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Abstract

The slogan “robots will pervade our environment” has become a reality. Drones and ground robots are used for commercial 
purposes while semi-autonomous driving systems are standard accessories to traditional cars. However, while our eyes 
have been riveted on dangers and accidents arising from drones falling and autonomous cars’ crashing, much less attention 
has been ported to dangers arising from the imminent arrival of robots that share the floor with pedestrians and will mix 
with human crowds. These robots range from semi or autonomous mobile platforms designed for providing several kinds 
of service, such as assistant, patrolling, tour-guide, delivery, human transportation, etc. We highlight and discuss potential 
sources of injury emerging from contacts of robots with pedestrians through a set of case studies. We look specifically at 
dangers deriving from robots moving in dense crowds. In such situations, contact will not only be unavoidable, but may be 
desirable to ensure that the robot moves with the flow. As an outlook toward the future, we also offer some thoughts on the 
psychological risks, beyond the physical hazards, arising from the robot’s appearance and behaviour. We also advocate for 
new policies to regulate mobile robots traffic and enforce proper end user’s training.

Keywords Mobile robots · Safety · Crowd · Physical and psychological hazards

1 Introduction

Progresses in the design of human-aware robots makes it 
now possible to deploy robots in human inhabited envi-
ronments. The last couple of years have witnessed steps in 
that direction with the introduction of autonomous cars [1], 
drones and ground robots for last mile delivery services [2, 
3], robots as assistant and tour guide to visitors [4, 5] and 
autonomous wheelchairs [6]. The deployment of robots for 
public use has the advantage to enable a larger population to 
benefit from advances in automation. However, it introduces 
new hazards that may endanger our lives on a daily basis.

For many years, robots have been restricted to industrial 
settings. Safety was settled simply by stating that robots 

were not to interact with humans. It was, then, the robot’s 
operator’s responsibility to ensure his/her own well-being by 
following closely the safety guidelines. Accidents occurred 
mainly during line working, maintenance, and programming 
[7]. With robots servicing in non-industrial settings, acci-
dents may occur anytime during robot normal operation and 
may affect not just the robot’s operator, but also, bystanders.1 
The latter are people who simply happen to share the robot’s 
operating environment, who are not controlling the robot 
(and may have no knowledge of the robot’s functioning), 
nor using it, but may indirectly benefit from the robot’s ser-
vices (e.g. a person walking in a train station, while a clean-
ing robot is executing its task). The typology of the robot’s 
operators has also changed, and it includes now lay-users, 
namely people who have received limited or no training for 
operating the robot. Therefore, new sources of hazards for 
robots servicing outside factories have emerged and new 
strategies for ensuring safety are needed.

To ensure that cohabiting with robots remains safe for 
humans, it is necessary: (a) to equip robots with sufficient 
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sensing and control capabilities to be fully aware of their 
environment and to react adequately. We postulate that cur-
rent robots deployed in public spaces do not satisfy this pri-
mary requirement; (b) to educate lay users of the potential 
dangers that robots create to avoid harmful situations. To 
our knowledge, no effort has yet been made in that direction 
to date.

Given the vast literature on potential dangers created 
by the use of autonomous cars and drones, see e.g. [8, 9], 
this article focuses the analysis on the dangers generated by 
robots meant to share the floor with pedestrians. We refer to 
a variety of mobile platforms, autonomous or semi-autono-
mous, ranging from humanoid robots, such as Pepper [10], 
self-driving vehicles, such as Starship personal delivery 
robots [3], to semi-autonomous devices such as Segways 
[11], also known as personal mobility devices or “rideables” 
(which includes e.g. power scooters, hoverboards, unicyl-
cles, etc.) (Fig. 1). These robots are designed to provide dif-
ferent kinds of services, such as human assistance, patrol-
ling, tour-guide, object delivery, human transportation, etc. 
[12, 13]. This new wave of robots has received little attention 
to date, surprisingly, considering that several of those robots 
are already a reality.

1.1  Measures of Risks Inherent to Collisions 
with Robots

Different metrics have been offered to estimate and quan-
tify injuries deriving from human–robot collisions [14–18]. 
These works cover industrial robots and define clear cri-
teria to minimize injuries that impact the robot’s shape, 
weight, velocity, and direction in which it may approach 
humans. Current data on injuries applies to robots with low 
masses (mostly up to 24 kg with some at 67 kg [19]) and 
limited speeds range (2–18 m/s). Unlike robot manipulators, 

mobile robots are heavier (from 20 to 250 kg) move slower 
(expected operational speeds up to 2 m/s), and may enter 
into contact with different body parts (lower limbs primar-
ily). Therefore, injuries that may result from unexpected 
contacts between humans and robots may differ importantly 
from those documented in these works and it is not pos-
sible to extrapolate these data to cases beyond the tested 
scenarios, as described in [15].

The automobile industry has for long documented at 
length injury that may results from automobile crashes and 
documented these in a set of criteria, such as the head injury 
criteria (HIC) and neck injury criteria (NIJ). These criteria 
are also difficult to apply to smaller mobile robots, which 
usually operate at velocities one order of magnitude lower. 
It may however be incorrect to think that, because mobile 
robots are slower, only minor injuries may result from con-
tact with pedestrians. Injuries differ from those incurred by 
the vehicle’s occupant, as the contact is direct—metal to 
skin. Moreover, as discussed in [14] and further studied in 
an empirical study with robot manipulators [19], incidents 
which would lead to minor injuries, according to acceler-
ation-based measure (HIC), under the chest compression 
criteria (CC) (potentially lethal), would lead to serious 
injury. This observation was one of the motivations for the 
study in Haddadin et al. (2015), where experimental tests 
were conducted to determine injury criteria specific to robot 
manipulators and based on their shape, mass and velocity. 
The results of this indicate that injuries are unavoidable with 
robots whose masses exceed 16 kg and would suggest these 
robots should move to close to zero operational speed in the 
vicinity to humans [15].

The injury depends also on the type of fragility of the 
human the robot comes into contact. Documenting this in 
details is challenging as it requires sophisticated material.

In another study with mobile robot, collisions were per-
formed using a child six year-old dummy [20] and with a 
10 years old dummy [21]. Results for masses of 80, 100, 
200 kg and speeds of 0.55 and 1.66 m/s showed low injury 
probability at the level of abbreviated injury scale AIS 
1 + (minor injuries, e.g., superficial laceration or single rib 
fracture) and AIS 2 + (moderate injury, e.g., moderate skull 
fracture), based on HIC, NIJ and CC results. All of these 
results call for injury criteria that fit more appropriately the 
specific objectives and applications of the robot to avoid 
minimizing or exaggerating risks.

