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Background. Group A streptococcus (GAS) causes illness ranging from uncomplicated pharyngitis to life-
threatening necrotizing fasciitis, toxic shock, and rheumatic fever. Attempts to develop an M protein–based vaccine
have been hindered by the fact that some M proteins elicit both protective antibodies and antibodies that cross-
react with human tissues. New molecular techniques have allowed the previous obstacles to be largely overcome.

Methods. The vaccine is comprised of 4 recombinant proteins adsorbed to aluminum hydroxide that contain
N-terminal peptides from streptococcal protective antigen and M proteins of 26 common pharyngitis, invasive,
and/or rheumatogenic serotypes. Thirty healthy adult subjects received intramuscular 26-valent GAS vaccine (400
mg) at 0, 1, and 4 months, with clinical and laboratory follow-up for safety and immunogenicity using assays for
tissue cross-reactive antibodies, type-specific M antibodies to 27 vaccine antigens, and functional (opsonization)
activity of M protein antibodies.

Results. The incidence of local reactogenicity was similar to that for other aluminum hydroxide–adsorbed
vaccines in adults. No subject developed evidence of rheumatogenicity or nephritogenicity, and no induction of
human tissue–reactive antibodies was detected. Overall, 26 of 27 antigenic peptides evoked a 14-fold increase in
the geometric mean antibody titer over baseline. The mean log2 fold-increase in serum antibody titer (� standard
error of the mean) for all 27 antigens was 3.67 � 0.21. A significant mean log2 reduction in streptococcal bacterial
counts in serum samples obtained after immunization was seen in opsonization assays for all M serotypes.

Conclusions. On the basis of epidemiological data demonstrating that the majority of cases of pharyngitis,
necrotizing fasciitis, and other invasive streptococcal infections are caused by a limited number of serotypes, this
26-valent vaccine could have significant impact on the overall burden of streptococcal disease.

Streptococcus pyogenes (group A streptococcus [GAS]) is

an important human pathogen that causes an estimated

25–35 million infections per year in the United States

[1, 2]. Although uncomplicated pharyngitis and skin

and soft-tissue infections account for the majority of

infections, the incidence of life-threatening illnesses,

such as necrotizing fasciitis and toxic shock syndrome,

is increasing [3, 4]. Uncomplicated infection can lead

to serious sequelae, such as acute rheumatic fever and
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glomerulonephritis. Acute rheumatic fever continues to

be a leading cause of heart disease worldwide, and its

incidence has been increasing in North America [4–6].

The burden of illness attributable to GAS worldwide

has stimulated vaccine development efforts dating back

more than 8 decades [7, 8]. The surface M protein is

the major virulence determinant and protective antigen

of GAS [9]. In the immune host, M protein antibodies

are opsonic and promote ingestion and killing of GAS

by phagocytic cells [10]. Development of a GAS vaccine

has been hindered by the fact that, although some M

protein epitopes elicit type-specific protective antibod-

ies, others can induce antibodies that cross-react with

human heart, brain, kidney, or joint cartilage [11–14].

New molecular techniques and a better understanding

of the biology of GAS have allowed the development

of multivalent M protein–based vaccines that contain
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Figure 1. Schematic diagram of the 4 recombinant fusion proteins contained in the 26-valent M protein–based vaccine. The number of amino
acids contained in each peptide is indicated below the M type designation.

protective epitopes and exclude potentially harmful tissue

cross-reactive epitopes.

The multivalent vaccine used in this study was designed to

include protective epitopes from serotypes responsible for

85%–90% of cases of uncomplicated pharyngitis and serious,

invasive disease [15, 16]. We present the results of the first

phase I study of the safety and immunogenicity of a 26-valent

plus streptococcal protective antigen (Spa) M protein–based

recombinant vaccine.

