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ABSTRACT The objective of this research is to present the state of the art of the safety assurance of Artificial
Intelligence (AI)-based systems and guidelines on future correlated work. For this purpose, a Systematic
Literature Review comprising 5090 peer-reviewed references relating safety to AI has been carried out, with
focus on a 329-reference subset in which the safety assurance of AI-based systems is directly conveyed.
From 2016 onwards, the safety assurance of AI-based systems has experienced significant effervescence
and leaned towards five main approaches: performing black-box testing, using safety envelopes, designing
fail-safe AI, combining white-box analyses with explainable AI, and establishing a safety assurance process
throughout systems’ lifecycles. Each of these approaches has been discussed in this paper, along with their
features, pros and cons. Finally, guidelines for future research topics have also been presented. They result
from an analysis based on both the cross-fertilization among the reviewed references and the authors’
experience with safety and AI. Among 15 research themes, these guidelines reinforce the need for deepening
guidelines for the safety assurance of AI-based systems by, e.g., analyzing datasets from a safety perspective,
designing explainable AI, setting and justifying AI hyperparameters, and assuring the safety of hardware-
implemented AI-based systems.

INDEX TERMS Artificial intelligence, formal verification, learning systems, machine learning, neural
networks, product safety engineering, risk analysis, safety.

I. INTRODUCTION
With the Fourth Industrial Revolution (i.e., Industry 4.0), the
conception and practical usage of Intelligent Cyber-Physical
Systems (ICPS) relying on Artificial Intelligence (AI) to per-
form safety-critical functions is likely to increase in the fol-
lowing years, leveraged especially by the vigorous ongoing
research on the matter for autonomous ground vehicles [1],
[2] which represent a major paradigm shift from current
transportation applications [3].
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ICPSs are highly likely to be introduced even in appli-
cation areas with strict safety-related requirements and
which have been historically refractory to significant design
paradigm shifts, such as the aeronautics and railway domains.
A roadmap of future objectives published by the European
Union Aviation Safety Agency (EASA) in 2020, for instance,
aims that the first safety-critical AI-based systems shall be
certified up to 2025 and that such safety certification shall be
extended to fully autonomous systems up to 2035 [4]. In the
railway domain, the European Union Agency for Railways
(ERA) executive director claims that AI-based safety-critical
systems are necessary in the forthcoming years to keep
rail transportation means competitive against other means
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of transportation and foresees major architecture changes
on future generation AI-based systems, which may be fully
distributed aboard trains instead of featuring centralized ele-
ments as in current Communication-Based Train Control
(CBTC) systems [5].

Based on this context, the safety assurance of AI-based
systems is deemed of paramount importance to allow the
successful deployment of these systems in their respective
applications [6]. Safety assurance is herein defined as the
set of activities, means, and methods that shall be con-
sidered, throughout the lifecycle of a system, to produce
results towards building arguments that confidently support
the safety requirements / targets of such a system have been
met. This concept extends the definitions of ‘safety assur-
ance’ coined by McDermid et al. [7] and Habli et al. [8]
with the ‘safety management’ concept of several standards
of the safety métier, such as IEC61508:2010, DO-254:2000,
CENELEC EN50126-1:2017, and CENELEC EN50129:
2018, related to the process of building and maintaining
safety arguments throughout the lifecycle of a system [9],
[10], [11], [12]. The original definition of ‘safety assur-
ance’ presented by McDermid et al. is ‘‘(. . . ) justified con-
fidence or certainty in a system’s capabilities, including its
safety’’, whereas Habli et al. [8], state that ‘‘safety assurance
is concerned with demonstrating confidence in a system’s
safety’’.

The first step towards improving the safety assurance of
AI-based systems is establishing the state of the art of sci-
entific and technical advance in the theme and identifying
potential gaps for future research. Even though reviews with
similar motivation which have been identified, they are not
deemed able to fully characterize such a theme due to the
following reasons, further detailed and justified within this
paper’s section II:

a) Given the significant effervescence of research on
means, methods and tools to support the design, ver-
ify, and validate safety-critical AI from 2018 onwards,
there is an increasing need to keep track of these
updates and report them in a didactic yet detailed way
to the research community. Hence, even rather recent
literature reviews, published in the last couple of years,
are potentially unable to fully capture the current land-
scape towards assuring the safety of AI-based systems;

b) There are literature reviews focused on exploring the
safety assurance of AI-based systems in specific appli-
cation domains only (e.g., autonomous vehicles). As a
result, it is deemed that they are potentially restrained in
reporting relevant general-purpose research for safety-
critical AI-based systems as a whole;

c) Guidance for future research on the safety assurance
of AI-based systems has not been detected on some
literature reviews. As a result, one might not be able
to easily identify themes that might still be of interest
for the research community;

d) Finally, there are reviews which lack proper method-
ological systematization or whose authors themselves

suggest that additional investigation of the literature
shall be carried out in the future.

Hence, this research has been idealized to fill the
aforementioned gaps of preexisting literature reviews on
the theme. Hence, the objectives of this paper are to
(i.) present the state of the art the safety assurance of AI-
based systems, including methods and techniques to do
so, and (ii.) identify the main challenges needing further
research – notably towards a general-purpose, application-
independent method with guidelines for the safety assur-
ance of AI-based systems. For that purpose, a Systematic
Literature Review (SLR) of peer-reviewed material formally
published up to August 26th, 2022 has been carried out
along with critical cross-fertilization among the reviewed
research to draw more extensive conclusions on both
objectives.

The remainder of the paper is structured in six sections.
Section II aims to justify the contribution of this research,
notably comparing and contrasting it with other SLR-based
papers. The SLR itself is covered in sections III to VI. The
SLR method is presented in section IV, whereas the SLR
results themselves are split into three parts: bibliometrics
analyses are discussed in section V, the state of the art on
the safety assurance of AI-based systems is presented in
section VI, and the guidelines for future work in the area is
covered in section VI. Finally, section VII closes the paper
with the conclusions of the research.

II. CONTRIBUTION JUSTIFICATION: DIFFERENCES FROM
OTHER LITERATURE REVIEWS
During this research, the literature review-oriented papers
by Ballingall et al. [13], Chia et al. [14], Dey and Lee
[15], Kabir [16], Nascimento et al. [17], Rajabli et al. [18],
Rawson and Brito [19], Siedel et al [20], Tahir and Alexander
[21], Tambon et al. [22], Wang and Chapman [23], Wang
and Chung [24], Wen et al [25], Zhang and Li [26], and
Zhang et al. [27] have been identified as somehow relating
safety to AI-based systems. The objective of this section is to
justify that the present SLR either differs from these or goes
beyond their scope, hence supporting the contribution of the
present research as a broader and deeper literature review on
the safety assurance of AI-based systems.

The approach employed by Chia et al. [14],
Nascimento et al. [17], Rajabli et al. [18], and Tahir
and Alexander [21] focuses on safety analysis findings
specifically related to autonomous ground vehicles (i.e.,
autonomous cars). Similarly, Rawson and Brito [19] have
concentrated their research on reviewing the application of
AI on maritime applications, notably on automating the
prediction and the assessment or risks and accidents involving
automated ships. The approach used in the present SLR
not only includes both of the aforementioned applications,
but it also goes beyond them in exploring research not
only related to other application domains, but also unrelated
to specific target applications (i.e., which concentrates on
general-purpose technical aspects of AI and safety).
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The review presented by Kabir [16] focuses on how
to employ Fault Tree Analysis (FTA) and its extensions
on Model-Based Dependability Analysis, hence not fully
addressing the problem ofAI-based systems safety assurance.
In the present SLR, several safety analysis techniques in
addition to FTA are also covered; moreover, the scope of the
present SLR is broader, as approaches and gaps on the safety
assurance of AI-based systems are also discussed.

The SLR performed by Zhang and Li [26] has the objective
of analyzing methods and approaches for the testing and the
verification of AI-based systems and identifying challenges
and gaps for future studies on the area. Since testing and
verification are means to build safety arguments to ensure
that a safety-critical is safe, this work is deemed relevant and
somewhat overlapping to this SLR in that regard. On the other
hand, the SLR of Zhang and Li [26] has two limitations which
have been overcome on the present SLR. Firstly, Zhang and
Li [26] have restricted their analyses to neural networks only;
secondly, the reviewed publications are within the timespan
2011-2018. On the herein reported SLR, the scope of AI
approaches, techniques and algorithms has been significantly
broadened– hence not restrained to neural networks -, and,
ultimately, research published up to August 26th, 2022 has
been considered. Based on the effervescence of research
on AI-based safety-critical systems identified and dis-
cussed in this paper, significant advancements have occurred
since 2018.

The SLR performed by Tambon et al. [22] shares simi-
larity with the present research with regard to the research
objectives themselves – namely, (i.) providing a landscape on
means and methods for assuring that AI systems are suffi-
ciently safe for their certification and (ii.) suggesting future
work yet to be explored in the area. Despite these similarities,
there aremethodological and scope differenceswhich support
the relevance of the herein reported SLR in contributing with
the safety assurance of AI-based systems.

Firstly, Tambon et al. [22] have focused their review
efforts specifically on software-implemented machine learn-
ing, whereas only other types and implementations of AI
are explored in the present SLR (for instance, knowledge-
based systems, hardware-implemented AI). Secondly, the
controlled search vocabulary utilized by Tambon et al. [22]
is more restrictive than the one considered in the present
research with regard not only to expressions for the safety and
AI métiers, but also to potential application domains (only
transportation on Tambon et al. [22], and unrestricted in the
present SLR).

Finally, Tambon et al. [22] have constrained the themes of
interest for future work to six major topics, therein referred
to as ‘robustness’, ‘uncertainty and out-of-distribution’,
‘explainability, ‘formal and non-formal verification’, ‘safety
considerations in reinforcement learning’, and ‘direct certifi-
cation’. In the present SLR, these themes have been covered
(albeit with potentially different names) along with others,
making up for a total of 15 major research areas for future
work towards the safety assurance of AI-based systems.

The literature reviews presented by Ballingall et al. [13],
Dey and Lee [15], Siedel et al. [20], Wang and Chapman [23],
Wang and Chung [24], Wen et al. [25], and Zhang et al. [27]
all share twomain similarities with the herein presented SLR:
(i.) the lack of scope limiting to specific applications and
(ii.) the objective of presenting an overview of safety analysis
techniques for intelligent systems. However, all of them differ
from the present one in aspects that make the latter broader
and/or more accurate on depicting the state of the art and
the gaps on the safety assurance of AI-based systems. This
is justified for each of the six aforementioned reviews on the
following paragraphs.

The literature review by Ballingall et al. [13] was not
carried out systematically, and the authors not only justify
studying the safety assurance of AI-based systems based on a
single application (automated driving systems), but they also
conclude that future investigation on thematter is still needed.
Based on these remarks, the aim of the present research is to
fill the gap of the review by Ballingall et al. [13] by means
of a systematic and reproducible literature review spanning a
broader search range.

The SLR performed by Dey and Lee [15] comprise three
limitations, namely (i.) potentially non-peer-reviewed papers
(e.g., available on arXiv), (ii.) conflicting information regard-
ing the timespan of the considered papers (2005-2020 and
2015-2020 intervals are mentioned by the authors) and
(iii.) brief discussion on future work, which are deemed better
addressed in the present SLR. This is justified by four argu-
ments: (i.) covering a wider range of official peer-reviewed
reference databases (e.g., Engineering Village and Web of
Science), (ii.) disregarding information from research which
has not been formally published yet (e.g., arXiv-sourced
papers have not been considered in this SLR), (iii.) defining
a clear and wide timespan to the considered publications (all
papers published until August 26th, 2022 with no starting date
limit) and (iv.) dedicating a full paper section to the discussion
of future work stemming from the gaps identified in current
research on the safety assurance of AI-based systems.

Siedel et al. [20], in turn, have four main limitations. First,
the controlled vocabulary used in searches comprises limited
expressions from the safety and AI areas and also includes
marginally-related topics, such as reliability. Secondly,
Scopus was the only search engine considered by the authors.
Thirdly, the keywords from the search vocabulary were
checked only on the title of publications. Finally, the authors
have not explored how the safety assurance of AI-based
systems has evolved with time, nor captured technical trends
of the area for future work. In the present SLR, an in-depth
search language enriched in both wide and depth of expres-
sions related to safety and AI has been crafted. Moreover, the
search domain has been expanded to four other search engines
other than Scopus and, in addition to the publication titles,
searches have also been performed within the abstracts and
the keywords of the indexed publications. Finally, a detailed
landscape of the safety assurance of AI-based systems has
also been presented. It includes bibliometrics, trends of the
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area throughout its past and present, and guidelines for future
work.

The SLR developed by Wang and Chapman [23] is limited
to presenting the link between risk analyses and the control
of autonomous systems, focusing on reviewing the main
variants and algorithms of AI that are used on such appli-
cations and how their safety is ensured. In the present SLR,
safety-critical AI applications other than the risk analysis of
autonomous systems have also been covered, such as the
usage of AI within the core control of safety-critical systems).
Such an expansion of scope also allowed identifying more
means to potentially build safety-critical AI-based systems
and ensure their safety in comparison to those observed by
Wang and Chapman [23].

Wang and Chung [24] have performed an SLR aiming
to describe how AI has been used in safety-critical systems
and propose potential future work to further promote such
usage. Despite the partial convergence of results obtained by
Wang and Chung [24] with the conclusions of the present
study, there are noteworthy remarks that justify the relevance
of the herein reported SLR. Firstly, the search expressions
used by Wang and Chung [24] to characterize the AI and
safety métiers are simpler and more restrictive than the ones
of this SLR. Secondly, Wang and Chung [24] have added
dependability within the scope of the SLR: since dependabil-
ity comprises concepts other than safety, such as reliability
and availability, some results obtained by the authors are not
related to safety per se. In order to circumvent this, the present
SLR has been conceived with a tighter link to the safety
area. Thirdly, alike Dey and Lee [15], non-peer-reviewed
papers (e.g., available on arXiv) have been considered by
Wang and Chung [24], whereas only publications which have
been formally published after acceptance on peer reviews
have been taken into consideration in the present SLR. These
limitations also translate into the numbers of retrieved and
analyzed publications: while Wang and Chung [24] have
assessed 3087 research papers and identified 92 of them
as potentially relevant, the herein SLR starts with a set of
5090 publications, among which 329 were deemed relevant
for the safety assurance of AI-based systems.

The SLR performed by Wen et al. [25] has as its main lim-
itation the fact that the reviewed papers were randomly sam-
pled from a set of papers. The authors themselves claim that a
major contribution with their work is to exhaustively analyze
publications on the safety assurance of AI-based systems,
which is exactly one of the present research’s objectives.

Finally, the SLR published by Zhang et al. [27] is the
one that resembles the most the present SLR with regard
to identifying relevant future work on the safety assurance
of AI-based systems. Despite such similarities, Zhang et al.
[27] lags behind the herein documented research on two
main aspects: (i.) the criteria employed to collect and review
reference studies, which is not clearly stated by the authors,
and (ii.) the lack of a detailed description on how the state of
the art of AI-based safety-critical systems has evolved with
time up to the present time. In this SLR, a full section has been

devoted to presenting the work method, and two sections,
to characterizing how the relationship between AI and safety
has emerged and progressed up to 2022. Furthermore, the
guidelines for future work also include further themes and
additional discussions on feasibility which remained unex-
plored by Zhang et al. [27].

III. SYSTEMATIC LITERATURE REVIEW METHOD
The objective of this section is to present the SLR process
which bases the findings and the conclusions of this research.
This section has been structured in such a way to (i.) provide
foundation that the literature reviewmethod is systematic and
sound for the research purpose, and (ii.) define and present
information and notation from the SLR itself which is utilized
on the remainder of the paper.

The SLR was carried out with six main activities in the
following order: (A) the definition of the search keywords,
(B) the decision on the search engines which were part of the
searches scope, (C) the collection of search results and dupli-
cate removal, (D) the Title-Abstract-Keywords (TAK) filter-
ing, (E) the definition of the questionnaire for the full-text
semantic filtering, and, finally, (F) the full-text semantic
filtering.

These activities are illustrated in the workflow of Figure 1
and detailed in the forthcoming subsections. Since the analy-
ses corresponding to steps (C), (D), and (F) are progressively
finer filters towards obtaining relevant research papers on
the safety assurance of AI-based systems, the SLR process
depicted in Figure 1 was shaped as an horizontal funnel-
shaped process with three filtering stages, each of which
representing one of the aforementioned steps. Moreover, the
numeric results depicted in Figure 1 for steps (C), (D) and
(F) will be explored in section IV.

Similarly to Nascimento et al. [17], the tasks suggested by
Asadollah et al. [28] and Petersen et al. [29] were employed
to guide the crafting of keywords considered in step (A),
as well as the questionnaire of step (E). Furthermore, all
activities of the SLR were led by the first author or this paper
(A. V. Silva Neto), and the results were discussed with other
researchers in walkthroughs in order to ensure their validity
and the adjudication of potential conflicts.

