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 ABSTRACT  Entrectinib, a potent oral inhibitor of the tyrosine kinases TRKA/B/C, ROS1, and 

ALK, was evaluated in two phase I studies in patients with advanced or metastatic 

solid tumors, including patients with active central nervous system (CNS)  disease. Here, we summarize 

the overall safety and report the antitumor activity of entrectinib in a cohort of patients with tumors 

harboring  NTRK1/2/3, ROS1 , or  ALK  gene fusions, naïve to prior TKI treatment targeting the specifi c 

gene, and who were treated at doses that achieved therapeutic exposures consistent with the recom-

mended phase II dose. Entrectinib was well tolerated, with predominantly Grades 1/2 adverse events 

that were reversible with dose modifi cation. Responses were observed in non–small cell lung cancer, 

colorectal cancer, mammary analogue secretory carcinoma, melanoma, and renal cell carcinoma, as 

early as 4 weeks after starting treatment and lasting as long as >2 years. Notably, a complete CNS 

response was achieved in a patient with  SQSTM1–NTRK1- rearranged lung cancer. 

  SIGNIFICANCE:  Gene fusions of  NTRK1/2/3, ROS1,  and  ALK  (encoding TRKA/B/C, ROS1, and ALK, 

respectively) lead to constitutive activation of oncogenic pathways. Entrectinib was shown to be well 

tolerated and active against those gene fusions in solid tumors, including in patients with primary or 

secondary CNS disease.  Cancer Discov; 7(4); 400–9. ©2017 AACR.        

1 Memorial Sloan Kettering Cancer Center and Weill Cornell Medical Col-
lege, New York, New York .      2 Niguarda Cancer Center, Grande Ospedale 
Metropolitano Niguarda, Milan, Italy.      3 Dipartimento di Oncologia e Emato-
Oncologia, Università degli Studi di Milano, Milan, Italy.      4 Chao Family 
Comprehensive Cancer Center, University of California, Irvine, California.   
5 Sarah Cannon Research Institute/Florida Cancer Specialists, Sarasota, 
Florida.      6 Samsung Medical Center, Seoul, Korea.      7 Sarah Cannon Research 
Institute/Tennessee Oncology, PLLC, Nashville, Tennessee.      8 Massachusetts 
General Hospital, Boston, Massachusetts.      9 The University of Texas MD 
Anderson Cancer Center, Houston, Texas.      10 Georgetown Lombardi 
Comprehensive Cancer Center, Washington, DC.      11 University of Colorado 
Cancer Center, Aurora, Colorado.      12 Fondazione IRCCS Istituto Nazionale 
dei Tumori, Milan, Italy.      13 Nerviano Medical Sciences s.r.l, Milan, Italy.   
14 Ignyta, Inc., San Diego, California.  

   Note:  Supplementary data for this article are available at Cancer Discovery 
Online (http://cancerdiscovery.aacrjournals.org/).  

  A. Drilon and S. Siena contributed equally as fi rst authors of this article.  

  S. Siena, L. Giannetta, G. Cerea, G. Marrapese, M. Schirru, A. Amatu, K. 
Bencardino, L. Palmeri, A. Sartore-Bianchi, A. Vanzulli, S. Cresta, S. Damian, 
M. Duca, and F.G. De Braud are ALKA-372-001 investigators.     A. Drilon, 
S.-H.I. Ou, M. Patel, M.J. Ahn, J. Lee, T.M. Bauer, A.F. Farago, J.J. Wheler, S.V. 
Liu, R. Doebele, and A.T. Shaw are STARTRK-1 investigators.  

  Corresponding Author:  Alexander Drilon , Memorial Sloan Kettering 
Cancer Center, 300 E 66th Street, BAIC 1253, New York, NY 10065. Phone: 
646-888-4206; Fax: 646-888-4263; E-mail:  drilona@mskcc.org   

  doi:  10.1158/2159-8290.CD-16-1237             

©2017 American Association for Cancer Research.         

  INTRODUCTION 

 Recurrent gene fusions are oncogenic drivers of tumor 
growth and survival across a variety of malignancies ( 1 ). 
Structurally, many of these fusions retain an intact tyro-
sine kinase domain fused to an upstream gene partner that 
promotes ligand-independent dimerization. The resultant 
chimeric oncoprotein initiates and sustains downstream 
signaling, resulting in tumor growth and proliferation ( 2 ). As 
molecular profi ling of tumors continues to migrate toward 
more comprehensive platforms, such as DNA-based next-
generation sequencing and RNA-based anchored multiplex 

PCR, the number of these fusion events that are detectable in 
the clinic continues to rise substantially ( 3, 4 ). 

