1 Safety and Immunogenicity of an Inactivated Recombinant Newcastle Disease Virus Vaccine

2 Expressing SARS-CoV-2 Spike: Interim Results of a Randomised, Placebo-Controlled, Phase 1/2 Trial

3 Authors

4 Prof Punnee Pitisuttithum, MD¹, Viravarn Luvira, MD¹, Saranath Lawpoolsri, MD¹, Sant

- 5 Muangnoicharoen, MD¹, Supitcha Kamolratanakul, MD¹, Chaisith Sivakorn, MD¹, Piengthong Narakorn,
- 6 MS², Somchaiya Surichan, PhD², Sumalee Prangpratanporn, MS², Suttida Puksuriwong, PhD², Steven
- 7 Lamola, MD³, Laina D Mercer, PhD³, Rama Raghunandan, PhD³, Weina Sun, PhD⁴, Yonghong Liu, PhD⁴,
- 8 Juan Manuel Carreño. PhD⁴, Rami Scharf, DSc³, Weerapong Phumratanaprapin, MD¹, Fatima Amanat,
- 9 PhD⁴, Luc Gagnon, PhD⁹, Ching-Lin Hsieh, PhD¹⁰, Ruangchai Kaweepornpoj, MS², Sarwat Khan, MS⁹,
- 10 Manjari Lal, PhD³, Stephen McCroskery, MS⁴, Prof Jason McLellan, PhD¹⁰, Ignacio Mena, PhD^{4,5}, Marcia
- 11 Meseck, MS⁷, Benjaluck Phonrat, MS¹, Yupa Sabmee, MS¹, Ratsamikorn Singchareon, MS², Stefan
- 12 Slamanig, MS⁴, Nava Suthepakul, MS², Johnstone Tcheou, BS⁴, Narumon Thantamnu, BS¹, Sompone
- 13 Theerasurakarn, MS², Steven Tran, MS⁹, Thanakrit Vilasmongkolchai, MS², Jessica A White, PhD³, Prof
- 14 Adolfo Garcia-Sastre, PhD^{4,5,6,7}, Prof Peter Palese, PhD^{4,6}, Prof Florian Krammer, PhD^{4,8}, Kittisak
- 15 Poopipatpol, BS², Ponthip Wirachwong, PhD², Richard Hjorth, PhD³, Bruce L Innis, MD³

16 Author Affiliations:

- ¹⁷ ¹ Faculty of Tropical Medicine, Mahidol University, Faculty of Tropical Medicine, Mahidol University
- 18 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400. Thailand
- ² The Government Pharmaceutical Organization, 1 Thanon Rama VI, Thung Phaya Thai, Ratchathewi,
- 20 Bangkok 10400, Thailand
- ³ PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA

- ⁴ Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York,
- 23 NY 10029, USA
- ⁵ Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L.
- 25 Levy Pl, New York, NY 10029, USA
- ⁶ Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
- 27 10029, USA
- ⁷ The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
- 29 10029, USA
- ⁸ Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY
- 31 10029, USA
- ⁹ Nexelis, 525 Bd Cartier O, Laval, QC H7V 3S8, Canada
- ¹⁰ College of Natural Sciences, The University of Texas at Austin, 120 Inner Campus Dr Stop G2500,
- 34 Austin, TX 78712, USA
- 35 Correspondence to:
- Bruce L Innis, MD, PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA; binnis@path.org
- 37
- 38 ClinicalTrials gov Identifier: NCT04764422

39 Summary

40 Background

41 Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income

42 countries is needed. NDV-HXP-S is an inactivated egg-based Newcastle disease virus vaccine expressing

- 43 the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It's being developed
- 44 in Thailand, Vietnam, and Brazil; herein are initial results from Thailand.

45 Methods

46 This phase 1 stage of a randomised, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial

47 was conducted at the Vaccine Trial Centre, Mahidol University (Bangkok). Healthy adults aged 18-59

48 years, non-pregnant and negative for SARS-CoV-2 antibodies were eligible. Participants were block

49 randomised to receive one of six treatments by intramuscular injection twice, 28 days apart: 1

- 50 μg±CpG1018 (a toll-like receptor 9 agonist), 3 μg±CpG1018, 10 μg, or placebo. Participants and
- 51 personnel assessing outcomes were masked to treatment. The primary outcomes were solicited and

52 spontaneously reported adverse events (AEs) during 7 and 28 days after each vaccination, respectively.

53 Secondary outcomes were immunogenicity measures (anti-S lgG and pseudotyped virus neutralisation).

54 An interim analysis assessed safety at day 57 in treatment-exposed individuals and immunogenicity

through day 43 per protocol. ClinicalTrials.gov (NCT04764422).

56 Findings

Between March 20 and April 23, 2021, 377 individuals were screened and 210 were enrolled (35 per group); all received dose one; five missed dose two. The most common solicited AEs among vaccinees, all predominantly mild, were injection site pain (<63%), fatigue (<35%), headache (<32%), and myalgia (<32%). The proportion reporting a vaccine-related AE ranged from 5.7% to 17.1% among vaccine groups and was 2.9% in controls; there was no vaccine-related serious adverse event. The 10 µg formulation's immunogenicity ranked best, followed by 3 µg+CpG1018, 3 µg, 1 µg+CpG1018, and 1 µg</p>

- 63 formulations. On day 43, the geometric mean concentrations of 50% neutralising antibody ranged from
- 64 122·23 IU/mL (1 μg, 95% CI 86·40-172·91) to 474·35 IU/mL (10 μg, 95% CI 320·90-701·19), with 93·9% to
- 65 100% of vaccine groups attaining a \geq 4-fold increase over baseline.
- 66 Interpretation
- 67 NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 μg and 3 μg+CpG1018
- 68 formulations advanced to phase 2.
- 69 Funding
- 70 National Vaccine Institute (Thailand), National Research Council (Thailand), Bill & Melinda Gates
- 71 Foundation, National Institutes of Health (USA)
- 72
- 73 Word count = 353
- 74

75 Introduction

76 There remains a shocking imbalance in the global distribution of coronavirus disease 2019 (COVID-19) 77 vaccines.¹ To achieve control of the COVID-19 pandemic in low- and middle-income countries (LMICs) 78 where most of the global population resides, there must be a great increase in sustainable supply of 79 affordable vaccines. The manufacturing capacity for egg-based inactivated influenza vaccines (IIV) is 80 among the largest in the world; these facilities, some in middle-income countries and operating for less 81 than six months per year, use locally produced embryonated eggs to make more than a billion doses annually of affordable human vaccines.² To enable these manufacturers to respond to the COVID-19 82 83 pandemic, we developed a COVID-19 vaccine for production in eggs, based on a Newcastle disease virus 84 (NDV) expressing the ectodomain of a novel membrane-anchored, prefusion-stabilized severe acute 85 respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein construct, wherein virions are purified and inactivated (NDV-HXP-S).3-5 86 87 From September to November 2020, manufacturers in Thailand, Vietnam, and Brazil modified their IIV 88 manufacturing process to optimize production of beta-propiolactone (BPL)-inactivated NDV-HXP-S, 89 achieving high yields at pilot scale; the result was three similar processes. A preclinical evaluation of 90 their vaccine candidates, formulated with and without CpG1018, a toll-like receptor 9 agonist adjuvant 91 (Dynavax Technologies)⁶ confirmed that they were highly immunogenic and protective in hamsters⁵ with 92 no sign of toxicity in rats at the maximum human doses planned for evaluation (3 µg S protein+1.5 mg 93 CpG1018; 10 µg S protein). These results enabled all three manufacturers to initiate clinical

development of their vaccine candidates. Herein, we report interim safety and immunogenicity data
generated in the phase 1 portion of an adaptive phase 1/2 clinical trial evaluating the NDV-HXP-S
vaccine candidate developed by The Government Pharmaceutical Organization of Thailand (GPO). These
results provide the first evidence in humans that the NDV vector technology expressing a six-proline

- 98 prefusion-stabilized spike protein construct offers a unique platform for affordable manufacturing of a
- 99 well-tolerated and highly immunogenic COVID-19 vaccine.