A. DEFINITION OF SEARCH KEYWORDS SLR
SEARCH LANGUAGE
In order to formally define logical expressions to guide
the searches of relevant publications on the search engines,
a formal regular search language, herein called ‘SLR
Search Language’, was conceived using Wirth’s notation.
An overview of the structure of the SLR Search Language
is presented in Figure 2, in which ‘AND’, ‘OR’, and ‘NOT’
gates are employed to express the relationship among the SLR
Search Language expression groups.

The SLR Search Language comprises expressions which
shall simultaneously satisfy three criteria: (i.) the presence
of terms related to the safety assurance domain (‘Safety
Assurance Area’ on Figure 2), (ii.) the presence of terms
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FIGURE 1. SLR process overview with numeric results of steps C, D and F.

related to AI (‘AI Area’ on Figure 2), and (iii.) the absence
of terms related to applications which are not related to
the technical safety domain (‘Unrelated Area’ on Figure 2).
The SLR Search Language was iteratively crafted in pre-
liminary phases of the SLR based on two aspects: (i.) the
relevance of expressions for the scope of the research, and
(ii.) the retrieval of a quantity of publications feasible for
the objectives of this SLR whilst maximizing as much as
possible relevant papers on the safety assurance of AI-based
systems.

The expressions of the ‘Safety Assurance Area’ shall
include at least one term from the ‘Safety Assurance Process
Items’ subgroup and one term from the ‘Safety Assurance
Systematization’ subgroup, as per Figure 2. The ‘Safety
Assurance Process Items’ subgroup includes a set of verbal
and non-verbal expressions (on singular and plural forms
whenever applicable) with relevant activities and/or prod-
ucts of the safety assurance process. The safety assurance
activities that have been considered are ‘safety analysis’,
‘safety assessment’, ‘safety assurance’, ‘safety verification’,

‘safety validation’, ‘safety evaluation’, ‘risk analysis’, ‘risk
assessment’, ‘risk evaluation’, ‘hazard analysis’, ‘hazard
assessment’, and ‘hazard evaluation’. The safety assurance
products, in turn, include ‘safety case’, ‘assurance case’, and
‘assurance pattern’. Even though ‘assurance pattern’ is not
a safety assurance result per se, it was considered part of
the SLR Search Language given the increasing efforts on
building reusable de facto patterns for assuring the safety of
similar AI-based systems [30].

The ‘Safety Assurance Systematization’ subgroup, in turn,
comprises expressions that are related to systematizing a
systems safety lifecycle. It includes the words ‘method’,
‘methodology’, ‘technique’, ‘approach’, ‘framework’, and
their corresponding plurals.

The ‘AI Area’ group reunites terms related to the artifi-
cial intelligence métier. These are divided in six subgroups:
‘General AI’, ‘Machine Learning’, ‘Adaptive Systems’,
‘Industry 4.0’, ‘Data Science’, and ‘Knowledge-Based Sys-
tems’ (formerly known as ‘expert systems’). The ‘OR’ gate
interconnecting them in Figure 2 indicates that each terminal
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FIGURE 2. Overview of the SLR search language logical structure.

expression from any group suffices as a search expression for
‘AI Area’.

Each subgroup’s keywords have been defined to cover
the high level definitions of each subgroup (e.g., ‘artificial
intelligence’, ‘AI’, ‘machine learning’, ‘data mining’, etc.).
Wherever applicable, two other subsets of expressions have
also been includedwithin each subgroup: (i.) the names of rel-
evant AI variants (e.g., ‘supervised learning’, ‘reinforcement
learning’, ‘data clustering’), and (ii.) relevant formalisms
and algorithms that implement the corresponding AI variants
(e.g., ‘neural network’).

Finally, the ‘Unrelated Areas’ group has been iteratively
built as a non-exhaustive set of expressions which shall lead
to the exclusion of texts with them regardless of expressions
from ‘Safety Assurance Area’ and ‘AI Area’ groups being
satisfied. The ‘Unrelated Areas’ group expressions include
four main application domains that have been manually
identified as unrelated to the safety assurance of AI-based
systems at the initial stages of the SLR – namely, pharmaceu-
tical research (drug(s)), natural disaster prediction (flood(s),
earthquake(s)), stock market analyses (credit(s), asset(s),
insurance(s), portfolio(s), investment(s), stock(s)), and envi-
ronment, health and safety (EHS) as a whole. The EHS
field comprises public health policies (pregnancy, drug(s)),
ergonomics, and issues related to occupational risk manage-
ment of the oil industry, coal mines, dams, and construction
sites.

B. CHOICE OF SEARCH ENGINES
With the exception of ScienceDirect and SpringerLink, all of
the remaining search engines employed by Nascimento et al.
[17] – namely ACM, Engineering Village, Scopus, Web of
Science, and Wiley – were considered in this SLR. Pre-prints

(e.g., sourced directly from private repositories on arXiv and
Zenodo) are pruned at this step for quality concerns.

ScienceDirect was not considered on this SLR because
its TAK-related indexed content, which is the starting point
for this SLR, is entirely within Scopus [31]. SpringerLink,
in turn, was disregarded after it has been assessed that relevant
Springer-sourced publications, both periodic (e.g., journals)
and non-periodic (e.g., conference proceedings and book
chapters), have been successfully captured by means of Engi-
neering Village, Scopus, and Web of Science.

C. COLLECTION OF SEARCH RESULTS AND
DUPLICATE REMOVAL
The results of this research comprise references retrieved
from TAK searches performed in all search engines from
the previous section on August 26th, 2022. The results were
exported in either BibTeX or Research Information Systems
(RIS) formats and loaded onto Mendeley and JabRef tools
for a semiautomatic duplicate removal (i.e., aided by tools
but manually confirmed or rejected case by case).

D. TAK FILTER
The TAK filter was based on manual semantic analysis of
TAK information of each and every reference retrieved from
the previous step and allowed classifying the obtained results
into six categories (C0 to C5). These categories were defined
taking into account a didactic approach to split the obtained
results into proper semantic groups related to this research up
to some extent.

• C0: Not relevant to the research;
• C1: Research on AI applied in off-line safety assurance;
• C2: Research on AI applied in safety-critical functions,
but without evidence of safety assessment per se;
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• C3: Research on the safety assurance of AI-based safety-
critical functions;

• C4: Contextualization ofAI on Industry 4.0 applications;
• C5: Research on AI employed in security-critical func-
tions with potential impact on safety.

It is worth noting that a reference can be classified into
more than a single category from C1 to C5 based on its
TAK information, since these categories are not mutually
exclusive. Since the aim of the research is to study the safety
assessment of AI-based safety-critical systems, category C3
is considered the most important for that purpose, whereas
the other ones (except for C0) are deemedmarginally relevant
due to the following reasons:

a) Studies within categories C1 and C2 provide examples
of AI-based safety-critical systems and applications
which can, thus, benefit from the safety assurance of
AI-based systems;

b) References within categories C4 and C5 deal with cor-
relate themes and, as a result, shed some light on the
contextualization of this research and may also provide
guidance for potential future work.

E. QUESTIONNAIRE FOR THE FULL-TEXT SEMANTIC FILTER
Six questions (Q1 to Q6) were conceived to extract rele-
vant information from the full-text review of references in
line with the SLR objectives. The questionnaire has been
only applied to category C3 references, since these are
directly related to the research theme (i.e., safety assurance of
AI-based systems).
• Q1: What is the objective of the research?
• Q2: Which AI techniques were considered in the
research?

• Q3: How has the safety assurance of AI been considered
within the study?

• Q4: Which results were obtained on the research
(including potential shortcomings)?

• Q5: Which future research topics were identified by the
authors?

• Q6: What other strengths and weaknesses were identi-
fied in the study during its review?

It is worth noting that Q6 resorts to the researchers’
knowledge in assessing positive and negative aspects of the
reviewed references. This is an important question to fulfill
the objective of this research in providing an overview of
future work which goes beyond what is directly proposed by
the reviewed references’ authors.

F. FULL-TEXT SEMANTIC FILTER
In this step, the full text of every reference on category C3 is
reviewed based on the questionnaire defined in step E. A brief
report of the results obtained for each text is developed,
and the results of these reports are compiled based on the
objectives of this SLR.

In addition to questions Q1 to Q6, an integer quality metric
ranging from 0 to 6 – herein referred to as Q-index – has been

crafted in order to rate how well each reference contributes
to the objectives of the present research based on its overall
quality and the covered topics. The Q-index includes two
definitions: a discrete definition for each of the valid integer
values within the interval [0; 6] and a categorized definition
on three fuzzy groups: low quality, average quality and high
quality.

Low Quality References
• Q = 0: Highly restrictive relevance;
• Q = 1: Weak relevance.

Average Quality References
• Q = 2: Fair relevance;
• Q = 3: Sufficient relevance.

High Quality References
• Q = 4: Above average relevance;
• Q = 5: Very good relevance;
• Q = 6: Strong relevance.

IV. SYSTEMATIC LITERATURE REVIEW
BIBLIOMETRICS RESULTS
The objective of this section is to present an overview of
the bibliometrics extracted from the SLR results. Such an
analysis is deemed relevant because it allows characterizing
major trends on how research which joins AI and safety
assurance has evolved with time. The first analysis, presented
in subsection IV-A, is based on how the number of reviewed
references of each category C1 to C5 has evolved with time.

Since the focus of this SLR is on the safety assurance of
AI-based systems and such theme corresponds to the scope of
C3-categorized publications, the bibliometrics analyses of C3
are enriched by correlating them to the Q-index attributed to
each C3 publication as part of the SLR method. This analysis
is covered in subsection IV-B.

Finally, the concluding remarks of the bibliometrics analy-
sis and the justification of its importance to the remainder of
the research are summarized in subsection IV-C.

A. OVERALL BIBLIOMETRICS FOR CATEGORIES C1 TO C5
A total of 5090 references, as shown in Figure 1, was obtained
after filtering duplicates from the set of results retrieved
on August 26th, 2022 from the search engines listed in
subsection III-B when applying the SLR Search Language
defined in subsection III-A.

After applying the TAK filter to the 5090 references
obtained at the previous step, 4112 of them (80.8%) were
included into category C0 and, hence, they were not consid-
ered relevant for this research. The remaining 978 (19.2%)
were classified as part of at least one of the categories C1
to C5 defined in subsection III-D according to the quantities
presented in Figure 1 for each category – namely, 414 ref-
erences on C1, 487 references on C2, 329 references on C3,
32 references on C4 and 29 references on C5.

There are two reasons why summing the results for each
of the C1 to C5 categories yields a result greater than the
978 references which were classified as somehow relevant
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by means of the TAK filter. The first one, discussed in sub-
section III-D, is that categories C1 to C5 are not mutually
exclusive. The second reason is that, since the TAK filter
is somehow coarse to ensure proper classification of every
single reference into their actual categories, some references
were also conservatively classified in additional categories
whenever the latter ones could not be categorically ruled out.
This is especially important for C3, as the analysis of all
references within it would mandatorily progress up to their
full-text semantic analysis (as mentioned in subsections III-E
and III-F).

The graph presented in Figure 3 depicts the evolution on
the quantity of publications which have been classified as part
of C1, C2, C3, C4 and C5 between 1986 and 2022 (up to
August 26th). 1986 corresponds to the year of the very first
reference relating AI to safety assurance.

Two main results can be inferred from Figure 3. The first
result is that, after initial exploratory research carried out up
to the mid-2000s, there have been two waves of significant
increase in research correlating safety to AI. The first of
them occurred between 2008 and 2014 and has been mostly
concentrated on C1 and C2 publications, Hence, one can
infer that the relationship between AI and safety on this
first research wave has at most dealt with using AI as a
tool to support the safety analysis of safety-critical systems,
regardless of AI being present in such assessed systems (C1),
as well as with initial research on using AI in safety-critical
systemswithout formal coverage on assuring that such safety-
critical AI is indeed safe (C2).

The second wave of research in which AI and safety
have been jointly addressed is significantly more vigorous
than the first one and comprises a trend of steep increase
in all categories from 2016 onwards, except for outliers in
2018 and 2021 on C1. This indicates that further efforts
on other areas – remarkably assuring that safety-critical AI
reaches its safety requirements (C3) – have been increasingly
investigated along with those already covered in the first
wave.

In addition to the identified growth waves, another result
worth identifying and analyzing is the drop in publications
of all categories but C1 in 2021. Once such a decrease has
occurred for a single year so far, it is deemed that it is still
insufficient to characterize a consistent loss of interest in this
category. It is also worth noting that C1 has still had signif-
icantly more publications in 2021 than in 2019 according to
Figure 3, which suggests that, along with the increase of the
other categories, further studies on AI and safety assurance
are still relevant despite the aforementioned decrease of C1
in 2021. This is particularly true for research directly related
to the safety assurance of AI-based systems – which bases all
C3-categorized publications. C3 has actually reached a higher
share among all categories in 2021 than in 2020 given its
steeper increase in 2021 than the other categories with most
published research (i.e., C1 and C2).

Finally, with regard to 2022 data, even though direct anal-
yses are not feasible because of the restricted timespan of

the preliminary results (up to August 26th), two trends can
be identified. From a qualitative standpoint, it is noticeable
that the effervescence on research joining AI and safety still
persists, as 2022 data up to August 26th are comparable to the
whole set of publications of 2019. Moreover, if one assumes
the hypothesis that 2022 will follow the same publication rate
observed up to August 26th (i.e., after 238 days since the
year started), an estimate of the number of publications for
2022 can be obtained by multiplying the current 2022 results,
depicted in Figure 3, by 365 days/238 days =1.53. By doing
so and comparing the 2022 estimates with 2021, one can infer
near-stability for categories C2 (97 vs. 99 respectively) and
C5 (6 vs. 6, respectively), a 10% decrease on C3 (84 vs. 72,
respectively), and steeper reductions on C1 (59 vs. 32) and
C4 (11 vs. 2, respectively). This might indicate a lowered
interest on C1 and C4, followed by a trend of continued
interest on C2, C3, and C5. Since the latter three categories
represent relevant themes towards full AI autonomy within
safety-critical contexts, whereas the former two categories are
closer to general-purpose applications of AI, such a behavior
would not be unexpected if effectively confirmed.

B. C3 PUBLICATIONS Q-INDEX ANALYSIS
It is possible to expand on the bibliometrics of the 329
C3-classified publications by cross-analyzing them with the
Q-index attributed to each of the C3 references. In order to
improve the readability of the graphs used for this purpose,
the fuzzy Q-index classification defined in subsection III-F
(i.e., low, average and high) is herein adopted.

Among all the 329 C3 references, 115 (35.0%) were clas-
sified as low quality, 70 (21.3%) were classified as average
quality, and 144 (43.8%) were classified as high quality. The
rather significant quantity of low quality papers for C3 stems
from the conservative C3 classification criterion explained in
subsection III-D. By this criterion, some references were ini-
tially classified in C3 together with other categories because
their TAK information was not significant enough to rule
this classification out. After the full-text review, 73 of the
161 references jointly classified in C3 and in at least another
category were deemed of low quality for C3. These 73 refer-
ences represent 63.5% of the C3 low quality group.

Figure 4 shows how the yearly average Q-index has
evolved with time from 1994 up to August 26th, 2022. This
period has been defined because 1994 is the year in which
the first C3 research paper has been published. Moreover, the
period from 1995 to 2002 has been omitted from the graph
to improve its readability because no C3 publications have
been identified for any of these years. Moreover, the quantity
of yearly C3 publications is explicitly listed on Table 1 to
improve the understanding of the analyses.

It is possible to notice that, after two isolated peaks
between 2003 and 2007 and on 2012, the Q-index has con-
sistently increased with time during its 2016-2022 grow-
ing wave. The yearly average Q-index started with 1.0 on
2015 and has continuously grown up to 3.43 in 2022 except
for two drops: one in 2017, when the growth wave was still at
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FIGURE 3. Evolution of the number of C1 to C5 references with time.

its beginning, and another one in 2021, with a small relative
reduction of 7.6% in relation to 2020 (from 3.31 to 3.08).

It is worth highlighting that the isolated peaks between
2003 and 2007, as well as that on 2012, result from the
fact that most of the few C3 publications on each of these
years (no higher than 4 C3 publications, as per Figure 3)
were deemed of high importance to the safety assurance of
AI-based systems. This stems from early and successful
attempts on addressing means to either assess if neural
network-based control systems are safe [32], [33], [34], [35],
[36], [37] or conceive fail-safe AI-based systems [38].

The remainder of the Figure 4 behavior can be understood
by the analysis of Figure 5, which shows the relative growth
of C3 references during the same period of Figure 4. Figure 5
shows, for each of the assessed years, the percentage of texts
from each year which were rated with either a low quality
Q-index (i.e., 0 or 1), an average quality Q-index (i.e., 2 or
3), or a high quality Q-index (i.e., 4, 5 or 6).

Up to 2015, when no more than 4 C3 publications were
available per year, the percentage attributed to each of the
aforementioned categories varies significantly. Starting in
2016, such oscillations have reduced due to the increase of C3
publications, and high quality publications have consistently
risen in participation since then, with small drops on 2017 and
2021. Moreover, high quality C3 publications have become
the most prevalent among all C3 references in 2019 up to

TABLE 1. Number of C3 publications per Year.

2022 (August 26th), yearly peaking at between 40% and 55%
of the total of C3 publications at this timespan.