It is relevant to also mention efforts conducted in differ-
ent EU funded research projects that participate at devel-
oping safer navigation strategies for mobile robots. For 
instance, the STRADS project [22–24], is devoted to the 
issue of providing better predictive models of pedestrians’ 
movements in indoor environments. The SPENCER project 
[25] addresses the importance of embedding in the robot’s 
controller an understanding of social rules underlying crowd 

Fig. 1  Examples of robots servicing in public spaces. Incheon Inter-
national Airport’s Chatbot (source: https:// www. ttgas ia. com/ 2018/ 
07/ 24/ smart- airpo rts- take- flight/; Segway human transporter (source: 
https:// www. autom obili smo. it/ monop attini- hover board-e- segway- 
elett rici- scatt ano- le- nuove- norme- 31808) and Starship delivery robot 
(source: usine digitale)

https://www.ttgasia.com/2018/07/24/smart-airports-take-flight/
https://www.ttgasia.com/2018/07/24/smart-airports-take-flight/
https://www.automobilismo.it/monopattini-hoverboard-e-segway-elettrici-scattano-le-nuove-norme-31808
https://www.automobilismo.it/monopattini-hoverboard-e-segway-elettrici-scattano-le-nuove-norme-31808
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behaviour for enhancing mobile robots navigation (colli-
sion free navigation). The SPENCER project highlights the 
importance of ensuring that mobile robots be reliable, espe-
cially when they operate as assistive robots [26]. However, 
the project does not make any explicit acknowledgement 
of the dangers (intended or unintended) that these robots 
might pose to users in different situations outside their speci-
fied application scenarios. The objective of the EUROPA 
project [27] is to develop urban navigation techniques for 
mobile robots, specifically designed for navigation in pedes-
trian area. The project focus on localization and tracking of 
obstacles. However, it does not address safety concerns in 
the case of improper detection or unexpected collisions in 
densely populated areas. Finally, the project ILIAD develops 
[28] a collision event pipeline for robots interacting with 
the environment, to respond to a series of collision event 
with application to. Nonetheless, further work is required 
to understand what could be a viable solution to react to 
collisions and to generate safe post-collision movements in 
unstructured open pedestrian environments.

This paper complements these efforts and aim to identify 
and discuss the hazards (i.e. physical and psychological) that 
may arise from having robots operate in crowded environ-
ments. Making an exhaustive list of the dangers generated by 
these robots is difficult as robots come in all sorts of shapes, 
in contrast to cars and drones, for lack of standards in their 
mechanical design. Our goal is not to offer a comprehensive 
list of these dangers but to bring an appraisal of the type of 
hazards that may arise from the fact that these robots navi-
gate in close vicinity to humans, foremost to their operator 
(wheelchair/Segway user), but also to bystanders.. Mobile 
robots are heavier, taller and can move at a faster pace than 
pedestrians can. They are, hence, particularly dangerous for 
children, elderly, and people with limited mobility (Fig. 2).

Hazards from the use of these robots may become una-
voidable as they travel in dense crowds. We hence take a 

close look at the dangers offered by robots navigating in 
human crowds, paying special attention to the new forms of 
interactions they may establish with humans.

To identify possible sources of dangers, we consider haz-
ards deriving from unintentional physical contacts, which 
may occur as the result of accidents or errors (e.g. unex-
pected movements of the crowd or of the robot) and haz-
ards deriving from intentional physical contacts, which may 
occur as the result of functional interactions (e.g. touching 
the robot for requesting its services). In addition to hazards 
arising from physical contacts, we also discuss psychologi-
cal risks, arising mainly from the robot’s social capabilities 
conveyed by its appearance and behaviour.

Note that other concerns arise regarding the use of robots 
in public spaces. For instance, as the robot monitors its 
surroundings, it could breach the rules on data protection 
information (i.e. GDPR).2 These are valid concerns, which, 
however, we will not cover in the present document.

The article is organised as follows: in the next section, 
we propose a set of case-studies based on selected scenar-
ios showing potential sources of injuries for pedestrians. In 
Sect. 3, we present and discuss physical as well as psycho-
logical hazards. In Sect. 4, we reflect on policies needed to 
regulate mobile robots traffic.

2  Robots in Crowds: A Few Case Studies

Hazards deriving from interactions with robots cannot be 
generalized, but should be contextualized based on the char-
acteristics of: (a) the operative environment, (b) the type of 
crowd, (c) the robots deployed and (d) the scenarios of use.

2.1  Type of Environment

A few example of challenging settings for mobile robots are 
transportation areas, such as train/metro stations, airports, 
and shopping malls, which are characterized by the pres-
ence of fixed and dynamic obstacles (e.g. including invisible 
obstacles such as glass doors and walls), inclines, and nar-
row regions. Distinguishing features of these environments 
are the high density of the crowd and unpredictability of 
the pedestrians’ motion: different flows moving in opposing 
directions; irregular flows with peaks during train unloading 
or flight arrival, flows moving at different paces (e.g. people 
in a hurry to catch the train, versus people moving slowly or 
waiting for another connection).

Fig. 2  An autonomous wheelchair presents a danger for certain types 
of pedestrians, such as elderly people, given its weight, which can 
reach up to 250 kg

2 General Data Protection Regulation. The regulation is applicable as 
of May 25th, 2018 in all member states to harmonize data privacy 
laws across Europe.
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2.1.1  Type of Crowds

Crowds can be described according to several parameters: 
size (i.e. number of people in a place), density (i.e. the 
number of people per square meter), activity (i.e. moving 
or static), goals (i.e. identical for all vs specific for each 
individual), social relations (i.e. presence of groups, fami-
lies, etc.), their environment (i.e.: outdoor, indoor, streets, 
corridor, mall etc.) (Fig. 3). Crowd can be characterized also 
by its profile, which can be casual, cohesive, expressive or 
anti-social [29]. Agents in a crowd can be randomly assigned 
individual attributes, such as size, gender, age, luggage, 
walking speed, disabilities, and familiarity with the envi-
ronment. Finally, groups of people can also be characterized 
by the type of context, normal activity or emergency (i.e. 
crowd erratic movement in a fire) and even by incorporating 
emotions into simulation models, such as stress, frustration 
or patience [30].

2.1.2  Type of Robots

Given the lack of homogeneity in the shape of mobile ser-
vice robots, in the next scenarios of use, we narrow our 
analysis to three existing robots: a semi-autonomous pow-
ered wheelchair, the autonomous humanoid robot Pepper 
by SoftBank [10] and the runfun by Locomotec, a robot to 
support outdoor running [31].