100 Methods

101 Study design and participants

- 102 The phase 1 segment of a randomised, observer-blind, placebo-controlled, phase 1/2 trial was
- 103 conducted at the Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University (Bangkok,
- 104 Thailand). Participants were recruited from individuals known to the Centre and through
- advertisements. Healthy adults 18–59 years of age with body mass index 17 to 40 kg/m²,-negative
- 106 hepatitis B surface antigen and SARS-CoV-2, HIV, and hepatitis C antibody tests were eligible to
- 107 participate. A negative urinary pregnancy test was required of women having reproductive capacity
- 108 prior to administration of each study vaccine dose. Complete eligibility criteria are described in the trial
- 109 protocol provided in the supplementary materials.
- 110 Written informed consent was obtained from all participants. The trial complied with the Declaration of
- 111 Helsinki and Good Clinical Practice. This study was approved by the Ethics Committee of the Faculty of
- 112 Tropical Medicine, Mahidol University (TMEC 21-005) and authorized by the Thailand Food and Drug
- 113 Administration (FDA-21-018).

114 Randomisation and masking

Enrolled subjects were randomly assigned in sequence to one of 6 equal groups (vaccine containing 1 µg S ± 1·5mg CpG1018 adjuvant, 3 µg S ± 1·5mg CpG1018 adjuvant, 10 µg S, or saline placebo). Subjects were enrolled in stages, each including active treatment and placebo groups, using a computer-generated block randomisation sequence prepared by an independent statistician; an unblinded pharmacist team dispensed each treatment according to the randomization sequence. The first 18

subjects (sentinel cohort) were enrolled to three sequential sentinel groups; 3:1, 1 µg and placebo;
3:3:1, 3 µg or 1 µg+CpG1018 and placebo; and 3:3:1, 10 µg or 3 µg+CpG1018 and placebo, After safety
data were reviewed for the sentinel groups, the next 192 subjects were randomised in 5-dose-cohorts;
32:6, 1 µg and placebo; 32:6, 3 µg and placebo; 32:6, 1 µg+CpG1018 and placebo; 32:7, 10 µg and
placebo; and 32:7, 3 µg+CpG1018 and placebo. All participants and personnel other than the unmasked
pharmacy team and vaccinators were masked to treatment.

126 Procedures

127 The recombinant NDV-HXP-S vaccine was manufactured according to current Good Manufacturing 128 Practice by the GPO in their Influenza Vaccine Plant (Saraburi, Thailand) using locally procured 129 embryonated eggs inoculated with a master virus seed made and extensively tested for adventitious 130 agents by the Icahn School of Medicine at Mount Sinai (New York, USA). After incubation for 72 hours at 131 37°C, eggs were chilled overnight at 4°C, then the allantoic fluids were harvested, clarified, and 132 concentrated. Recombinant virus particles were purified from the concentrated harvest by two 133 sequential continuous flow sucrose gradient centrifugations, diafiltered against phosphate-buffered 134 saline (PBS), inactivated by treatment with 1:4000 BPL for 24 hours at 4°C, and 0.2 micron filter-135 sterilized. Vaccine potency was measured by direct enzyme-linked immunosorbent assay (ELISA) using a 136 human monoclonal antibody (CR3022⁷) to SARS-CoV-2 spike glycoprotein S1 (LakePharma Inc) and an NDV-HXP-S standard that had been calibrated to a purified HXP-S reference⁸ by sodium dodecyl sulphate 137 138 polyacrylamide gel electrophoresis (SDS-PAGE) densitometry.

Unmasked staff administered study treatments by intramuscular injection of 0.5 mL on study days 1 and
29. Blood samples were drawn and clinical assessments were done for safety and immunogenicity
endpoints before vaccination on days 1 (dose one), 8, 29 (dose two), 36, and 43; a clinical assessment
for safety only on day 57 was the last timepoint considered for this interim analysis of the phase 1

143 cohort, although there will be additional immunogenicity and safety assessments on study days 197 and 144 365. Subjects were observed in the clinic for 30 minutes after each vaccination and were asked to record 145 any adverse events using paper diary cards during the 7-days after each vaccination. Subjects randomly 146 allocated to a cell-mediated immunity subset (N=12 per 10 µg, 3 µg+CpG1018, and placebo groups) had 147 additional blood collected on days 1 and 43 for isolation of peripheral blood mononuclear cells (PBMCs); 148 these were stored in liquid nitrogen until analysed.

149 Solicited injection site reactions (pain, tenderness, swelling, induration, erythema) and systemic 150 symptoms (headache, fatigue, malaise, myalgia, arthralgia, nausea, vomiting, and fever defined as oral 151 temperature \geq 38°C) were recorded by subjects in a diary card that included intensity, then reported by 152 the investigators; these events were not assessed for causality. Subjects also recorded spontaneously 153 reported adverse events (AEs) for 28 days; the investigator reported these after grading them for 154 intensity and categorizing them as serious or not. The investigator also identified the following AEs of 155 special interest: potential immune-mediated medical conditions (PIMMCs), and AEs of special interest 156 associated with COVID-19. Intensity of AEs was graded 1-4 as follows: 1 or mild (minimal interference 157 with daily activities), 2 or moderate (interferes with but does not prevent daily activities), 3 or severe 158 (prevents daily activities, intervention required), and 4 or very severe (medical intervention required to 159 prevent disability or death). Investigators assessed unsolicited adverse events for causality (related to 160 vaccination or not). AEs were graded according to U.S. Department of Health and Human Services 161 severity grading tables (Food and Drug Administration, Center for Biologics Evaluation and Research 162 [September 2007] and National Institutes of Health, Division of AIDS [version 2.1, July 2017]). A protocol 163 safety review committee regularly reviewed blinded safety data; a Data Safety Monitoring Board 164 monitored unblinded safety data and recommended two formulations for advancing to phase 2.

165	We measured total anti-SARS-CoV-2 spike (S) IgG using a validated indirect ELISA at Nexelis (Laval,
166	Canada). Purified recombinant SARS-CoV-2 pre-fusion spike (Nexelis) at 1μ g/ml in phosphate buffered
167	saline (PBS, Wisent Bioproducts) was adsorbed to 96 well Nunc Maxisorb microplates (Thermo Fischer
168	Scientific) and blocked with 5% skim milk in PBS, containing 0.05% Tween 20. Serial dilutions of test
169	samples and the assay standard plus controls were added in the plates and incubated for 60 minutes at
170	room temperature (15-30°C). After washing, horseradish peroxidase (HRP) enzyme-conjugated goat
171	anti-human IgG-Fc (Jackson ImmunoResearch Laboratories) was added for 60 minutes at room
172	temperature (15-30°C), then washed. Bound secondary antibody was reacted with 3,3',5,5'-
173	tetramethylbenzidine (TMB) ELISA peroxidase substrate (Bio-Rad Laboratories) and incubated for 30
174	minutes at room temperature (15-30°C) before the reaction was stopped with 2N H_2SO_4 . Plates were
175	read at 450 nm with a correction at 620 nm to assess the level of anti-S IgG bound in the microtiter
176	plate. A reference standard on each plate determined the quantity of anti-S IgG in arbitrary units
177	(ELU/mL). Concentrations were transformed to binding antibody units per mL (BAU/mL), based on the
178	WHO International Standard for anti-SARS-CoV-2 immunoglobulin, ⁹ using a conversion factor
179	determined during assay validation (1/7·9815). The assay's cut-off and lower limit of quantitation (LLOQ)
180	was 6·3 BAU/mL.