C. CONCLUDING REMARKS ON THE
BIBLIOMETRICS ANALYSIS
The results presented in sections IV-A and IV-B are highly
suggestive that the safety assurance of AI-based systems has
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FIGURE 4. Evolution of C3 publications yearly average q-index with time.

been increasingly deemed worthy of relevant research by
the research community especially from 2016 onwards. This
reinforces the importance of the present work not only in
compiling, assessing and reporting the progressively effer-
vescent state of the art and future work raised by the research
community on the safety assurance of AI-based systems,
but also in expanding on these subjects by cross-fertilizing
current research in order to draw further conclusions on
these matters. Technical aspects regarding this ‘expanded
overview’ on the state of the art and future work on the
safety assurance of AI-based systems will be covered in the
forthcoming sections of this paper.

V. STATE OF THE ART RELATED TO THE SAFETY
ASSURANCE OF AI-BASED SYSTEMS
The objective of this paper section is to present the state of the
art related to the safety assurance of AI-based safety-critical
systems. It starts on subsection V-A with a brief introduction
on how the relationship between AI and safety has evolved so
far and up to the point when the safety assurance of AI-based
systems became a major research problem on its own. After-
wards, the state of the art related to the safety assurance of
AI-based systems per se is explored in subsection V-B.

A. RELATIONSHIP BETWEEN AI AND SAFETY: ORIGINS
AND EVOLUTION UNTIL THE SAFETY ASSURANCE OF
AI-BASED SYSTEMS
A summary of the overall evolution on how AI and safety
have been combined with time is depicted in Figure 6,
in which three major ‘waves’ of research are presented. These
are detailed throughout this section.

The earliest records of research addressing the usage
of AI in safety-critical applications date back to the

mid-to-late-1980s and are related to using knowledge-based
systems as a means to detect potential faults on nuclear
power plants and report such faults to human operators.
In this context, the information produced by the knowledge-
based systems would support the decision-making process of
human operators on triggering, e.g., preventive maintenance
and emergency actions to respectively avoid and contain
potentially unsafe scenarios [39], [40], [41], [42], [43]. Such
trend of using knowledge-based systems to support human
decision-making in safety-critical applications, which rep-
resents the ‘first wave’ shown in Figure 6, was still highly
prevalent through the 1990s [44], [45], [46], [47], [48], during
which only scarce efforts on other AI approaches, such as
machine learning, have been carried out [49], [50].

On the early 2000s, a ‘second wave’, slightly stronger than
the first, emerged with two major changes on the relationship
between AI and safety. Firstly, machine learning techniques
started replacing knowledge-based systems as the preferred
AI technique used in research related to safety-critical sys-
tems. Secondly, efforts in including AI within the control
loop of safety-critical systems, rather than just supporting the
decision-making of human operators, also became increas-
ingly more frequent.

One of the earliest research towards these changes is the
one carried out by Wei [51], who presented an Artificial
Neural Network (ANN)-based system that supports drivers of
ground vehicles in performing safe lane-changing operations
by supervised learning of potentially safe scenarios from
video recordings of human drivers. Even though the system
was still not developed aiming fully autonomous vehicles –
which ultimately still makes it a human decision-making sup-
port system –, the results obtained by the author showed that
his system was successful in mimicking human behavior in
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FIGURE 5. Relative evolution of yearly c3 papers per q-index fuzzy group with time.

FIGURE 6. Overview of the research waves combining safety and AI.

safely recommending lane-changing operations yet retaining
high driving performance (e.g., higher speed than state-of-
the-art solutions by that time) while moving from one lane to
another [51].

Another early study worthy of mention is the one by
Kurd and Kelly [32], who have developed a white-box,
fuzzy map-based model to design and represent ANNs used
in safety-critical applications and which would be further

successfully exercised within a Gas Turbine Aero-Engine
system in the following years [33], [36]. With this effort, the
authors have not only introduced the possibility of using AI as
part of the control loop of safety-critical applications, but also
discussed and exercised explainable AI, which would only
emerge on its own as a concept and research theme within the
AI field in the mid-2010s, based on its unconscious aware-
ness at the expert systems era [52]. Moreover, the works by
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Kurd and Kelly [32], [33], [36] represent the earliest studies
that are highly relevant to the safety assurance of AI-based
systems as per details covered in subsection V-B.

Since then, research that combines the areas of AI and
safety assurance experienced significant effervescence. This
trend, which characterizes the ‘third wave’ of research in
Figure 6, emerged in 2009 as greater than the previous waves
and became even stronger especially from 2016 onwards,
as sustained by the bibliometrics analyzed in section IV.
The main justification for the steep increase of publica-
tions involving AI and safety stems from the increase in
cost-effective sensing and data processing capabilities of
computer-based systems throughout the 2000s and 2010s,
supported by parallel computing and, more recently, cloud
computing [53]. With these features, computationally costly
AI solutions – notably those related to deep learning –,
have become feasible to pave the way towards implementing
complex functions with AI [53] – including safety-critical
ones.

So far, research involving AI and safety without directly
addressing the safety assurance of AI-based systems (i.e.,
research included within categories C1, C2, C4, and C5, as
per subsection III-D) have spanned a multitude of application
domains and AI techniques. The target applications include,
but are not limited to, power plants, transportation systems
of several means, medical systems, process industries, and
automating safety analyses. AI techniques, in turn, comprise a
non-exhaustive list with several variants of ANNs (including
deep learning – DL), logistic regression, k-nearest neighbors
(kNN), decision trees (DTs), random forests (RFs), sup-
port vector machines (SVMs), boosting, and reinforcement
learning (RL).

B. SAFETY ASSURANCE OF AI–BASED SYSTEMS: THE
ROAD SO FAR
As introduced in subsection V-A, the series of research
papers by Kurd and Kelly [32], [33], [36] has been
considered the first meaningful efforts in exploring how
to ensure that AI-implemented safety-critical functions
indeed meet their related safety requirements. These were
followed by 326 other research papers aiming to explore
the safety assurance of AI-based safety-critical systems
up to August 26th, 2022, with 144 of them1 meeting the
criteria for high relevance to the area, as explained in
subsection IV-B.

The objective of this section is to expand on the safety
assurance of AI-based systems’ state of the art and contex-
tualize it with the guidance of questions Q1 to Q4 from the
SLR method (defined in subsection III-E). Special focus is
given to the responses for these questions stemming from the
144 C3 papers that were deemed to highly contribute to the
safety assurance of AI-based systems theme.

1This quantity includes the work by Kurd and Kelly [32], [33], [36].

1) OBJECTIVES OF RESEARCHING THE SAFETY ASSURANCE
OF AI-BASED SYSTEMS – QUESTION Q1
Bymeans of the SLR question Q1, the analysis of the C3 pub-
lications allowed identifying four mutually exclusive objec-
tive groups (OGs) related to their goals towards the safety
assurance of AI-based systems:
• OG1: The research only aims to review and/or spot gaps
on AI-based systems verification, validation and safety
activities;

• OG2: The research aims to propose means to ensure
that an AI-based system/function is safe and present
supporting results;

• OG3: The research aims to apply methods defined in
other research to ensure that an AI-based system is safe;

• OG4: The research covers other topics which may be
either marginally related or unrelated to OG1, OG2
and OG3.

Table 2 summarizes the absolute and relative results of
papers belonging to each of these OGs considering all C3
texts and only those rated with high quality as per their
Q-index. The results indicate that high quality C3 references
focus especially on OG2, which is expected given the scope
of this research.

2) AI TECHNIQUES CONSIDERED IN THE SAFETY
ASSURANCE OF AI-BASED SYSTEMS – QUESTION Q2
In order to evaluate what AI techniques have been indeed
covered at the references on the safety assurance of AI-based
systems, this information has been collected from each of the
reviewed research papers by means of the SLR question Q2.
During the analysis of the C3 publications, however, it has
been noticed that some of them do not explicitly mention
AI, and even those which do perform it with varying depth
degrees with regard to AI variants, machine learning (ML)
categories, and even specific AI and ML techniques. The
observed variations are listed as follows:

a) AI Variants:

i. No explicit mention to AI;
ii. AI in general;
iii. Machine Learning in general (ML);
iv. ‘Classic AI’ search, game theory and evolutionary

algorithms;
v. Knowledge-Based ProbabilisticModels (KBPMs),

such as Bayesian approaches, Kalman and Parti-
cle Filters, and Dempster-Shafer Theory.

b) ML categories:

i. Supervised Learning (SL);
ii. Unsupervised Learning (UL);
iii. Reinforcement Learning (RL);
iv. Deep Learning (DL).

c) Specific AI and ML techniques:

i. Artificial Neural Networks (ANNs);
ii. Decision Trees (DTs) and Random Forests (RFs);
iii. Support Vector Machines (SVMs).
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TABLE 2. Summary of question Q1 results.

The obtained results are summarized in Table 3 for both
the entire set of C3 references and the subset of those whose
Q-index is within the high quality fuzzy group.

Firstly, it is worth noting that the aforementioned groups
of AI variants, ML categories and specific AI and ML tech-
niques are non-mutually exclusive, meaning that each C3
reference can be within more than one of these qualifying
groups. Hence, summing the references of all groups in
Table 3 yields results that are greater than the actual quantity
of assessed references (i.e., greater than 329 for the entire
set of C3 references and greater than 144 for the set of high
quality C3 references).

Moreover, it is possible to notice that the proportion of
high quality references which do not explicitly mention AI
is steeply smaller than that of the entire set of C3 publica-
tions (20.1% vs. 3.5%). This result corroborates that relevant
efforts on the safety assurance of AI-based systems shall
explicitly address AI somehow, which occurs with 139 out
of the 144 (96.5%) high quality C3 references.

Furthermore, the higher-graded references also focus espe-
cially in ML (>35%), remarkably based on ANNs (>50%).
In addition to this, these which explicitly describe the
ML approach allow checking research trends towards DL
(>22%), RL (>18%), KBPM (9%) and SL (>8%), with DL
and SL also intimately related to ANNs. When adding to
this analysis the graph of Figure 7, which shows the yearly
proportion of C3 references for each AI variant, ML category
andAI andML technique from 2018 onwards, there is a rising
trend of publications specifically on ANNs and a decreasing
trend of ML in general, with ANNs overtaking ML in general
from 2020 onwards as the main theme of research papers.
DL has oscillated on the same period of time between 16%
and 33% of yearly representativeness, tying with ML in gen-
eral on 2021, but on 2022 (up to August 26th), it has lagged
behind it. RL has also oscillated during the same timespan;
nevertheless, despite reaching its lowest representativeness
on 2019 (<6%), it has significantly grown in relevance on
the forthcoming years, peaking at more than 38% on 2022
(up to August 26th).

The overall prevalence of ANNs, DL, and RL suggests
two main characteristics. On the one hand, exploring the
safety of ANNs, DL, and RL follows the current AI area
trend in using them because of their flexibility in provid-
ing somewhat accurate models for functions which are hard
to be precisely specified [54], [55] and that can ultimately
benefit from exploring and exploiting an operational envi-
ronment for fine-tuning prior to revenue service [56]. On the
other hand, a significant amount of safety assurance research
is directed towards analyzing rather opaque and inherently

TABLE 3. Summary of question Q2 results.

hard-to-explainMLvariants [57], [58], [59], whereas answers
to deal with the safety assurance of simpler and explainable
AI models, such as DTs, are nonetheless scarce.

For instance, the research of Hernández-Orallo et al. [60]
and of Groza et al [61] were the single high-quality efforts
explicitly related to developing safety-critical AI with DTs.
Even if all publications within at least one of the groups ‘AI
in General’ and ‘ML in General’ were sufficiently generic
to be applied to simpler and explainable AI models, these
would still account for at most 45.1% of all publications
(65 out of 144 publications). Such result is lower than the
proportion of all research papers specifically devoted to the
safety assurance of either ANNs or DL (54.2%; 78 out of
144 publications), and even lower to that when RL is included
along with ANNs or DL (61.8%; 89 out of 144 publications).

Finally, most of the 2022 representativeness increase of
older, more ‘traditional’ AI models, such as DT/RF and
KBPM, is due to the increasing number of relevant literature
reviews covering them [19], [24], [25]. Such reviews have
been cited and compared to this SLR in section II. The
exceptions are the research efforts by Ruchkin et al. [62],
with reference to Bayesian models and logistic regression,
Groza et al. [61], with random forests and rule-based systems,
Musau et al. [63], with rule-based systems, and Bai et al. [64],
with random forests.

3) METHODS FOR THE SAFETY ASSURANCE OF AI-BASED
SYSTEMS AND THEIR RESULTS – QUESTIONS Q3 AND Q4
As per Figure 8, the full-text review of C3 references allowed
identifying five significant approaches in order to deal with
the safety assurance of AI-based systems. These approaches
are based on (i.) performing extensive black-box testing
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FIGURE 7. Proportion of yearly C3 high quality publications between 2018 and 2021 for each AI Variant, ML Category and AI and ML technique.

of AI, (ii.) utilizing safety envelopes to limit the response
of the AI to a safe image set, (iii.) crafting fail-safe AI,
(iv.) combining explainable AI with white-box analyses to
provide in-depth understanding of the underlying AI models,
and (v.) conceiving systems-level methods and processes,
potentially merging the four other approaches, to systematize
the safety assurance of AI.

The characteristics of each of these approaches are pre-
sented, along with the main results of their most relevant
research papers as per the Q-index attributed to them, in the
following subsections. All information herein presented has
been captured by means of questions Q3 and Q4 of the SLR
questionnaire.

a: SAFETY ASSURANCE BASED ON BLACK-BOX TESTING
The first approach is related to specifying and performing
test cases as exhaustively as possible (in simulated or real
world scenarios) so as to try to address the most variations
of AI-based systems behaviors whilst treating AI as a black
box due to its complexity. This would be achieved by different
input stimuli (i.e., validation datasets), which would then
translate into exercising different paths of the AI model by
such inputs. Hence, the main advantage of this approach is
that dealing with AI as a black box allows abstracting the
underlying difficulty in understanding its internal characteris-
tics, thusmaking it simpler and faster to reach effective results
to either support or deny that a system is safe [65].

A summary of the advantages and disadvantages of the
black-box testing approach, further discussed throughout this
subsection of the paper, is presented in Figure 9. Green text
boxes indicate potential advantages of the approach, whereas
red text boxes indicate its disadvantages and difficulties.

FIGURE 8. Approaches for the safety assurance of AI-Based systems.

This approach has been explored, e.g., on the research
papers byMeltz and Guterman [66], [67],Watanabe andWolf
[68], Sun et al. [69], and Hussain et al. [70], all of which
within the context of using AI on safety-critical functions of
Unmanned Ground Vehicles (UGVs). In addition to them,
the literature reviews by Tahir and Alexander [21] and by
Corso et al. [65] are also devoted to the safety assurance
of AI-based systems by means of black-box testing. Finally,
the research published by Kozal and Ksieniewicz [71] and
by represents an example of the black-box testing approach
applied to safety-critical medical systems.

Meltz and Guterman [66], [67] and Watanabe and Wolf
[68] have developed UGV models in which AI is responsible
for performing safety-critical functions, such as braking and
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FIGURE 9. Advantages and disadvantages of black-box testing.

collision avoidance. The strategy presented in all studies for
validating their models is based on black-box testing of the
AI modules, combining simulations and field tests. The main
conclusions of such studies are as follows:

a) Meltz and Guterman [66], [67] have performed sim-
ulations and physical tests of an UGV travelling on a
100m-long pathway with obstacles and have detected
that their black box testing strategy was able to detect
nearly 1% of unsafe scenarios, in which the UGV
collides with obstacles. This rate is deemed overly high
for certifying a safety-critical system with typically
restrictive safety requirements;

b) Since Watanabe and Wolf [68] have only presented an
UGVdesign and testing framework, no practical results
from their conceptual methods have been covered;

c) Both groups of researchers have anticipated that their
black-box testing strategies are insufficient for assuring
that the AI-dependent functions are sufficiently safe,
and that they shall only be considered as a starting point
towards assuring safety [66], [67], [68].

Sun et al. [69] proposed using supervised learning AI
to reduce the efforts in identifying relevant test cases and,
hence, maximize the coverage of black-box tests applied to
safety-critical AI elements within a specific timespan. Even
though Sun et al. [69] were able to obtain reasonably posi-
tive results towards their objective on case studies involving
UGVs, with 99% effort reduction whilst retaining a 90%
coverage of safety-critical tests with a confidence rate of
90%, two drawbacks have been identified.

Firstly, the authors themselves claim that the models
employed on the case study are not sufficiently faithful for
real applications and that further study is still needed on the
validity of the results they obtained [69]. Secondly, even if

such results are confirmed, both coverage and confidence
rate indexes that were obtained are deemed insufficient for
certifying a safety-critical system with typically stringent
safety requirements.

Still on the UGV area, Hussain et al. [70] have developed
and presented a safeguard for autonomous driving systems
called DeepGuard, whose objectives are (i.) to check whether
the driving context might violate safety requirements and
(ii.) enforce the needed safe actions if such a situation is
detected. DeepGuard is responsible for modeling the driving
context as a first-order time series and inputting it to an
autoencoder (i.e, an ANNwhose aim is to reproduce its inputs
on its outputs), which is able to detect whether there are
major differences to the operational environment that can
lead the UGV to deviate from its expected safe behavior. The
contribution of DeepGuard to overall safety is assessed for
twoUGV control functions – namely, collision avoidance and
lane changing – following a black-box testing approach based
exclusively on metrics extracted from a confusion matrix
(e.g., precision, recall, f1-score) [70].