 Most importantly, a signifi cant proportion of recurrent 
gene rearrangements are clinically actionable. In patients 
with advanced  ALK - and  ROS1 -rearranged non–small cell 
lung cancer (NSCLC), three targeted therapies [crizotinib 
(Xalkori), ceritinib (Zykadia), and alectinib (Alecensa)] have 
been approved based on dramatic improvements in response 
rate and progression-free survival ( 5–9 ). Beyond NSCLC,  ALK

rearrangements have also been identifi ed in a variety of malig-
nancies, including anaplastic large cell lymphoma and renal 
cell, breast, esophageal, and colorectal cancers, as have  ROS1

rearrangements in colorectal, gastric, and ovarian cancers, 
glioblastoma multiforme, and cholangiocarcinomas ( 2 ). 

 Similar to  ALK  and  ROS1  rearrangements, recurrent gene 
fusions involving the genes  NTRK1, NTRK2 , and  NTRK3  are 
actionable drivers of tumor growth ( 10, 11 ). These genes 
encode the proteins TRKA, TRKB, and TRKC, respectively, and 
play roles in neuronal development, cell survival, and cellular 
proliferation ( 12 ). In the rearranged state, the activated fusion 
kinases signal through the RAS–RAF–MEK–ERK, PI3K–AKT–
mTOR, and PLCγ–PKC pathways, driving the initiation and 
progression of malignancy. These fusions have been detected 
in a variety of tumors, including lung ( 13 ), gastrointestinal 
( 14–16 ), head and neck ( 1 ), thyroid ( 17–19 ), and spitzoid can-
cers ( 20, 21 ), sarcomas ( 22–24 ), primary brain tumors ( 25–27 ), 
and acute myeloid leukemia  ( 28, 29 ). Although many of these 
events are found at a lower incidence in tumors such as lung 
and gastrointestinal cancers, they are found in the majority 
of rare tumors such as secretory breast carcinoma ( 30 ), mam-
mary analogue secretory carcinoma (MASC; refs.  31, 32 ), 
and congenital infantile fi brosarcoma ( 33 ), where the identi-
fi cation of an  NTRK  fusion is a defi ning factor for diagnosis. 

 The presence of recurrent gene fusions involving  NTRK1, 

NTRK2, NTRK3, ROS1 , and  ALK  across different tumor 
histologies and the growing number of events that are 
detected in patient samples underscore the ongoing need 
for routine diagnostic testing to identify gene fusions. 
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Equally critical is the need for clinical trials that afford 
access to effective targeted agents regardless of histol-
ogy, in what is commonly referred to as a “basket” trial 
design. Phase I trials have rapidly evolved to meet this 
challenge, not only establishing the recommended phase 
II dose (RP2D) of a promising agent, but also providing 
meaningful effi cacy data in molecularly defi ned subsets 
of patients ( 34 ). Here, we present the combined results of 
two phase I trials of entrectinib ( 16 ), a highly potent, orally 
available, ATP-competitive tyrosine kinase inhibitor with 
low- to sub-nanomolar enzymatic effi cacy against TRKA, 
TRKB, TRKC, ROS1, and ALK (IC 50  values of 1.7, 0.1, 0.1, 
0.2, and 1.6 nmol/L, respectively; ref.  35 ). Furthermore, the 
drug was specifi cally designed to cross the blood–brain bar-
rier in an effort to address both primary brain tumors and 
brain metastases in patients with  NTRK1-, NTRK2-, NTRK3-, 

ROS1- , and  ALK -rearranged cancers ( 36 ).  

  RESULTS 

  Demographics 

 Between October 2012 and March 2016, a total of 119 
patients with advanced solid tumors were treated with entrec-
tinib: 54 on ALKA-372-001 and 65 on STARTRK-1. The demo-
graphic features of these patients are summarized in  Table 1 . 
The median age was 55 years (range, 18–80 years). The majority of 

patients had an Eastern Cooperative Oncology Group perfor-
mance status (ECOG PS) of 0 to 1 (96%;  n  = 114/119) and 
had received 3 or more prior treatments for their cancer (83%; 
 n  = 98/119), including prior ALK/ROS1 inhibitors (27%;  n  = 
32/119) and checkpoint inhibitors (3%;  n  = 4/119). Patients 
with a wide range of solid tumors, including primary brain, 
head and neck, sarcoma, breast, melanoma, renal cell, and 
ovarian tumors, were treated. The most predominant tumor 
type was NSCLC (60%;  n  = 71/119), followed by tumors of the 
gastrointestinal tract (15%;  n  = 18/119).  

 The 54 patients on ALKA-372-001 were treated on the 
following dosing schedules: 19 on Schedule A (fasted, 4 days 
on entrectinib and 3 days off entrectinib for 21 of 28 days), 29 
on Schedule B (fed, continuous daily dosing for 28 days), and 6 
on Schedule C (fed, 4 days on entrectinib and 3 days off entrec-
tinib for 28 days). All 65 patients on STARTRK-1 received 
continuous daily dosing with entrectinib (daily for 28 days).  

  Safety Profi le 

 The most common treatment-related adverse events of any 
grade were fatigue/asthenia (46%;  n  = 55/119), dysgeusia (42%; 
 n  = 50/119), paresthesias, (29%;  n  = 34/119), nausea (28%;  n  = 
33/119), and myalgias (23%;  n  = 27/119;  Table 2 ). The majority 
of treatment-related adverse events were Grade 1 or 2 in sever-
ity; all related adverse events were reversible with dose modifi ca-
tions. Dose reduction occurred in 15% ( n  = 18/119) of patients. 