181 We measured serum neutralising activity against the Wuhan strain of SARS-CoV-2 in a validated

182 pseudotyped virus neutralisation assay (PNA) that assessed particle entry-inhibition.¹⁰ Briefly,

183 pseudotyped virus particles containing a luciferase reporter for detection were made from a modified

vesicular stomatitis virus (VSVΔG) backbone expressing the full-length spike glycoprotein of SARS-CoV-2

185 (MN908947, Wuhan-Hu-1) from which the last 19 amino acids of the cytoplasmic tail were removed.¹¹

186 Seven two-fold serial dilutions of heat-inactivated serum samples were prepared in 96-well round-

187 bottom transfer plates (Corning). Pseudotyped virus was added to the serum dilutions at a target

188 working dilution and incubated at 37°C with 5% CO₂ for 60 ± 5 minutes. Serum-virus complexes were 189 then transferred onto 96 well white flat-bottom plates (Corning), previously seeded overnight with Vero 190 E6 cells (Nexelis) and incubated at 37° C and 5% CO₂ for 20 ± 2 hours. Following this incubation, luciferase substrate from ONE Glo[™] Ex luciferase assay system (Promega) was added to the cells. Plates 191 192 were then read on a SpectraMax® i3x plate reader (Molecular Devices) to quantify relative luminescence 193 units (RLU), inversely proportional to the level of neutralising antibodies present in the serum. The 194 neutralising titre of a serum sample was calculated as the reciprocal serum dilution corresponding to the 195 50% neutralisation antibody titre (NT_{50}) for that sample; the NT_{50} titres were transformed to 196 international units per mL (IU/mL), based on the WHO international standard for anti-SARS-CoV-2 197 immunoglobulin, using a conversion factor determined during assay validation (1/1,872). The assay's 198 cut-off and LLOQ were 5.3 IU/mL (10 as NT_{50}) and 5.9 IU/mL, respectively. To benchmark vaccine 199 immunogenicity assessed in BAU/mL and IU/mL, we used a panel of human convalescent serum samples 200 (HCS) collected 14 days after symptom onset from consecutive cases of mild to moderate COVID-19 201 illness among health care personnel seen as outpatients in Quebec, Canada during mid-2020. We also 202 calculated 80% neutralisation titres (NT₈₀); nevertheless, as the PNA was not validated for this 203 measurement, these results are not presented. We used the same PNA assay to measure NT_{50} (reported 204 as titres) against pseudotyped virus particles generated for SARS-CoV-2 variants of concern B.1.315¹² 205 and P.1¹³. In the absence of positive controls for the variant strains of SARS-CoV-2, we used control sera 206 for the Wuhan-Hu-1 strain.

To assess cellular immunity, we quantified interferon-γ (IFN-γ) and IL-5 producing cells in PBMCs
 stimulated with SARS-CoV-2 spike peptide pools (vial 1 158 overlapping peptides, vial 2 157 overlapping
 peptides; JPT Peptide) using a human IFN-γ/IL-5 double-colour ELISpot kit (Cellular Technologies) in a
 qualified assay. Briefly, activated 96-well plates were coated with anti-human IFN-γ/IL-5 capture

211	antibodies at 2-8°C. Following overnight (>16h) coating, plates were washed with PBS, and stimulation
212	media containing SARS-CoV-2 peptide pool 1 or peptide pool 2 or control media was added to wells,
213	followed by the addition of PBMCs at 2x10 ⁵ cells/well. After an approximately 44-hour incubation at
214	$37^{\circ}C\pm1^{\circ}C$ with 5% CO ₂ , plates were washed to remove cells from the wells. Anti-human IFN- γ /IL-5
215	detection solution (containing anti-human IFN-γ fluorescein isothiocyanate [FITC] and anti-human IL-5
216	[biotin] detection antibodies) was then added to the wells and incubated at room temperature (15-30°C)
217	for 2 h \pm 10min to detect IFN- γ and IL-5 cytokine captured on the bottom of the well. Plates were
218	washed, followed by the addition of a tertiary solution (containing FITC-HRP and streptavidin-alkaline
219	phosphatase). Following incubation with the tertiary solution, plates were washed, and blue and red
220	developer solutions were added in sequence (with washes in between), resulting in the appearance of
221	blue (for IL-5) and red (for IFN- γ) spot forming units (SFUs) in proportion to T cell activity. SFUs were
222	counted by an ImmunoSpot CTL Analyzer (using CTL ImmunoCapture Software (v7 \cdot 0 \cdot 14 \cdot 0) and CTL
223	ImmunoSpot Professional DC Analyzer (v7·0·28·2)). Readouts (one per peptide pool for IFN-γ, one per
224	peptide pool for IL-5) were expressed as number of SFU/10 ⁶ cells and combined as a ratio. The assay's
225	LLOQ for IFN- γ was 109 SFU/10 ⁶ cells and for IL-5 was 43 SFU/10 ⁶ cells.

226 Outcome

The primary outcomes were frequency and intensity of solicited injection site and systemic AEs during 7 days after vaccination; frequency, intensity, and relatedness of clinically significant haematological and biochemical measurements at 7 days after each vaccination; frequency, intensity, and relatedness of unsolicited AEs during 28 days after each vaccination; and occurrence of medically-attended AEs, serious AEs, and AEs of special interest during the interim analysis period of 57 days after-first vaccination. The secondary immunogenicity outcomes were anti-S IgG and NT₅₀ against Wuhan-1 strain SARS-CoV-2 pseudotyped virus assessed on days 29 and 43 and expressed as geometric mean titre (GMT) or

234	concentration (GMCs, BAU/mL for ELISA, or IU/mL for PNA), geometric mean fold rise (GMFR) from
235	baseline, and percentage of subjects with ≥4-fold increase and ≥10-fold increase from baseline. The
236	exploratory immunogenicity outcomes were cell-mediated immunity to SARS-CoV-2 S protein, measured
237	as the ratio of IFN- γ /IL-5 expressing cells on days 1 and 43 in a random subset of subjects receiving two
238	vaccine formulations (10 μg or 3 μg +CpG1018) or placebo. We also assessed NT_{50}GMTs and the
239	percentage of subjects with a NT ₅₀ titre \geq 4-fold higher than the LLOQ (1:10 titre), against vaccine-
240	heterologous SARS-CoV-2 pseudotyped virus (SARS-CoV-2 variants of concern B.1.351 and P.1) on day
241	43.

242 Statistical Analyses

243 This Phase 1/2 study (ClinicalTrial.gov NCT04764422) has a two-part selection design with group 244 elimination after the interim analysis. In the first part, 35 subjects per group were randomized across 5 245 candidate vaccine formulations and a placebo group for a total of 210 subjects. After the interim 246 analysis, two candidates were selected to advance, at which time 250 additional subjects are to be 247 randomized 2:2:1 to the two selected candidate groups and the placebo, respectively. The study was 248 designed to have greater than 90% power to identify the candidate with the highest response as measured by the NT₅₀ by ranked GMCs, assuming the true GMC is at least 1.5-fold larger than the 249 250 second highest candidate group and to provide a preliminary safety evaluation of the candidates. An 251 independent data monitoring committee provided safety oversight.