Tahir and Alexander [21] have presented a literature review
on means to certify safety-critical AI-based UGVs by means
of black-box testing results. On the one hand, relevant tech-
niques to improve the coverage of black-box tests have been
identified, such as High Throughput Testing (HTT), Search-
Based Software Testing (SBST), and pseudorandom test case
generation, One the other hand, Tahir and Alexander [21]
have stated that most of their reference studies were deemed
of low quality, and that the lack of extensive test coverage
maximization techniques is still an obstacle towards using
black-box testing as the sole tool for assuring that a safety-
critical system is indeed safe.

Corso et al. [65] have also explored improving the coverage
of black box techniques to support the safety validation of
AI-based systems, but it differs from the review by Tahir
and Alexander [21] because Corso et al. [65] focused on
using AI itself to increase the coverage of black-box testing.
The main strategies discussed by the authors is that AI vari-
ants for optimization, planning, and reinforcement learning
are relevant tools in covering a wider range of black-box
tests whilst reducing the efforts to reach this coverage. The
authors, however, do not discuss how to ensure that such AI
tools themselves are sufficiently safe to guide the black-box
tests of safety-critical AI-based systems.

Finally, Kozal and Ksieniewicz [71] have indirectly uti-
lized black-box testing of AI as the prime approach to assess
whether the AI used in their study behaves in a safe way. The
objective of their research is to develop a system that is able
to classify whether heartbeats are healthy or of four different
types of arrhythmias by using Residual Neural Networks
(ResNets) to analyze and classify 187-sample time series that
represent the input heartbeats. The authors have developed
means to reduce the heavy imbalance of the input datasets
towards healthy heartbeats and compared and contrasted the
approaches by using black-box tests, performance metrics
such as category-specific precision and recall, and statistical
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tests. Even though the results indicate that the imbalance
reduction techniques have improved safety with high cer-
tainty levels [71], the authors have not focused on rigor-
ously defining safety requirements and assessing whether the
results are sufficiently appropriate to support the diagnosis of
heart diseases.

In addition to the criticisms and limitations identified on
the previous reviewed references, several other researchers
(e.g., Harper and Caleb-Solly [72], Koopman and Wagner
[73], Musau et al. [63], and Wu et al. [74]) claim that no suf-
ficiently exhaustive tests can be carried out for safety-critical
systems in due time given the strict requirements to which
they must comply (e.g., failure rates lower than 10−8 fail-
ures/hour for highly safety-critical systems in continuous
operation, as per requirements derived from IEC61508 [9]).
In order to circumvent this, four other approaches for the
safety assurance of AI-based systems have been recently
explored. They are covered in the next subsections.

b: SAFETY ASSURANCE BASED ON SAFETY ENVELOPES
The basic idea of this approach is to restrain the behavior
of AI-based systems by design within a deterministic (i.e.,
non-AI-implemented)safety envelope (alternatively referred
to as safety cage). In this context, such an envelope constrains
the overall system response to a knowingly safe image set by
design regardless of its AI, thus leading the underlying AI
elements to play at most a minor role on safety. As a result,
typical safety assurance methods for non-AI-based systems
would suffice, since these would be solely applied to the non-
AI-related safety envelope elements [18].

An overview of the advantages and disadvantages of the
safety envelope approach, thoroughly reviewed in the remain-
der of this section alongwith representative references, is pre-
sented in Figure 10. Green text boxes indicate potential
advantages of the approach, whereas red text boxes indicate
its disadvantages and difficulties.

Solutions of this category have been presented and dis-
cussed by, e.g., Machin et al. [75], Shafaei et al. [76], Kuutti et
al. [77], and Lazarus et al. [58]. Further information on each
of these research papers is presented henceforth.

Machin et al. [75] have presented a general framework to
translate safety requirements into predicate logic rules that
formally define safety envelopes for active safety monitors.
A case study of a mobile manipulator robot for co-working
led to only partially successful results in defining safe con-
straints for the robot operation, with the following limitations:

a) Some safety requirements could not be addressed by
means of the proposed framework due to the lack of
observable data to generate safety envelopes [75];

b) Physical tests evidenced that the generated safety
envelopes still allowed violating some safety
requirements [75];

c) There is no explicit mention as to whether AI has
indeed been used within the case study robot design.

Shafaei et al. [76] have crafted a set of recommended
actions to reduce the impacts of the underlying uncertainties

FIGURE 10. Advantages and disadvantages of safety envelopes.

of machine learning for safety-critical components used
in UGVs. Among the recommended actions, the authors
highlight creating ontologies to enforce design level deci-
sions and translate them into a safe envelope that limits the
response of ML-based components. Since the research paper
solely focuses on presenting the proposed method for dealing
with ML-related uncertainties, no practical results have been
obtained by the authors [76].

Kuutti et al. [77] have explored implementing redundant
safety envelopes on the control loop of an UGV so that
the safety envelopes avoid front collisions based on two
AI-based movement controllers: a Deep Neural Network
(DNN)-based controller for optimum performance, and a
suboptimal ANN-based controller with less layers. Within a
simulated environment, Kuutti et al. [77] have observed that
the safety envelopes prevented unsafe scenarios and that such
safe action was required with a higher frequency when the
suboptimal ANN-based controller was in charge of control-
ling the UGV instead of the DNN-based one.

Lazarus et al. [58] have developed an RL approach to
synthesize safety envelopeswhich aims to increase their flexi-
bility by means of dynamic boundaries determined according
to operational characteristics. The authors have presented
positive results of their result in simulated case studies involv-
ingUnmannedAerial Vehicles (UAVs), since none of the sim-
ulated UAVs went outside their respective safety envelopes
even when adverse operation conditions (e.g., strong winds)
were exercised. Nevertheless, since RL determines the syn-
thesized safety envelopes, assessing a priori if underlying
RL models are sufficiently safe is still needed to ensure
that the safety envelopes synthesized with it are themselves
indeed safe. This last aspect has not been discussed by
Lazarus et al. [58].

Safety envelope-based solutions are mostly criticized for
two main reasons: (i.) underlying difficulties in formally
defining them, and (ii.) their inherent feature of overly con-
straining the performance gains that AI can introduce [78].
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The approaches presented in the next subsections aim to
somehow address these limitations.

c: SAFETY ASSURANCE BASED ON FAIL-SAFE AI
Another approach towards the safety assurance of AI-based
systems comprises research whose aim is to improve the
architecture and the learning process of AI-based systems
so that they approach fail-safe characteristics.
A graphical abstract of the advantages and disadvantages

in using fail-safe AI, as discussed more comprehensively
throughout this section of the paper, is presented in Figure 11.
Green text boxes indicate potential advantages of the
approach, whereas red text boxes indicate its disadvantages
and difficulties.

The main advantage of the fail-safe AI approaches is the
soundness of the resulting safety assurance arguments, since
they are typically supported by semi-formal or formal analy-
ses with strong mathematical background.

Gillula and Tomlin [38] have developed the GSOLR
(Guaranteed Safe Online Learning via Reachability) scheme,
whose aim is to define rules that restrict the AI behavior
on potentially unsafe boundaries of the AI image set. The
pre-condition for extracting these rules is determining the AI
image set, which is carried out by means of Hamilton-Jacobi-
Isaacs reachability analyses.

A real case study on a quadcopter that shall track a ground
vehicle using a fail-safe AI tracking system has been pre-
sented by the authors. Even though its results have supported
the soundness of the authors’ method, since the quadcopter
did not lose track of the ground vehicle, the quadcopter was
not subject to challenging situations such as the need to
deviate from in-course obstacles [38].

Jaeger et al. [79] have developed a fail-safe, model-based
reinforcement learning scheme whose aim is to create a
dynamic safety envelope – therein referred to as a ‘Region of
Safety (RoS)’ – to facilitate the design of safety-critical self-
adaptive and cooperative multi-agent systems. The authors
have exercised their method by means of simulated case
studies in which UGVs cooperatively adapt their learning-
based cruise control systems to avoid potentially unsafe situ-
ations as they travel towards their objectives. The final results
support that the method developed by the authors is safe,
since no potentially unsafe situations were identified through-
out the case studies. However, the authors themselves claim
that underlying data and model uncertainties were simplified
and restrained to low levels of Gaussian noise, which could
ultimately undermine the validity of their safe results in real-
world scenarios [79].

Lin et al. [80] have presented the Abstraction Refinement-
Guided Training (ART) as a formal methods-based means
for building correct-by-construction ANNs by minimizing
a loss function which quantifies the learning errors of the
ANNs with time. The authors have exercised ART by means
of two simulated case studies: one considering 45 different
ANNs to control an UAV anti-collision system, and another
one based on an anti-collision system for UGVs. The results

FIGURE 11. Advantages and disadvantages of Fail-Safe AI.

presented by the authors, however, have revealed limitations
on the feasibility of fail-safe ANNs with ART on the UGV
anti-collision system, since potentially unsafe situations were
still identified after ART has been applied [80].

Zhao et al. [81], Zhao et al. [82], and Peruffo et al. [83] have
developed means to synthesize intrinsically fail-safe ANNs
by means of barrier certificates, so that formal boundaries
for safe and unsafe state sets for the ANNs are explicitly
established. Mixed results were obtained with this approach.
One the one hand, Zhao et al. [82] presented a hypotheti-
cal case study in which not all potentially unsafe situations
could have been avoided by applying their method. On the
other hand, Zhao et al. [81] and Peruffo et al. [83] had pos-
itive safety results. The UGV control application covered
by Zhao et al. [81] led to satisfactory safety-related results,
whereas Peruffo et al. [83] resorted to case studies based on
hypothetical benchmark systems of up to eight dimensions,
which have also led to results that corroborate safety require-
ments have been satisfied.

Sha et al. [84], Claviere et al. [85], and Wang et al. [86]
have presented approaches in which the safe response of
ANNs is overapproximated, i.e., overestimated. The main
objective of overapproximation is to reduce the computa-
tional cost of the underlying exact solutions on defining a safe
set for an AI model whilst obtaining an overapproximated
safe state set in which the actual exact safety task is contained.
With overapproximation, an output is certainly safe when it is
within the overapproximated safe set, whereas no conclusions
can be drawn on its safety when outside it [84], [85], [86].
In the latter case, additional safety policies or analyses shall
be applied [85].
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Sha et al. [84] have explored their proposed overapproxi-
mation scheme by simulating a mass-spring damper system
controlled by a DNN and varying the latter’s architecture
(e.g., number of neurons, number of hidden layers, and activa-
tion functions) in each experiment.With the aid of a prototyp-
ing tool of their own overapproximation model, the authors
were able to create 10 safe DNNs out of the 12 exercised
architectures [84]. Since at least a single solution is sufficient
to deal with a specific problem, it is possible to consider
that the authors were successful in crafting a proven-as-safe
AI-based solution for their case study.

Claviere et al. [85], in turn, have developed means to
overapproximateANNs strictly based on the ReLU (Rectified
Linear Unit) activation function. Their approach has been
exercised with a case study that involves a modified version
of the Airborne Collision Avoidance System for Unmanned
Aircraft (ACAS Xu), in which ANNs were introduced as a
means to generate safe UAS maneuvers whilst reducing the
storage needs of the original ACAS system. The case study
scenario, involving two aircraft in potentially conflicting
routes to be resolved by the action of ACAS Xu, showed that
the overapproximation of the ANNs yielded to safe situations
in 98.8% of the tested settings, whereas the remaining 1.2%
could not be proven as safe (i.e., they are not necessarily
unsafe, but there is no sufficient evidence to say otherwise).

Wang et al. [86] have also focused their efforts on
ReLU-based ANNs with three main objectives: (i.) tight-
ening the overapproximations more than reference studies,
(ii.) improving the overall processing time in overapproxi-
mating neural networks, and (iii.) incorporating underlying
uncertainties of input data into the overapproximation cal-
culations. By means of a case study of an advanced cruise
control system for UGVs, the authors have reached the over-
approximate set of its ANN and the conclusion that such an
overapproximationwould be safe if the uncertainties of inputs
were constrained to a specific interval. When exercising the
ANN with input data within and outside such an uncertainty
range, the authors have obtained proof to support the sound-
ness of the previous conclusion: all outputs of the ANN
were safe when the uncertainty input bounds were respected,
and unsafe states when reached when this condition was not
met [86].

Other research in which tools for formally verifying ANNs
are covered are the ones by Zhu et al. [87] (ReachNN–Reach-
ability of Neural Networks), Ivanov et al. [88], [89] (Verisig
and Verisig 2.0), Sidrane et al. [90] (OVERT2), Tran et al.
[91] (NNV – Neural Network Verification), Fahmy et al. [92]
(HUDD – Heatmap-Based Unsupervised Debugging of Neu-
ral Networks), Pulina and Tacchella [93] (Neural Networks
Verifier – NeVer), and Katz et al. [94] (Marabou). The Deep-
Cert tool by Paterson et al. [95] mixes formal verification of
ANNs and DNNs used in image processing functions with
black-box tests that aim to model potential image corruptions

2A formal definition of the acronym ‘OVERT’ is missing in its originating
reference by Sidrane et al. [90].

due to e.g., haze, blur and contrast changes. Moreover, other
tools that can aid the verification of discrete-time systems
with AI, such as dReal, dReach, and Flow ∗, have also
been covered in the research by Tuncali et al. [96] and
Val et al. [97].

Phan et al. [98] and Shukla et al. [99] have proposed archi-
tectural models which define the so-called simplex architec-
ture for safety-critical ML-based systems. This architecture
comprises four main modules: (i.) an AI controller and three
non-AI-based elements: (ii.) a reference controller, which has
been proven to safely accomplish the same safety-critical
function of the AI controller albeit with subpar performance,
(iii.) a safety-critical controller switch, which chooses the
output of the AI controller if it is safe or the output of
the reference controller otherwise, and (iv.) an optional AI
controller adapter, which improves the AI controller with
time by means of a learning process whenever it produces
an incorrectly permissive (unsafe) output. The objective
of the preexistent non-AI-based safe elements is twofold:
(i.) ensuring safety when AI-based controllers fail to do so,
and (ii.) leveraging the runtime learning of AI-based con-
trollers so that the safe controller is used as little as possible
with time.

Phan et al. [98] have exercised the full simplex architecture
by means of two simulated case studies with ANN-based AI
controllers: a moving-target tracking system for UGVs and an
automated insulin pump for medical patients with diabetes.
In both scenarios, the simplex architecture as a whole led
both systems to behave safety: the UGV was able to track
a moving target and avoid colliding with it, and the insulin
pump avoided long-term hyperglycemia and short or long-
term hypoglycemia [98].

Shukla et al. [99], in turn, designed an ANN-based control
system for UAVs based on the simplex architecture, albeit
disregarding the AI controller adapter on their model. Case
studies carried out in simulated environment and in hardware-
in-the-loop scheme (i.e., with the physical implementation
of the UAV control system) supported that the UAV control
system met its safety requirements, since no collisions with
other elements have occurred. Furthermore, the authors have
also observed proper switching between the AI controller
and the reference controller whenever needed to avoid unsafe
scenarios [99].

In addition to Phan et al. [98] and Shukla et al. [99],
other recent research has explored the usage of the simplex
architecture for safety-critical systems with AI. On 2022,
for instance, four research papers report its usage: Chen et
al [100], Peng et al. [101], and Wang et al. [56] have used
the simplex architecture to support safety-critical functions
on UGVs, whereas Thumm and Althoff [102] have exper-
imented its usage on industrial environments with human-
robot collaboration.

In all three UGV-related research papers, the authors have
conceived a RL-based AI controller and a proven-as-safe
reference controller to perform driving control functions.
It is important to highlight that, whereas Phan et al. [98]
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and Shukla et al. [99] have crafted a non-AI-based refer-
ence controller as the reference controller, Chen et al [100],
Peng et al. [101], and Wang et al. [56] opted for using AI
controllers which have been proven-as-safe by means of
overapproximate mathematical models. In all three research
papers, the authors have performed simulated case studies
in which the safety-critical UGV functions they explore are
on controllers included in the simulation loop and reached
overall positive conclusions with regard to safety assurance
whilst also retaining adequate performance.

Finally, Mehmood et al. [103] has extended the original
simplex architecture by adding to it a look-ahead mechanism
which loosens the safety requirements of the reference con-
troller, allowing the latter to be also AI-based whilst ensuring
global system safety. In the approach proposed by the authors,
the safety-critical controller switch is augmented with two
capabilities: firstly, it is able to process the immediate-future
safety states of the whole system; secondly, it carries out
reachability analyses on the reference controller to check
whether it will reach or not the near-future safe states.
If safety is not ensured, two safe actions are possible: (i.) the
reference controller downgrades to previous versions up to
meeting the safety constraints, or (ii.) the augmented safety-
critical controller switch takes a deterministic safety decision
if the downgrading of the reference controller times out.