We selected these three robots as representative of mobile 
ground robots used in public spaces since they share many 
important features with other existing mobile robots: auton-
omy versus semi-autonomy; humanoid versus machine-like 
appearance; social interactivity versus no social interactivity. 
They also involve different kinds of users: the wheelchair’s 
and runfun’s operator is in partial control of the robot and is 
the direct beneficiary of the robot’s service. The humanoid 

robot Pepper may have several beneficiaries (e.g. customers 
in a shop), none of whom has direct control over the robot’s 
movement. All three robots interact with a third category 
of people, namely passers-by and by-standers, who neither 
have control over the robot, nor direct benefit deriving from 
interaction with it. This bi- or tri-party interaction is hence 
key to the challenges faced when designing the controller 
of the robots. Issues arise when one stakeholder’s benefits 
conflicts with another stakeholder’s benefits or when trade-
off have to be found in order to ensure fluidity of traffic and 
efficiency of robot’s task completion. We exemplify these 
bi-party and tri-party conflicts in a few scenarios next. The 
wheelchair exemplifies issues and ethical dilemmas shared 
with other robots designed for humans’ transportation and 
partially operated by their user. The humanoid robot exem-
plifies issues on social norms arising from the physical 
appearance and behaviour of the robot, while the runfun 
illustrates issues on ascription responsibility arising from 
improper use of the platform.

2.1.3  Scenarios of Use

Consider a semi-autonomous powered wheelchair driven by 
a person with reduced mobility, but intact perception and 
cognition, engaged in the crowded departure area of an air-
port. As transporting a luggage on the wheelchair can be 
problematic, a humanoid robot Pepper is following carry-
ing the luggage. The humanoid robot is fully autonomous 
but can interact with humans through speech synthesis 
and vision (with on-board camera and face/gesture/facial 
expression recognition system). The powered wheelchair 
is operated in a semi-autonomous mode, namely the user’s 
inputs are combined with the robot’s inputs coming from 
its sensors to assist during driving. In semi-autonomous 
mode, if the driver stops providing inputs, the wheelchair 

Fig. 3  Crowds offer different dynamics depending on whether they move at a regular pace, e.g. regular traffic on pedestrian walks (left) or errati-
cally, e.g. people moving to catch a train, or running in response to a fire



445International Journal of Social Robotics (2022) 14:441–462 

1 3

stops. Otherwise, the wheelchair regulates its velocity and 
autonomously steers away from obstacles. In case of contact 
with passers-by, the wheelchair will decrease its velocity and 
react in a compliant way. The humanoid robot keeps track of 
the wheelchair through its on-board sensors (vision, sonar) 
and communicates with the wheelchair through wireless. 
Wheelchair and humanoid robot must remain within two 
meters from each other. Failing this, communication will be 
lost, and the wheelchair driver will have to track back the 
humanoid robot. In the last scenario, we will use a different 
robot, the runfun, which is designed for outdoor activities.

Scenario 1: The wheelchair-humanoid team must move 
steadily to the gate as it is closing. Suddenly, a disorgan-
ized crowd of teens comes moving in the opposite direction. 
Soon, the wheelchair and the humanoid start manoeuvring 
their way through the teens crowd. A few teens interested in 
the cute appearance of the humanoid come face to face to 
the robot, willing to touch it (Fig. 4). To ensure no harm for 
the teens, the robot’s controller should stop to avoid contact, 
but this would result in it losing track of the wheelchair, and 
in the wheelchair-humanoid team to miss the plane. As the 
humanoid robot is a well programmed type of robot, it puts 
the risk of harming the human above the risk of not complet-
ing its task and hence stops.

The physical appearance of the robot may elicit different 
reactions in people (e.g. too cute and too friendly a robot 
may become an impediment). Moreover, the size and weight 

of the robot must be small enough to limit physical risks—
if the robot were to fall over (Fig. 5)—as well as psycho-
logical risks—such as those related to the robot dimension, 
which could cause fear and distress in users and pedestrians, 
impacting on the perception of safety. Such psychological 
hazards are discussed in more detail in Sect. 3.2.

Scenario 2: The wheelchair-humanoid team moves in 
a column formation within one meter from one another 
to leave some distance in case the front robot should stop 
suddenly. As they travel their way through the airport, 
time-pressured passers-by keep breaking the formation 
and small groups of still people keep forming in front of 
the robots. Following its built-in social rules, the human-
oid gently touches with its hands the shoulder of a person 
blocking its way and asks her to let it go through so as to 
complete its task. Unfortunately, this social feature causes 
an unexpected reaction. The person touched turns abruptly 
and collides with the robot, eventually setting it off-balance. 
The humanoid’s control system activates the emergency 
response in case of a fall and orders the two robot’s arms 
forward to rebalance the robot. Unfortunately, as it moves 
its arms, the robot hits a passer-by. The compliant controller 
is instantaneously activated and the arm bounces off leav-
ing the passer-by unharmed. This however sends a strong 
opposite torque to the robot, letting it spin and crash onto 
the wheelchair. Upon detecting the humanoid about to crash 
on its user, the wheelchair computes rapidly a free trajectory 
and jerks forward. As it does so, it successfully avoids the 
humanoid but rolls onto one a frail elderly’s foot and catches 
another person’s coat. The humanoid ends up crashing on the 
floor. The coat is destroyed and the human injury is serious 

Fig. 4  A group of children emotionally attracted by the humanoid 
features of the robot starts poking at it, leaving it to lose its balance. 
To not endanger the children, the robot tilts to fall down in the free 
space around

Fig. 5  Wheelchairs and their occupants bring no threat to healthy 
adults and are treated with care by other pedestrians. For young chil-
dren, they may, however, appear as a somewhat frightening device, 
given its size and may generate unexpected reactions
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because of the age of the bystander. Such and other unin-
tentional contacts are discussed in Sect. 3.1.1. Note that the 
above scenario may also lead to minor injury if, in place of 
an elderly, the robot was to fall on a pedestrian wearing ski 
boots protecting his/her feet. The degree to which a hazard 
may lead to a serious injury depends hence on the fragility 
of the pedestrians involved in the accident (e.g. whether s/
he is a male or female, adult, child or an elderly person, a 
pregnant woman or any other person with a special health 
condition).

Scenario 3: A passer-by in a hurry and load with baggage 
has to cross a crowded juncture in the airport hall, where 
many Pepper robots are navigating to go back to their charg-
ing stations. The Pepper robots have been implemented with 
a socially-aware navigation algorithm. Moreover, they are 
endowed with a transparency interface system that allows 
pedestrians to understand the robots’ intentions. Thanks to 
the transparency system, the pedestrian can safely cross the 
juncture without losing any time since she knows: robots 
will stop at a crossroad; why: because they detected her and 
not something else; for how long they will wait (she has 
time to cross with her baggage); and what they will do next 
(robots will not go her way but in another direction). We 
will expand on the need to provide social awareness in the 
control system in Sect. 3.2.2.

Scenario 4: The semi-autonomous wheelchair is mov-
ing in a densely crowded environment. The robot should 
regulate its behaviour to avoid to “freeze” in the middle of 
the traffic [32]. Indeed, as its car counterpart, stopping in 
the middle of the traffic is ill advised as it may result in 
more harm. The wheelchair can adapt its speed and move-
ments to the crowd flow (see Fig. 6 left). Indeed, stopping 
or moving too slowly may lead to harmful events (see Fig. 6 

right). Moreover, rapid changes in navigation plan and com-
pliance to social rules are required to navigate safely around 
obstacles and minimized harm upon contact. The controller 
must hence adapt in accordance with unspoken social rules 
regulating distances between pedestrians and flow of motion 
within (well-behaved) crowds.