 Table 1.    Demographics:  The clinical and pathologic features of 119 patients with advanced 
solid tumors who received entrectinib on either phase I trial (ALKA-372-001 or STARTRK-1) 
are summarized  

ALKA-372-001 ( n  = 54) STARTRK-1 ( n  = 65) Total ( n  = 119)

Age, years, median (range) 53 (22–77) 57 (18–80) 55 (18–80)

Sex, male/female (%) 44/56 48/52 46/54

ECOG performance status,  n  (%)

 0 30 (56) 22 (34) 52 (44)

 1 21 (39) 41 (63) 62 (52)

 2 2 (4) 2 (3) 4 (3)

 Unknown 1 (2) 0 1 (1)

Prior systemic therapies,  n  (%)

 0 0 6 (9) 6 (5)

 1–2 0 15 (23) 15 (13)

 3–4 3 (6) 25 (39) 28 (24)

 >4 51 (94) 19 (29) 70 (59)

Prior ROS1/ALK inhibitors,  n  (%) 10 (19) 22 (34) 32 (27)

Prior immunotherapy,  n  (%) 0 4 (6) 4 (3)

Tumor type,  n  (%)

 NSCLC 35 (65) 36 (56) 71 (60)

 Gastrointestinal tract 9 (17) 9 (14) 18 (15)

 CNS 4 (7) 1 (2) 5 (4)

 Head and neck 1 (2) 4 (6) 5 (4)

 Other  a  5 (9) 15 (23) 20 (17)

   NOTE: Most patients had an ECOG performance status of 0 or 1 and were heavily pretreated with three or more 
prior anticancer therapies. Patients with a wide range of solid tumors were treated .  

Abbreviation: CNS, central nervous system.

   a Other tumor types: breast, cholangiocarcinoma, melanoma, neuroblastoma, neuroendocrine ovarian, pancreatic, 
prostate, renal cell carcinoma, sarcoma, squamous skin cancer, unknown primary.   
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No dose-limiting toxicities (DLT) were observed on ALKA-372-
001; two DLTs occurred on STARTRK-1 at a daily dose of 
800 mg: Grade 3 cognitive disturbance and Grade 3 fatigue, 
both resolved with dose interruption. At the 800 mg dose level, 
one additional patient experienced Grade 4 eosinophilic myo-
carditis, which was the only Grade 4 treatment-related adverse 
event reported on either study. This event occurred after two 
doses of entrectinib; the patient was subsequently discontin-
ued from the study and fully recovered from the event. No 
Grade 5 treatment-related adverse events were reported.  

 There were no signifi cant differences in toxicity between 
patients who received intermittent dosing (Schedules A and 
C on ALKA-372-001) and continuous dosing (Schedule B on 
ALKA-372-001 and STARTRK-1) despite numerical differ-
ences between these two groups, such as a higher incidence 
of dysgeusia, increased blood creatinine, and weight increase 
in patients on continuous dosing. These are detailed in Sup-
plementary Table S1. 

 The number of patients and treatment-related adverse events 
observed at each dose level on either trial are summarized 
in Supplementary Tables S2 and S3. A continuous dose of 
400 mg/m 2  was designated as the body surface area (BSA)–
based RP2D based upon a review of safety and pharmacokinet-
ics (PK). Per protocol, the next dose tested was 800 mg (fi xed 
dosing), which resulted in two DLTs as described above; a 
continuous dose of 600 mg daily was then tested and identifi ed 
as the fi xed-dose MTD and RP2D in adults. The treatment-
related adverse events in patients who received entrectinib at 
the RP2D are summarized in Supplementary Table S4.  

  Pharmacokinetics 

 In the ALKA-372-001 study, Schedule A, when entrectinib 
was administered in the fasted state, exposure (C max  and AUC) 
appeared to increase in a dose-proportional manner across the 
dose range of 100 to 800 mg/m 2  with no appreciable increase in 

exposure observed at higher doses of 1,200 or 1,600 mg/m 2 . In 
Schedules B and C, entrectinib exposure increased in a less than 
dose-proportional manner when it was coadministered with 
food. In the STARTRK-1 study, entrectinib was administered 
with food and exposure increased in a linear manner from 100 
to 400 mg/m 2 , and from 600 to 800 mg fl at dosing ( Fig. 1 ). 
Steady state was reached within 2 weeks of continuous dosing, 
with average accumulation of approximately 2-fold. The plasma 
half-life of entrectinib was estimated to be between 20 and 
22 hours and compatible with a once-daily, continuous dosing 
regimen (Supplementary Table S5). At the RP2D, the mean 
steady-state C trough  of 1,590 nmol/L was greater than 4-fold 
higher than that of trough concentrations observed in animal 
tumor models with complete tumor inhibition (corrected for 
plasma protein binding differences across species; refs.  36, 37 ).   