The authors have exercised the extended simplex archi-
tecture with two simulated case studies: a model-predictive
control for multi-robot coordination, and a collision avoid-
ance mechanism for aircraft. The authors have not identified
potentially unsafe scenarios from a systems point of view,
but highlighted the difficulty in using their extended simplex
architecture because it requires a significant amount of stor-
age space for the look-up tables of the reference controller
(e.g., hundreds of gigabytes for the aircraft collision avoid-
ance controller) [103].

The main limitations on designing fail-safe AI is the high
computational cost of reachability analyses even with simple,
non-deep AI models with not many input variables. This
is due to the inherently NP-Hard computational complexity
of the involved models, which require techniques such as
Satisfiability Modulo Theories (SMTs) and Linear Program-
ming to be solved [104]. Furthermore, even if simplifica-
tion schemes such as overapproximations are considered,
these can either mask potential safety issues if misconceived,
or even lead the resulting system to be ‘excessively safe’,
to the point that an allegedly better performance introduced
by the AI might be unjustified by the added complexity [74],
[82], [87].

Moreover, when fail-safe architectures make use of non-
AI-related fail-safe elements to mitigate potentially unsafe
responses of the AI, they also share the same corresponding
limitations of safety envelopes. On the other hand, though,
as the AI elements are designed to learn with the previous
unsafe responses, greater flexibility can still be achieved than
with safety envelopes per se. Finally, since there is still no
consensus on which types of AI redundancy support the

design of fail-safe, no ‘design patterns’ towards fail-safe AI
architectures have been established so far [37].

d: SAFETY ASSURANCE BASED EXPLAINABLE AI AND
WHITE-BOX ANALYSES
Explainable AI (XAI) is also deemed an emergent topic to
address the safety assurance of AI-based systems, since it
aims to build AI elements which clearly allow humans to
identify decisions taken byAI and their underlying reasoning.
This ultimately makes it easier to assess AI-based systems
with white-box analyses, which are the norm of traditional
approaches used with non-AI-based safety-critical systems,
and also allows building robust safety arguments due to the
in-depth analyses [105].

A summary of the advantages and disadvantages of the
approach combining XAI with white-box analyses, discussed
in more detail throughout this subsection of the paper, is pre-
sented in Figure 12. Green text boxes indicate potential
advantages of the approach, whereas red text boxes indicate
its disadvantages and difficulties.

Kurd et al. [37] and Kurd and Kelly [32], [33], [36] have
developed a W-shaped systems lifecycle to build and analyze
safety-critical hybrid ANNs based on Fuzzy Self-Organizing
Maps (FSOMs). The lifecycle introduces the concept that
the aforementioned hybrid ANNs can be assessed as safe
because they are explainable. Such explainability results from
the ANN being generated by a gradual refinement of the data
used in the ANN learning as its design progresses, which led
these ANNs to be called Safety-Critical Artificial Neural Net-
works (SCANNs). This refinement, in turn, is automatically
achieved by the FSOMs, which are created by human experts
through fuzzy rules that explicitly define the ANNs expected
behavior.

A case study of an hybrid, FSOM-based ANN to control
a gas turbine has been presented by the authors along with
results that support that the system is explainable and safe
for the three safety requirements they defined – namely,
(i.) avoiding engine surge, (ii.) avoiding turbine blade over-
heating, and (iii.) avoiding engine overspeed [37].

Grushin et al. [105] have conceived an overapproxima-
tion model to translate Long Short-Term Memory (LSTM)
ANNs into explainable models by clearly defining hyper-
planes which characterize the image set of the LSTM ANNs.
The case study explored by the authors has aimed to conceive
and assess the safety of an explainable LSTM ANN-derived
model which is in charge of predicting if an aircraft will
reach a degraded state. In this context, the LSTM ANN
decides whether a degradation is expected based on both
the aircraft’s internal systems’ health and the operational
context of the global airspace as monitored by the aircraft
itself [105].

The authors have presented two main results. Firstly, the
hyperplanes which define the boundaries between opera-
tional and degraded states corroborate the explainability of
the model. Secondly, the example of the case study leaned
towards safety, as the explainable model derived from the
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FIGURE 12. Advantages and disadvantages of explainable AI with
white-box analyses.

LSTM ANN tended to predict degradations earlier than
expected [105].

Salay et al. [106] have presented a Failure Modes, Effects
and Criticality Analysis (FMECA) approach crafted to the
safety analysis needs of AI-based systems. The base of their
method is that four sources of AI failure modes shall be
considered: (i.) failures on abstracting real world elements
by AI, (ii.) AI uncertainties, (iii.) susceptibility to adversarial
attacks, and (iv.) AI failures on dealing with the compromise
between safety and other requirements (e.g., performance).

The proposed method has been applied to a ML-based
UGV system which is in charge of either maintaining the
vehicle within its traffic lane ormoving to another lane should
there be obstacles and safe conditions for the lane change
(e.g., no other vehicle nearby on the neighboring lane). The
main results obtained by the authors support the soundness of
the FMECA method in identifying and assessing AI-specific
failure modes of AI, including adversarial attacks. However,
since the method requires significant effort due to state explo-
sion, the authors reinforce that complexity reduction tech-
niques are needed to make the analyses tractable [106].

Nahata et al [107] have crafted a XAI risk predictionmodel
for UGVs based on DTs and RFs, in such a way that the
structure of the DTs and the median behavior on RFmembers

would determine the reasoning of the risk prediction engine.
The case study presented by Nahata et al [107] aimed to build
XAI risk prediction models using as input a dataset including
1,118h of autonomous driving from 20 different UGVs and
describe the average driving risk behavior on this dataset.
The two main results presented by the authors are as follows:
(i.) both the DT and the RF risk prediction models have had
appropriate XAI capabilities, since they traced the contribu-
tion of each input variable to the risk outcomes throughout
the reasoning process, and (ii.) the RF solution has achieved
better risk prediction results than single decision trees for the
target application.

Groza et al [61] have built an AI-based tool whose aim is
to support ophthalmologists in diagnosing two retinal condi-
tions: diabetic retinopathy and age-related macular degener-
ation. The tool is based on four redundant AI instances: three
ML-based ones (namely, ANN, DT, and SVM) for classifying
retinal images, and a rule-based system with normative data
for retina and a conflict resolution strategy for interleaving
the outputs of the ML classifiers. XAI has been deemed
relevant by the authors because it is of paramount importance
for ophthalmologists to be aware of the reasoning that the
diagnosis tool made to reach its final result.

XAI was achieved by Groza et al [61] in two ways: firstly,
the DT and the rule-based system are explainable per se;
secondly, a rule matrix tool has been used with the ANN and
the SVM to translate their complex, black-box models into
overapproximate rules of input patterns that were considered
to diagnose retinas. The results presented by the authors
in case studies aiming to diagnose the state of real retinas,
beforehand known to be healthy or unhealthy by experts,
corroborate that explainable rules have been obtained with
AI along with a degree of confidence on each of these rules
[61]. On the other hand, the authors have not explored safety
concerns other than explainability, such as the quantitative
assessment of the performance and confidence metrics per se.

An application-free tool that supports the white-box anal-
ysis of AI-based models is DeepImportance, developed by
Gerasimou et al. [108]. Such tool has been crafted with the
aim of allowing systematic black-box testing and white-box
evaluation of DNNs, including analyses on how their under-
lying architectures (i.e., specific neurons and interconnects /
synapses) affect their overall behavior [108]. With this
approach, a better understanding on how each neuron and
layer of a DNN contributes with potentially safe and unsafe
outputs is facilitated.

The research of Ma et al. [109], in turn, aims to establish
a set of quantitative criteria, also based on exploring the
underlying architecture of a DNN, to increase the coverage of
safety-critical testing – namely, those related to corner cases
and adversarial attacks, for which small input perturbations
can lead to a significant output shifts [110]. The set of test-
ing criteria, referred to as DeepGauge, has been applied to
five DNNs used in image recognition functions and allowed
inferring that a greater coverage of critical scenarios has been
achieved. Despite the successful results, the authors have
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considered that more testing criteria is still needed for an
increased test coverage in, e.g., a context of automated test
generation for safety-critical systems [109].

DeepXplore has a motivation similar to that of DeepGauge
in leveraging test coverage by using data extracted from the
internal structure of an AI-based model, and it relies on using
AI for that purpose as well. According to Pei et al. [111],
experiments have allowed not only detecting that the assessed
DNNs failed in dealing with specific types of corner cases,
but also in increasing in 3% the accuracy of the models
once improvements had been introduced to the design of
the DNNs. The authors have not discussed, though, how
DeepXplore’s AI has been ensured as appropriate for such
an application.

Another relevant avenue for building safety arguments
based on white box analyses and tests is by using fault
injection techniques in such a way that faults are injected
on the internal elements of an AI model. By injecting faults
to safety-critical AI elements, one can assess how resiliently
these are tolerated and whether an unsafe state otherwise
undetected in regular tests and analyses can be reached. Two
interconnected tools developed by an overlapping group of
researchers – namely, TensorFI (TensorFlow Fault Injection)
[112] and BinFI (Binary Fault Injection) [113] – are herein
highlighted as relevant research on this theme.

TensorFI represents the core fault injection engine for
ML-based components of the research by Chen et al. [112],
[113]. Even though its development was targeted towardsML
implemented with the TensorFlow framework, it is claimed
that other frameworks and libraries can also benefit from
the underlying fault injection techniques if properly adapted.
By assuming the hypothesis that hardware and software
faults can be equally represented by corrupting a TensorFlow
internal operator, Chen et al. [112] have crafted a tool that
allows modeling a wide and plausible set of random and
systematic faults that can affect the elements of a computer-
based safety-critical system. Experiments with ANNs used
in image recognition functions, including those embed-
ded on autonomous driving systems, allowed inferring that
TensorFI allows improving the robustness of ML-based ele-
ments to faults. Moreover, increasing TensorFI’s flexibility
to support other frameworks for developing ML, includ-
ing the C++ version of TensorFlow, are listed as needed
improvements [112].

BinFI, in turn, is a binary search-based approach to identify
safety-critical ML elements and concentrate the fault injec-
tion strategy to these elements instead of performing a mode
comprehensive and random fault injection strategy. Bymeans
of experiments with DNNs used in autonomous driving sys-
tems, Chen et al. [113] have identified that, by using BinFI
along with TensorFi, the binary search strategy has outper-
formed a random fault injection strategy in making ML safer.
On the other hand, it has been stressed out that such positive
results of the BinFI strategy only apply to ML elements
whose error propagation functions are at least approximately
monotonic [113].

Finally, Jia et al. [114] have discussed the theoretical rela-
tionship between XAI and safety and illustrated their findings
by means of a case study in which different types of AI are
employed to guide the process of extubation of patients in
intensive care units. The main conclusion of the authors is
that, even though XAI plays an important role for safety, once
it allows tracing back the reasoning performed by the AI in a
way that humans are able to understand, XAI is not sufficient
for ensuring safety on its own.

Based on the previous discussion, the benefits of XAI
and white-box testing come at the expense of the following
burdens:

a) There is a higher need for multidisciplinary experts on
both safety and AI to support the safety assurance of
AI-based systems;

b) XAI on its own poses challenges because it still is an
emerging area [52];

c) XAI does not ensure that a system is safe [114];
d) White-box analyses of rather opaque AI models, such

as large ANNs and DNNs, are challenging enough
to the point of leaning towards unfeasibility on many
applications. If their internals could be properly under-
stood during white-box analyses, simpler and more
explainable AI models could have been conceived
beforehand instead [57], [58]. For instance, among all
reviewed research papers of this class, only those by
Grushin et al. [105] and Kurd et al. [37] have pro-
vided clear, analytic geometry-related XAI capabilities
to ANNs.

e: DEFINITION OF SAFETY ASSURANCE PROCESSES
SPECIFICALLY FOR AI-BASED SYSTEMS
The last relevant approach for the safety assurance of
AI-based systems is that it shall be continuously carried
out with a process-oriented approach, starting on require-
ments elicitation and extending up to system operation,
by monitoring the system outputs with time and comparing
them with expected results. It has been argued that such a
process-oriented approach shall take into account specific
safety assurance techniques for AI [70], [78] and that the typ-
ical V-shaped method from non-AI-based safety standards,
such as IEC61508 and CENELEC EN50129 [9], [11], is not
deemed enough to deal with AI-based systems [115], [116].

In addition to the previous characteristics, extending the
safety assurance process of AI-based systems so that it is con-
tinuously performed during system operation up to its decom-
missioning is another difference from non-AI-based systems.
This is mostly important for online learning-based systems,
since their constant learning changes their architecture as they
operate, and the original safety arguments that supported its
safety prior to revenue service can be undermined with new,
on-demand learned settings.

A landscape of the advantages and disadvantages in craft-
ing a safety assurance process for AI-based systems, based
on the further analyses in the present subsection, is presented
in Figure 13. Green text boxes indicate potential advantages
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of the approach, whereas red text boxes indicate its disadvan-
tages and difficulties.

The previously detailed set of research papers byKurd et al.
[37] and Kurd and Kelly [32], [33], [36] is one of the earliest
efforts towards this path as well, since it establishes a sys-
tems lifecycle to design explainable ANNs with FSOMs and
defines specific design, verification and validation activities
at each of its steps. In addition to this set, the research by
Douthwaite and Kelly [117], Häring et al. [118], Koopman
and Wagner [73], Koopman et al. [119], Mock et al. [120],
Pedroza and Adedjouma [116], Pereira and Thomas [121],
Salay and Czarnecki [122], and Tarrisse et al. [123] are
also relevant examples of systematic, process-oriented means
towards the safety assurance of AI-based systems.

Douthwaite and Kelly [117] have crafted a lifecycle for
developing safety-critical systems based on Bayesian net-
works (BNs). For that purpose, five main steps have been
identified: (i.) selecting datasets and assessing their applica-
bility; (ii.) creating the BN models per se, including their
structure parameterization; (iii.) defining the algorithms to
compute BNs; (iv.) selecting supporting modeling frame-
works and tools; and (v.) maintaining the system after its
deployment. The authors have experimented their workflow
on a case study considering an intensive care unit alarm
system based on a BN model with 37 random variables
and approximately 500 model parameters. Even though the
authors have shown promising results with their approach,
they highlight that further systematization is still needed,
notably on defining failure mode patterns for BNs and tracing
safety analysis results to high-level requirements [117].

Koopman and Wagner [73] have presented, without case
studies or applications, a framework for the safety vali-
dation of UGVs by identifying and discussing factors to
increase the robustness of safety arguments whilst balanc-
ing the costs of balancing analyses, simulations and tests
towards reaching a minimally sufficient robustness. Later,
Koopman et al. [119] filled some of these gaps by defining
a minimum set of requirements that ML-based systems of
UGVs shall observe to reach the foreseen safety goals. It is
worth noting that the research by Koopman and Wagner
[73] has ultimately led to the crafting of ANSI/UL4600 in
2020 as the first de jure standard towards the continuous
safety assurance of AI-based systems throughout a system’s
lifecycle. It is worth noting, though, that ANSI/UL4600 has
been conceived with generalization on mind and avoiding
at most technology-specific guidelines [15], [124]. Hence,
final users of the ANSI/UL4600 standard would still require
technological guidance to properly apply it to their products,
and developing such guidance would, in turn, still require not
only practical expertise, but also an extensive compilation of
research efforts still widely pulverized, as shown by means
of the present SLR, as well as further advancements on the
safety assurance of AI-based systems, given the guidelines
for future work discussed about in section VI.

Tarrisse et al. [123] have assessed to what extent the
IEC61508:2010 standard [9] could be employed on the safety

FIGURE 13. Advantages and disadvantages of safety assurance processes
for AI-based systems.

assurance of AI-based systems and further discussed addi-
tional mechanisms that would be needed to make it fully
compatible for that application. Based on these analyses,
the authors have defined a five-step lifecycle for the safety
assurance of systems with AI: (i.) specification; (ii.) data
management; (iii.) model development; (iv.) model deploy-
ment; and (v.) operation and retirement. The authors have
left outside the scope of their research providing further
technical remarks on these steps – notably regarding safety
assurance techniques –, as well as applying the method on
case studies [123].

Salay and Czarnecki [122] have developed a four-step
method to verify safety-critical systems with supervised
learning, namely (i.) assessing databases used in the learning
process, (ii.) assessing how general the AI response is to
input stimuli, (iii.) formally verifying the AI models, and
(iv.) repeating such formal verification periodically during
the system operation. The authors have provided examples
of techniques that could be applied to each of the proposed
lifecycle steps, but no case studies on the practical usage of
their method have been covered in the research paper [122].

Mock et al [120], in turn, have proposed a 12-step pro-
cess to define the lifecycle of DNN-based safety-critical
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components used within UGV systems. The 12 steps
are as follows: (i.) specifying customer-facing functional-
ities; (ii.) specifying operational design domain context;
(iii.) specifying system architecture; (iv.) specifying system
functions, notably AI-related ones; (v.) specifying and acquir-
ing training and development data; (vi.) designing ML mod-
els; (vii.) pre-processing data; (viii.) training (supervised)
ML models; (ix.) post-processing data; (x.) performing tests,
verification and validation activities; (xi.) monitoring the sys-
tem operation; and (xii.) performing maintenance whenever
needed. The authors have neither discussed recommended
techniques for any of these steps nor presented a practical
application of the proposed model by means of, e.g., a case
study [120].

