and
p v x v,

The predicate ABS([E], v) holds iff
o if v = succ™0 then {Int} C [E],

14
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Figure 13: Lazy semantics.

o if v =< \z.E', p > then {\z} C [E], and
e if v =[E' p] then [E'] C [E].

The third case is added to handle thunks.

Furthermore, the Egp-well-formedness (Ep-wf) of environments and values
needs to be modified, see figure 15. Compared to the notion of Ejy-well-
formedness used in the strict case, we have added case 2.c to handle thunks.

Note that lemma 4.1 still holds, with an unchanged proof. We need a re-
placement for lemma 4.2, however, as follows.

Lemma 4.6: Suppose p is an Ep-wf environment. 1) If p = Eg : v is

15



1. a. () is an environment
b. x+ w - pis an environment, iff
e w is an walue
e p is an environment
2. a. succ™0 is a value, called a number, for all n
b. < \x.E,p > is a value, called a closure, iff
e p is an environment
c. wrong is a value
d. [E,p| is a value, called a trunk, iff
e p is an enviroment

Figure 14: Environments and values.

active, then v is either Eop-wf or wrong, and ABS([Es],v). Furthermore, 2) if
p Fres Es @ v is active, then v is either Eg-wf or wrong, and ABS([Es], v).

Proof: We proceed by induction in the structure of Fg. In the base, we
consider z, 0, and succ E. Case 1) is proved in the same way as the base
case of lemma 4.2. To prove case 2), we consider the rules 12 and 13. If
rule 12 has been applied, then the conclusion follows from case 1). If rule
13 has been applied, then it follows from case 1) that [E’, /] is Eo-wf and
that ABS([E], [E, p']). Hence, p' Fres E' : v is active, so v is either Ey-wf or
wrong, and ABS([E’],v). The conclusion now follows, since [E'] C [E].

In the induction step we consider Ax.E and E;Fj.

First, consider Az.F. Case 1) is proved in the same way as in lemma 4.2.
Case 2) is proved in the same way as case 2) in the base case above.

Second, consider EjF,. In case 1), either rule 4 or 5 has been applied. If
rule 5 has been applied then the conclusion is immediate. If rule 4 has
been applied, then we use that p = E1FEs : v is active to conclude that also
p b Ey < x.E,p; > is active. By applying the induction hypothesis to Fj,
we get that < Az.E, p; > is Ep-wf and that ABS([E\], < Az.E, p; >). From
the latter we get that Az € [F;]. This means that « +— [E, p] - p1 Fyal E : v
is active, and that the connecting constraints [E;] C [z] and [E; Es] 2 [E]
hold. It follows from < A\z.E, p; > being Fy-wf that p; is Ey-wf. To prove
that x +— [Es, p| - p1 is Ep-wf we need to prove that [Es, p| is Eg-wf and that
if o+ [Fa,p|-p1 Fva @ [Fa,p] is active, then ABS([z], [E2, p]). The first
follows by applying the induction hypothesis, case 2), to E,. The second

16



0 is Ey-wf
x— w-pis Ep-wi, iff
e 1 is A\-bound in £
o w is Fy-wf
e pis Fy-wf
o if x — w-phkyy x: wis active, then
o ABS([z], w).
succ™ 0 is Ey-wi, for all n
< \x.E,p > is Eg-wi, iff
e \z.F is a subterm of Ej
e pis Ey-wf
o if w is an Ey-wf value
and x — w - p is Ep-wf
and r — w - pk E : v is active, then
e v is either Fy-wf or wrong, and
e ABS([E],v)
[E, p| is Eo-wi, iff
e [/ is a subterm of Ey and occurs in a trace
graph node N where there exists a path from
the main node to N whose conditions all
hold in Ly
e pis Ey-wf
o if p s F : v is active, then
e v is either Ey-wf or wrong, and
e ABS([E],v)

Figure 15: Ey-well-formedness.

follows because [Es] C [z] is unconditionally true. From < A\z.E, p; > being
Eo-wf, we then get that v is either Eg-wf or wrong, and ABS([E], v). It thus
remains to be showy that ABS([E1E:],v). This follows from [E; Es] 2 [E].

Case 2) is proved in the same way as case 2) in the base case above. O

Note that lemma 4.3 still holds, with only a few simple changes to proof
which we leave to the reader.

The soundness of CA is in the lazy case expressed as follows.
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Theorem 4.7: If p = E : v occurs in a derivation tree for k. Eo @ w, for
some w, then ABS([E],v). Furthermore, if p b E : v occurs in a derivation
tree for Fpain Eo : w, for some w, then ABS([E], v).