Scenario 5: A runfun robot leading the way to its user 
inadvertently catches a passer-by handbag, breaking its lace 
(Fig. 7). The owner requests the runfun’s user to pay for the 
damage. The user turns back to the producer that declines 
covering the damage, arguing that it was the user’s responsi-
bility to adapt his speed when approaching other pedestrians 
which would have led runfun to reduce its speed in turn, 
all of which was clearly explained in the user manual. In 
crowded environments, the robot’s design matters and it is 
important to avoid sharp edges, hooks or protruding parts.

3  Source of Hazards

In this section, drawing on the findings available in the lit-
erature on human robot interaction, mobile robots naviga-
tion, and risk assessment and safety of personal care robots, 
we identify and describe hazards emerging from interaction 
between humans and robots.

In line with Lasota, Fong, and Shah, we consider safety 
in human–robot interaction as given by the elimination or 
mitigation of hazards deriving from physical as well as psy-
chological harms [33]. Hence, in the next sections, we dis-
tinguish between physical and psychological hazards.

Fig. 6  Examples of safety issues. Left: the robot navigates in a cor-
ridor full of pedestrians while conforming to social norms (proxemics 
and speed). Right: the robot stops suddenly to avoid entering in con-
tact with a pedestrian, leading to harmful consequences for pedestri-
ans following from behind (in particular in case of person with spe-
cial health conditions, such as pregnant women)

Fig. 7  Minor physical risks may entail catching inadvertently pieces 
of clothing. Here, the runfun robot catches inadvertently a pedestri-
an’s handbag
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3.1  Hazard Deriving from Physical Contact

Physical contact occurs when the human and the robot bod-
ies (any part of the robot external surface: hands or wheels) 
come into contact with each other. ISO 13482:2014 defines 
contact as: ‘zero distance between robot and an object in 
its external environment’ [34]. Several occasions may lead 
robot and human to come into physical contact and such con-
tacts may generate hazards with different degrees of severity. 
The most frequent causes of contact are accidents or mal-
functions, with often dangerous consequences for humans. 
However, there might also be less dangerous forms of con-
tact, such as gentle touches, taps, pats, hands shake, and 
even hugs [35–37], which are usually deployed in “social 
interactions”. Other forms of bodily contact may happen, for 
instance, during assistive tasks, such as with robots designed 
as walking support [38, 39] or mobility devices [40, 41].

Most work in the area of safety in physical 
human–robot interaction (pHRI) [16, 19, 28, 42] including 
ISO/TS15066:2016 [17], conclude in limiting the opera-
tional velocity of a robot or robot link around a human based 
on a specified limit of permitted force in case of impact. The 
ISO/TS 15066:2016 standard defines a set of measures and 
protocols to establish risks presented by industrial robots 
operating in collaborative environments with trained opera-
tors. It specifies the inertia and velocity operation limits and 
recommend using “pain thresholds” measured in force or 
pressure and fix limits on these quantities. However, deter-
mining safety measure via pain thresholds may not prevent 
injuries in specific scenarios as showed in [42].

For instance, in the face of a blunt impact with a robot 
manipulator, one could use similar methodology for under-
standing moderate and minor injuries, for constrained and 
unconstrained collisions with mobile robots. Subsequent 
work by Mansfeld et al., presents an excellent compendium 
of biomechanical injury data and a method of classifying 
robot manipulator’s tasks and operation mode by dividing 
them based on the level of injury it could produce in case of 
collisions. This work gives a useful insight on how to map 
potential risks over the human body based on operational 
modes of the robot [16].

Nonetheless, for constructing similar safety maps for 
mobile robots operating in human unstructured environ-
ments there is still further work required: firstly, obtaining 
reliable data of the biomechanical effects over the human 
body in unconstrained collisions with robots in the opera-
tional space (weight and velocities) that service robots are 
expected to work. Secondly, characterising the human body 
with respect to the physical attributes of the person involved 
in the accident: gender, age, health conditions, etc. Indeed, 
vulnerable people, such as children, elderlies and pregnant 
women could be particularly at risk of serious injuries in 
the event of a collision with a robot. Thirdly, designing the 

control strategies that account for multiple scenario-based 
situations in terms of safety operational modes, e.g., situa-
tions where given a density of pedestrians it would be less 
dangerous to softly collide and push a person ahead rather 
than stop and risk a large crowd to collide.

The work by Haddadin, De Luca, and Albu-Schäffer 
could be useful as a starting point to analyse the mobile 
robots’ control and behaviour in a similar pipeline of colli-
sion events. From pre-collision (planning actions), followed 
by detection, isolation, identification, classification, reaction, 
and post-collision response [28]. Where current state of the 
art has focused mostly in the first phase only (pre-collision) 
[22–25, 27]. While detection, isolation, and identification 
of collisions for mobile robots is still a complex problem 
addressed in few works [43, 44]. Moreover, reaction and 
post-collision response is yet very unexplored [45].

Physical contact between mobile robots and humans is 
generally considered as dangerous and disturbing, and for 
these reasons, unacceptable [46]. Hence, most of navigation 
algorithms for mobile robots are designed for safe collision 
avoidance [47, 48]. However, although safe and endowed 
with a socially “aware” navigation (e.g. social norms and 
proxemics rules implemented in the robot behaviour) [49], 
collision avoidance algorithms are not the most efficient 
solution from a functional standpoint, especially for robots 
operating in crowded spaces. Indeed, in an environment 
jammed with people, the robot could find itself always 
stuck (i.e. “the freezing robot problem”) due to the lack of 
collision-free path [50], see also an illustration of the freez-
ing robot problem in scenario no. 4. The consequences of 
being stuck are delays in the robot accomplishment of its 
service or, in worst cases, the impossibility to carry out its 
task (e.g. delivering an object), as illustrated in Scenario 
1. Moreover, as shown in Fig. 2, a robot unable to move 
becomes an obstacle for other people or other robots, hence 
compromising safety and negatively affecting traffic fluidity 
in congested areas.

Among the solutions proposed by scholars for increasing 
robot safety and efficiency in crowded or cluttered situations 
is the possibility of accepting physical contacts with objects 
[51] and also with humans, for instance by developing coop-
erative navigation models [52, 53].