All statistical tests were two-sided with a significance level of 0.05. All statistical analyses were performed by an independent statistician using SAS version 9.4. All safety assessments took place in the treatment-exposed population, according to the treatment received. All subject-level percentages were supplemented with two-sided 95% confidence intervals computed via the Clopper-Pearson method. The analysis of immunogenicity was performed in the per protocol population, which excludes subjects with

257	protocol deviations that would affect the assessment. Immunogenicity data were descriptively analysed.
258	Geometric mean antibody responses were reported by treatment and time point, accompanied by 95%
259	CIs. The analysis of geometric means excluded subjects who were seropositive at baseline (defined by
260	anti-S IgG >LLOQ as measured by ELISA). Geometric mean fold rises (GMFR) were calculated relative to
261	baseline using the log difference of the paired samples, with corresponding CIs computed via the <i>t</i> -
262	distribution, utilizing the antilog transformation to present the ratio. The proportions of subjects with
263	GMFRs of NT ₅₀ \geq 4 and \geq 10 from baseline were summarized with 95% CIs. The analysis of
264	immunogenicity relative to baseline included baseline seropositive subjects.
265	Role of Funding Source
200	
266	The funders of the study had no role in data collection, data analysis, or writing of the statistical report.
267	GPO was the clinical trial sponsor and approved the study protocol. GPO employees contributed as
268	authors by preparing the investigational vaccine, interpreting data, and writing this report.
269	Results
270	Between March 22 and April 23, 2021, 210 healthy adults were enrolled and assigned to one of six
271	treatment groups as shown in Figure 1. All received a first dose of vaccine or placebo; two subjects were
272	excluded from receipt of a second dose (one became pregnant, one developed mild urticaria within 30
273	minutes after dose one); three other subjects missed the day 29 visit and got no second dose. The
274	baseline characteristics are shown by treatment group in table 1; the exposed population was 61%
275	
270	female, had a median age of 36 years (IQR 28, 43) and a median body mass index of 24.07 (IQR 21.30-
276	female, had a median age of 36 years (IQR 28, 43) and a median body mass index of 24.07 (IQR 21.30- 26.72).

278 Most solicited injection site and systemic reactogenicity during 7 days after each vaccination was mild

and transient with no apparent difference between dose 1 and 2. The most common injection site

280	symptoms (table 2) were pain and tenderness; these were most frequent at the highest dose. The most
281	common systemic symptoms (table 2) were fatigue, headache, and myalgia, generally in less than one-
282	third of subjects. Fever was uncommon. Adverse events occurring during 28 days after vaccination (table
283	3) and judged by the investigator to be treatment-related were infrequent (<15%) and there was no
284	treatment-related serious adverse event, nor any AE of special interest reported during the 57 day
285	assessment period. Haematology and serum chemistry laboratory readouts were assessed on day 8
286	following each vaccination; there was no clinically notable finding relative to baseline assessment. The
287	independent data monitoring committee expressed no safety concern.

288 Two doses of NDV-HXP-S were immunogenic in a formulation and dose dependent manner within the 289 per protocol population. Induction of anti-S IgG was modest following dose one but there was a marked 290 anamnestic response observed 14 days after vaccine dose two (figure 2A). Seronegative individuals in 291 the vaccine groups responded 28 days after first vaccination with GMCs of anti-S IgG between 7.79 (1 292 µg) and 20.93 (10 µg) BAU/mL, with a ≥4-fold increase in 34.3-71.4%. The second dose considerably 293 increased anti-S-IgG antibody responses after 14 days to GMCs between $151.78 (1 \mu g)$ and 479.83 (10294 μ g) BAU/mL. All individuals in every vaccine group had a \geq 4-fold increase over baseline after the second 295 dose; all individuals in the 10 μ g and 3 ug+CpG1018 groups had a \geq 10-fold increase, as did >90% of 296 vaccinees in the other three vaccine groups (figure 2C). Notably, the adjuvant effect of CpG was limited 297 after two vaccine doses (table 4): the 1 μ g group had a GMC of 151·78 BAU/mL (95% Cl 108·99-211·37) 298 while the 1 µg+CpG1018 group had a GMC of 199.08 BAU/mL (95% Cl 140.25-282.57). Among recipients 299 of the 3 µg dose, the GMC group difference appeared to be greater: 228.07 BAU/mL (no adjuvant, 95% 300 CI 154·22-337·27) in contrast to 356·83 BAU/mL (CpG1018, 95% CI (265·89-478·88). GMCs of anti-S IgG 301 among the vaccine groups on day 43 exceeded the GMC of the HCS panel (N=29, 72.93 95% CI 33.00-302 161.14) by 2-6-fold (table 4).

303 Functional antibody responses were assessed by PNA. Low NT₅₀ GMCs were detected in all vaccine 304 groups after the first vaccination (between 7.49 IU/mL and 12.82 IU/mL) with \geq 4-fold rises in 8.8% to 305 25.7% of the vaccine groups (figure 2B,2D). The second vaccine dose strongly boosted neutralisation 306 GMCs to between 122·23 IU/mL (1 µg, 95% CI 86·40-172·91) and 474·35 IU/mL (10 µg, 95% CI 320·90-307 701.19), with a \geq 4-fold increase over baseline in 93.9% to 100% of vaccine groups and a \geq 10-fold rise in 308 most individuals (100% in the 10 µg group, and between 79.4% and 93.9% in the remaining groups). The 309 differences in post-second dose GMCs between the unadjuvanted and adjuvanted 1 µg and 3 µg groups 310 were uncertain: 1 μg, 122·23 IU/mL (95% CI 86·40-172·91) versus 1 μg+CpG1018, 127·92 IU/mL (95% CI 311 85·08-192·34); 3 μg, 166·54 IU/m: (95% Cl 100·19-276·81) versus 3 μg+CpG1018 257·70 IU/mL (95% Cl 312 187.01-355.11).

Based on the vaccine-homologous binding and neutralising antibody responses, there was a clear ranking of immunogenicity with the 10 µg formulation performing best followed by the 3 µg+CpG1018, 3µg, 1µg+CpG1018 and 1µg formulations. The induction of humoral immunity was strong with postboost GMFRs relative to baseline of 48-fold (1µg) to 152-fold (10µg) for anti-S IgG and 46-fold (1µg) to 174-fold (10µg) for NT₅₀ antibodies (figure 3). GMCs of NT₅₀ by PNA among the vaccine groups on day 43 exceeded the GMC of the HCS panel (N=32, 36·30 95% CI 19·43-67·79) by 3-13-fold depending on the vaccine formulation (table 4).

Additionally, neutralisation of variant viruses was assessed by PNA on day 43. The proportion of subjects attaining a day 43 NT₅₀ titre \geq 40 increased with higher doses of antigen but the incremental changes in GMT were small. Reduction in neutralising potency, relative to anti-Wuhan neutralising potency, was modest for the P.1 variant (2·8 to 5·3-fold) but greater for the B·1·351 variant (7·41 to 20·43-fold) (figure 4, table 5). In groups receiving 3 µg or 10 µg antigen doses, the proportion attaining a NT₅₀ titre \geq 40 ranged from 80·0% to 94·9% against P.1 and from 43·3% to 58·5% against B.1.351 (table 5). Finally, we

also explored T cell responses to determine if the vaccine induced primarily a type 1 (T_{H1}) or type 2 (T_{H2})

327 T-helper cell response. In the small subset of subjects evaluated 14 days after a second dose, the IFN-

 $\gamma/IL-5$ ratio was strongly skewed to a T_H1 response relative to pre-vaccination baseline (figure 5),

329 suggesting the vaccine induced T cell memory capable of an antiviral response.