PATIENTS, MATERIALS, AND METHODS

Vaccine. StreptAvax (ID Biomedical), a multivalent recom-

binant vaccine containing amino-terminal M protein fragments

from 26 different serotypes of GAS, has been described else-

where [17]. The vaccine contained 4 recombinant fusion pro-

teins, each containing 6 or 7 N-terminal M peptides linked in

tandem. Serotypes were chosen if they were known to be a

common cause of uncomplicated pharyngitis, if they were com-

monly retrieved from normally sterile body sites in the ongoing

Active Bacterial Core Surveillance Network, or if they were

currently or historically considered “rheumatogenic” [15, 16,

18, 19]. The amino-terminal peptide fragment of Spa, a newly

described surface antigen of GAS known to elicit opsonic an-

tibodies, was also included as the 27th antigen [20]. The pu-

rified multivalent proteins (figure 1) were combined in equal

amounts by weight and adsorbed to aluminum hydroxide to

deliver 400 mg of protein and 375 mg of aluminum hydroxide

in 0.5 mL.

Population. Written informed consent was obtained from

all participants. The study was approved by the IWK Health

Centre Research Ethics Board. Healthy adults aged 18–50 years

were eligible for inclusion in the study if they were in good

general health, as determined by history, findings of a physical

examination, and the results of screening biochemical and he-

matological tests. Subjects were excluded if they had a history

of or echocardiographic findings of valvular heart disease, pre-

vious endocarditis, congenital cardiac abnormality, other sig-

nificant cardiac illness, or signs or symptoms suggestive of rheu-

matic fever. Exclusion criteria also included a family history of

rheumatic fever or a personal history of acute renal failure,

poststreptococcal glomerulonephritis, chorea, or intermittent

polyarthritis or presence of serum cross-reactive antibodies, as

determined by the findings of indirect immunofluorescence

assays using frozen sections of human heart, kidney, cartilage,

basal ganglia, and cerebral cortex.

Study design and procedures. This was a single-center,

open-label, phase I trial. Subjects received an intramuscular

deltoid injection of vaccine on study days 0, 30, and 120. Par-

ticipants were monitored for 30 min after immunization for

any immediate adverse events and by self-assessment for so-

licited vaccine reactions with use of a symptom diary for 14

days after immunization. A study nurse made 2 follow-up tel-

ephone calls to each subject at ∼24 and ∼72 h after immuni-

zation to ensure that significant reactions were not missed.

All subjects underwent a complete physical examination

(including cardiac auscultation and neurological examina-

tion) at baseline and at the final visit 1 year after the first

dose and underwent screening neurologic and cardiac ex-

aminations at 1, 2, and 4 weeks after each vaccine dose. Trans-

thoracic echocardiogram and electrocardiogram were per-

formed at baseline and 2 months after the third dose was

administered and were reviewed by one of the study cardi-

ologists for any abnormalities. Urinalysis was performed be-

fore each vaccine dose was administered and at 2 and 4 weeks

after each dose was administered.

Blood samples were obtained at baseline, before, and at 2

and 4 weeks after each vaccine dose for measurement of serum

biochemical and hematological parameters, cardiac troponin I
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level, C-reactive protein (CRP) level, and serum complement

(C3) level. Screening for cross-reactive antibodies to human

heart, kidney, cartilage, basal ganglia, and cerebral cortex sam-

ples was performed by immunofluorescence at baseline and at

2 weeks after the second and third vaccine doses were admin-

istered [12]. Serum samples were assayed for the presence of

IgA, IgM, and IgG by ELISA using recombinant peptides copy-

ing each of the 27 components of the vaccine and bactericidal

antibodies by indirect bactericidal assay [17, 21]. Results were

expressed as the reduction in bacterial population doublings in

serum samples obtained after immunization, compared with

in serum samples obtained before immunization.

Data analysis and statistical considerations. Adverse

events were tabulated by day and by severity; the maximum

size and severity reported was used within each time interval.

Solicited vaccine reactions were designated as mild (tempera-

ture, �37.6�C and !38�C; injection site reaction, !10 mm in

diameter; and symptom easily tolerated), moderate (tempera-

ture, �38�C and !39�C; injection site reaction, �10 mm and

!50 mm in diameter; and symptom caused interference with

usual activities), and severe (temperature, �39�C; injection site

reaction, �50 mm in diameter; and symptom was incapaci-

tating or required a medical visit). Unsolicited, spontaneous

reports of other illnesses or injuries were collected and graded

as mild, moderate, or severe. The number and proportion of

subjects experiencing an adverse event was tabulated by

observation period and severity, and exact 95% CIs were

calculated.