Proof: From lemma 4.3 it follows that p = E : v is active and that p is
Ey-wf. The conclusion then follows from lemma 4.6. A similar argument
proves the second case. O

The soundness of SA, theorem 4.5, also holds in the lazy case. The proof is
the same, mutatis mutandis.

5 Superiority

We now show that SA accepts strictly more safe terms than does TI.

The proof will involve several steps. The main technical problem is that SA
and TT are constraint systems over two different domains, sets of closures
versus type schemes. This makes a direct comparison hard. Furthermore,
the TI constraints are much simpler than those in SA. We overcome these
problems by successively weakening SA and strengthening T1, until we finally
can apply solvability preserving maps into constraints over a common two-
point domain. All the lemmas, which are summarized in figure 16, establish
that solvability is preserved as required.

The entire argument is for a fixed lambda term Ej, in which each A-bound
variable is distinct. The common variables of all constraint systems are the
[E]’s, where E is a subterm of Ej.

We first define a restricted version of SA, called primitive safety analysis
(PSA), which is also superior to TI. All the local constraints are made un-
conditional, and for connecting constraints the conditions are weakened by
discarding all but the final conjunct. Furthermore, constraints are strength-
ened according to the following table:

18



| SA | PSA

{\z} CY {\z} CY
XCY X=Y

{Int} € X {int} = X

X C LAMBDA | X C LAMBDA
X C {Int} {Int} = X

Lemma 5.1: If PSA is solvable, then so is SA.
Proof: This is immediate, since the constraints of PSA logically imply those
of SA. O

We next show that the conditional constraints of PSA are equivalent to a set
of unconditional constraints (USA).

USA is obtained from PSA by repeated transformations. A set of constraints
can be described by a pair (C,U) where C' contains the conditional con-
straints and U the unconditional ones. We have two different transforma-
tions:

a) If U is solvable and ¢ holds in the minimals solution, then
(CU{c= K},U) becomes (C,UU{K}).

b) Otherwise, (C,U) becomes (0, U).

This process clearly terminates, since each transformation removes at least
one conditional constraint.

Lemma 5.2: PSA is solvable iff USA is solvable.
Proof: We show that each transformation preserves solvability.

a) We know that U is solvable, and that ¢ holds in the minimal solution.
Assume that (C'U{c = K},U) is solvable. The condition ¢ must hold
and, hence, so must K. But then (C,UU{K}) is solvable. Conversely,
assume that (C,U U {K}) is solvable. Then so is (C'U{c = K},U),

since K holds whether ¢ does or not.

b) If (C,U) is solvable, then clearly so is (0, U). Assume now that (0, U) is

solvable, and that no condition in C' holds in the minimal solution of
U. Then clearly (C,U) can inherit this solution.
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It follows that solvability is preserved for any sequence of transformations.
O

We now introduce a particularly simple kind of constraints, which we call 2-
constraints. Here variables range over the binary set {\, Int} and constraints
are all of the form X =Y, X =\, or X = Int.

We define a function ¢ which maps USA constraints into 2-constraints. In-
dividual constraints are mapped as follows:

| SA [ 4(USA) |
X=Y X=Y
X C LAMBDA | X = A
{\} C X X =\
{Int} = X X =int

It turns out that ¢ preserves solvability.

Lemma 5.3: USA is solvable iff ¢(USA) is solvable.

Proof: Assume that L is a solution of USA. We construct a solution of
»(USA) by assigning Int to X if L(X) = {Int} and assigning A to X oth-
erwise. Conversely, assume that L is a solution of ¢(USA). We obtain a
(non-minimal) solution of USA by assigning {Int} to X if L(X) = {Int} and
assigning LAMBDA to X otherwise. O

Next, we define the closure TI as the smallest set that contains TI and is
closed under symmetry, reflexivity, transitivity and the following property:
ifa« — 6 =a — [, then a« = o and § = (. Hardly surprising, this closure
preserves solvability.

Lemma 5.4: T1 is solvable iff TI is solvable.

Proof: The implication from right to left is immediate. Assume that TT is
solvable. Equality is by definition symmetric, reflexives and transitive. The
additional property will also be true for any solution. Hence, TI inherits all
solutions of TI. O

We define a function ¢ which maps TI into 2-constraints. Individual con-
straints are mapped as follows:
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| TI [¢(TT) ]

X=Y X=Y
X=a—p X:)\
X =Int =

We show that 1 preserves solvability in one direction.

Lemma 5.5: If T1 is solvable, then so is ¢ (TI).

Proof: Assume that L is a solution of TI. We can construct a solution of
¥(TT) by assigning Int to X if L(X) = Int, and assigning A to X otherwise.
Thus, the function ¢ acts as a quotient map on constraint systems. O

We now show the crucial connection between type inference and safety anal-
ysis.

Lemma 5.6: The USA constraints are contained in the TI constraints, in
the sense that ¢(USA) C o (TT).