330 Discussion

331 Current production capacity cannot satisfy the global demand for COVID-19 vaccines¹ and vaccine 332 distribution is inequitable with most vaccines acquired and used by high income countries while LMICs 333 have limited access. Local production of COVID-19 vaccines in LMICs would increase global availability 334 and reduce dependence of countries producing these vaccines on international vaccine supply. Here we 335 demonstrated for the first time that an engineered inactivated NDV-based vaccine expressing a second-336 generation stabilized SARS-CoV-2 spike protein⁵, produced in eggs in an existing influenza virus 337 production facility at GPO in Thailand, shows an acceptable reactogenicity and safety profile in humans 338 and has immunogenicity that supports its potential clinical benefit. We evaluated a range of vaccine 339 doses (1 µg, 3 µg, 10 µg) having potency quantified as µg of virus envelope-anchored SARS-CoV-2 spike 340 protein; the low and medium antigen doses were evaluated in formulations with and without the TLR-9 341 agonist CpG1018 as a vaccine adjuvant. Over 28 days after each vaccine dose, all formulations were very 342 well-tolerated with little solicited injection site or systemic reactogenicity aside from mild injection site 343 pain and tenderness. There was no safety signal issuing from this early interim analysis of the clinical 344 trial. Moreover, the vaccine was strongly immunogenic in a formulation and dose dependent manner, 345 inducing levels of vaccine-homologous anti-S IgG and virus neutralising antibodies that exceeded by 346 several fold the levels measured in 14-day convalescent sera from consecutive cases of health care 347 workers with mild to moderate COVID-19 illness in 2020. Notably, the adjuvant benefit as measured by 348 enhanced induction of humoral immunity was uncertain, as the small sample size limited precision. On 349 the other hand, the vaccine at all dose levels elicited neutralising antibodies against two variants of

350	concern, B.1.351 and P.1. While neutralising antibody titres decreased modestly against P.1 and more
351	markedly against B.1.351, this was expected and in the range observed with sera from recipients of the
352	mRNA vaccines BNT162b2 and mRNA-1273. ¹⁴⁻¹⁷ The degree of reduction in neutralisation is dependent
353	on the assay used and can be especially dramatic with pseudotyped particle inhibition assays as used in
354	this study. ^{14,17} Notably, the B.1.351 variant is currently regarded as a worst case example of immune
355	evasion; accordingly, the NDV-HXP-S would be predicted to have neutralising activity against the now
356	prevalent delta (B.1.617.2) variant. The T cell response assessed showed a bias towards a $T_H 1$ response
357	in both evaluated dose groups, alleviating concerns about enhanced disease associated with a $T_{\rm H}2$
358	response (as observed with SARS-CoV-1 in some animal models ¹⁸). These initial data, while sparse,
359	suggest the vaccine-induced T cell memory capable of an antiviral response.
360	The study has several limitations. The sample size per treatment group was small, limiting precision, and
361	assessments were restricted to 43 days for immunogenicity and 57 days for reactogenicity and safety,
362	narrowing our perspective to acute outcomes only. These are inherent problems of phase 1 trials and
363	interim analyses in a pandemic response setting. Nevertheless, as clinical trials with similar vaccines are
364	underway in Vietnam (NCT04830800) and Brazil (NCT04993209), we determined that publication of
365	early data is a priority. The study had strengths as well. The vaccine construct is a novel platform
366	expressing a second-generation pre-fusion stabilized S protein in a membrane-bound trimeric
367	conformation. We hypothesize that these characteristics contribute to the vaccine's notable
368	immunogenicity, even without the CpG1018 adjuvant. The anti-S ELISA and PNA used to assess vaccine-
369	homologous NT_{50} potency were validated and results are expressed in International Units ⁹ for future
370	comparisons. The induction of anti-S binding and neutralising antibodies was contrasted with mean
371	levels in human convalescent serum and found to be superior, especially in the mid- and high-dose
372	groups. However, the neutralisation assay is not a live virus assay; therefore, it is presently uncertain
373	how our functional antibody readouts can be used to benchmark against live virus neutralising antibody

3/4 levels induced by authorized or licensed vaccines. Correlation between neutralising antibod

- vaccine efficacy and individual protection has recently been shown; work is ongoing to integrate these
- data into this analytic framework.¹⁹⁻²¹ On the other hand, mean vaccine anti-S IgG ELISA responses
- 377 normalized by the mean in convalescent sera as proposed by Earle and others¹⁹ suggest that the NDV-
- 378 HXP-S vaccine will afford important clinical benefit. Furthermore, we plan to conduct a clinical trial in
- 379 which the NDV-HXP-S vaccine will be contrasted to an authorized comparator vaccine to generate
- relative immunogenicity evidence that may be predictive of clinical benefit.
- 381 In summary, we show that the inactivated NDV-HXP-S vaccine candidate has an acceptable safety profile
- and is highly immunogenic. This vaccine can be produced at low cost in any facility designed for
- 383 production of inactivated influenza virus vaccine; such facilities are present in a number of LMICs.²
- 384 Based on these results, and acknowledging the imperative to maximize output of vaccine doses from the
- manufacturing facility, the 3 µg and 3 µg+CpG1018 formulations were selected for further assessment in
- the phase 2 stage of the ongoing clinical trial.
- 387 Word count 4,361

389 Contributors

- 390 PPit and SLaw verified the underlying data reported herein. All authors had full access to all the data in
- 391 the study. Individual author roles are reported using CRediT: Conceptualisation, PPit, SLam, LDM, RSch,
- AGS, PPal, FK, KP, PW, and BLI; Data curation, PPit and SLaw; Formal analysis, Slaw, LDM, JMC, and JT;
- 393 Funding acquisition, PN, SSur, RR, NS, AGS, PPal, FK, KP, PW, and BLI; Investigation, PPit, VL, SM, SKam,
- 394 CS, WS, YL, WP, FA, LG, SKha, SM, IM, BP, SSla, and STra; Methodology, PPit, VL, SM, PN, SSur, SPra,
- 395 SPuk, SLam, LDM, RR, WS, YL, FA, LG, RK, SKha, ML, IM, BP, RSin, NS, SThe, STra, TV, JAW, FK, and RH,
- Project administration, PPit, PN, SSur, RSch, YS, NS, NT, TV, and PW; Resources, PPit, SPra, SPuk, WS,
- 397 CLH, ML, JSM, RSin, SThe, JAW, AGS, PPal, FK, and RH; Supervision, PPit, SPra, RR, RSch, LG, RK, ML, JAW,
- AGS, PPal, FK, KP, PW, and BLI; Validation, SLaw, SPra, SPuk, LG, RK, SKha, RSin, SThe, and STra;
- 399 Visualisation, LDM, JMC, JT, and BLI; Writing–original draft, LDM, RR, FK, and BLI; Writing–review &
- 400 editing, PPit, VL, SLaw, SM, SKam, CS, SSur, SPuk, SLam, WS, JMC, RSch, FA, LG, CLH, RK, SKha, ML, JSM,
- 401 IM, JT, STra, JAW, PW, and RH.

402 Declaration of Interest

403 PN, SSur, SPra, SPuk, RK, RSin, NS, SThe, TV, KP, and PW are salaried employees of the Government

404 Pharmaceutical Organization. The vaccine administered in this study was developed by faculty members

- 405 at the Icahn School of Medicine at Mount Sinai including FK, AGS, PP, and WS. Mount Sinai is seeking to
- 406 commercialize this vaccine; therefore, the institution and its faculty inventors could benefit financially.
- 407 JSM and CLH are inventors on U.S. patent applications concerning the stabilized SARS-CoV-2 S construct.