Vaccine-induced seroresponse to individual M peptides was

defined as a �4-fold increase in antibody titer over the baseline

value. Seroconversion was determined by statistical comparison

with a healthy adult serum donor distribution. A collection of

samples from 121 healthy adult donors were tested with use

of the standardized assay format, and the “normal” mean OD

value and SD were determined. The calculated cutoff value for

seroconversion was greater than the “normal” mean plus 2 SDs.

The proportion of subjects achieving seroresponse or serocon-

version to each of the M peptides or Spa peptide contained in

the vaccine was determined. Geometric mean antibody titers

to each M protein type were compared before and after vac-

cination. For the indirect bactericidal assays, the mean log2

reduction in viable bacterial doublings was calculated for each

M serotype. Because adults are not immunologically naive to

these common organisms, some subjects’ baseline serum sam-

ples demonstrated substantial levels of M serotype–specific in-

hibition of streptococcal replication even before receipt of the

vaccine. When the count of viable bacteria was less than the

input inoculum of viable bacteria after a 3-h period of incu-

bation with prevaccination serum samples, the subject was

deemed to have levels of preexisting opsonizing antibody that

prevented the meaningful quantitation of further vaccine-in-

duced enhancement, and his/her results for the serotype in

question were not included in the calculation of means.

RESULTS

Demographic Data

Forty-one subjects were screened, and 30 met eligibility re-

quirements and were enrolled in the study. All enrolled subjects

received 3 vaccine doses and completed follow-up. The mean

age of the subjects was 34.5 years (range, 19–50 years); 57%

were female.

Adverse Events

Clinical adverse events. No adverse events were reported in

the 30-min period after immunization. However, local injec-

tion-site reactions were reported commonly in the 14-day pe-

riod after immunization (table 1). The most commonly re-

ported injection-site reactions were tenderness and pain on

movement of the arm, each reported by up to 70% of subjects

and tending to become more frequent after later doses. The

majority of injection-site reactions were mild, occurred within

48 h after injection, and were self-limited (median duration,

!3 days). Reports of injection-site erythema, warmth, and ten-

derness increased in frequency after the second and/or third

doses, compared with after the first dose ( , ,P p .028 P p .05

and , respectively). However, the mean severity of theseP p .011

reactions did not increase with increasing dose number.

The most frequent systemic complaints were headache

(40%–53% of subjects) and tiredness (17%–23%). Up to 27%

of subjects reported either nausea or vomiting following the

receipt of 1 or more vaccine doses. Fever was uncommon. Sore

joints and muscle aches were mild and uncommon, occurring

in only 3%–7% and 13%–17% of subjects, respectively. These

complaints were not associated with objective physical findings,

and all were self-limited; none was suggestive of acute rheu-

matic fever. No vaccine-related serious adverse events or other

adverse events suggestive of rheumatogenicity or nephritogen-

icity occurred. A single serious adverse event not related to the

vaccine was reported (a 29-year-old subject experienced a trau-

matic ankle fracture 173 days after the first dose).

Laboratory abnormalities. No significant biochemical or

hematological abnormalities were observed. No subject devel-

oped clinically significant proteinuria, hematuria, or RBC casts.

There were no changes in electrocardiogram or echocardiogram

findings that were suggestive of acute rheumatic fever.

Antibody Response

Antibody responses detected by ELISA. Before immunization,

subjects were seropositive for a median of 9 (33.3%) of the 27

M peptides in the vaccine. Geometric mean antibody titers

against all 26 M protein peptides and Spa increased significantly
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Table 1. Adverse reactions among 30 healthy adult subjects in the 14-day period after immunization with
26-valent group A streptococcal vaccine, by dose.