In the study by Shrestha et al., the authors propose a solu-
tion for improving navigation and safety, which is based 
on intentional physical contacts between the robot and the 
human. They consider the possibility of inducing a person 
to move aside by means of physical contact. The study 
investigates whether it is possible to predict reactions in by-
standers as a consequence of a robot touch. By correlating 
different contact points (i.e. upper arm, lower arm, upper 
back and lower back), with force and human responses direc-
tion, the experimental results confirm that human reaction 
is quite consistent with the direction of contact force when 
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static human subjects are touched by a robot arm [54]. In 
another study, intentional physical contact is used to buffer 
very probable contacts during navigation [55]. The authors 
propose a preliminary demonstration of a novel control 
framework for forearm contact during robot navigation. In 
the paper, a mobile robot employs the forearm to rub against 
the human body in order to accomplish its navigation goal 
during space-constrained navigation scenarios.

Indeed, the possibility of accepting and using physical 
contact with pedestrians or objects replicates a frequent 
habit among humans. Contacts among pedestrians are fre-
quent and accepted in highly crowded and cluttered environ-
ments. Therefore, rather than moving to minimize the risk 
of contacts (which may be more disruptive to the crowd), 
these robots could be designed to accept contacts while min-
imizing the risk of injuries. Safe contact can be generated 
through compliant behaviours [56] and by using appropri-
ate shape and materials, for instance, by covering with soft 
material the robot, by avoiding sharp edges and protruding 
parts, or by reducing the possibility of clutching into the 
robot joints, or getting caught in the robot structure and be 
dragged.

In Table 1, we propose a preliminary list of hazards 
emerging from physical interactions.

Each type of physical contacts listed in the table can be 
the result of intentional or unintentional actions. Moreover, 
physical contacts can be further characterised according to 
the initiator of the action: (1) robot-to-human when contact 
is initiated by the robot; (2) human-to-robot when contact is 
initiated by the person; and finally, (3) cooperatively-initi-

ated contact, which occurs when both human and robot play 
an active role in establishing a contact (e.g. object exchange 
or handshaking) [57].

In this paper, we will focus on robot-to-human and 
human-to-robot contacts. Moreover, we will not take into 
account physical contacts deriving from the use of control 
interfaces, such as joysticks or buttons. As a matter of fact, 
the safety of the person who operates the robot has received 
substantial attention in several safety standards, such as [36] 
and [17]. On the contrary, we wish to highlight safety con-
cerns with respect to pedestrians.

In the next sub-sections, we discuss the following hazards 
items:

• unintentional physical contacts;
• intentional physical contacts (robot to human);
• intentional physical contacts (human to robot).

Drawing on the list of hazards provided in [36], Table 2 
summarises the results of a preliminary identification analy-
sis of psychological hazards. The list is not exhaustive and 
it covers only hazards deriving from interactions between 
pedestrians (i.e. passers-by or by-standers) and robots.

3.1.1  Unintentional Physical Contacts

Physical contacts are “unintentional” when independent 
from the robot or user’s intentions. Unintentional con-
tacts take place accidentally, either because the robot or 
the human pass the “point of no escape”, making contact 
inevitable.

The most striking evidence that collisions between human 
and robots can happen is the first pedestrian death associated 
with self-driving technology [58].

According to ISO 12100:2010 unintended contacts can 
be further divided into: “dynamic” contact, if the person 
can retract after the impact and “quasi-static” contact, if 
the contact is prolonged [59]. This distinction is tailored 
to collaborative industrial robots, where, after a collision 
occurred, the escape way can be minimal; hence, the risk 
for the worker increases when he/she is trapped between the 
robot and a near obstacle. In a public environment, such as 
an airport, the risk of quasi static contact is less controllable 
with respect to a workspace as well as the risk deriving from 
sudden movements of pedestrians.

For instance, if a person makes a sudden move without 
leaving enough time to the robot to swerve, depending on 
the situation, the robot could hit the person, crush the per-
son against an object or rolls over (crush) a person’s foot. 
Other unintentional contact may arise from catching pieces 
of clothing, as illustrated in the scenario no. 2.

Table 1  Types of physical 
hazards

a The descriptions given in the table are freely drawn on the Online Cambridge Dictionary

Type Descriptiona

Collision A collision occurs when a moving robot and another body (i.e. person, object or else) hit each 
other with force

Crush The action of pressing or crushing with force

Push To force someone or something to move away from you or away from its previous position

Swipe A sideways movement of a body onto another body (i.e. rubbing)

Drag To physically pull something or someone along the ground

Touch (of two or more things) To be so close together that there is no space between; to be in contact
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To avoid such contact, it is crucial to endow the robot 
with full sensor coverage of its environment. Figure 8 top 
illustrates the visual coverage resulting from a typical choice 
of sensor placement, with a LiDAR on top and proximity 
sensors at the bottom of the platform. Because of the nar-
row vertical field of view of these sensors, the wheelchair 
has large blind areas.

3.1.2  Intentional Physical Contacts (Robot to Human)

Intentional, robot-to-human physical contacts can be either 
active or passive: the former are physical contacts aimed at 
inducing a reaction in a human, for instance when a robot 
is stuck in front of a group of people and need to move on, 
it may touch with its hand the back of a person [54]. Other 
forms of active intentional contacts can take place during 
social interactions: hands shaking, offering the arm as walk-
ing support, giving the five. The latter type refers to contacts 
occurring when no reaction from a human is sought, for 
instance when a robot intentionally swipes against a person 
because it evaluates this action as the best solution in order 
to ensure safety during navigation [55], as described in sce-
nario no. 2.

Among the most challenging technical problems related 
to intentionality is the problem of distinguishing between 
intended and unintended physical contacts. Kouris and 
colleagues take into account the problem of differentiat-
ing unexpected collisions from voluntary contacts during 
human–robot collaboration, in order to improve the opera-
tor’s safety [60]. The authors use frequency characteristics 
of cooperation and collisions forces, which are measured 
by the robot’s proprioceptive sensors. The most challenging 
aspects of classification are: to achieve a reliable detection 
of collision; to eliminate false positive; and to ensure very 
short reaction times.

Besides safety implications, there are also non-technolog-
ical challenges related to societal acceptability, which need 
careful sociological, but also ethical and legal considerations 
(e.g. would a person—child or adult—consent to be touched 
by a robot?). For space constraints we cannot address these 
aspects in detail. We refer the reader to [61].

3.1.3  Intentional Physical Contacts (Human to Robot)

Human-to-robot, intentional contacts are deliberate con-
tacts made by a person to induce a behaviour in the robot 
(e.g. controlling the robot speed) These types of contacts 
are targeted at specific parts of the robot body, where 
touch is permitted by the designer. These parts may vary 
depending on the robot morphology (e.g. wrist, back of 
the hand, shoulder). Indeed, many robots, like Pepper, are 
endowed with tactile body parts, consisting of capacitive 
sensors. Tactile sensors are often used to detect human Ta

b
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contact within HRI applications [62]. They allow the robot 
to “feel” touch and to identify the part of the body touched.

