
Safety Analysis versus Type Inference for
Partial Types

Jens Palsberg Michael I. Schwartzbach
palsberg@daimi.aau.dk mis@daimi.aau.dk

Computer Science Department, Aarhus University

Ny Munkegade, DK-8000 Aarhus C, Denmark

July 1992

Abstract

Safety analysis is an algorithm for determining if a term in an
untyped lambda calculus with constants is safe, i.e., if it does not
cause an error during evaluation. We prove that safety analysis accepts
strictly more safe lambda terms than does type inference for Thatte’s
partial types.

A reformatted version of this report is to be pusblished in Infor-
mation Processing Letters.

1

1 Introduction

We will compare two techniques for analyzing the safety of terms in an
untyped lambda calculus with constants, see figure 1. The safety we are
concerned with is the absence of those run-time errors that arise from the
misuse of constants. In this paper we consider just the two constants 0 and
succ. They can be misused either by applying a number to an argument,
or by applying succ to an abstraction. Safety is undecidable so any analysis
algorithm must reject some safe programs.

Figure 1: The lambda calculus.

One way of achieving a safety guarantee is to perform type inference (TI),
because “well-typed programs cannot go wrong”. Two examples of type
systems for which type inference algorithms exist are those of simple types
[4] and Thatte’s partial types [9, 5, 3]. Note that any term that has a simple
type also has a partial type.

Another way of achieving a safety guarantee is the analysis method of the
present authors, simply called safety analysis (SA) [6]. In a previous paper
[6], we proved that SA accepts strictly more safe terms that does TI for
simple types. This paper improves our result by proving that SA accepts
strictly more safe terms than does TI for partial types.

In the following section we recall the definitions of type inference for partial
types and of safety analysis. In section 3 we prove our result.

2 The Formal Systems

Both TI and SA can be described as four-step processes, as follows. First, the
lambda term is α-converted so that every λ-bound variable is distinct. This
means that everv abstraction λx.E can be denoted by the unique token λx.

2

Second, a type variable [[E]] is assigned to every subterm E. Third, a finite
collection of constraints over these variables is generated from the syntax.
Finally, these constraints are solved. This presentation of type inference is
due to Wand [10]. Polymorphic let could be treated by both analyses by
doing syntactic expansion.

Type inference and safety analysis employ constraints over different do-
mains. In type inference for partial types, type variables range over the
following types:

τ ::= Ω | Int | τ1 → τ2

Types are partially ordered as follows:

τ ≤ Ω
τ → σ ≤ τ ′ → σ′ ⇐⇒ τ ′ ≤ τ ∧ σ ≤ σ′

Int ≤ Int

Thus, partial types have a largest type Ω and involve the usual contravariant
rule for arrow types. Typical inclusions are Ω → Ω ≤ Ω, Ω → Ω ≤ (Ω →
Ω) → Ω, and Int ≤ Ω. Intuitively, τ ≤ σ allows a coercion from τ to σ
that forgets some type structure. The type Ω contains only the information
“well-typed”.

The constraints are generated inductively in the syntax, see figure 2. A cubic
time algorithm for solving such constraints has been presented by Kozen
and the present authors [3]. It improved the exponential time algorithm of
O’Keefe and Wand [5]. If no solution exists, then the program is not typable.
Note that, if the inequalities are strengthened to equalities, then we get the
constraints of type inference for simple types. Such equalities are solvable in
linear time.

As an example of a term that does not have a simple type but does have
a partial type, consider λf.(K(fI)(f0)) where K and I are the usual com-
binators. This term has type (Ω → Ω) → Ω since both I and 0 have type
Ω.