Proof: We perform an induction in the number of transformations performed
on PSA. A general configuration looks like (C,U); the hypothesis is that

o(U) C ¢(TI).

The induction base is the PSA configuration (C,U). Here U contain all the
local constraints, which are all easy to relate to TI: Local constraints of
the form X = {Int}, always have analogous constraints in TI, Similarly, a
local constraint like [E;] € LAMBDA arises from an application E;FE,. In TI
this gives rise to a constraint [E;] = [Es] — [E1E], which by ¢ maps to
[E;] = A. But this is just the image of [E;] C LAMBDA under ¢. Also, the
local constraint {Az} C [Az.E] maps by ¢ to [Az.E] = A. But this is the
image under ¢ of the TI constraint [Az.E] = [z] — [E]. Thus, we have
established the induction base.

For the induction step we assume that ¢(U) C ¢ (TI). If we use the b)-
transformation and move from (C, U) to (0, U), then the result is immediate.
Assume therefore that we apply the a)-transformation. Then U is solvable,
and some condition A\x € [E;] has been established for the application F; Es
in the minimal solution. This opens up for two new connecting constraints
[x] = [E2] and [E1Es] = [E]. We must show that the same equalities hold
in TI. The only way to enable the condition in the minimal solution of U is
to have a chain of U-constraints:
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Since both ¢ and v act like the identity on equality constraints, we know by
the induction hypothesis that in TT we have

Me.E] =X, =X, ==X, = [E]

From the TI constraints [Az.E] = [z] — [E] and [E1] = [E] — [E1Es]
and the closure properties of TI it follows that [x] = [E:] and [E1Es] = [£]
which was our proof obligation. Thus, we have established the induction
step.

As USA is obtained by a finite number of transformations, the result follows.
O

This allows us to complete the final link in the chain.

Lemma 5.7: If TI is solvable, then so is USA.

Proof: Assume that TI is solvable. From lemma 5.5 it follows that so is
¥(TT). Since from lemma 5.6 ¢(USA) is a subset, it must also be solvable.
From lemma 5.3 it follows that USA is solvable. O

We conclude that SA is at least as powerful as TI.

Theorem 5.8: If T is solvable, then so is SA.
Proof: We need only to bring the lemmas together, as indicated in figure
16. O

5.4 = BT 5.2 5.1
24 T 20 UsA 2% PSA 2 SA

5.5 ¢ ¢ 1 5.3

2-constraints

TI

Figure 16: Solvability of constraints.

We now show that SA is in fact superior to TI.

Theorem 5.9: There exists a safe term that is accepted by SA but rejected
by TI.

Proof: Many such terms exist, since SA accepts any lambda term in normal
form that has no safety errors on the outermost level; T1 rejects many such
terms, such as A\f.(f0)(f(Azx.x)). Similarly, SA accepts any lambda term
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that does not contain a constant; again, T1I rejects many such terms, such as
Ar.zx. O

We contend, naturally, that the extra power of SA will be significant for
numerous useful functional programs.

The above proof also sheds some light on why and how SA accepts more safe
terms than TI. Consider a solution of TT that is transformed into a solution
of SA according to the strategy implied in figure 16. All closure sets will be
the maximal set LAMBDA. Thus, the more fine-grained distinction between
individual closures is lost.

The results are still valid if we allow recursive types, as in the Ap-calculus
[1]. Here the TI constraints are exactly the same, but the type schemes are
changed from finite to regular trees. This allows solutions to constraints such
as X = X — Int. Only lemma 5.5 is influenced, but the proof carries through
with virtually no modifications. Type inference with recursive types will also
accept all terms without constants, but the containment in SA is still strict.

6 Conclusion

We have presented a new algorithm, safety analysis, for deciding safety of
lambda terms. It has been proved sound and strictly more powerful than
standard type inference. Safety analysis is sound for both lazy and strict
semantics, but not for arbitrary reduction strategies. To see this, consider
the term Ax.\y.00, which is accepted by the algorithm but will cause an
error if 00 is reduced. We conjecture, however, that primitive safety analysis
is sound for [F-reduction.

The algorithm for safety analysis can be implemented in cubic time by a
technique of local fixed-point computation [9]. This shows that safety analy-
sis realistically can be incorporated into a compiler for an untyped functional
language.

Type inference has been used as the basis of binding time analysis [5]; so
has closure analysis [2]. We hope to use the techniques presented here to
formally compare the quality of these analyses.

There are other type systems for the lambda calculus, for which type infer-
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ence is possible. In particular, we think of partial types [11, 8] and simple
intersection types [3]. Neither encompasses constants in its present form, but
this should be easy to remedy. We hope to extend figure 2 by proving more
containment results involving these systems.
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