  Antitumor Activity 

 Of the 119 patients treated on either trial, 60 had a gene rear-
rangement involving  NTRK1/2/3, ROS1 , or  ALK . Of the remain-
ing 59 patients, 53 had other molecular alterations, broadly 
categorized as point mutations, amplifi cations, copy-number 
variants, or insertions/deletions, and 6 patients were enrolled 
without a known alteration of  NTRK1/2/3, ROS1 , or  ALK  (Sup-
plementary Table S6). No objective responses (per RECIST 
v1.1; ref.  38 ) were observed in patients whose tumors did not 
harbor gene fusions involving  NTRK1/2/3, ROS1 , or  ALK , with 
the exception of 1 patient with an  ALK F1245V   mutant neuro-
blastoma for whom a durable, confi rmed partial response (PR) 
lasted 8.3 months; this patient remained on study treatment 
for more than 3.5 years due to clinical benefi t. Furthermore, no 
responses were observed in the 25 patients with recurrent gene 
rearrangements involving  ROS1  ( n  = 6) or  ALK  ( n  = 19) who 
had previously received a ROS1 inhibitor (crizotinib) or ALK 
inhibitors (crizotinib, ceritinib, or alectinib), respectively, prior 
to entrectinib. Thirteen of the 19  ALK  patients had received 

 Table 2.    Adverse events: Listed below are adverse events reported in at least 10% of the 
patients ( n  = 119) with advanced solid tumors who received entrectinib on either phase I 
trial (ALKA-372-001 or STARTRK-1) and that were deemed by the investigators to be 
related to study drug  

Adverse event,  n  (%) Grade 1 Grade 2 Grade 3 All grades ( n  = 119)

Fatigue/asthenia 28 (24) 22 (19) 5 (4) 55 (46)

Dysgeusia 47 (40) 3 (3) 0 50 (42)

Paresthesia 34 (29) 0 0 34 (29)

Nausea 29 (24) 4 (3) 0 33 (28)

Myalgia 23 (19) 4 (3) 0 27 (23)

Diarrhea 19 (16) 3 (3) 1 (1) 23 (19)

Vomiting 19 (16) 1 (1) 0 20 (17)

Arthralgia 12 (10) 6 (5) 1 (1) 19 (16)

Dizziness 14 (12) 5 (4) 0 19 (16)

Constipation 12 (10) 2 (2) 0 14 (12)

Weight increase 4 (3) 6 (5) 2 (2) 12 (10)

   NOTE: There was only one Grade 4 treatment-related adverse event: eosinophilic myocarditis on STARTRK-1. No 
treatment-related Grade 5 events were reported.   
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more than one prior ALK inhibitor, including 2 patients who 
had received more than two prior ALK inhibitors.  

  “Phase II–Eligible Population” 

 Given that responses were observed only in TKI treatment–
naïve patients with a fusion involving  NTRK1/2/3, ROS1 , or 
 ALK , the population that would serve as the focus of later-
phase development of entrectinib, an analysis was performed 
of patients treated on either phase I trial who met criteria for 
what was defi ned as a “Phase II–eligible population.” This 
included patients whose tumors harbored a recurrent gene 
fusion involving any of the 5 genes of interest, with a history 
of no prior TKI treatment targeting the fusion of interest, 
and who were treated on ALKA-372-001 or STARTRK-1 at 
doses that achieved therapeutic exposures consistent with the 
RP2D of 600 mg of entrectinib daily (Supplementary Fig. S1). 

 Of the 60 patients with gene rearrangements, 5 patients 
were treated with doses that were below those which achieved 
therapeutic exposures consistent with the RP2D. Of the 
remaining 55 patients, 25 were previously treated with a TKI 
targeted to one of the fusions of interest (45%;  n  = 25/55). For 
the purposes of this analysis, crizotinib was not considered 
a signifi cant inhibitor of TRKA/B/C (IC 50  values of 580 and 
399 nmol/L toward TRKA and TRKB, respectively; ref.  39 ), 
and 1 patient with an  NTRK3  fusion who had received this 
drug in the past was classifi ed as “Phase II–eligible.” 

 Of the resulting 30 patients comprising the “Phase II–eli-
gible” patient population as defi ned above, 25 patients were 
evaluable ( Table 3 ), of whom 24 patients had extracranial 
solid tumors and 1 patient had a glioneuronal tumor. The 
waterfall plot for the 24 patients with extracranial solid 
tumors is shown in  Fig. 2 . In three  NTRK1/2/3 -rearranged 
advanced solid tumors with RECIST-measurable disease, the 
objective response rate (ORR) was 100% [95% confi dence 
interval (CI): 44–100]. These included patients with NSCLC 
( SQSTM1–NTRK1 ; ref.  40 ), MASC ( ETV6–NTRK3 ; ref.  31 ), 
and colorectal cancer ( LMNA–NTRK1 ; ref.  16 ). An additional 
patient with a  BCAN–NTRK1 -rearranged glioneuronal tumor 
experienced stable disease by RECIST, but further analysis 
via three-dimensional volumetric assessment demonstrated a 
60% reduction in total tumor burden ( 41 ). This radiographic 
response was accompanied by a clinical response to therapy 
with diminished ataxia and diplopia.   