Type inference can analyze terms with respect to an arbitrary type envi-
ronment. This is in contrast to safety analysis which is based on closure
analysis [7, 1] (a so called control flow analysis by Jones [2] and Shivers [8]).
The closures of a term are simply the subterms corresponding to lambda
abstractions. A closure analysis approximates for every subterm the set of

3

Figure 2: Type inference for partial types.

possible closures to which it may evaluate [2, 7, 1, 8]. Safety analysis is
simply a closure analysis that does appropriate safety checks. Our safety
analysis requires that the initial type environment only binds variables to
base types. This is because it requires knowledge of all closures that may
occur during evaluation. Safety analysis thus has its applicability limited to
mainly situations where a complete program is to be analyzed.

In safety analysis, type variables range over sets of closures and the base type
Int. We denote by lambda the finite set of all lambda tokens in the main
term, henceforth called E0. The constraints are generated from the syntax,
see figure 3. As a conceptual aid, the constraints are grouped into basic,
safety, and connecting constraints.

The connecting constraints reflect the relationship between formal and ac-
tual arguments and results. The condition λx ∈ [[E1]] states that the two
inclusions are relevant only if the closure denoted by λx is a possible result
of E1.

We let SA denote the global constraint system, i.e., the collection of con-
straints for every subterm. If the safety constraints are excluded, then the
remaining constraint system, denoted CA, yields a closure analysis. The SA
constraint system for a simple term is shown in figure 4.

A solution assigns a set to each variable such that all constraints are satisfied.
Solutions are ordered by variable-wise set inclusion. The CA system is always
solvable: since we have no inclusion of the form X ⊆ {. . .}, we can obtain
a maximal solution by assigning lambda ∪ {Int} to every variable. Thus,
closure information can always be obtained for a lambda term.

It is easy to see that if SA has a solution, then it has a unique minimal one.

4

Figure 3: Safety analysis.

The proof follows from observing that solutions are closed under intersection,
see [6]. SA need not be solvable, thus reflecting that not all lambda terms
are safe.

The safety analysis accepts the term λf.(K(fI(f0)) from before because the
constraints reflect that 0 will not be applied to anything during evaluation.

There is a cubic time algorithm that, given E0, computes the minimal solu-
tion of SA, or decides that none exists. The algorithm is based on a straight-
forward fixed-point computation.

In the paper [6] we showed that safety analysis is sound with respect to both
a strict and a lazy semantics of the lambda calculus. Soundness means that
if a term is accepted, then it is safe. We actually proved the soundness of a
strictly better safety analysis, see [6]. The improved safety analysis will for
example correctly accept λx.00 because it recognizes that 00 is “dead code”.

5

Figure 4: SA constraints for (λy.y0)(λx.x).

3 The Result

We now show that safety analysis accepts strictly more safe terms than does
type inference for partial types.

The proof involves several lemmas, see figure 5. The main technical problem
to be solved is that SA and TI are constraint systems over two different do-
mains, sets of closures versus types. This makes a direct comparison hard.
We overcome this problem by applying solvability preserving maps into con-
straints over a common four-point domain.

We first show that the possibly condition constraints of SA are equivalent
to a set of unconditional constraints (USA). USA is obtained from SA by
repeated transformations. A set of constraints can be described by a pair
(C, U) where C contains the conditional constraints and U the unconditional
ones. We have two different transformations:

6

Figure 5: Solvability of constraints.

a) If U is solvable and c holds in the minimal solution, then (C ∪ {c ⇒
K}, U) becomes (C, U ∪ {K}).

b) If case a) is not applicable, then (C, U) becomes (∅, U).

This process clearly terminates, since each transformation removes at least
one conditional constraint. Note that case b) applies if either U is unsolvable
or no condition in C is satisfied in the minimal solution of U .

Lemma 1: SA is solvable iff USA is solvable.
Proof: We show that each transformation preserves solvability.

a) We know that U is solvable, and that c holds in the minimal solution,
hence in all solutions. Assume that (C ∪ {c ⇒ K}, U) has solution L.
Then L is also a solution of U . Thus, c must hold in L, and so must K.
But then (C, U ∪ {K}) also has solution L. Conversely, assume that
(C, U ∪ {K}) is solvable. Then so is (C ∪ {c ⇒ K}, U), since K holds
whether c does or not.

b) If (C, U) is solvable, then clearly so is (∅, U). Assume now that (∅, U)
is solvable, and that no condition in C holds in the minimal solution of
U . Then clearly (C, U) can inherit this solution.