Adverse event

Dose 1 Dose 2 Dose 3

No. of
subjects

Percentage of
subjects (95% CI)

No. of
subjects

Percentage of
subjects (95% CI)

No. of
subjects

Percentage of
subjects (95% CI)

Local reaction

Redness

Any 5 16.7 (5.6–34.7) 5 16.7 (5.6–34.7) 11 36.7 (19.9–56.1)

Severe 3 10.0 (2.1–26.5) 2 6.7 (0.8–22.1) 2 6.7 (0.8–22.1)

Swelling

Any 2 6.7 (0.8–22.1) 3 10.0 (2.1–26.5) 7 23.3 (9.9–42.3)

Severe 1 3.3 (0.1–17.2) 0 0.0 (0.0–11.6) 0 0.0 (0.0–11.6)

Tenderness

Any 11 36.7 (19.9–56.1) 21 70.0 (50.6–85.3) 20 66.7 (47.2–82.7)

Severe 0 0.0 (0.0–11.6) 1 3.3 (0.1–17.2) 0 0.0 (0.0–11.6)

Pain on movement

Any 16 53.3 (34.3–71.7) 21 70.0 (50.6–85.3) 20 66.7 (47.2–82.7)

Severe 0 0.0 (0.0–11.6) 1 3.3 (0.1–17.2) 1 3.3 (0.1–17.2)

Elevated injection site
temperature

Any 4 13.3 (3.8–30.7) 8 26.7 (12.3–45.9) 10 33.3 (17.3–52.8)

Severe 0 0.0 (0.0–11.6) 0 0.0 (0.0–11.6) 0 0.0 (0.0–11.6)

All local reactions

Any 19 63.3 (43.9–80.1 23 76.7 (57.7–90.1) 24 80.0 (61.4–92.3)

Severe 3 10.0 (2.1–26.5) 2 6.7 (0.8–22.1) 2 6.7 (0.8–22.1)

Systemic reaction

General muscle aches

Any 4 13.3 (3.8–30.7) 5 16.7 (5.6–34.7) 4 13.3 (3.8–30.7)

Severe 0 0.0 (0.0–11.6) 0 0.0 (0.0–11.6) 0 0.0 (0.0–11.6)

Sore/swollen joints

Any 2 6.7 (0.8–22.1) 2 6.7 (0.8–22.1) 1 3.3 (0.1–17.2)

Severe 0 0.0 (0.0–11.6) 0 0.0 (0.0–11.6) 0 0.0 (0.0–11.6)

Fever

Anya 3 10.0 (3.8–30.7) 1 3.3 (0.1–17.2) 2 6.7 (0.8–22.1)

Severeb 0 0.0 (0.0–11.6) 1 3.3 (0.1–17.2) 0 0.0 (0.0–11.6)

Chills

Any 2 6.7 (0.8–22.1) 5 16.7 (5.6–34.7) 4 13.3 (3.8–30.7)

Severe 0 0.0 (0.0–11.6) 1 3.3 (0.1–17.2) 1 3.3 (0.1–17.2)

Headache

Any 16 53.3 (34.3–71.7) 15 50.0 (31.3–68.7) 12 40.0 (22.7–59.4)

Severe 3 10.0 (2.1–26.5) 1 3.3 (0.1–17.2) 0 0.0 (0.0–11.6)

Nausea

Any 8 26.7 (12.3–45.9) 6 20.0 (7.7–38.6) 4 13.3 (3.8–30.7)

Severe 3 10.0 (2.1–26.5) 1 3.3 (0.1–17.2) 0 0.0 (0.0–11.6)

Vomiting

Any 2 6.7 (0.8–22.1) 0 0.0 (0.0–11.6) 0 0.0 (0.0–11.6)

Severe 2 6.7 (0.8–22.1) 0 0.0 (0.0–11.6) 0 0.0 (0.0–11.6)

Diarrhea

Any 5 16.7 (5.6–34.7) 7 23.3 (9.9–42.3) 2 6.7 (0.8–22.1)

Severe 0 0.0 (0.0–11.6) 0 0.0 (0.0–11.6) 0 0.0 (0.0–11.6)

Tiredness

Any 6 20.0 (7.7–38.6) 7 23.3 (9.9–42.3) 5 16.7 (5.6–34.7)

Severe 0 0.0 (0.0–11.6) 1 3.3 (0.1–17.2) 1 3.3 (0.1–17.2)

All systemic reactions

Any 20 66.7 (47.2–82.7) 18 60.0 (40.6–77.3) 16 53.3 (34.3–71.7)

Severe 4 13.3 (3.8–30.7) 2 6.7 (0.8–22.1) 2 6.7 (0.8–22.1)

a Temperature, �37.6�C.
b Temperature, �39�C.
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Table 2. Antibody response to 26 M protein antigens and strep-
tococcal protective antigen (Spa) before immunization and after
administration of 3 doses of 26-valent group A streptococcal vac-
cine in healthy adults.