 In 14  ROS1 -rearranged solid tumors, the ORR was 86% 
(95% CI: 60–96). These confi rmed responses included 2 complete 

responses (CR). With the exception of 1 patient with a  GOPC–

ROS1 -rearranged melanoma, all other patients who responded 
had  ROS1 -rearranged NSCLC. In seven  ALK -rearranged solid 
tumors, the ORR was 57% (95% CI: 25–84), and responses 
were observed in  ALK -rearranged NSCLC, renal cell carci-
noma, and colorectal cancer. 

 Initial responses to entrectinib were demonstrated within 
Cycle 1 (scans performed at 4 weeks) or Cycle 2 (scans per-
formed at 8 weeks). Responses to entrectinib therapy were also 
durable, with the longest duration of clinical benefi t observed 
in a patient with  ROS1 -rearranged lung cancer who remains on 
therapy at 32 months as of the data cutoff date ( Fig. 3 ). Recog-
nizing that different tumor types were treated, the median dur-
ation of response for  ROS1 - and  ALK -rearranged cancers was 
17.4 months (95% CI: 12.7–not reached) and 7.4 months 
(95% CI: 3.7–not reached), respectively. For the 3 respond-
ing patients with  NTRK -rearranged cancers, the durations 
of response were 2.6 months, 4.6 months, and 15.1 months 
(patient ongoing as of data cutoff date), respectively.  

 With a median duration of follow-up of 15 months, a number 
of exploratory secondary endpoints were analyzed. Considering 
the variety of tumor types evaluated in this study, each with a 
different natural history, the median progression-free survival 
for patients harboring  NTRK1/2/3-  ( n  = 4),  ROS1 - ( n  = 14), and 
 ALK - ( n  = 7) rearranged malignancies was not reached (95% 
CI: 3.6–not reached), 19.0 months (95% CI: 6.5–not reached), 
and 8.3 months (95% CI: 4.6–12), respectively. Among all 25 
patients, the median overall survival has not been reached (95% 
CI: 19 months–not reached). The proportion of patients surviv-
ing at 12 months was 89.4% (95% CI: 75.5%–100%).  

  Intracranial Activity 

 Among the 25 evaluable “Phase II–eligible population,” 32% 
( n  = 8/25) of patients had known primary or metastatic disease 
involving the brain prior to treatment with entrectinib. Res-
ponses were noted in 5 of the 8 (63%) patients: 4 patients 
with  NTRK1 - ( n  = 1),  ROS1 - ( n  = 2), and  ALK - ( n  = 1) rear-
ranged NSCLC and 1 additional patient with  ALK -rearranged 
colorectal cancer; among the responders, 4 patients have had 
prior radiotherapy to the brain. Of note, the patient with 
 SQSTM1–NTRK1 -rearranged NSCLC had 15 to 20 brain metas-
tases identifi ed at baseline not previously irradiated; a complete 
intracranial response was achieved with entrectinib therapy 
that is ongoing at 15 months as of the data cutoff date ( Fig. 4 ; 
ref.  40 ).    

  Figure 1.       PK of entrectinib at steady 
state (continuous daily dosing). Mean 
steady-state (day 28) patient plasma 
concentration profi les at escalating dose 
levels were plotted over the dosing interval 
following once-daily continuous dosing. The 
target IC 50  and IC 90  values are based on 
entrectinib-induced tumor growth inhibition 
in mouse xenograft models of  NTRK1 -
rearranged colorectal cancer .    
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 Table 3.    Molecular characteristics of the “Phase II–eligible” patients: The specifi c 
molecular profi le of 25 patients with advanced solid tumors who received entrectinib 
on either phase I trial (ALKA-372-001 or STARTRK-1) is summarized  

Number Gene Tumor type Molecular alteration Diagnostic method

 1 NTRK NSCLC  SQSTM1–NTRK1 NGS

 2 NTRK Glioneuronal  BCAN–NTRK1 NGS

 3 NTRK MASC  ETV6–NTRK3 NGS

 4 NTRK mCRC  LMNA–NTRK1 NGS

 5 ROS1 NSCLC  ROS1+ FISH

 6 ROS1 NSCLC  ROS1+ FISH

 7 ROS1 NSCLC  CD74–ROS1 NGS

 8 ROS1 NSCLC  ROS1+ FISH

 9 ROS1 NSCLC  ROS1+ FISH

10 ROS1 NSCLC  EZR–ROS1 NGS

11 ROS1 NSCLC  ROS1+ FISH

12 ROS1 Melanoma  GOPC–ROS1 NGS

13 ROS1 NSCLC  ROS1+ FISH

14 ROS1 NSCLC  ROS1+ FISH

15 ROS1 NSCLC  ROS1+ FISH

16 ROS1 NSCLC  ROS1+ FISH

17 ROS1 NSCLC  ROS1+ FISH

18 ROS1 NSCLC  SDC4–ROS1 NGS

19 ALK NSCLC  ALK+ FISH

20 ALK NSCLC  ALK+ FISH

21 ALK RCC  VCL–ALK NGS

22 ALK NSCLC  ALK+ FISH

23 ALK mCRC  CAD–ALK NGS

24 ALK NSCLC  ALK+ FISH

25 ALK Unknown primary  D5F3–ALK NGS

   Abbreviations: mCRC, metastatic colorectal cancer; NGS, next-generation sequencing; RCC, renal cell carcinoma.   