It follows that solvability is preserved for any sequence of transformations.
✷

We now introduce a particularly simple kind of constraints which we call
4-constraints. Here variables range over the set {⊥, λ, Int, Ω} which is par-
tially ordered by � in the following way:

7

We define a function φ which maps USA constraints into 4-constraints. In-
dividual constraints are mapped as follows:

USA φ(USA)

X ⊆ Y X � Y
X ⊆ lambda X � Y
X ⊇ {λx} X � λ
X ⊇ {Int} X � Int
X ⊆ {Int} X � Int

It turns out that φ preserves solvability.

Lemma 2: USA is solvable iff φ(USA) is solvable.
Proof: Assume that L is a solution of USA. We construct a solution of
φ(USA) as follows:

Assign to X

⊥ if L(X) = ∅
Int if L(X) = {Int}
λ if L(X) is a non-empty subset of lambda
Ω if L(X) = Y ∪ {Int},

where Y is a non-empty subset of lambda

Conversely, assume that L is a solution of φ(USA). We obtain a (nonminimal)
solution of USA as follows:

Assign to X

∅ if L(X) = ⊥
{Int} if L(X) = Int
lambda if L(X) = λ
lambda ∪ {Int} if L(X) = Ω

This concludes the proof. ✷

8

Next, we define the closure TI as the smallest set of constraints that contains
TI and is closed under antisymmetry, reflexivity, and transitivity of ≤, and
the following property: if α → β ≤ α′ → β′, then α ≥ α′ and β ≤ β′. Hardly
surprising, this closure preseLes solvability.

Lemma 3: TI is solvable iff TI is solvable.
Proof: The implication from right to left is immediate. Assume that TI is
solvable. The ordering ≤ is clearly antisymmetric, reflexive, and transitive.
The additional property will also be true for any solution. Hence, TI inherits
all solutions of TI. ✷

We define a function ψ which maps TI into 4-constraints. Individual con-
straints are mapped as follows:

TI ψ(TI)

X ≤ Y X � Y
X ≤ α → β X � λ
X ≥ α → β X � λ
X = Int X � Int
X ≥ {Int} X � Int

We show that ψ preserves solvability in one direction.

Lemma 4: If TI is solvable, then so is ψ(TI).
Proof: Assume that L is a solution of TI. We can construct a solution of
ψ(TI) by assigning Int to X if L(X) = Int, assigning λ to X if L(X) = α → β,
and assigning Ω to X if L(X) = Ω. ✷

We now show the crucial connection between type inference and safety anal-
ysis.

Lemma 5: The USA constraints are contained in the TI constraints, in
the sense that φ(USA) ⊆ ψ(TI).
Proof: We proceed by induction in the number of transformations performed
on SA.

In the base case, we consider the SA configuration (C, U), where U contains

9

all the basic and safety constraints. For any 0, SA yields the constraint
[[0]] ⊇ {Int} which by φ is mapped to [[0]] � {Int}. TI yields the constraint
[[0]] ≥ {Int} which by ψ is mapped to [[0]] ⊇ {Int} as well. A similar argument
applies to the constraints yielded for succ E, λx.E, and E1E2. Thus, we have
established the induction base.