Intentional contacts can be particularly useful in social 
interactions with robots. For instance, a gentle touch on 
the arm can stop the robot; a tap on the shoulder can 
reduce the robot speed during a guiding task; touching 
another part of the robot (i.e. the tablet screen) can be 
used to request its services. However, unless character-
ized by strong affordances, the use of tactile body parts 
implies that the user knows in advance which parts of the 
robot can be activated and which actions are triggered 
once activated.

The lack of preliminary information on how to use the 
robot (e.g. tutorials or user manuals) as well as the lack of 
appropriate feed-backs to users, may lead to misuse and 
to dangerous situations [63].

Moreover, touch can be the consequence of an emo-
tional response to the robot appearance or behaviour (a 
hug, a caress, a simple touch) as described in the scenario 
no. 1.

A different case is when intentional contact is aimed at 
damaging or destroying the robot: i.e. vandalism [64]. In 
order to guarantee the security of the robot and consequently 
the safety of all its stakeholders, designers should take seri-
ously into account robot vulnerability with respect to abu-
sive physical interactions [65].

3.2  Hazards Deriving from Psychological 
Interactions

Psychological safety is concerned with the elimination or 
mitigation of hazards deriving from psychological harms, 
such as discomfort or stress. According to Lasota, Fong, 
and Shah ‘maintaining psychological safety involves 
ensuring that the human perceives interaction with the 
robot as safe, and that interaction does not lead to any 
psychological discomfort or stress as a result of the robot’s 
motion, appearance, embodiment, gaze, speech, posture, 
social conduct, or any other attribute’ [33].

In order to ensure psychological safety, the authors sug-
gest adjusting the robot behaviour and appearance to the 
personality traits, experience and culture of the human 
user [33]. This can be done, for instance, by modifying 
the robot speed, acceleration, or proxemics, by balancing 
the level of anthropomorphism in the external appearance, 
or by implementing in the robot behaviour the social con-
ventions commonly used in human-to-human interactions, 
such as turn-taking, eye-contact, or giving the right of way 
during navigation. The solutions proposed are still tailored 
on the subjective characteristics of the individual user, 
therefore they may not be easily applicable to robots oper-
ating in crowded spaces, where the focus is not exclusively 

Fig. 8  Illustrations of the visual coverage arising from the use of (top) typical coverage made of a lidar and of proximity sensors. This leaves 
plenty of blind spots. Replacing proximity sensors with several time of flight cameras (bottom) offers a more complete coverage
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on users, but also on pedestrians, that is, people who just 
share the robot floor, like passers-by [33].

In addition to behaviour and appearance, psychologi-
cal hazards can be brought about also by physical contacts 
between the human and the robot, which may become more 
frequent also in service applications. Indeed, physical con-
tact is becoming a popular interface in human robot inter-
action. However, people’s reactions to robot touch can be 
different, depending on the attitude (i.e. positive or negative) 
towards the robot [69].

In robotics, psychological hazards have been mainly 
addressed in the framework of occupational safety [70], with 
respect to industrial and collaborative robots. Among the 
main psychological hazards for workers’ health, there are 
mental stress and cognitive burden deriving from interac-
tions with robots [71].

British Standard 8611:2016 is the only soft law instru-
ment explicitly addressing psychological harms in 
human–robot interactions, outside of industrial applications 
[72]. It defines psychological risks as ethical harms, namely 
‘anything likely to compromise psychological and/or soci-
etal and environmental well-being’.3 This standard expands 
the range of psychological hazards, so far mainly focused 
on stress and anxiety, by adding to the list: ‘embarrassment, 
addiction, deception, humiliation, being disregarded’ [72].

In 2017, the European Parliament published the recom-
mendations to the Commission on the use of robots, where, 

among the various dangers identified, a new psychological 
hazards was given special attention: ‘the possible devel-
opment of an emotional connection between humans and 
robots ‒ particularly in vulnerable groups (children, the 
elderly and people with disabilities) ‒ and the issues raised 
by the serious emotional or physical impact that this emo-
tional attachment could have on humans’ [73]. The risk of 
developing affective bonds with robots had already been 
addressed in the scientific literature [74–76]. Although this 
is a risk concerning in particular social robots, all robots ser-
vicing in public spaces can exhibit some degree of anthro-
pomorphism, either in their appearance or behaviour, given 
their need to adapt to social norms during navigation and to 
make interactions with humans as easy as possible. Some of 
the psychological harms that can be caused by the develop-
ment of emotional connections with robots have been so far 
investigated in the literature concerning companion robots 
and their interaction with vulnerable people (i.e. elderly and 
children) and are: subconscious engagement, dependence, 
and social isolation [77–80] just to mention a few.

To sum up, for psychological hazards, we mean the 
(serious) deterioration of people’s mental health as a con-
sequence of interactions with robotic devices. In particular, 
psychological hazards may affect a person’s cognitive, social 
and even emotional capabilities. Psychological hazards 
can be caused by robot movement, appearance and social 
capabilities, including forms of physical contact. Potential 
consequences on health are stress, anxiety, discomfort, fear, 
emotional connects, etc.

In Table 3, we propose a preliminary list of psychological 
hazards emerging from interactions with humans.

In the next sub-sections, we discuss the following hazards 
items:

• Hazards deriving from robot appearance

Table 3  Types of psychological hazards

Hazard Description

Fear of robot presence It is a condition characterised by experiencing negative feelings towards a robot (such as anxiety and stress) just 
because of its presence [81]. The reason can be many, such as the fear of being monitored [82]

Perceived safety The perception of a robot safety, namely the users’ level of comfort and perception of risk can be due to the robot 
external appearance [83], such as its dimension (e.g. too big) and movements, such as the speed of motion (e.g. too 
fast), [84]

Uncanniness It refers to the experience of an unpleasant feeling or emotion (e.g. eeriness, fear, anxiety, disgust, and even revul-
sion) originating by a sense of “negative familiarity” raised by a robot movements and appearance [85]. It can be 
also elicited by physical contacts between a human and a robot [86]

Lack of affordance Difficulty in understanding how to use the robot by looking at its appearance [87, 88]

Lack of transparency Difficulty in understanding the robot workings and intentions [89]. It can be due to the robot appearance and motion

Emotional attachment The development of an emotional connection between a human and a robot. It can be due to deceptive design, i.e. too 
realistic humanoid or animaloid appearance and behaviour [76, 77]

Violation of social norms The non-adherence to social conventions and proxemics in use in human-to-human interactions can be a source of 
discomfort for people interacting with robots [90, 91]

3 In this study, we prefer to use the phrase psychological hazards 
instead of ethical harms, as proposed in [72]. In our opinion, ethics 
and safety are two different concerns. Safety is concerned with the 
reduction or mitigation of hazards, physical as well as psychological. 
Moreover, safety is an ethical value, likewise privacy, dignity, free-
dom, etc. Ethics is the art of making the best choice when a trade-off 
among values is needed.
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• Hazards deriving from robot motion
• Hazards deriving from physical contact

Drawing on the list of hazards provided in [34], Table 4 
summarises the results of a preliminary identification analy-
sis of psychological hazards. The list is not exhaustive and 
it covers only hazards deriving from interactions between 
pedestrians (i.e. passers-by or by-standers) and robots.