  Figure 2.       Best response to 
entrectinib in patients with TKI 
treatment–naïve extracranial solid 
tumors. Each bar represents maxi-
mal tumor regression from baseline 
based upon the sum of the longest 
diameters of target lesions (per 
RECIST 1.1) in the 24 “Phase II–
eligible” patients with extracranial 
solid tumors. The dashed line at 
−30% indicates the threshold for 
partial response. Specifi c molecu-
lar alterations are shown for each 
patient. The red diamond  indicates 
1 patient with  ROS1 -rearranged 
NSCLC, who experienced no change 
in tumor burden during treatment 
with entrectinib.    
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  Figure 3.       Duration of treatment. 
Each bar indicates the duration of 
treatment for the 25 “Phase II–eligible” 
patients at the time of data cutoff. 
Specifi c molecular alterations are 
shown next to each patient. Arrows 
indicate patients who were ongoing 
on study; X denotes patients who 
discontinued the study (all due to 
disease progression); black diamonds 
represent time of fi rst response; 
black bars represent 4 patients who 
experienced disease progression 
but remained on study due to clinical 
benefi t.    
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  Figure 4.       Baseline and on-study brain MRI 
images for a patient with  SQSTM1–NTRK1-
 rearranged lung cancer. Baseline head CT 
scans show metastases (red arrows) in the 
left occipital lobe (top) and in the right thala-
mus (bottom). Restaging head CT scans show 
CR at 1 month and 18 months on entrectinib 
(at the time of data cutoff).    

Baseline 1 month 18 months

  DISCUSSION 

 Here, we present a large multicenter safety experience in 119 
patients treated with the pan-TRK, ROS1, and ALK inhibitor 
entrectinib on two phase I trials. We demonstrated that the 
drug is safe and well tolerated. No responding patients discon-
tinued the study due to adverse events. The majority of treat-
ment-related adverse events were Grade 1 or 2 in severity, and 
all were reversible with dose interruption and/or modifi cation. 
Dose reduction was required in only 15% of patients. Specifi c 
adverse events, such as dysgeusia, sensory neuropathy, cognitive 
changes, and weight gain, are thought to be on-target toxicities 
of entrectinib mediated by TRK receptor inhibition ( 42 ). Forty-
fi ve patients were treated at the identifi ed RP2D of 600 mg daily 
with continuous dosing. Given that no signifi cant differences 
in toxicity were observed between continuous daily dosing and 
intermittent dosing schedules, continuous dosing was chosen 

due to its ability to enable 24-hour continuous exposures above 
those required for complete tumor inhibition in animal tumor 
models, resulting in sustained target inhibition. 

 Entrectinib demonstrated robust antitumor activity in TKI-
naïve patients harboring gene rearrangements involving  NTRK, 

ROS1 , or  ALK . Responses were fast and durable, and clinical 
benefi t was observed across a broad range of solid tumors 
regardless of histology, including NSCLC, MASC, melanoma, 
glioneuronal tumor, colorectal cancer, and renal cell carci-
noma. The majority of responses were observed within Cycle 1 
or 2, and several patients continued treatment beyond a year, 
with the longest response approaching 2.5 years as of the time 
of the data cutoff. Intriguingly, the responses in patients with 
 NTRK -rearranged tumors are particularly notable, as these 
provide proof-of-principle that  NTRK  rearrangements are clini-
cally actionable drivers of tumor growth. We thus strongly 
encourage that clinicians continue to test for these alterations 
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using comprehensive molecular profi ling platforms that are 
poised to identify these alterations, preferably with a strategy 
that combines testing at both the DNA level and, potentially, 
the RNA level, when feasible ( 13 ). Although no responses were 
observed in patients with recurrent gene rearrangements who 
had previously received ROS1 or ALK inhibitors, further inves-
tigation will be required to determine the activity of this drug 
in TKI-pretreated patients, considering that the drug is active 
preclinically against potential resistance mutations, such as the 
 ALK L1196M   mutation, that can emerge after crizotinib therapy in 
 ALK -rearranged lung cancers. 