Peptide

Geometric mean antibody titer (95% CI)

Before immunization
(study day 0)

After dose 3

Study day 134 Study day 360

M24 53.6 (48.3–59.5) 712.7 (449.3–1131) 95.3 (65.7–138.3)

M5 104.7 (60.3–181.9) 552.8 (283.3–1079) 115.4 (62.3–213.7)

M6 95.5 (55.2–165.1) 381.9 (180.3–809) 130.1 (66.3–255.1)

M19 104.7 (81.3–135) 3200 (2233–4585) 293.2 (181.2–474.2)

M29 61.6 (51.3–73.8) 962.4 (524.1–1767) 146.6 (91.6–234.7)

M14 58.8 (44.2–78.2) 381.9 (209.6–696) 68.2 (51.7–90.1)

M1.0 112.2 (69.7–180.7) 1563 (824.9–2963) 266.4 (138.9–511.2)

M12 763.9 (463.7–1258) 7352 (4825–11202) 2018 (1182–3664)

Spa 54.8 (50.1–60) 1637 (1005–2667) ND

M28 151.6 (89.7–256.2) 4222 (2668–6682) 450.8 (227.6–892.8)

M3 219.4 (133.3–361) 4126 (2706–6290) 429.7 (242.1–762.9)

M1.2 60.2 (48.6–74.5) 696.4 (416.1–1166) 146.6 (87.4–220.5)

M18 107.2 (80.8–142.3) 470.2 (274.5–805.4) 95.3 (69.1–131.6)

M2 79.4 (53–118.9) 800 (396–1616) 181.8 (93.2–354.3)

M43 56.1 (49.8–63.2) 289.5 (182.8–458.4) 66.6 (53.6–82.8)

M94 51.2 (48.8–53.6) 481.2 (302.1–766.6) 65 (53.7–78.8)

M22 459.5 (224.2–941.5) 4740 (2803–8013) 1201 (483.8–2982)

M11 117.6 (84.4–163.6) 1106 (665.6–1836) 118.2 (75.4–185.3)

M59 104.7 (65.4–167.7) 1676 (1047–2683) 177.5 (107.8–292.2)

M33 64.5 (50.7–82) 204.7 (112.5–372.3) 75.1 (49.6–113.6)

M89 91.2 (58.8–141.4) 1796 (1038–3108) 157.5 (96–258.3)

M101 104.7 (80.5–136.2) 1300 (807–2093) 136.4 (92.4–201.5)

M77 60.2 (46.7–77.5) 504 (279.4–909.1) 80.6 (59.8–108.8)

M114 69.1 (51.5–92.7) 1393 (775–2503) 173.3 (100.7–298.2)

M75 155.1 (99.6–241.6) 3592 (2573–5014) 242.1 (137.9–425.3)

M76 74.1 (58.7–93.4) 2851 (1952–4164) 112.7 (75.6–168)

M92 53.6 (48.3–59.5) 3676 (2575–5247) 136.4 (94.2–197.6)

NOTE. ND, not done.

after the third dose of vaccine was administered (table 2). At

1 year after administration of the third dose, geometric mean

antibody titer remained significantly greater than at baseline

for 15 (57.7%) of 26 M protein peptides. The mean log2 fold-

increase (�SEM) in serum antibody titer for all 27 antigens

was or 12.6 fold (95% CI, 9.42–16.89) (figure 2).3.67 � 0.21

Overall, 26 of the 27 antigenic peptides evoked a 14-fold geo-

metric mean increase over baseline, and the increase was sig-

nificant for every antigenic peptide ( ). Subjects expe-P ! .001

rienced a 14-fold geometric mean increase in antibody titer to

a median of 22 (81.5%) of 27 antigenic peptides in the vaccine

and an increase in antibody titer to 12 SDs above a predefined

nonimmune population mean to a median of 26 (96.3%) of

27 peptides (figure 3).