3.2.1  Robot Appearance

Discomfort can be caused merely by the robot presence, in 
particular with special categories of people, such as children, 
elderly, people with cognitive disabilities [72]. The reasons 
can be many: cultural, religious, and very subjective: per-
sonal attitude towards technology, level of familiarity with 
technologies. For instance, people may feel uncomfortable 
because of the presence of cameras and hear phones on 
board the robot. The feeling of being watched by the robot 
and potentially by other people could be the cause of appre-
hension. We refer to this hazard as the feeling of being under 
surveillance or spied on, which may cause stress, anxiety 
and in some case even violent reactions towards the robot 
[92, 93].

A robot appearance is a sensitive item, which must be 
designed carefully in order to avoid different types of haz-
ards. On the one hand, a robot appearance may evoke eerie 
feelings in the beholder, linked to nervousness or fear. The 
Uncanny Valley theory is a case in point [85, 94]. This is a 
phenomenon experienced by people confronted with robots 
similar to living humans or animals. The level of pleasant-
ness and familiarity experienced by humans grow in a meas-
ure directly proportional to the realism of the robot up to a 
point in which there is a sudden fall of the positive emotional 
responses.

On the other hand, the level of realism in a robot appear-
ance (anthropomorphism or zoomorphism) can be a matter 
of concern due to the feeling of social presence [84] gener-
ated in the beholder, which could lead to the humanization 
of the robot, hence the development of forms of emotional 
attachment towards it [72], especially by vulnerable people, 
such as children, elderlies and disables (see scenario no. 1).

Moreover, the robot shape plays a determinant role in the 
communication of the robot level of perceived safety [95]. 
The perception of safety is given by physical attributes such 
as the robot dimension, shape, balance, etc. For instance, the 
presence of sharp edges or protruding parts in a robot cover 
may elicit a feeling of danger or fear in the user or passer-by, 
for the risk they may create (as illustrated in scenario no.5). 
Similar fears can be triggered from other features, such as 
the robot’s size as compared to the pedestrian (robot to child 
for instance), as illustrated in scenario no. 1).

Finally, the robot appearance is related to the design 
of affordance and transparency. The former is concerned 
with the understanding of the robot function and usage. 
For instance, a low level of affordance can cause errors and 
confusion in the user, increasing cognitive burden and con-
sequently stress and anxiety [96, 97] (for an example see 
scenario no. 3). The latter has to do with the presence of 
interfaces that allows a person to understand what the robot 
is doing and why [63, 96, 98]. For instance, a low level 
of transparency can cause misunderstanding in pedestrians 
due to the poor legibility of the robot intentions, negatively 
affecting human–robot interaction. The lack of transparency 
besides being stressful for users and pedestrians can have 
dangerous consequences (see example in Sect. 2.1, scenario 
3).

3.2.2  Robot Movements

Robots movements are usually considered dangerous 
because of the physical harms they can cause: e.g. crushing, 
collision, cuts, abrasions, etc. [34]. However, in this sub-sub-
section, we are looking at the psychological hazards caused 
by robot movements to users and pedestrians.

Besides appearance, movement is another factor deter-
mining the Uncanny Valley. Indeed, increasing the realism 
of the robot movements does not necessarily imply obtaining 
higher acceptance from users. For instance, a robot moving 
not as smoothly as a human being may be considered as 
fearsome and elicit unpleasant, disturbing feelings, causing 
stress and anxiety [97]. Among the possible causes inves-
tigated in the literature are the fear of losing bodily control 
[98] or the mismatch with our expectation caused by the 
incongruent robot movement [99].

The perception of a robot safety is also depending on 
movements. Motion may increase trust in the robot, for 
instance when it actively avoids obstacles and shows a reli-
able safety behaviour (e.g. stops or slows down in front of 
a human, turns away, act compliantly upon contact, namely 
is perceived as a free mass). On the contrary, motion can 
decrease trust because the robot is perceived as unstable 
or too fast. In [100] the continuous forward and backward 
movement of an autonomous Segway platform in still 
position provoked in the robot users a feeling of instabil-
ity and weakened the perceived safety of the robot during 
interaction.

We argue that the lack of compliance with social rules 
during navigation, can be considered as a source of physical 
as well as psychological hazard. The importance of socially-
aware navigation is nowadays very much consolidated in the 
robotics literature [101–104]. As a matter of fact, in inter-
personal interactions, people tend to respect personal space; 
move to one side of hallways; yield right-of-way. This is 
made possible by culturally shared conventions and by the 
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capability of interpreting human communication (e.g. move-
ments, gestures, eye-contact, etc.). In human robot interac-
tion, research demonstrates that by implementing socially 
aware navigation improves robot performance and safety 
(by reducing stress and discomfort during navigation), and 
as illustrated in scenario no. 3. For instance, a robot non 
respecting personal space can cause discomfort in pedestri-
ans [105, 106].

Nevertheless, not all social rules in use in interper-
sonal relations can be equally applicable and effective in 
human–robot interaction. For instance, while we accept to 
walk next to an unknown person, we may not feel the same 
with a robot. In the work by Hanajima et al., the authors 
investigated human subjects’ responses to approach motions 
of a mobile robot by varying speed and proximity (slow/
fast and close/far away). Drawing on psychophysiological 
analysis (i.e. electro dermal activity and semantic difference 
technique), the study showed that a robot moving close by to 
a person increases the level of anxiety (independently from 
its speed) compared to a robot moving at a greater distance 
[107].

In another study Pham et al., the authors considered the 
psychological effects of a robot movement on pedestri-
ans, in terms of their feelings of safety and comfort. They 
investigated the effects of a personal mobility vehicle (i.e. 
an overboard) in pedestrian flows using the concept of per-
sonal space, which is the space in which invasion by others 
induces a psychological strain. The authors found out that 
the pedestrians’ level of fear and discomfort toward the per-
sonal mobility vehicle increased when the pedestrian density 
increased [108].

3.2.3  Physical Contact

Touch is becoming a key form of interaction between 
humans and robots also outside of the industrial sectors, 
where, since a decade or so, collaborative robots have 
removed the barriers separating workers and machines [62].

As discussed in Sect. 3.1, in crowded environments, phys-
ical contact between pedestrians and robots can be inevita-
ble. Therefore, endowing robots with the ability to recognize 
contacts with electronic skin and use touch to communicate 
with humans can be important for improving safety (by inte-
grating vision based approaches) [109] as well as facilitating 
social interactions [110], or improving trust in human–robot 
collaboration [111].