Following a similar approach, Häring et al. [118] have
developed an 8-step process to guide the lifecycle of AI-based
systems – including those with online learning. The eight
steps defined by the authors are (i.) context analysis, scope,
and aim formulation; (ii.) AI method selection; (iii.) data
selection and spotting; (iv.) data preprocessing; (v.) AI model
development and training; (vi.) model testing, verification,
and validation; (vii.) model application; and (viii.) model
modification and updating. Even though the authors have
identified that Generative Adversarial Networks (GANs) are
useful tools to support the generation of safety-critical sce-
narios on steps ‘‘(i.)’’ and ‘‘(vi.)’’, the research has limitations
similar to those ofMock et al [120] – namely, no deepening of
the needed technical activities for each step, and no examples
or guidelines for its application [118].

The same trend has also been followed by Pedroza and
Adedjouma [116], who have proposed an iterative lifecycle
for developing safe-by-design AI-based systems. Each lifecy-
cle iteration includes the following set of 11 steps: (i.) defin-
ing missions and goals; (ii.) structuring AI principles;
(iii.) performing decompositional analyses; (iv.) structur-
ing AI knowledge bases; (v.) allocating AI techniques;
(vi.) selecting knowledge bases; (vii.) designing the detailed
AI architecture; (viii.) developing and integrating AI models;
(ix.) settling validation benchmarks; (x.) evaluating the AI
performance; and (xi.) implementing and deploying the AI
system. Safety entwines with this lifecycle by means of situa-
tional analyses and the identification of hazards, safety goals,
and AI-related malfunctions and faults. Even though the
authors have applied the proposed method to build the con-
ceptual design of an autonomous shuttle system in Systems
Modeling Language (SysML), no further technical aspects
and/or practice have been presented.

The research by Pereira and Thomas [121] also follows
a similar approach. On this study, the authors advocate that
the lifecycle of an ML-based system shall have at least five
steps – namely (i.) requirements specification; (ii.) data man-
agement; (iii.) model development; (iv.) model testing and
verification; and (v.) model deployment. Furthermore, the
authors present a non-exhaustive list of hazards that shall
be addressed for safety-critical systems at each of these
steps. They also highlight that safety assurance techniques of

regular, non-AI-based systems, shall be used along with spe-
cific techniques for AI to build sound safety arguments [121].

The conceptual lifecycle and hazards identified by Pereira
and Thomas [121] are further exercised on a case study of
a self-driving vehicle used in a collaborative human-robot
industrial environment. In this case study, the authors illus-
trate how the lifecycle and the underlying ML hazards can
be expanded from a technical standpoint; nevertheless, tech-
niques for assuring that AI is safe are not further explored by
the authors.

The SafeML approach proposed by Aslansefat et al. [125]
establishes a safety assurance process for classifiers (i.e.,
supervised learning-based components with discrete out-
puts). Its safety-related activities range from the selection of
appropriate datasets for building and training the classifiers
up to the monitoring of the system during its operation. Sta-
tistical criteria – notably the cumulative distribution functions
of each output class – are used to assess whether safety has
been reached with a given confidence. SafeML has been built
in such a way to provide proper integration with XAI and
security, given their contributions to safety.

Even though the case studies performed byAslansefat et al.
[125] focus on experimental datasets and ML elements not
necessarily with a tight link to actual safety-critical applica-
tions, as per the SafeML official GitHub project history [126],
additional studies have been carried out by other researchers.
Bergler [127], for instance, has applied it to an autonomous
driving system, focusing especially on the training dataset
safety activities. The overall results were positive and sup-
ported the soundness of SafeML for ML-based systems used
in typical safety-critical applications [127].

An important aspect worth highlighting is that all previ-
ously discussed references have included the safety assurance
of datasets employed at safety-critical AI design as part of
the systems’ lifecycle. This is due to the reason that datasets
can affect the training and the validation of AI-based systems,
leading to, e.g., overfitting and underfitting issues, overly
sensitive corner cases and susceptibility to adversarial attacks
if they are inappropriate for the target application.

Most research on the safety assurance of datasets used
in safety-critical AI-based systems targets to circumvent the
aforementioned issues. For instance, Aoki et al. [128] have
developed a method to assess labeled datasets used in super-
vised learning schemes which combines statistical analy-
ses with FTA to assess potential faults on the datasets and
exercised it with the recognition of handwritten characters.
Boulineau [129] has discussed, among other topics related to
safety-critical AI based on supervised learning, a taxonomy
of failure modes applicable to labeled datasets and applied it
to a train control system which automatically detects track
signals. Gauerhof et al. [130] have followed an approach
similar to that of Boulineau [129] and defined, among other
characteristics on safety-critical AI, means to elicit and assess
dataset-related safety requirements. Gauerhof et al. [130]
have also explored the practical application of their method
on an image dataset applied to obstacle detection by UGVs.
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Klaes et al. [131] have discussed the importance of incorpo-
rating uncertainty quantification into the safety assurance of
AI-based systems, which are tied to the quality of input data
and to the underlying architecture and mathematical models
of AI by means of a model called Uncertainty Wrapper.
Finally, Subbaswamy et al. [132] have presented a framework
for analyzing the robustness of ML models to changes on
datasets and illustrated its application with a random forest
model employed to predict sepsis in hospital patients with
different health profiles.

Another theme of interest for systematizing the safety
assurance of AI-based systems conceiving safety assurance
patterns for specific AI variants, categories, and/or tech-
niques. A safety assurance pattern is a meta-model whose
structure defines, for a specific class of systems, a set of
safety goals, the contexts in which they are inserted and the
arguments that are needed, along with contexts, to fulfill the
safety goals [133]. Some research aiming to establish safety
assurance patterns includes the efforts by Bragg and Habli
[134], Gauerhof et al. [135], and Salay et al. [30].

Bragg and Habli [134] have developed the foundations
for an assurance pattern that might be used to support the
safety assurance of RL-based systems. The authors have
defined that an RL system can be safe on its environment if
it satisfies four other lower level goals: (i.) achieving a safe
configuration, (ii.) performing a safe reconfiguration when
needed, (iii.) transitioning to a fail-safe state when needed,
and (iv.) reverting to a safe state when needed. Despite the
relevance of assurance patterns as a tool to systematize and
simplify the safety assurance of systems, the authors them-
selves recognized that the lower level goals still need to be
further expanded, notably with regard to three main themes:
(i.) means to constrain RL for safety, (ii.) means to implement
dynamic safety monitoring mechanisms, and (iii.) how to
guarantee that online RL ensures its safety on its own [134].

Gauerhof et al. [135] have conceived a safety assurance
case for a pedestrian detection function, which is a typical part
of an UGV. Even though specific features of the system have
been taken into account when building the safety case, such
as the usage of convolutional neural networks (CNNs) for
image processing, it serves as a relevant pattern not only for
other pedestrian detection functions, but also to other object
detection features that rely on CNNs. This stems from the fact
that the upper goal of themodel, defined as ‘machine learning
function meets all of its safety requirements’, is broad enough
for such a generalization.

Salay et al. [30] have proposed a safety case template –
hence, an assurance pattern – with a systematic method to
generate safety arguments among systems-level and unit-
level components of computer vision AI-based systems. The
authors have instantiated their template for an object detec-
tion task and included a semi-literal solution, which led not
only to a qualitative assurance pattern, but also to bound
probabilities to reach the applicable safety goals. Even though
the research by Salay et al. [30] represents relevant advance
on establishing assurance patterns per se, the authors have not

provided further details on the means that shall be considered
to collect the needed evidence that supports the underlying
safety arguments of their assurance pattern [30].

Finally, Cheng et al. [136] have developed an open-
source toolbox, called nn-dependability-kit, to support the
engineering of ANN-based systems used in autonomous
driving systems. The foundations of nn-dependability-kit
are based on an assurance pattern with four major safety
goals linked to the AI-based system lifecycle: (i.) ensur-
ing appropriate data collection prior to designing the ANN,
(ii.) ensuring proper ANN performance during training and
validation, (iii.) ensuring that no potentially unsafe behav-
ior emerges during tests and design generalization, and
(iv.) ensuring that no potentially unsafe behavior emerges
during actual operation. In order to allow users to reach
these goals, specific design and verification techniques (e.g.,
based on formal methods) are available as part of the tool-
box, which has also been positively referred to in previously
analyzed studies such as those by Klaes et al. [131] and
Gauerhof et al. [135].

4) CONCLUDING REMARKS ON THE STATE OF THE ART OF
AI-BASED SYSTEMS
In summary, research correlating safety to AI has signif-
icantly evolved since it first emerged in the mid-1980s.
The technological evolution of computer systems – notably
related to their processing and storage capabilities – have
paved the way towards using AI in safety-critical systems
and, hence, made the safety assurance of such AI-based
systems a major research concern from 2016 onwards.

An overview of themost relevant research towards assuring
that AI-based safety-critical systems indeed meet their safety
requirements shows that most research on the area spans
five major methods towards that objective. These include
(i.) black-box testing of AI, (ii.) designing non-AI-based
safety envelopes that limit AI response, (iii.) designing fail-
safe AI, (iv.) combining explainable AI with white-box
analyses, and (v.) establishing a process-oriented approach
throughout systems’ lifecycle considering specific technical
aspects of AI.

Furthermore, the main AI variants that have been exercised
follow the current trend of AI research itself, leaning towards
machine learning and, more specifically, neural networks,
deep learning, and reinforcement learning. Even though this
allows safety andAI areas to evolve together, it is deemed that
focusing on rather opaque and hard-to-understand models
such as deep neural networks is rather challenging for safety,
notably because further advancements on simpler and easier-
to-understand AI models are still needed.

Finally, with regard to the final results of research papers
on the safety assurance of AI-based systems, two main cate-
gories have been identified.

The first of them comprises research whose aim is just to
propose means to address the safety assurance of AI-based
systems. In this case, the methods themselves are the
main results presented by the authors, and unless formal
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mathematical proof is provided to support the methods’
soundness, further research on case studies is usually indi-
cated as the aim for future research. Hence, in these sce-
narios, one might assume that the research leans towards
improving the safety of AI-based systems; nevertheless, there
is still no strong conclusion on whether such alleged safety
improvements could indeed be reached due to the lack of
formal or practical results. This is the case, for instance,
of the research by Häring et al. [118], Koopman and Wagner
[73], Koopman et al. [119], Mock et al. [120], Pedroza and
Adedjouma [116], Salay and Czarnecki [122], Shafaei et al.
[76], Tarrisse et al. [123], and Watanabe and Wolf [68].

The second variant includes research in which, along
with safety assurance methods, case studies with simulated
or real world-based tests are also presented to support the
application of the proposed methods. As per the analyses
performed throughout subsection ‘‘V-B-3)’’, the results pre-
sented by the authors are typically positive and supportive
of their proposed methods, with a research being proposed
for additional improvements. This is the case of Aoki et al.
[128], Aslansefat et al [125], Bergler [127], Boulineau [129],
Chen et al [100], Chen et al. [112], [113], Cheng et al.
[136], Claviere et al. [85], Corso et al. [65], Douthwaite and
Kelly [117], Gauerhof et al. [130], [135], Gerasimou et al.
[108], Gillula and Tomlin [38], Groza et al [61], Grushin et al.
[105], Hussain et al. [70], Jaeger et al. [79], Jia et al.
[114], Klaes et al. [131], Kozal and Ksieniewicz [71],
Kurd et al. [37], Kurd and Kelly [32], [33], [36], Kuutti et al.
[77], Lazarus et al. [58], Ma et al. [109], Mehmood et al.
[103], Meltz and Guterman [66], [67], Nahata et al [107],
Peng et al. [101], Pereira and Thomas [121], Pei et al.
[111], Peruffo et al. [83], Phan et al. [98], Salay et al. [30],
Salay et al. [106], Sha et al. [84], Shukla et al. [99], Sub-
baswamy et al. [132], Wang et al. [56], Wang et al. [86],
and Zhao et al. [81]. There are exceptions, though, in which
the authors themselves consider that their objectives have
not been fully reached, such as Bragg and Habli [134],
Lin et al. [80], Machin et al. [75], Sun et al. [69], Tahir and
Alexander [21], and Zhao et al. [82].

As a result, one can infer that overall improvements
in ensuring safety could be reached in most studies of
the second variant. This comes either because the pro-
posed methods themselves have been applied with success-
ful results, or because, even if issues were identified, the
authors have discussed relevant future work to circumvent the
issues towards allegedly better safety assurance methods or
approaches.

VI. NEXT STEPS TOWARDS SAFE AI-BASED SYSTEMS:
GUIDELINES FOR FUTURE RESEARCH ON THE SAFETY
ASSURANCE OF AI-BASED SYSTEMS
The objective of this paper section is to present an anal-
ysis of future work regarding the safety assurance of
AI-based safety-critical systems and establish guidelines
with relevant research themes yet to be explored in fur-
ther research towards filling the current gaps on the matter.

Since these results stem from the answers to questions Q5
to Q6 (defined in subsection III-E) for all the 329 full-
text reviewed C3 references, the guidelines herein presented
have a twofold origin. Hence, they not only cover rele-
vant future work identified by the authors of the reviewed
research themselves (subsection VI-A), but also those based
on the cross-fertilization among the reviewed research
and the present research authors’ experience with AI and
safety-critical systems (subsection VI-B). Finally, the main
conclusions of the presented guidelines are covered in
subsection VI-C.

A. FIRST PART OF THE GUIDELINES: FUTURE RESEARCH
SUGGESTED IN PUBLISHED RESEARCH QUESTION Q5
Out of the 329 C3 papers, 58 of them (17.6%) lack discussion
on futurework. Hence, the remaining 271 papers inwhich this
topic has been covered served as reference to establish the
first part of the guidelines for future work related the safety
assurance of AI-based systems.

An overview of the eleven major items that are part of the
guidelines for future work as per research recommended on
the reviewed references is presented in Figure 14. Further
details on each of them, including specific themes and recom-
mended practice stemming from the higher level future work
areas, are covered in the following subsections.

1) ADVANCING ON SYSTEMATIC MEANS AND METHODS TO
ORIENT THE SAFETY ASSURANCE OF AI-BASED SYSTEMS
The first point of concern for future research is the
need to deepen the current efforts towards establishing
a process-oriented approach for the safety assurance of
AI-based systems during their lifecycle. Such a path has been
identified, for instance, by Pedroza and Adedjouma [116] and
by Tarrisse et al. [123], who have reinforced that there are few
initiatives on the subject [116], most of which still work-in-
progress and lacking details [123].

Investing in such future research is considered of
paramount importance because, in order to assess whether AI
effectively meets the desired safety goals of an application,
safety practitioners need beforehand the guidance of means
andmethods on how to assess safety per se. This a concerning
aspect especially because current safety practitioners are not
expected to have a deep knowledge of AI, and teaching
and training multidisciplinary professionals with expertise in
safety and AI is deemed a hard and time-consuming task.

In this sense, establishing a systems-oriented process-
based means to deal with the safety assurance of AI-based
systems throughout systems’ lifecycles and defining an
extensive set of ‘recommended practice’ for each lifecycle
step – e.g., focusing on particular techniques for specifying,
designing, verifying and validating different AI/ML variants
and techniques –, is a relevant direction for future research.

This could be reached, for example, by merging the
achieved advancements on safety assurance approaches iden-
tified throughout section ‘‘V-B-3)’’ – notably, (i.) black-box
testing of AI, (ii.) designing non-AI-based safety envelopes
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that limit AI response, (iii.) designing fail-safe AI, and
(iv.) combining explainable AI to white-box analyses – with
the research on ‘safety assurance processes for AI-based sys-
tems’ (subsection ‘‘V-B-3)-e)’’). Furthermore, joint efforts
along with other future research themes defined in these
guidelines would also be of benefit for that.

Special attention shall also be given to the safety assurance
of AI-based systems during their operation and maintenance
phase. This is relevant especially for systems with online
learning, as safety arguments built prior to their operation can
become void as systems learn with new data. Potential future
work on the assurance of safety-critical systems with online
learning require not only assessing the rate with which safety
arguments shall be reviewed, but also further advancements
on performing automatic safety analyses of AI. Some initial
seeds on this subject have been scattered by Cheng and Yan
[137] and by Mehmood et al. [103]. Cheng and Yan have
reinforced the need for additional research to improve the
performance of automated safety analysis tools given the real-
time requirements of safety-critical applications [137].

The justification behind advancing on systematic means
and methods to the safety assurance of AI-based systems
is that, by deepening the definition of activities and rec-
ommended practice to avoid and/or mitigate random and
systematic faults throughout the lifecycle of safety-critical
AI-based systems, safety practitioners would be better pre-
pared to deal with the safety assurance of AI-based systems.
With such detailed means and methods at hand, safety
practitioners would be able to act in a similar way to pro-
cess oriented by e.g. IEC61508:2010 [9] and CENELEC
EN50129:2018 [11] for non-AI-based systems, circumvent-
ing part of the searching and learning efforts practitioners
would require to apply a technology-agnostic safety assur-
ance standard for the safety AI-based systems, such as the
current version of ANSI/UL4600.