408 Data sharing

409 Under review, to be decided by the sponsor prior to publication.

411 Acknowledgements

412 Activities at PATH and Mount Sinai were supported, in part, by the Bill & Melinda Gates Foundation 413 [INV-021239]. Under the grant conditions of the Foundation, a Creative Commons Attribution 4.0 414 Generic License has already been assigned to the Author Accepted Manuscript version that might arise 415 from this submission. The findings and conclusions contained within this manuscript are those of the 416 authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation. The 417 salary of PP was partially funded by NIH (Centers of Excellence for influenza Research and Response, 418 CEIRR,75N93021C00014), NIAID grant (P01 Al097092-07), NIAID grant (R01 Al145870-03), by the NIH 419 Collaborative Influenza Vaccine Innovation Centers (CIVICs) contract 75N93019C00051 and a grant from 420 an anonymous philanthropist to Mount Sinai. Design and generation of reagents used in this project in 421 the Krammer laboratory were supported by CEIRR (75N93021C00014) and CIVIC (75N93019C00051). 422 Research and development activities in Thailand were funded by the Government Pharmaceutical 423 Organization Thailand), the National Vaccine Institute (Thailand), and the National Research Council 424 (Thailand). Testing of clinical trial specimens at Nexelis was supported by the Global Health Vaccine 425 Accelerator Platform of the Bill & Melinda Gates Foundation. The authors thank Dr. Randy Albrecht for 426 management of import/export of Newcastle disease virus vectors at the Icahn School of Medicine at 427 Mount Sinai. We are grateful to Dr. Nina Bardwaj for programmatic and scientific oversight of the Virus 428 and Cell Therapy Laboratory at the Icahn School of Medicine at Mount Sinai, which produced the NDV-429 HXP-S master virus seed.

430

431 References

432 1. (WHO) WHO. https://www.who.int/director-general/speeches/detail/director-general-s 433 opening-remarks-at-the-media-briefing-on-covid-19-9-april-2021. 2021.

434 2. Sparrow E, Wood JG, Chadwick C, et al. Global production capacity of seasonal and pandemic
435 influenza vaccines in 2019. *Vaccine* 2021; **39**(3): 512-20.

436 3. Sun W, McCroskery S, Liu WC, et al. A Newcastle Disease Virus (NDV) Expressing a Membrane437 Anchored Spike as a Cost-Effective Inactivated SARS-CoV-2 Vaccine. *Vaccines (Basel)* 2020; 8(4).

438 4. Hsieh CL, Goldsmith JA, Schaub JM, et al. Structure-based design of prefusion-stabilized SARS-439 CoV-2 spikes. *Science* 2020; **369**(6510): 1501-5.

5. Sun W, Liu Y, Amanat F, et al. A Newcastle disease virus-vector expressing a prefusion-stabilized spike protein of SARS-CoV-2 induces protective immune responses against prototype virus and variants of concern in mice and hamsters. *bioRxiv* 2021: 2021.07.06.451301.

443 6. Campbell JD. Development of the CpG Adjuvant 1018: A Case Study. *Methods Mol Biol* 2017;
444 **1494**: 15-27.

ter Meulen J, van den Brink EN, Poon LL, et al. Human monoclonal antibody combination against
SARS coronavirus: synergy and coverage of escape mutants. *PLoS Med* 2006; **3**(7): e237.

447 8. Hsieh CL, Goldsmith JA, Schaub JM, et al. Structure-based design of prefusion-stabilized SARS-448 CoV-2 spikes. *Science* 2020.

449 9. Kristiansen PA, Page M, Bernasconi V, et al. WHO International Standard for anti-SARS-CoV-2
450 immunoglobulin. *Lancet* 2021; **397**(10282): 1347-8.

451 10. Bewley KR, Coombes NS, Gagnon L, et al. Quantification of SARS-CoV-2 . neutralising antibody by
452 wild-type plaque reduction neutralisation, microneutralisation and pseudotyped virus neutralisation
453 assays. *Nat Protoc* 2021; **16**(6): 3114-40.

Havranek KE, Jimenez AR, Acciani MD, et al. SARS-CoV-2 Spike Alterations Enhance
Pseudoparticle Titers and Replication-Competent VSV-SARS-CoV-2 Virus. *Viruses* 2020; **12**(12).

Tegally H, Wilkinson E, Giovanetti M, et al. Detection of a SARS-CoV-2 variant of concern in
South Africa. *Nature* 2021; **592**(7854): 438-43.

Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P.1 SARS-CoV-2
lineage in Manaus, Brazil. *Science* 2021; **372**(6544): 815-21.

460 14. Garcia-Beltran WF, Lam EC, St Denis K, et al. Multiple SARS-CoV-2 variants escape neutralisation
461 by vaccine-induced humoral immunity. *Cell* 2021; **184**(9): 2523.

462 15. Carreño JM, Alshammary H, Singh G, et al. Reduced . neutralising activity of post-SARS-CoV-2
463 vaccination serum against variants B.1.617.2, B.1.351, B.1.1.7+E484K and a sub-variant of C.37. *medRxiv*464 2021: 2021.07.21.21260961.

46516.Edara VV, Norwood C, Floyd K, et al. Infection- and vaccine-induced antibody binding and466neutralisation of the B.1.351 SARS-CoV-2 variant. *Cell Host Microbe* 2021; **29**(4): 516-21.e3.

467 17. Shen X, Tang H, Pajon R, et al. Neutralisation of SARS-CoV-2 Variants B.1.429 and B.1.351. *N Engl* 468 *J Med* 2021; **384**(24): 2352-4.

469 18. Krammer F. SARS-CoV-2 vaccines in development. *Nature* 2020; **586**(7830): 516-27.

470 19. Earle KA, Ambrosino DM, Fiore-Gartland A, et al. Evidence for antibody as a protective correlate
471 for COVID-19 vaccines. *Vaccine* 2021.

- 472 20. Khoury DS, Cromer D, Reynaldi A, et al. . neutralising antibody levels are highly predictive of 473 immune protection from symptomatic SARS-CoV-2 infection. *Nat Med* 2021.
- 474 21. Gilbert PB, Montefiori DC, McDermott A, et al. Immune Correlates Analysis of the mRNA-1273
- 475 COVID-19 Vaccine Efficacy Trial. *medRxiv* 2021: 2021.08.09.21261290.

477 Table 1. Baseline characteristics of the exposed population

	1 µg S	1 µg S+CpG	3 µg S	3 µg S+CpG	10 µg S	Placebo
	(N = 35)					
Age, years	33.0 (26.0-	39.0 (32.0-	37.0 (29.0-	34.0 (25.0-	37.0 (31.0-	32.0 (27.0-
	39·0)	45·0)	49.0)	44.0)	42.0)	42.0)
Sex						
Male	14 (40·0%)	14 (40.0%)	7 (20.0%)	15 (42·9%)	18 (51·4%)	14 (40·0%)
Female	21 (60·0%)	21 (60·0%)	28 (80.0%)	20 (57·1%)	17 (48.6%)	21 (60·0%)
Ethnicity						
Asian	35 (100%)	35 (100%)	35 (100%)	35 (100%)	35 (100%)	35 (100%)
Body mass	24.59 (20.76-	24.85 (21.42-	23.95 (21.23-	23.95 (21.70-	24.52 (21.26-	23.12 (21.72-
index	27.85)	26.33)	27.96)	25·92)	27.68)	27·22)