Opsonizing antibody responses detected in indirect bacte-

ricidal assay. Mean log2 reduction in bacterial counts in se-

rum samples obtained after immunization, compared with in

serum samples obtained before immunization, is illustrated for

each M serotype in figure 4. For every M serotype, this mean

value is significantly different from a hypothetical value of 0

(no vaccine effect), with by 1-sample t test. For mostP ! .035

M serotypes, 28–30 subjects contributed data to these means.

However, in the case of M5, M6, and M12 bacteria (among

the 18 most common GAS M types in Canada [22]), 10%–

20% of subjects had preexisting antibodies in serum samples

obtained at baseline that supported marked reduction (and

often complete elimination) of the bacterial test inocula.

Tissue Cross-Reactive Antibody Assays

None of the serum samples obtained at baseline contained

antibodies that cross-reacted with any of the human tissue sam-

ples tested, and none of the 30 subjects developed such anti-

bodies after 2 or 3 doses of the vaccine.

DISCUSSION

The type-specificity of protective antibodies evoked by GAS,

first defined by Rebecca Lancefield in 1919 [7], requires that

effective vaccines be relatively complex to ensure broad pro-

tection against a large proportion of epidemiologically signif-

icant strains. Early attempts at the development of subunit

vaccines containing M proteins extracted from viable strepto-

cocci were limited by toxicity associated with contamination

of the vaccine by streptococcal extracellular toxins [23–25]. This

toxicity was largely overcome when it was determined that

dilute solutions of pepsin released significant amounts of M

protein while leaving the cell wall relatively intact [26, 27].

Unfortunately, early laboratory studies with vaccines containing

large peptide fragments of M proteins revealed that these po-

tential vaccine candidates evoked not only opsonizing anti-

bodies but also antibodies that cross-reacted with human tissues

[11–14, 28]. This observation led to a series of studies to identify

the structures of M proteins that induced protective and tissue–

cross-reactive antibodies, in hopes of separating the 2 functional

activities so that vaccines could be developed that did not elicit

autoreactive immune responses [29–32]. Sequencing of M pro-

teins revealed that the amino-terminal regions were hypervar-

iable and accounted for type-specific immune responses [26,

29, 30, 33–37]. Because most of the tissue–cross-reactive epi-

topes of the M proteins were localized to repeating amino acid

sequences distinct from the type-specific amino-terminal epi-

topes, it was then possible to construct multivalent, fusion pro-

tein vaccines that contained limited amino-terminal sequences

derived from multiple M proteins designed to elicit opsonizing

antibodies but not tissue–cross-reactive antibodies.

Recombinant technology has been used to construct mul-

tivalent vaccines containing 4, 6, and 8 M protein fragments

linked in tandem [38–40]. Rabbits immunized with such tet-

ravalent, hexavalent, and octavalent vaccines developed signif-

icant antibody levels and opsonic antibodies against all included
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Figure 2. Mean (�SEM) log2-fold increase in M serotype–specific antibodies detected by ELISA after 3 doses of 26-valent group A streptococcal
vaccine in healthy adults. Error bars indicate SEM. Spa, streptococcal protective antigen.

Figure 3. Percentage of subjects demonstrating seroconversion (seroconverters) or seroresponse (seroresponders) to each vaccine antigenic peptide.
Seroresponse was defined as a �4-fold increase in antibody titer over baseline. Seroconversion was defined as an increase in antibody titer to 12
SDs above the mean for a nonimmune population. Spa, streptococcal protective antigen.

serotypes [38–40]. None of the animals developed human tis-

sue–cross-reactive antibodies [38–40]. Recently, the hexavalent

vaccine has been shown to be well tolerated and highly im-

munogenic in healthy adults [41].