2) DEFINING JUSTIFIABLE AI VARIANTS AND
HYPERPAMETERIZATION OF AI MODELS
For safety-critical systems without AI, a system could only be
considered safe if, among other conditions, application- spe-
cific settings were properly verified and validated as correct
and safe for regular and degraded operational modes [138].

With AI, there are two other degrees of freedom when
conceiving a solution for a specific application. Firstly, one
specific variant of AI shall be chosen among different variants
within the same AI type/category (e.g., for discrete super-
vised learning, ANNs, DT/RFs and SVMs are some of the
resources at hand). Secondly, even after a specific AI variant
is selected, input data employed while conceiving the models
can also influence the internal architecture of the selected AI
variant itself by means of the so-called hyperparameters and
hyperfunctions. Hence, the choice of AI variants and their
hyperparameters and hyperfunctions has a strong potential to
influence the behavior of AI, thus directly impacting safety.
Wen et al. [25] have raised this specific point of concern on
their research.

Hence, future research aiming to explore and improve the
current methods of the AI métier in justifying the selection
of specific AI types and their settings (i.e., hyperparameters
and hyperfunctions) when designing safety-critical systems
is relevant. This includes the following topics:

a) Exploring and crafting strategies and techniques to
select AI and ML types for safety-critical functions –
for instance, by augmenting hazard and risk analyses
methods with AI-specific features and failure modes;

b) Formally defining the domains of hyperparameters
and hyperfunctions, as well as the strategies to tune
them for the target application (e.g., cross-validation
schemes, range, scale and step of hyperparameters’
variation on each experiment);

c) Making redundant preliminary designs using multi-
ple AI variants and comparing and contrasting them
with regard to their performance metrics, distributional
shifts, and adversarial attacks within the input datasets.
Fault injectionmechanisms, such as those implemented
in the TensorFI and BinFI tools [112], [113], can be of
benefit for this purpose.

3) ASSESSING THE IMPACT OF INPUT DATASETS ON SAFETY
Several researchers have highlighted that datasets employed
throughout the design and the operation of safety-critical
AI-based systems play a relevant role on the actual safety
levels that these systems, as a whole, actually achieve
(e.g., Burton et al. [115], Gauerhof et al. [130], Gupta et al.
[139], Rajabli et al. [18], Salay and Czarnecki [122],
Subbaswamy et al. [132], Watanabe andWolf [68],Wen et al.
[25], Zhang et al. [27]). As mentioned on subsection
‘‘VI-A-2)’’, the main reason for this is that datasets
themselves influence the architecture of the AI instances
crafted for a specific application. Hence, open topics on
dataset-related features consist of important themes for fur-
ther research within the context of AI-based safety-critical
systems.

A relevant theme for future research is defining the
attributes that a dataset shall possess in order to be deemed
adequate for a safety-critical application. Even though high-
level foundations for aspects to be observed and avoided
are presented in current research (e.g., data bias, dataset
shift, concept shift, out-of-domain data [27], quality of
labels [140]), general-purpose recommended practice on
building and analyzing datasets have not been extensively
researched yet.

One point of concern is related to dealing with the rep-
resentativeness of safety-critical scenarios, which tend to
be scarce, in proportion, in datasets which also include
records of regular operation of a system. Even though current
research indicates that simulation-based approaches are an
interesting means to obtain data for safety-critical scenarios
without exposing real systems to potentially harmful situ-
ations and injecting dataset-related faults (e.g., [25], [87],
[115], [139]), the processing of unbalanced databases for
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FIGURE 14. Summary of themes for future research on the safety assurance of AI-based systems suggested on reference papers.

safety-critical functions has not been extensively explored.
Moreover, the impact of distributional shifts over safety-
critical AI, which tends to be greater due to the inherent
unbalancing of datasets, has not been explored in depth as
well.

The scarcity of data related to safety-critical scenarios
also compromises the proper exploration of safety-critical
corner cases within datasets. Since corner cases can lead
an AI module to present a potentially unsafe behavior with
small input perturbations [110], studying them is a relevant
concern for safety-critical applications. Future research on
this theme shall take into account defining means to iden-
tify the representative of corner cases within datasets and
methods to assess how AI elements take them into account.
Even though general-purpose recommendation can be built to
guide that, it is deemed that most efforts shall be application-
specific, i.e., that identifying and assessing corner cases
depends on the target application per se. Currently, these
themes have been explored in more detail only for computer
vision (e.g., [135], [139]).

Another important avenue for future work is based on
investigating means to quantify and deal with data uncer-
tainty. This theme is relevant because the uncertainties of
datasets contents not only reflect their own quality, but also
influence the underlying AI architecture and mathematical
models [131] – thus impacting on the degree of trust on the
outputs produced by such AI. Despite some efforts on that

subject by Mjeda and Botterweck [141] and especially the
UncertaintyWrapper by Klaes et al. [131], themes such as the
systematic propagation of epistemic uncertainty throughout
an AI-based model could still benefit of future research.
Moreover, evaluating how to deal with subpar data (e.g.,
images collected with dirty lenses), data losses, and corrupted
data (due to e.g., failure of sensors or adversarial attacks) is
also a subset of studies to be considered. The ultimate target
of this research area is to ensure that, even in the presence
of uncertainties, safety requirements of AI-based systems are
met.

Transfer learning, which can be considered as a means
to reuse data from one application as initial reference to
another [142], is another topic worthy of consideration for
further research. So far, Corso and Kochenderfer [142], who
have presented a prominent and comprehensive study on
the matter, have clearly stated that they still needed further
comprehension of transfer learning mechanisms to interpret
some results of their results and emphasized that insights on
transfer learning algorithms are still needed.

Specifically regarding transfer learning, a first step on
future research shall take into account simpler cases in which
the datasets employed on the design of AI are sourced from
simulated datasets and/or public datasets from the same appli-
cation domain, but collected on a different environment. Only
then further insight on different application domains could be
drawn.
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Finally, establishing a cost-effective process to ensure
safe labeling of datasets for supervised learning solutions
also deserves additional investigation on additional research.
On the one hand, manual human labeling is bounded to a
significantly high failure rate inherent of human beings [140],
which might prevent a single labeling chain from being used
in safety-critical applications. On the other hand, automated
labeling typically relies on semi-supervised or unsupervised
learning algorithms, whose safety assurance, in turn, depends
on methods which are yet under development, as discussed
throughout this paper. Based on such insight, future work
aiming to address these limitations is considered welcome to
the community.

4) SYSTEMATIZING AI FAILURE MODES
Researchers such as Boulineau [129], Douthwaite and
Kelly [117], McDermid et al. [7], and Zhang et al. [27] have
highlighted the importance of establishing plausible failure
modes for AI models, variants, and techniques.

The main goal of further research on such a theme would
be to craft a well-established list of random and systematic
AI failure modes, similar in structure and organization to
preexisting lists of hardware failure modes, such as the one
with CENELEC EN50129:2018 [11]. It is deemed that such
a list would feature, for each AI type / variant / approach /
technique, an as-exhaustive-as-possible relation of failure
modes that could affect it. For instance, the failure modes of
an ANN would include potential causes that could change
its architecture (e.g., loss of connection between neurons,
improper neuron weight), as well as improper hyperparam-
eters (e.g., change on the number of hidden neurons, change
on the number of neurons per layer) and improper inputs (e.g.,
inadequate input dataset).

As already stated in subsection ‘‘VI-A-2)’’, having such a
systematic list of AI failure modes would bring benefits in
further research on the means to select the most adequate
type of AI for an application. Furthermore, it would also
allow defining the needed actions to control and mitigate
potential safety issues stemming from random and systematic
AI failure modes.

5) SPECIFYING AI REQUIREMENTS AND PROVIDING
TRACEABILITY TO SAFETY ARGUMENTS
One of the main reasons to consider AI within functions
of an engineering system is that specifying these functions
is non-trivial in such a way that they cannot be speci-
fied neither formally nor exhaustively enough in order to
generate a closed-form solution [143]. As a result, the
specification of AI-based functions tends to be incomplete,
ambiguous and at most partially formal. Such an issue
has been discussed and exemplified by several researchers,
among which Barzamini et al [144], Boulineau [129], Dey
and Lee [15], Koopman andWagner [73], Kurd et al. [37], and
Machin et al. [75].

Moreover, alike every non-formal specification, they are
also subject to problems related to the semiotic perception

triangle of ‘what the system should do’, ‘what the system
actually does’ and ‘what the system is perceived to do’ [7].
These problems can ultimately be translated on systematic
failures introduced, consciously or not, at design time.

As a result of this, further research on improving the pre-
cision, the exhaustiveness, and the formalism of AI-based
safety-critical systems would be of paramount importance
towards assuring that AI-based systems are safe. One possible
path for that is to provide positive and negative specifications
for functions and/or concepts, which clearly state what is
within and outside the scope of the said entity.

Another theme worthy of additional research, and which
can also benefit from advancements on the aforemen-
tioned requirements specification, refers to improving the
traceability among system-level requirements and their
AI component-specific counterparts. Assuming that better
requirements (i.e., more precise, exhaustive and formal)
are conceived for AI-related functions, a natural step for-
ward that is to apply the same specification techniques to
refine the systems-level requirements into component-level
requirements. With such a refinement, the traceability among
requirements of different levels becomes less difficult, which
has the potential of facilitating the propagation of evidence to
build systems-level safety arguments in a bottom-upway (i.e.,
starting from the low-level safety-critical AI components and
moving up the system chain up to its top goals). A starting
point towards this is the research by Husen et al. [145], who
have briefly explored, among other subjects, AI requirements
traceability on a conceptual case study.

6) INVESTIGATING REDUNDANCY OF AI FOR
SAFETY-CRITICAL FUNCTIONS
For safety-critical systems without AI, using redundant ele-
ments has been considered a feasible approach to meet safety
requirements by using ‘building blocks’ which are not suffi-
ciently safe on their own. Various schemes of redundancy,
such as physical redundancy and information redundancy,
are also recommended on several standards for safety-critical
systems (e.g., [9], [11], [138]).

For AI-based systems, further investigation on whether
redundancy is useful practice in leveraging safety is still
needed. This concern has been raised by researchers such as
Groza et al [61], Kurd et al. [37], and Shafaei et al. [76].

Some correlated topics which are worth analysis in future
research involve (i.) assessing the impacts of redundant
information in datasets on the robustness of AI instances
with regard to safety functions, (ii.) evaluating different
schemes of redundant AI elements, and (iii.) assessing poten-
tial common-mode failure modes that can affect redundant AI
elements.

On (i.), one shall consider that redundant information is not
necessarily a replicated representation of the very same data,
but instead the presence of multiple different variables which
might translate into similar conclusions for the phenomenon
of interest. For instance, if one wishes to estimate a person’s
monthly income, social class and assets net value might be
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sufficiently correlated to the point of leading to a converging
conclusion.

As per (ii.), a relevant research line comprises conceiving
different architectures of redundant AI and comparing and
contrasting the results retrieved by their finished designs.
The redundant structures might include, for example, several
instances of a same AI variant/technique crafted by using
different data partitions (e.g., alike de facto standardized AI
models, such as random forests), or even building ensembles
with different AI variants (e.g., building an ANN, an SVM
and a DT for the same application). Fault injection tools, such
as TensorFI and BinFI [112], [113], can be useful in these
activities. Furthermore, mechanisms to build consensus (e.g.,
majority voting, choice of result with the highest degree of
confidence) shall also be further investigated. So far, the study
by Groza et al [61] is a starting point for exploring this area.

Finally, (iii.) is directly connected to (i.) and (ii.), since
the extent to which common-mode failure modes manifest
themselves allow assessing how and towhat extent each of the
diverse elements of a redundant architecture is affected by the
occurrence of the failure mode. It is recommended to perform
a case-by-case investigation, depending on the redundancy
schemes considered in the assessed safety-critical AI-based
systems.

7) ASSESSING THE RELATIONSHIP BETWEEN AI MODELS
AND ENVIRONMENTAL CONSTRAINTS
Researchers such as Alexander and Kelly [146],
Gauerhof et al. [135], Ruan et al. [147], Tuncali et al. [96]
have warned that safety-critical AI-based systems can behave
in an unexpected and potentially unsafe way if their design
does not take into account the actual conditions and con-
straints of the environment in which they will effectively
operate. As a result, an aspect worthy of concern for future
research is to develop means and methods to assess whether
environment-related hypotheses are indeed sound for the
revenue service of safety-critical systems with AI.

Ensuring that models which represent the operational envi-
ronment of AI-based components are sufficiently faithful to
the real world and that they are coherently applied throughout
the system lifecycle becomes a major concern especially
because the actual exercise of safety-critical systems on
their environments is hardly feasible – especially when deal-
ing with safety-critical scenarios that involve near-misses,
as mentioned on subsection ‘‘VI-A-3)’’. In these scenarios,
simulators, data collected from supposedly similar environ-
ments, and transfer learning might be used to fill this gap.
Hence, one shall have the means and tools to assess whether
these additional elements do not introduce uncertainties and
inaccuracies that might undermine the faithfulness and trust-
worthiness that are necessary for building sound evidence for
the safety assurance of AI-based systems.

On reinforcement learning, for instance, these analyses are
directly related to themodeling of important hyperparameters
and hyperfunctions, such as rewards, the learning rate, and
the exploratory test rate. All these features are responsible

for balancing exploration and exploitation robustly enough
to ensure safety in a dynamic environment.

8) INCORPORATING MORAL AND ETHICAL ASPECTS INTO
SAFETY-CRITICAL AI
Burton et al. [148] and Lin and Liu [149] have dealt with a
research theme of significant importance especially for fully
autonomous safety-critical AI-based systems: the dilemma
in which a system, after entering an irreversible state, has
to make a decision among a set of alternatives that all lead
to undesired, catastrophic outcomes. A hypothetical situation
which illustrates such a dilemma could occur, for example,
with an UGV that, at some instant of time, is faced with two
possible decisions only: colliding at a high speed with the
infrastructure, causing the certain death of its single occupant,
or colliding at a somewhat lower speed with another vehicle,
with the certainty of injuries to the occupants of both vehicles
but a lower probability of death for the involved personnel.

The contribution provided by Burton et al. [148] is relevant
to deal with such a dilemma, as the authors have identified
three gaps – namely, semantic gap, responsibility gap, and
liability gap. The consciousness of these gaps allows design-
ers to become aware of potential dilemmas on safety-critical
AI-based systems and take the needed action to mitigate them
whenever possible and establishing clearer boundaries on
when they cannot be avoided andwho is to be liable for poten-
tially unsafe scenarios arising from them. The authors pro-
vide a twofold recommendation for future research: (i.) the
safety assurance process shall be multidisciplinary, involv-
ing all potential stakeholders and including, in addition to
engineering itself, expert knowledge for law, regulation and
governance; and (ii.) providing means for dynamically mon-
itoring and updating safety assurance in order to bridge the
underlying gaps of the engineered system.

9) DEEPENING THE RELATIONSHIP BETWEEN SAFETY AND
SECURITY ASSURANCE FOR AI-BASED SYSTEMS
Within the context of Industry 4.0, the usage of AI in safety-
critical systems has emerged along with significant reliance
of engineered systems on fast wireless communication net-
works [150]. For instance, safety-critical systems of smart
cities, along with UGVs running on it, can heavily benefit
from the infrastructure of public 5G networks [150]. In this
context, a real-time fog computing architecture, in which
public processing units can be on-demand requested for data
processing, might be used for safety-critical purposes as
well [151].

As a result of such a distributed architecture with public
networks, a more intricate relationship between security and
safety emerges for safety-critical systems that are part of
Industry 4.0. Regardless of the usage of AI, assuring proper
protection from security attacks is a necessary condition for
achieving safety goals,as pointed out by Dey and Lee [15],
and Seon and Kim [152].

Specifically when AI is within the loop of safety-critical
systems, additional concerns for security shall be considered.
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For instance, specific ML variants and models, such as RL,
ANNs, and online learning, are susceptible to corner cases in
which small perturbations on inputs and/or AI hyperparame-
ters/hyperfunctions can lead to significant changes on outputs
[15]. This is significantly worrying because, if an adversarial
attack exploiting these corner cases is performed due to a
security breach exploited by an intruder, an otherwise safe
system can be led to a potentially unsafe state, in which users
and the surrounding environment are subject to catastrophic
outcomes.

Consequently, future research which aims to deepen the
relationship between safety and security for AI-based sys-
tems, especially for scenarios in which complying to secu-
rity requirements is needed for meeting safety requirements,
represent important progress for conceiving safety-critical
systems with AI. Anastasi et al. [153], for instance, have
highlighted the importance of including security analysis
techniques within the safety lifecycle of AI-based systems.
The usage of graph-based machine learning to leverage secu-
rity, indicated by Gupta et al. [154] for autonomous vehicles,
represents another starting point for that purpose. Further-
more, frameworks for adversarial machine learning, such as
the Adversarial Robustness Toolbox [155] and Jespipe [156],
are also noteworthy starting points towards improving the
resilience of safety-critical AI-based systems to adversarial
attacks and their implications.