478 Data are median (q1-q3) or n (%)

480 Table 2. Solicited AEs during 7 days after vaccination

		1 µg S	1 µg S+CpG	3 µg S	3 µg S+CpG	10 µg S	Placebo
		(N = 35)					
		n (%)					
		(95% CI)					
Any injection	Dose 1	8 (22.9%)	13 (37·1%)	14 (40.0%)	20 (57·1%)	23 (65.7%)	4 (11·4%)
site AE		(10·4-40·1)	(21·5-55·1)	(23·9-57·9)	(39·4-73·7)	(47.8-80.9)	(3·2-26·7%)
	Dose 2	10 (28.6%)	14 (42·4%)	16 (47·1%)	20 (58.8%)	24 (68.6%)	10 (29·4%)
		(14·6-46·3)	(25·5-60·8)	(29·8-64·9)	(40·7-75·4)	(50.7-83.1)	(15·1-47·5)
Pain	Dose 1	2 (5.7%)	8 (22.9%)	10 (28.6%)	16 (45.7%)	16 (45·7%)	3 (8.6%)
		(0.7-19.2)	(10·4-40·1)	(14·6-46·3)	(28.8-63.4)	(28.8-63.4)	(1.8-23.1)
	Dose 2	10 (28.6%)	10 (28.6%)	15 (42·9%)	17 (48.6%)	22 (62·9%)	8 (22.9%)
		(14.6-46.3)	(14·6-46·3)	(26·3-60·6)	(31·4-66·0)	(44·9-78·5)	(10·4-40·1)
Tenderness	Dose 1	6 (17·1%)	4 (11·4%)	4 (11·4%)	4 (11·4%)	7 (20.0%)	1 (2.9%)
		(6·6-33·6)	(3·2-26·7)	(3·2-26·7)	(3·2-26·7)	(8·4-36·9)	(0·1-14·9)
	Dose 2	0 (0.0%)	4 (11·4%)	1 (2·9%)	3 (8.6%)	2 (5·7%)	2 (5·7%)
		(0.0-10.0)	(3·2-26·7)	(0.1-14.9)	(1.8-23.1)	(0.7-19.2)	(0.7-19.2)
Swelling	Dose 1	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
		(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)
	Dose 2*	masked	masked	masked	masked	masked	masked
Induration	Dose 1	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
		(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)
	Dose 2	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
		(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)
Erythema	Dose 1	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
		(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)
	Dose 2	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)

		(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)	(0.0-10.0)
Any systemic	Dose 1	12 (34·3%)	8 (22.9%)	19 (54·3%)	14 (4·.0%)	17 (48.6%)	7 (20.0%)
AE		(19·1-52·2)	(10·4-40·1)	(36·6-71·2)	(23·9-57·9)	(31·4-66·0)	(8·4-36·9)
	Dose 2	9 (25.7%)	11 (33·3%)	9 (26.5%)	17 (50.0%)	15 (42·9%)	4 (11·8%)
		(12·5-43·3)	(18·0-51·8)	(12·9-44·4)	(32·4-67·6)	(26·3-60·6)	(3·3-2·.5)
Fever >38°C	Dose 1	0 (0.0%)	0 (0.0%)	1 (2·9%)	0 (0.0%)	3 (8.6%)	0 (0.0%)
		(0.0-10.0)	(0.0-10.0)	(0·1-14·9)	(0.0-10.0)	(1.8-23.1)	(0.0-10.0)
	Dose 2	0 (0.0%)	0 (0.0%)	1 (2·9%)	2 (5·7%)	2 (5.7%)	0 (0.0%)
		(0.0-10.0)	(0.0-10.0)	(0·1-14·9)	(0.7-19.2)	(0.7-19.2)	(0.0-10.0)
Headache	Dose 1	5 (14·3%)	5 (14·3%)	9 (25·7%)	6 (17·1%)	11 (31·4%)	1 (2·9%)
		(4·8-30·3)	(4·8-30·3)	(12·5-43·3)	(6·6-33·6)	(16·9-49·3)	(0·1-14·9)
	Dose 2	4 (11·4%)	5 (14·3%)	6 (17·1%)	8 (22.9%)	4 (11·4%)	1 (2·9%)
		(3·2-26·7)	(4·8-30·3)	(6·6-33·6)	(10·4-40·1)	(3·2-26·7)	(0·1-14·9)
Fatigue	Dose 1	8 (22.9%)	4 (11·4%)	12 (34·3%)	6 (17·1%)	6 (17·1%)	7 (20.0%)
		(10·4-40·1)	(3·2-26·7)	(19·1-52·2)	(6·6-33·6)	(6·6-33·6)	(8·4-36·9)
	Dose 2	3 (8.6%)	6 (17·1%)	7 (20.0%)	8 (22.9%)	7 (20.0%)	4 (11·4%)
		(1.8-23.1)	(6·6-33·6)	(8·4-36·9)	(10·4-40·1)	(8·4-36·9)	(3·2-26·7)
Malaise	Dose 1	1 (2.9%)	1 (2·9%)	1 (2.9%)	3 (8.6%)	4 (11·4%)	0 (0.0%)
		(0·1-14·9)	(0·1-14·9)	(0·1-14·9)	(1.8-23.1)	(3·2-26·7)	(0.0-10.0)
	Dose 2	1 (2.9%)	1 (2·9%)	1 (2.9%)	4 (11·4%)	4 (11·4%)	0 (0.0%)
		(0.1-14.9)	(0·1-14·9)	(0·1-14·9)	(3·2-26·7)	(3·2-26·7)	(0.0-10.0)
Myalgia	Dose 1	4 (11·4%)	4 (11·4%)	8 (22.9%)	6 (17·1%)	9 (25.7%)	1 (2·9%)
		(3·2-26·7)	(3·2-26·7)	(10·4-40·1)	(6·6-33·6)	(12·5-43·3)	(0·1-14·9)
	Dose 2	6 (17·1%)	2 (5.7%)	4 (11·4%)	11 (31·4%)	11 (31·4%)	1 (2·9%)
		(6.6-33.6)	(0.7-19.2)	(3·2-26·7)	(16·9-49·3)	(16·9-49·3)	(0·1-14·9)
Arthralgia	Dose 1	2 (5.7%)	1 (2·9%)	5 (14·3%)	0 (0.0%)	3 (8.6%)	0 (0.0%)
		(0.7-19.2)	(0.1-14.9)	(4·8-30·3)	(0.0-10.0)	(1.8-23.1)	(0.0-10.0)

	Dose 2	2 (5·7%)	1 (2·9%)	2 (5·7%)	4 (11·4%)	4 (11·4%)	0 (0.0%)
		(0·7-19·2)	(0·1-14·9)	(0·7-19·2)	(3·2-26·7)	(3·2-26·7)	(0·0-10·0)
Nausea	Dose 1	2 (5·7%)	1 (2·9%)	3 (8.6%)	1 (2·9%)	1 (2·9%)	0 (0.0%)
		(0·7-19·2)	(0·1-14·9)	(1·8-23·1)	(0·1-14·9)	(0·1-14·9)	(0·0-10·0)
	Dose 2	3 (8.6%)	1 (2·9%)	1 (2·9%)	2 (5·7%)	0 (0.0%)	0 (0.0%)
		(1·8-23·1)	(0·1-14·9)	(0·1-14·9)	(0·7-19·2)	(0·0-10·0)	(0·0-10·0)
Vomiting	Dose 1	1 (2·9%)	0 (0.0%)	0 (0.0%)	1 (2·9%)	1 (2·9%)	0 (0.0%)
		(0·1-14·9)	(0·0-10·0)	(0·0-10·0)	(0·1-14·9)	(0·1-14·9)	(0·0-10·0)
	Dose 2**	masked	masked	masked	masked	masked	masked

481 * Swelling after dose 2 was reported by 1 subject only who remains masked d (0.5%, 95% CI 0.0-2.6)