 Of note, entrectinib showed promising antitumor activity in 
the central nervous system (CNS). This becomes particularly 
important when we consider that cancers that can harbor 
 NTRK, ROS1,  or  ALK  rearrangements such as lung cancers and 
melanomas have a proclivity for CNS metastasis. Moreover, 
many primary adult and pediatric brain tumors, such as astro-
cytoma, glioblastoma, and pediatric gliomas, harbor  NTRK1, 

NTRK2, NTRK3 , or  ROS1  fusions ( 10 ). On STARTRK-1, a CR 
was achieved in the brain in a patient with  SQSTM1–NTRK1 -
rearranged lung cancer with an ongoing response at 15 months 
at the time of the data cutoff ( 40 ). Substantial reduction in 
disease burden was likewise noted by volumetric analysis in 
a  BCAN–NTRK1 -rearranged glioneuronal tumor ( 41 ). These 
cases highlight the intracranial activity of entrectinib against 
both metastatic disease and primary brain tumors that can 
otherwise result in substantial morbidity and mortality. As 
has been observed in  ALK -rearranged lung cancers, the use of 
a CNS-penetrant drug like entrectinib in the fi rst-line setting 
in patients with  ROS1 -rearranged lung cancers may potentially 
improve outcomes for patients compared with treatment with 
crizotinib, which is thought to be less CNS-penetrant. 

 Lastly, these studies emphasize the utility of clinical trial 
strategies that focus on molecular enrichment independent of 
tumor histology as a model for the development of promising 
targeted therapies, especially in patients with rare genomic 
aberrations. Over the last decade, expansion cohorts on phase I 
trials have driven the accelerated approval of targeted therapies 
such as crizotinib for  ALK - and  ROS1 -rearranged lung cancers 
( 6, 34 ). The same model can potentially be applied to establish 
preliminary effi cacy across a variety of cancer types, especially 
as actionable drivers of interest such as  NTRK  rearrangements 
are detected at a lower frequency across multiple histologies, 
precluding the ability to easily accrue histology-specifi c cohorts 
on ongoing trials. Later-phase clinical trials, so called “basket 
studies,” provide a complementary approach that utilizes this 
paradigm. For entrectinib, a global, multicenter, phase II bas-
ket study (STARTRK-2, NCT02568267) is currently accruing 
patients with  NTRK-, ROS1-,  and  ALK- rearranged cancers with 
the intent of confi rming the results generated by STARTRK-1 
and ALKA.  

  METHODS 
 Patients with locally advanced or metastatic solid tumors harboring 

 NTRK1/2/3, ROS1 , or  ALK  molecular alterations were enrolled in one 

of two phase I studies aimed at determining the MTD or RP2D of 

entrectinib: Study ALKA-372-001 (“ALKA”; EudraCT 2012-000148-88; 

2 sites, Italy) and Study RXDX-101-01 (“STARTRK-1”; NCT02097810; 

10 sites, United States, Korea, and Spain). Patients were enrolled in the 

ALKA study between October 2012 and November 2015, and in the 

STARTRK-1 study between July 2014 and February 2016, respectively. 

  Study Design 

 Patients were assigned sequentially to escalating dose levels of entrec-

tinib following a standard 3+3 design. All patients received entrectinib 

orally and remained on study treatment until disease progression (with 

allowance to remain on study if the treating physician deemed the 

patient as continuing to derive clinical benefi t), development of unac-

ceptable toxicity, or withdrawal of consent. Fasted and fed, BSA-based 

and fl at dosing, as well as intermittent and continuous daily dosing 

regimens were evaluated. Entrectinib was initially dosed by BSA (doses 

ranging from 100 mg/m 2  to 1,600 mg/m 2 ) and later transitioned to 

fl at dosing (doses ranging from 600 mg to 800 mg). In addition, inter-

mittent dosing regimens were evaluated in addition to once-daily, 

continuous dosing. In the ALKA study, patients were enrolled across 

three dosing regimens: Schedule A (fasted, 4 days on/3 days off for 3 of 

4 weeks), Schedule B (fed, continuous daily dosing), and Schedule 

C (fed, 4 days on/3 days off). In the STARTRK-1 study, all patients 

received entrectinib on a fed, continuous daily dosing regimen (Sup-

plementary Fig. S2). Patients were enrolled into STARTRK-1 and ALKA 

Schedules B and C simultaneously after Schedule A was completed. 

 On both studies, the starting dose was 100 mg/m 2 . At least 

3 patients at each dose level were monitored for DLTs through Cycle 

1 (day 28 for ALKA and day 42 for STARTRK-1). DLTs were defi ned 

as any Grade ≥2 CNS, Grade ≥3 nonhematologic, Grade ≥3 and/or 

lasting >7 days hematologic (as well as febrile neutropenia) toxicities 

according to the National Cancer Institute Common Terminology 

Criteria for Adverse Events (NCI CTCAE; v4.03). Failure to recover 

(except alopecia) to Grade ≤1 or baseline after delaying the initiation 

of next cycle by a maximum of 14 (ALKA) or 28 (STARTRK-1) days 

was also considered a DLT. Patients were eligible for DLT evaluation 

if they experienced a DLT after at least one dose of study drug or did 

not experience a DLT having taken a minimum of 75% (ALKA) or 

80% (STARTRK-1) of doses expected during Cycle 1. Patients who did 

not fulfi ll these requirements or who discontinued the study prior to 

completing the DLT evaluation period were to be replaced. The MTD 

was defi ned as the highest dose associated with fi rst-cycle DLT in 

<33% of patients. If an MTD was not reached, RP2D was to be 

selected based on available safety, tolerability, PK, and pharmacody-

namics data from different dose levels and dosing regimens tested.  