For the induction step we assume that φ(U) ⊆ ψ(TI). If we use the b)-
transformation and move from (C, U) to (∅, U), then the result is immediate.
Assume therefore that we apply the a)-transformation. Then U is solvable,
and some condition λx ∈ [[E1]] has been established for the application E1E2

in the minimal solution. This opens up for two new connecting constraints:
[[E2]] ⊆ [[x]] and [[E1E2]] ⊇ [[E]]. We must show that similar inequalities hold
in TI. The only way to enable the condition in the minimal solution of U is
to have a chain of U -constraints:

{λx} ⊆ [[λx.E]] ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ [[E1]]

Since both φ and ψ act like the identity on constraints that are inequalities
between variables, we know by the induction hypothesis that in TI we have

[[λx.E]] ≤ X1 ≤ X2 ≤ · · · ≤ Xn ≤ [[E1]]

From the TI constraints [[λx.E]] ≥ [[x]] → [[E]] and [[E1]] ≤ [[E2]] → [[E1E2]] and
the closure properties of TI it follows that [[E1]] ≤ [[x]] and [[E1E2]] ≥ [[E1]],
which was our proof obligation. Thus, we have established the induction
step.

As USA is obtained by a finite number of transformations, the result follows.
✷

This allows us to complete the final link in the chain.

Lemma 6: If TI is solvable, then so is USA.
Proof: Assume that TI is solvable. From lemma 4 it follows that so is
ψ(TI). Since from lemma 5 φ(USA) is a subset, it must also be solvable.
From lemma 2 it follows that USA is solvable. ✷

We conclude that SA is at least as powerful as TI.

10

Theorem: If TI is solvable, then so is SA.
Proof: We need only to bring the lemmas together, as indicated in figure 5.
✷

Some safe terms are accepted by SA but rejected by TI. As an example,
consider the term (λx.xx)(λx.xx). It is accepted by SA because it contains
no constants, so no safety constraints will be involved. The term is not
accepted by TI, however, as shown by O’Keefe and Wand [5].

The proof of our theorem sheds some light on why and how SA accepts more
safe terms than TI. Consider a solution of TI that is transformed into a
solution of SA according to the strategy implied in figure 5. All closure sets
will be the maximal set lambda. Thus, the more fine-grained distinction
between individual closures is lost.

Our result is still valid if we allow recursive types. Here the TI constraints
are exactly the same, but the types are changed from finite to regular trees.
This allows solutions to constraints such as X ≤ int → X. Only lemma 4
is influenced, but the proof carries through with virtually no modifications.
Type inference with recursive types will accept all terms without constants,
as does SA. It remains to be seen if the containment in SA is still strict. Note
though that the containment in the improved safety analysis [6] is trivially
strict.

The development in this paper can straightforwardly be extended to an ar-
bitrary signature of constants. The idea is to treat base types like we have
treated Int, and to treat structured types, such as List, like we have treated
lambda abstractions.

References

[1] Anders Bondorf. Automatic autoprojection of higher order recursive
equations. In Proc. ESOP’90, European Symposium on Programming.
Springer-Verlag (LNCS 432), 1990.

[2] Neil D. Jones. Flow analysis of lambda expressions. In Proc. Eighth
Colloquium on Automata, Languages, and Programming 1981. Springer-
Verlag (LNCS 115), 1981.

11

[3] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient
inference of partial types. In Proc. FOCS’92, Symposium on Foundations
of Computer Science, Pittsburgh, Pennsylvania, October 1992.

[4] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17, 1978.

[5] Patrick M. O’Keefe and Mitchell Wand. Type inference for partial types
is decidable. In Proc. ESOP’92, European Symposium on Programming.
Springer-Verlag (LNCS 582), 1992.

[6] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type
inference. Technical Report DAIMI PB-389, Computer Science Depart-
ment, Aarhus University, 1992. Submitted for publication.

[7] Peter Sestoft. Replacing function parameters by global variables. In
Proc. Conference on Functional Programming Languages and Computer
Architecture, pages 39–53, 1989.

[8] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, CMU, May 1991. CMU–CS–91–145.

[9] Satish Thatte. Type inference with partial types. In Proc. International
Colloquium on Automata, Languages, and Programming 1988. Springer-
Verlag (LNCS 317), 1988.

[10] Mitchell Wand. A simple algorithm and proof for type inference. Fun-
damentuae Informaticae, X:115–122, 1987.

12