482 **Vomiting after dose 2 was reported by 1 subject only who remains masked (0.5%, 95% CI 0.0-2.6)

484 Table 3 AEs with onset during 28 days after vaccination

		1 µg S	1 µg S+CpG	3 µg S	3 µg S+CpG	10 µg S	Placebo
		(N = 35)	(N = 35)	(N = 35)	(N = 35)	(N = 35)	(N = 35)
		n (%)	n (%)	n (%)	n (%)	n (%)	n (%)
		(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)
Any	Dose 1	8 (22·9%)	7 (20.0%)	15 (42·9%)	13 (37·1%)	9 (25·7%)	6 (17·1%)
		(10·4-40·1)	(8·4-36·9)	(26·3-60·6)	(21·5-55·1)	(12·5-43·3)	(6·6-33·6)
	Dose 2	7 (20.0%)	3 (8.6%)	11 (31·4%)	10 (28.6%)	6 (17·1%)	9 (25·7%)
		(8·4-36·9)	(1·8-23·1)	(16·9-49·3)	(14·6-46·3)	(6·6-33·6)	(12·5-43·3)
Vaccine-	Dose 1	2 (5·7%)	3 (8.6%)	3 (8.6%)	5 (14·3%)	3 (8.6%)	0 (0.0%)
related		(0·7-19·2)	(1·8-23·1)	(1·8-23·1)	(4·8-30·3)	(1·8-23·1)	(0·0-10·0)
	Dose 2	0 (0.0%)	1 (2·9%)	2 (5·7%)	2 (5·7%)	2 (5·7%)	1 (2·9%)
		(0·0-10·0)	(0·1-14·9)	(0·7-19·2)	(0·7-19·2)	(0·7-19·2)	(0·1-14·9)
Serious	Dose 1*	masked	masked	masked	masked	masked	masked
	Dose 2	0 (0.0%)	0 (0.0%)	1 (2·9%)	0 (0.0%)	1 (2·9%)	1 (2·9%)
		(0·0-10·0)	(0·0-10·0)	(0·1-14·9)	(0·0-10·0)	(0·1-14·9)	(0·1-14·9)
Serious	Dose 1	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
vaccine-		(0·0-10·0)	(0.0-10.0)	(0·0-10·0)	(0.0-10.0)	(0·0-10·0)	(0.0-10.0)
related							
	Dose 1	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
		(0·0-10·0)	(0.0-10.0)	(0·0-10·0)	(0.0-10.0)	(0·0-10·0)	(0.0-10.0)

485 * Serious AE was reported by one subject only who remains masked (0.5%, 95% CI 0.0-2.6)

487 Table 4. GMCs of anti-S IgG (BAU/mL) and NT₅₀ by PNA (IU/mL) on day 43 and GMC ratios, vaccine to

488 HCS panel

		1 µg S	1 µg S+CpG	3 µg S	3 µg S+CpG	10 µg S
Anti-S IgG BAU/mL,	GMC	151.78	199.08	228.07	356.83	479·83
	95% CI	(108·99-	(140·25-	(154·22-	(265.89-	(360.19-
		211·37)	282·57)	337·27)	478·88)	639·20)
	GMC ratio,	2.08	2.73	3.13	4.89	6.28
	vaccine to					
	HCS panel					
	95% CI	(0.89-4.87)	(1.16-6.43)	(1.31-7·48)	(2·12-11·31)	(2·85-15·18)
NT50 by PNA	GMC	122.23	127.92	166.54	257.70	474·35
	95% CI	(86·40-	(85.08-	(100.19-	(187·01-	(320.90-
		172·91)	192·34)	276·81)	355·11)	701·19)
	GMC ratio,	3.37	3.52	4.59	7.10	13·07
	vaccine to					
	HCS panel					
	95% CI	(1.67-6.81)	(1.69-7.34)	(2.08-10.10)	(3·55-14·20)	(6·33-26·99)

489

- 491 Table 5. GMT and percentage of subjects with a \geq 4-fold rise from baseline (day 43) for NT₅₀ by PNA
- 492 against Wuhan strain and variants of concern

		1 µg S	1 µg S+CpG	3 µg S	3 µg S+CpG	10 µg S	Placebo
Wuhan	GMT	n = 32	n = 31	n = 30	n = 33	n = 34	n = 33
		228·81	239.47	311·76	482·42	887.99	5.89
		(161·74-	(159·27-	(187·56-	(350.08-	(600.72-	(4.64-7.48)
		323.69)	360.06)	518·18)	664·77)	1,312·62)	
	≥4-fold rise	N = 34	N = 33	N = 33	N = 33	N = 35	N = 34
		34 (100%)	31 (93·9%)	32 (97.0%)	33 (100%)	35 (100%)	2 (5·9%)
		(89·7-100)	(79·8-99·3)	(84·2-99·9)	(89·4-100)	(90.0-100)	(0.7-19.7)
P·1	GMT	n = 31	n = 31	n = 30	n = 33	n = 34	n = 33
		45·33	74.06	111.28	150.59	167·14	5.57
		(32.18-	(48.99-	(72.06-	(111·15-	(120.63-	(4·47-6·94)
		63·85)	111·97)	171·83)	204.03)	231.58)	
	≥4-fold rise	N = 31	N = 31	N = 30	N = 33	N = 34	N = 33
		15 (48·4%)	29 (74·2%)	24 (80.0%)	29 (87·9%)	(32 (94.9%)	1 (3·0%)
		(30·2 –	(55/4 – 88·1)	(61·4 –	(71.8 – 96.6)	(80.3 – 99.3)	(0·1 – 5·8)
		66·9)		92·3)			
B·1·351	GMT	n = 32	n = 30	n = 30	n = 33	n = 34	n = 33
		21.00	32.34	37.43	40·07	43·47	6·12
		(15·12-	(22·13-47·24)	(24.77-	(28.09-57.17)	(31.55-59.89)	(4·90-7·64)
		29·18)		56·56)			
	≥4-fold rise	N = 32	N = 40	N = 30	N = 33	N = 34	N = 33
		5 (15·6%)	15 (50·0%)	(13	16 (48·5%)	20 (58.8%)	1 (3·0%)
		(5·3 –	(31·3 -68·7)	(43·3%)	(30.8 – 66.5)	(40.7 – 75.4)	(0·1 – 15·8)
		32·8)		(30.8 –			
				66·5)			

494 Figure 1. Trial profile

- 495 Figure 2. Distribution and GMC of anti-S IgG (BAU/mL) in placebo, vaccine groups and HCS controls (A),
- distribution and GMC of NT₅₀ by PNA (IU/mL) in placebo, vaccine groups, and HCS controls (B),
- 497 percentage of subjects with \geq 4-10-fold increase in anti-S IgG (C), and percentage of subjects with \geq 4-10-
- 498 fold increase in NT₅₀ by PNA (D); numbers above data denote number of per-protocol subjects

499 contributing data

- 500 Figure 3. Distribution and GMFR of fold rise in anti-S IgG from baseline (A), distribution and GMFR of fold
- rise in NT₅₀ by PNA from baseline (B); numbers above data denote number of per-protocol subjects
- 502 contributing data
- 503 Figure 4. Distribution and GMT of NT₅₀ by PNA against variants of concern (day 43); numbers above data
- 504 denote number of per-protocol subjects contributing data
- 505 Figure 5. Box plot of IFN-γ /IL-5 ratios (ELISpot 2-colour assay); numbers above data denote number of
- 506 per-protocol subjects contributing data

- 508
- 509
- 510
- 511
- 512
- 513

514 Figure 1

В

Figure 3

Figure 4

Figure 5

520