  Study Population 

 All patients had a histologically or cytologically confi rmed diagnosis 

of relapsed or refractory advanced/metastatic solid tumor for which 

no alternative effective standard therapy was available or for which 

standard therapy was considered unsuitable or intolerable, ECOG PS 

≤2, a life expectancy of ≥3 months, and adequate organ function. 

Patients with stable asymptomatic CNS involvement were eligible. 

 TRKA/B/C, ROS1, or ALK molecular alterations were detected via 

immunohistochemistry, FISH, or RNA/DNA-based methods [e.g., 

next-generation sequencing (NGS), NanoString] performed at the 

various local institutions or through third-party commercial diag-

nostic providers. 

 Institutional Review Boards and/or ethics committees of all partici-

pating institutions approved the study, which was conducted accord-

ing to the Declaration of Helsinki, the International Conference on 

Harmonisation, and the Guidelines for Good Clinical Practice. Data 

were anonymized to protect the identities of subjects involved in the 

research. All patients provided written informed consent.  

  Safety Assessments 

 Safety was assessed from the fi rst dose until 30 days after the last 

dose of entrectinib or until the resolution or stability of any drug-

related toxicity. Clinical and laboratory assessments were performed 
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at least once weekly during the fi rst two cycles of treatment: 

weekly and biweekly after ≥1 year of treatment (ALKA) or biweekly 

(STARTRK-1), at the end of treatment visit, and approximately 28 

to 30 days after discontinuing study drug. Laboratory assessments 

included routine hematology and chemistry panels, coagulation 

parameters, and urinalysis. Twelve-lead single ECGs  (triplicate in 

STARTRK-1) were obtained at baseline and around the anticipated 

maximal and steady-state entrectinib plasma concentrations (e.g., 

between 3 and 6 hours after dose) with time-matched PK samples 

(various time points on Cycles 1 through 4), at the end of treatment 

visit, as well as whenever clinically indicated, to assess for potential 

QTc changes as a result of treatment with entrectinib.  

  Pharmacokinetics 

 Depending on dosing regimens, serial blood samples for PK analy-

ses were obtained at various time points throughout Cycle 1. Samples 

were shipped frozen to Accelera (ALKA) and InVentiv (STARTRK-1) 

for analysis of entrectinib (and its metabolites) using a validated 

liquid chromatography–tandem mass spectrometry assay. PK analy-

sis for all parameters was performed using Phoenix WinNonlin 

software (version 6.4.0.768; Pharsight Corporation). Parameters ana-

lyzed included maximum observed plasma concentration (C max ) and 

minimum observed plasma concentration (C 24h ), time of maximum 

observed plasma concentration (T max ), effective half-life (t 1/2 ), and 

area under the plasma concentration–time curve (AUC).  

  Pharmacodynamics 

 For all patients who provided consent, archival tumor tissue, if 

available, was submitted for retrospective and/or additional explora-

tory genomic profi ling. Tissue (if clinically feasible) and blood at 

the time of progression in addition to monthly blood samples were 

collected to gain insights into potential mechanisms of resistance. 

Molecular alteration status of the  NTRK1/2/3, ROS1 , and  ALK  genes, 

among others, was collected in nucleic acids isolated from plasma 

using NGS for future analyses.  

  Tumor Assessments 

 CT/MRI of the brain, chest, abdomen, and pelvis, as clinically indi-

cated, were initially performed at the end of Cycle 2 and every 8 weeks 

thereafter. For both studies, a protocol amendment later modifi ed 

the fi rst assessment time point to the end of Cycle 1 and every 8 weeks 

thereafter. All scans were read locally and tumor response evaluated 

according to RECIST v1.1 ( 38 ).  

  Statistical Analysis 

 Patients who received at least one dose of entrectinib were 

included in the effi cacy and safety analyses, irrespective of molecu-

lar alteration. In addition, patients with evidence of a gene fusion 

were analyzed as a subset. Demographics, baseline characteris-

tics, adverse events, vital signs, and clinical laboratory evaluations 

were summarized with descriptive statistics. Objective response was 

defi ned as confi rmed CR or PR that persisted on repeat imaging ≥4 

weeks after initial documentation of response. ORR was calculated 

as the proportion of responders out of the population of patients 

with measurable disease at baseline. The Kaplan–Meier method was 

used to estimate the median, 25th, and 75th percentiles for time-

to-event endpoints (duration of response, progression-free survival, 

and overall survival), with corresponding 95% CIs. The data cutoff 

date for safety and effi cacy analyses for both studies was September 

20, 2016.   
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