10) EXPANDING THE KNOWLEDGE OF EXPLAINABLE AI
(XAI) TO IMPROVE SAFETY
Based on the information reviewed in subsection
‘‘V-B-3)-d)’’, XAI is still an emerging area per se [52]. As a
result, joint efforts in combining XAI with safety still remain
a research area with room for significant contribution towards
assuring that safety-critical systems with AI meet their safety
targets.

Researchers such as Confalonieri et al. [52], Dey and
Lee [15], Groza et al [61], Jia et al. [114], Koopman
and Wagner [73], Rajabli et al. [18], and Ward and
Habli [157] have highlighted the need for additional research
on XAI and suggested a trend that includes the following
themes:

a) Conceiving guidelines for the structure of arguments
generated by XAI in such a way that human prac-
titioners can benefit from XAI (e.g., by improving
the link between safety assurance properties and AI
interpretability);

b) Assessing desired and necessary features of
explainable-by-construction AI, so that sound evidence
can be collected for its safety assurance;

c) Deepening the analysis on how to propagate uncertain-
ties throughout the AI reasoning and report them for
the AI processing relevant steps;

d) Further investigating means to generate approximate
XAI models for hard-to-understand, black-box AI
models (e.g., DNNs);

d) Developing systematic evaluation metrics for XAI
methods to guide the selection of different types of
XAI according to the needs of applications (linked to
item ‘‘c)’’, for example);

e) Investigating means to generate safety assurance pat-
terns for XAI.

11) EXPANDING TOWARDS QUANTUM COMPUTING AND
QUANTUM MACHINE LEARNING
Incorporating quantum computing into a safety assurance
process for AI-based systems is another theme worthy of
consideration in future research for two main reasons. Firstly,
quantum computing is able to overcome the NP-Hard com-
plexity of the reachability problems in which the formal
verification of AI and ML are typically translated into [158].
Secondly, the emergence of quantummachine learning per se
can also leverage the conception of newMLmodels andmake
their usage feasible in increasingly more intricate safety-
critical applications, such as automated medical diagnosis
[159] and physics and chemistry processes [160].

Despite the existence of commercial libraries to deal with
quantum machine learning [161], its high-scale usage is fore-
seen as a long-term research rather than to short-to-mid-term
ones, though. Current challenges related to building the actual
hardware to meet the intended purposes [160], as well as
the potentially prohibitive short-term costs for a quantum
computing infrastructure for typical consumer-graded appli-
cations trending in safety-critical AI research (e.g., trans-
portation and medical support applications) [161] support
this.

B. SECOND PART OF THE GUIDELINES: SELF-EXPERIENCE
AND CROSS-FERTILIZED FUTURE RESEARCH
QUESTION Q6
The second part of the guidelines for future work related
to the safety assurance of AI-based systems results from
a critical review on each of the C3 publications in order
to identify other potential future work. This critical review
is not only based on the present SLR authors’ experience
with safety-critical systems, but also (and especially) on
the cross-fertilization among the publications which were
reviewed during this SLR.

By means of such critical review, four additional opportu-
nities for future work not discussed within the publications
reviewed in this SLR have been identified. They are depicted
in Figure 15 and discussed in the following subsections.

1) ASSURING THAT TOOLS AND THIRD-PARTY LIBRARIES
FOR DEVELOPING AI-BASED SYSTEMS ARE SAFE
Developing AI typically requires the usage of supporting
tools such as simulators and database management systems
for tasks such as generating datasets, preprocessing datasets,
and testing the behavior of safety-critical AI. In addition to
these tools, third-party libraries which implement AI models,
such as scikit-learn [162], might also be considered for reuse
within the design of safety-critical AI.
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If the aforementioned tools and third-party libraries have
built-in software errors and/or if the underlying hardware
in which tools are run fail, improper evidence might be
collected, thus leading to misleading arguments on whether
the safety-critical AI is indeed safe. For instance, if a soft-
ware bug on a third-party library remains undetected, its
instantiation might be considered safe when it actually is
not; similarly, if datasets are corrupted or simulators generate
wrong data, the AI itself might be either incorrectly conceived
or improperly tested as safe.

As a result, a safety assurance process for AI-based sys-
tems shall take into account the risks posed by tools and third-
part libraries within systems lifecycle and include activities
and techniques meant to capture and mitigate those problems.
Future research could, for instance, be based on conceiving a
scheme that is similar to that of safety-critical tools present
on CENELEC EN50128:2011 [11]. Furthermore, if the tools
themselves utilize AI (e.g., dataset labeling using unsuper-
vised or semi-supervised learning), it is recommended to treat
them as a safety-critical AI-based system and apply an AI
safety assurance method to them.

Similarly, investigating limitations and potential improve-
ments on programming languages typically used in AI design
for safety-critical systems is another topic deemed worthy
of future research. This item has been raised because most
languages conventionally used within the AI area have either
not been considered in current standards of safety-critical
systems, such as Python and R [9], [138], or are at most
weakly recommended, such as C++ and Java [138].
For instance, Wu et al. [74] have provided evidence against

using Python for AI-based safety-critical systems, whereas
Wozniak et al. [163] have recommended that only strongly
typed languages, such as C++, would be recommended for
such an application. Since these are still isolated research
efforts on this theme, further studies aiming to identify poten-
tial safety-related drawbacks of programming languages used
in the AI métier and countermeasures to circumvent them
could be of benefit to the research community. This research
line could ultimately lead to porting and crafting a ‘safe
subset’ of these programming languages, in which only
libraries and tools suitable for safety-critical systems would
be available.

2) ASSURING SAFETY OF AI-BASED FUNCTIONS ON
PROGRAMMABLE HARDWARE DEVICES
On the reviewed literature, no meaningful efforts related to
using Programmable Logic Devices (PLDs) to implement
safety-critical AI have been identified. Such use for PLDs is
deemed plausible for two reasons: firstly, PLDs have been
increasingly used in safety-critical embedded systems [164];
secondly, the increasing processing and storage capabilities
of modern PLDs, notably Field-Programmable Gate Arrays
(FPGAs), make them an interesting alternative for imple-
menting, on their own, dedicated safety-critical AI on embed-
ded systems.

FIGURE 15. Summary of themes for future research on the safety
assurance of AI-based systems from cross-fertilization and
self-experience.

An important avenue for future research on this theme shall
embrace evaluating how to specify, design, implement, ver-
ify, validate and ensure the safety of hardware-implemented
AI-based safety-critical systems. Special attention shall be
paid to how their random and systematic faults can affect the
internal architecture of an AI model.

3) INVESTIGATING THE REUSE OF RECOMMENDED
PRACTICE FROM NON-AI-BASED SYSTEMS
Researchers such as McDermid et al. [7] and Pereira and
Thomas [121] have claimed that safety assurance techniques
traditionally applied to non-AI-based systems can be reused
for AI-based systems as well. McDermid et al. [7] has deep-
ened this analysis to the point of considering that analyzing
hardware-related random faults is among the safety assurance
activities which could benefit the most from well-established
practice from traditional, non-AI-based systems.

Despite these specific research efforts, no further extensive
analyses on the potential of reuse of current safety assur-
ance means, methods and techniques for AI-based systems
have been identified. Assuming that potentially reusing these
techniques would represent a significant shortcut in preparing
current safety practitioners to deal with the safety assurance
of AI-based systems, further research on this topic could be
of practical benefit. If results supportive of reuse are reached,
this could both accelerate and increase the confidence of
safety practitioners in working with AI-based systems.

4) ASSESSING THE COSTS OF A SAFETY ASSURANCE
PROCESS FOR AI-BASED SYSTEMS
Supposing that several of the other suggested future work is
fulfilled and yields a safety assurance process for AI-based
systems including a clear set of recommended ‘how-to’s and
practice, it is still needed to investigate whether applying this
method is indeed feasible within a cost-constrained environ-
ment of real engineering projects.
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As a result, the very last item proposed as future work is
assessing the costs in applying a process-oriented approach
for the safety assurance of AI-based systems in real engi-
neering projects, notably to compare and contrast the needed
efforts and technical skills of professionals to current non-
AI-based solutions’ costs. This could give professionals time
and cost estimates for assuring that AI-based systems are safe
and, hence, allow companies and professionals to evaluate
potential differences not only in the costs for developing
and/or buying safety-critical AI, but also in structuring their
organization to optimize them to developing and/or using
safety-critical systems with AI.

C. CONCLUDING REMARKS ON THE GUIDELINES FOR
FUTURE WORK ON THE SAFETY ASSURANCE
OF AI-BASED SYSTEMS
The guidelines for future work presented in this section illus-
trate that, despite the increasing interaction of safety and AI
research communities in jointly exploring both areas, as evi-
denced in this SLR, there is still plenty of room for research
on the safety assurance of AI-based system. A set of eleven
areas of research were derived from future work suggested on
research papers reviewed in this SLR, whereas four additional
topics were conceived based on a critical analysis carried out
by combining the cross-fertilization of the reviewed research
papers with the expertise of the authors of this SLR in AI and
safety-critical systems.

It is deemed that, among all the raised topics for future
work, establishing a process-oriented method for the safety
assurance of AI-based systems is a natural first step. The rea-
soning that backs this recommendation up is that, alike with
traditional safety-critical systems lacking AI, the training of
safety practitioners with expertise for AI-based systems is
facilitated once there is a systematic approach for dealing the
safety lifecycle, along with the needed safety activities and
recommended practice for each of its steps.

An outlook for future research on this area is to use pre-
existing safety assurance processes for AI-based systems –
established on, e.g., the AI technology-agnostic ANSI/
UL4600:2020 standard and the research papers discussed in
subsection ‘‘V-B-3)-e)’’ – as templates and improve them in a
twofold way. Firstly, it is pertinent to make sure that gaps on
the safety lifecycles of the ‘template’ processes are filled with
steps and activities that cover the missing relevant AI-related
safety-critical themes they lack. Secondly, it is worth com-
piling preexisting safety assurance techniques which have
not been contextualized within the ‘template’ processes (e.g.,
techniques cited in subsections ‘‘V-B-3)-a)’’ to ‘‘V-B-3)-d)’’)
and map them onto the safety lifecycle steps along with how
their usage would be recommended. This could be achieved
by departing from the positive and negative outcomes of these
techniques, as per reported in the subsections ‘‘V-B-3)-a)’’ to
‘‘V-B-3)-d)’’ of this paper and the research therein quoted.

For instance, if further research on refining the simplex
architecture defined in the subsection ‘‘V-B-3)-c)’’ is per-
formed, it is worth considering that an approach similar to

that of Mehmood et al. [103] might be unfeasible for, e.g.,
practical safety-critical embedded systems due to its strin-
gent storage requirements. As a result, expanding correlated
research shall start by learning with the limitations of existing
solutions and ultimately trying either to optimize them or to
follow a different approach if such an optimization is deemed
unfeasible or unjustifiable.

Moreover, other avenues on future research involve explor-
ing specific techniques to be used within steps of the afore-
mentioned systems lifecycle. These specific technical topics
include (i.) tightening the justification of AI hyperparame-
terization, (ii.) analyzing the adequacy of datasets, (iii.) sys-
tematizing AI failure modes, (iv.) improving the specification
of AI, (v.) exploring AI redundancy, (vi.) tightening assump-
tions and improving models of the environment at which
the AI is used, (vii.) dealing with moral and ethical aspects,
(viii.) deepening the relationship between safety and security,
(ix.) exploring explainable AI to improve safety, (x.) expand-
ing on quantum computing and quantum machine learning,
(xi.) assuring safety of PLD-implemented AI, (xii.) assuring
safety of AI development tools, (xiii.) reusing practice to
assure safety of non-AI-based systems, and (xiv.) estimating
costs for assuring AI-based systems.

Specifically for items (i.) to (x.), a starting point for
incorporating them on future research should also take into
consideration the positive and negative results of their prior
experimentation on preexisting research, quoted throughout
subsections ‘‘VI-A-2)’’ to ‘‘VI-A-11)’’. For instance, when
dealing with transfer learning as part of item ‘(ii.) analyzing
the adequacy of datasets’, future research can be initially
tightened to the challenges posed on the state of the art –
namely, a better understanding of transfer learning mecha-
nisms [142] –, and just then widened to other relevant related
areas (e.g., investigating different transfer learning applica-
tions on safety-critical systems and developing assurance
patterns for transfer learning).

For items (xi.) to (xiv.), in turn, the lack of consistent previ-
ous research on them makes it harder to constrain the starting
points of such themes to potentially promising paths. In these
scenarios, the general guidance provided in the subsections
‘‘VI-B-1)’’ to ‘‘VI-B-4)’’ is recommended for that purpose.

Finally, it is considered that future research could also
benefit from a tighter integration between AI and safety
researchers, since they are related to adapting typical prac-
tice of the AI field to stricter requirements imposed by
safety-critical applications. This integration is also important
because it is envisioned that safety professionals shall excel
in multidisciplinary knowledge in both safety and AI in order
to coordinate and perform the needed tasks to ensuring that
these systems meet their safety requirements.

VII. CONCLUSION
The objective of this paper was to present an overview on the
state of the art and guidelines for future research on the safety
assurance of AI-based systems by means of an SLR compris-
ing texts published until August 26th, 2022. As justified in
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section II, the main contribution of this research is not only
to go beyond the scope of other SLRs by covering a broader
range of applications and following a well-controlled and
reproducible process on peer-reviewed publications only, but
also to present an updated landscape on the safety assurance
of systems with AI and introduce guidelines for relevant
future work. The latter has been reached through a critical
analysis of the reviewed references stemming from both
the cross-fertilization among the reviewed references and
the own experience of the SLR authors on safety assurance
and AI.

The six-step SLR, carried out as per section III and leading
to the results presented in section IV, covered a total of 5090
references, among which a subset of 329 publications which
somehow directly address the safety assurance of AI-based
systems was considered in further steps. By means of these
329 publications, it has been concluded that research on the
theme has sharply increased especially over the last years
(2016 onwards) and that increasingly more research is also
expected for the forthcoming years.

Based on the detailed review of the aforementioned
329 publications subset, it has been identified that the safety
assurance of AI-based systems has been carried out fol-
lowing five main approaches to build safety arguments:
(i.) performing exhaustive black-box testing of AI, (ii.) con-
straining the response of safety-critical AI by means of a
non-AI-dependent safety envelope, (iii.) designing fail-safe
AI, (iv.) combining explainable AI with its white-box anal-
yses, and (v.) establishing a continuous, process-oriented
safety assurance process throughout systems’ lifecycles. The
overall conclusion is that current research on the safety assur-
ance of AI-based systems indicates significant improvements
towards allowing AI to be used and proven as safe; neverthe-
less, further advancements are still needed to fully reach this
result. Details on each of the aforementioned safety assurance
approaches, including their pros, cons, state of the art and
current limitations, were explored in section V.

Guidelines for potential future research topics have also
been presented in this research. These include not only recur-
rent themes indicated by other researchers, but also additional
topics which stemmed from both the cross-fertilization of
the reviewed references and the experience of the authors of
this SLR with AI and safety. These guidelines are presented
in two parts on section VI. Among all its items, two main
conclusions are highlighted. The first of them is the need
for a better integration of AI and safety métiers, so that the
resulting methods and approaches for the safety assurance of
AI-based systems can be combined in an effective way. It is
expected that this research aids paving this way.

The second highlight of the guidelines is the need for fur-
ther research towards a systematic, process-oriented approach
for the safety assurance of AI-based systems which includes
recommended technical guidelines to deal with AI-specific
aspects. These include, but are not limited to, improv-
ing the breadth and the depth of preexisting safety assur-
ance processes, analyzing datasets, eliciting AI requirements,

choosing and adjusting AI hyperparameters, defining the
desired features of safety-critical explainable AI (e.g., uncer-
tainty propagation), systematizing AI failure modes, and
defining means to design, verify and validate safety-critical
AI-based functions implemented on PLDs. The basic strat-
egy recommended to deal with these themes is to consider
the positive and negative results of preexisting research as
starting points to guide research efforts, and then broaden the
scope of such research to other themes once the known gaps
have been either filled or discarded. It is ultimately expected
that, by following the herein defined guidelines, safety practi-
tioners are provided with a safety assurance experience closer
to that of non-AI-related standards (e.g., IEC61508-derived
ones) than the technology-agnostic approach of the 2020
de jure ANSI/UL4600 standard for safety-critical AI-based
systems.

Finally, it is worth mentioning that the results herein
reported are the first step of the authors’ research. The next
envisioned step is to contribute with the filling of the gaps
identified in the guidelines for future work by establishing a
safety assurance process-oriented approach including a set of
recommended techniques for each of its steps and a detailed
workflow to guide its application. The ultimate objective
of the research is to apply this safety assurance method to
safety-critical AI-based systems and evaluate its convergence
towards results that ensure that a system conceived with it is
indeed safe.

SUPPLEMENTARY MATERIAL
Additional results of the SLR, including the formal defini-
tion of the SLR Search Language, further justification on
its expressions, its instantiations for each search engine, and
the full list of reviewed references along with their analyses
(e.g., attribution of categories C1-C5, attribution of Q-index,
answers to questions Q1-Q6 and additional bibliometrics),
are available within the technical report [165]. This report
has been made public on Zenodo.org not only as an open
science effort, but also as ameans to increase the transparency
of the research and support the findings reported in this
paper.
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