However, the experience of being touch by a robot or 
just the idea of it can have different levels of acceptability 
and its use may not be as effective among humans [112]. 
In the study by Shrestha et al., the authors investigated the 
participant’s subjective response towards robot-initiated 
touch during navigation. Results show that prior experience 
with robots produces slightly better response from humans 

and that verbal warning prior to contact, yields much more 
favourable responses. The authors state that in general, 
participants in the study did not find contact to be uncom-
fortable and were not opposed to robot-initiated contact if 
deemed necessary [113].

As far as the effectiveness and acceptability of contact/
tactile interactions, Willemse, Toet and van Erp investigated 
the equation of interpersonal touch and human–robot touch 
(HRT), namely whether robot-initiated touches induce phys-
iological, emotional, and behavioural responses similar to 
those reported for human touches. According to the authors, 
‘merely simulating a human touching action with the robot’s 
limbs is insufficient to elicit physiological, emotional, and 
behavioural responses in this specific context and with this 
amount of participants’ [114]. Finally, the authors point out 
that in order to evaluate the effectiveness of a robot touch, it 
is necessary to take into account ‘the robot’s touching behav-
iour, its appearance and behaviour, the user’s personality, the 
body location where the touch is applied, and the (social) 
context of the interaction’ [114].

In a study by Arnold and Scheutz, the authors confirm 
that a robot touch enhances the social appraisal of a robot 
as a worker and teammate. The authors point out the criti-
cal importance of gender role and workplace expectations 
in the evaluation of a robot touch [115]. According to the 
findings of Hoffmann the acceptance of touch may depend 
on robot shape: small and pet like robot are more favourably 
accepted, since we tend to associate them with inoffensive 
and baby creatures. Quite interestingly, higher acceptance 
was revealed for functional compared to affective touch. 
Cultural norms play an important role in the assessment of 
being touch by a robot: as well as the context: legal/illegal; 
pleasant/unpleasant; or positive/negative to which we should 
add safe/unsafe [116].

4  Conclusions

This paper offered an overview of the hazards entailed by the 
introduction of robots moving in densely populated, pedes-
trian areas. These robots will present primarily risks for 
human physical safety. Because they travel in close vicinity 
to pedestrians, unlike cars, they are highly likely to enter in 
physical contact with humans. As these robots are heavy and 
can travel faster than humans, contact may generate strong 
forces and be particularly detrimental to population with 
slow mobility and for children.

Implementing human aware navigation algorithms—
including social norms and proxemics rules—as well as 
endowing robots with transparency interfaces for disclosing 
robot actions (current and future)—can contribute to reduc-
ing the hazards inherent to deployment in public spaces. 
Examples of implementation can be found in [120, 121].
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In addition to physical risks, in this study we pointed out 
the need to consider also psychological risks. We identified 
a preliminary set of hazards affecting the mental health of 
people during interaction with robots. Again, specific meth-
ods and tools are needed to measure the severity of psycho-
logical hazards.

Robots servicing in public spaces introduce new target 
hazards, namely pedestrians. The severity of hazards (physi-
cal as well as psychological) depends on the characteristics 
of the human subject involved in the impact (e.g. gender, 
age and health). To be completely safe, a robot servicing in 
public and crowded environments must be designed taking 
into account such a diversity of features. In other words, 
designers should be aware that a human obstacle is not just 
a male, adult, but can be also a child, an elderly person, a 
pregnant woman or any other person with a special health 
condition. Besides robot designers, we believe that it is now 
important to inform the general public on the dangers gener-
ated by the new robots.

Finally, as artificial intelligences advance and autono-
mous robots in their many forms perform more and more 
tasks, not only will individual robots be in increasingly 
dense crowds (increasing density of urban areas), but these 
robots will themselves start proliferating and may outnum-
ber us in our public spaces. While this nightmarish thought 
may hopefully never come to be a reality, it is possible that 
in certain circumstances robots may punctually outnumber 
humans. For instance, in industrial environments, autono-
mous transporters will gradually replace human-driven 
ones and hence it may become quite frequent in the factory 
corridors, using a large part of the factory floor. This may 
also become true in pedestrian walks particularly suited for 
powered strollers and other automated personal transporters.

This manuscript did not discuss dangers arising from the 
deployment of other autonomous robots such as autonomous 
cars and drones, as our focus was to highlight dangers aris-
ing from designing robots meant to navigate in pedestrian 

alleys. However, these other two categories of autonomous 
vehicles also present many dangers to pedestrians.

While, in principle, cars are not allowed to drive on 
pedestrian alleys, there is an increasing tendency to allow 
cars to share the same floor as pedestrian (e.g. in city centres 
of some European cities). Like ground robots, autonomous 
cars have autonomy of Level 3–4 of SAE standard. Colli-
sions with autonomous cars are even more detrimental to 
pedestrians since cars are one order magnitude heavier than 
the small mobile robots we considered here. A car is, how-
ever, much more visible than an autonomous mobile robot 
(e.g. a delivery robot) or a wheelchair in a crowd. Moreover, 
people are much more acquainted with dangers represented 
by cars, than they are with mobile robots.

Drones share many features with ground mobile robots 
(full autonomy, no operator on-board). If home delivery 

drone market were really to take off, we may start encounter-
ing flocks of drones around doorsteps, and, for this transient 
period where they fly at human height, drones may lead to 
hazards for bystanders. These hazards are, however, different 
from those generated by robots on ground. Drones move at 
much higher speed than ground robots and are barely visible 
to pedestrians since they usually fly above heads. The dangers 
that drones may create to pedestrians one day should, hence, 
not to be neglected. However, as for autonomous cars, these 
issues deserve a dedicated report.

While autonomous cars have their own space (the roadway), 
robots servicing in public spaces will share the space of people 
(i.e. pedestrians). To limit their misuse and undue proliferation 
may require public policy. Should we think ahead and start 
changing the design of our pedestrian walks, dividing these (as 
we do with swimming lanes) into fast moving lanes, permitted 
to robots, and slow-moving lanes restricted to protected pedes-
trians (elderly, families with small children, etc.). Should we 
start monitoring speed limits of robots and install fines for not 
respecting lane usage and speed recommendations?

Limiting the number of robots to prevent undue prolif-
eration may not be an easy issue, especially in free market 
societies. It becomes an issue of public policy to determine 
the right trade-off benefits and harms brought by robots in 
public space. Perhaps some robots may be prioritized over 
others (e.g., robotic wheelchairs vs. delivery robots) because of 
greater human benefits (consequences), or because the “right” 
for a human’s autonomous locomotion in a robotic wheelchair 
trumps a faster delivery time for receiving a consumer product.

Public awareness is also necessary to start a conversation 
about public policies. New policies are required to regulate 
mobile robots deployment in public areas, including task, 
speed of motion and to enforce adequate training of robot’s 
end-users, when necessary.
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