These studies demonstrated the feasibility of evoking broadly

protective immune responses against multiple serotypes of GAS

using complex hybrid M protein fragments. On the basis of

these observations, a 26-valent vaccine was constructed that

was composed of 4 recombinant fusion proteins, each con-

taining 6 or 7 type-specific M protein peptide antigens linked

end-to-end in a tandem fashion. This vaccine was highly im-

munogenic in rabbits, eliciting a �4-fold increase in antibody

levels against 25 of the 26 vaccine serotypes [17]. Immune

rabbit serum samples were broadly opsonic and were bacteri-
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Figure 4. Mean log2 reduction in bacterial counts in serum samples obtained after immunization, compared with serum samples obtained before
immunization, for each vaccine M serotype after incubation of each M serotype of group A streptococcus (GAS) for 3 h in the presence of serum samples
obtained from subjects either before or after immunization. Streptococcal protective antigen (Spa), which is not an M serotyping GAS surface antigen but
is, rather, an antigen common to several M serotypes, was excluded from the Lancefield indirect bactericidal assays. Error bars indicate SEM.

cidal against the majority of the 26 serotypes [17]. Development

of tissue–cross-reactive antibodies was not detected [17].

The results of this phase I trial indicate that the 26-valent

M protein–based recombinant vaccine was well tolerated and

immunogenic. Adverse events were relatively common, but they

tended to be mild and self-limited and were generally similar

in character and frequency to those observed in our center

(Clinical Trials Research Center, Dalhousie University; Halifax,

Nova Scotia, Canada)for other aluminum-adjuvant adsorbed

vaccines administered to adults [42, 43]. This trial utilized nei-

ther a placebo nor a comparator product, and a clear definition

of the reaction spectrum attributable to the 26-valent vaccine

must await such a controlled trial. Because the formation of

antibodies that are cross-reactive with human tissues (and re-

sultant acute rheumatic fever or other poststreptococcal syn-

dromes) is the most significant potential adverse reaction to

this vaccine, subjects underwent careful clinical and laboratory

screening to detect these complications. No subject developed

echocardiographic or electrocardiographic abnormalities sug-

gestive of acute rheumatic fever. Serial urinalysis did not dem-

onstrate the development of significant proteinuria, hematuria,

or casts suggestive of glomerulonephritis. No subject mani-

fested any clinical evidence of a poststreptococcal syndrome,

and the development of antibodies cross-reactive with human

tissues was not observed in any subject.

The vaccine was highly immunogenic, eliciting a 4-fold ser-

oresponse to a median of 81.5% of antigenic peptides in in-

dividual subjects and statistically significant increases in anti-

body titer to every antigenic peptide on a population basis.

There is not yet an established level of M antibody that cor-

relates with protection against infection. However, on the basis

of recently published epidemiologic data, immunization with

this 26-valent M protein–based vaccine elicits seroresponse to

84.5% of isolates causing pharyngitis, 92.5% of isolates asso-

ciated with rheumatic fever, and 87.6% of invasive disease iso-

lates, including virtually 100% of strains associated with nec-

rotizing fasciitis in the United States [15, 16, 18, 19].

Results of this phase I study support the ongoing evaluation

of this recombinant, 26-valent M protein–based vaccine in hu-

man subjects. Although the vaccine appears to be well-tolerated,

without clinical or laboratory evidence of the development of

immunological complications, the study involved only 30 sub-

jects. Safety data should be extended to ensure that the vaccine

does not elicit tissue–cross-reactive antibodies that could lead

to the development of rheumatic fever or glomerulonephritis

before testing of this vaccine in children. Additional trials

should include a control group to allow better assessment of

injection site reactions. Phase II trials in adults are ongoing to

increase the amount of safety data available before initiating

trials in children.

On the basis of epidemiological data demonstrating that the

majority of cases of pharyngitis, necrotizing fasciitis, and other
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invasive streptococcal infections are caused by a limited number

of serotypes, we believe that this 26-valent vaccine could have

a significant impact on the overall burden of streptococcal dis-

ease. Ultimately, this vaccine may prove to be safe and effective

and could potentially be administered to preschool-aged chil-

dren to prevent the majority of cases of GAS pharyngitis and

its complications, as well as invasive, life-threatening disease.

If broadly implemented, the vaccine also has the potential to

significantly decrease the incidence of acute rheumatic fever,

the leading cause of heart disease worldwide.
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