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Safety-critical Medical Device Development using the UPP2SF Model
Translation Tool

MIROSLAV PAJIC, University of Pennsylvania

ZHIHAO JIANG, University of Pennsylvania

INSUP LEE, University of Pennsylvania

OLEG SOKOLSKY, University of Pennsylvania

RAHUL MANGHARAM, University of Pennsylvania

Software-based control of life-critical embedded systems has become increasingly complex, and to a large

extent has come to determine the safety of the human being. For example, implantable cardiac pacemakers

have over 80,000 lines of code which are responsible for maintaining the heart within safe operating limits.

As firmware-related recalls accounted for over 41% of the 600,000 devices recalled in the last decade, there is

a need for rigorous model-driven design tools to generate verified code from verified software models. To this

effect we have developed the UPP2SF model-translation tool, which facilitates automatic conversion of ver-

ified models (in UPPAAL) to models that may be simulated and tested (in Simulink/Stateflow). We describe

the translation rules that ensure correct model conversion, applicable to a large class of models. We demon-

strate how UPP2SF is used in the model-driven design of a pacemaker whose model is (a) designed and

verified in UPPAAL (using timed automata), (b) automatically translated to Stateflow for simulation-based

testing, and then (c) automatically generated into modular code for hardware-level integration testing of

timing-related errors. In addition, we show how UPP2SF may be used for worst-case execution time estima-

tion early in the design stage. Using UPP2SF, we demonstrate the value of integrated end-to-end modeling,

verification, code-generation and testing process for complex software-controlled embedded systems.

Categories and Subject Descriptors: C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-

TEMS]: Real-time and embedded systems; J.3 [LIFE AND MEDICAL SCIENCES]: Health; D.2.10 [De-

sign]: Methodologies

General Terms: Design, Verification, Measurement

Additional Key Words and Phrases: Model-based development, model translation, medical devices validation

and verification, real-time embedded systems

1. INTRODUCTION

During the last decade, Model-Driven Development (MDD) has been widely used for
design of real-time and cyber-physical systems (CPS). In the case of safety-critical sys-
tems, this methodology advocates for design procedures that start with formal mod-
eling of the system, followed by the model’s verification at an early stage. Since the
initial input to the system designers is usually a set of informal specifications, this
approach enables early detection of the specification and modeling errors.

For real-time systems, timed-automata [Alur 1999] are a commonly used modeling
formalism, allowing designers to exhaustively explore the possible behaviors of the sys-
tem and prove its safety. Design of CPS is more complex, since these systems feature a
tight coupling between the real-time discrete controller and (usually) continuous phys-
ical environment. For the systems’ verification, it is necessary to provide the model of
the closed-loop system, which also takes into account the interaction between the con-
troller and the environment. Although in the general case this interaction can be mod-
eled as a hybrid system, the complexity of this approach usually renders it out of reach
of current verification tools [Alur et al. 1995]. Thus, in the initial design stage, timed-
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Z. Jiang, I. Lee and O. Sokolsky, Department of Computer & Information Science, University of Pennsylva-
nia, 3330 Walnut Street, Philadelphia, PA 19104; email: {zhihaoj, lee, sokolsky}@cis.upenn.edu;
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Fig. 1. (a) The standard model architecture used for verification; (b) MDD-based framework: From UPPAAL
to Stateflow to generated code – covering model verification, simulation-based testing and platform testing.

automata models that abstract away complex system dynamics, replacing it with tim-
ing constraints, are commonly used for verification of CPS (e.g., [Pajic et al. 2012c]).

Since parts of the verified models represent over-approximations of the realistic
models, in the later stages of MDD, detailed models of the environment and its in-
teraction with the controller are developed. These models enable high-fidelity system
simulation with real system dynamics, and are used to validate the initial assump-
tions used in the verification stage. During the validation procedure, it is necessary to
ensure equivalence between the controller models used for verification and simulation.
Therefore, it is essential to provide guarantees that the properties verified in the early
stage are still satisfied, as the system model gets complex and more refined.

Finally, the verified model must be translated into executable code for physical im-
plementation, which is then validated using different testing procedures that have
been built on the initial system’s specification. However, since the verification is per-
formed on a closed-loop system model, the verified model usually has the structure as
the one shown in Figure 1(a), meaning that, besides the controller model, it contains
model of the environment (which includes the interface controller ↔ environment).
Hence, to obtain valid controller code it is necessary to decouple the controller code
from the code synthesized for the whole closed-loop model. In scenarios with complex
interfaces between the controller and environment, this can be a very tedious and error
prone process. Consequently, to prevent introduction of errors during the decoupling it
is necessary to provide a procedure for modular code synthesis.

In this work, we present a model-translation tool, UPP2SF, and show how it enables
a model-driven design framework for safety-critical real-time embedded systems (Fig-
ure 1(b)). UPP2SF facilitates automatic conversion of verified models (in UPPAAL) to
models that may be simulated and tested (in Simulink/Stateflow). By using Simulink
support for code generation, this allows for automatic end-to-end model translation
across multiple levels of abstraction to modular code synthesis. Consequently, the
proposed framework ensures that successive models are consistent through the de-
velopment process: (a) a timed-automata based UPPAAL modeling of the controller
software, the model verification and model-based worst case execution time (WCET)
estimation; (b) automatic translation of the model to Stateflow using the developed
UPP2SF tool; (c) testing of the Stateflow model; and (d) automatic modular code gen-
eration, test generation and testing of timing related errors on the hardware platform.

UPPAAL [Larsen et al. 1997; Behrmann et al. 2004] is a standard free tool for model-
ing and verification of real-time systems, based on networks of timed automata. Thus,
it does not support simulation of continuous-time dynamics. Although there exists
some work on code generation from timed-automata models (e.g., [Altisen and Tri-
pakis 2005; Amnell et al. 2004]), there are only few tools [Amnell et al. 2004; Hendriks
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2001] with limited capabilities in generating C code from UPPAAL models (see Sec-
tion 2.2). Furthermore, none of these tools supports modular code generation from
UPPAAL models. On the other hand, Simulink is a commercially available tool, used
for modeling and simulation of CPS, while its toolbox, Stateflow, supports design and
simulation of state machines and control logic. Simulink provides full support for C,
C++, VHDL and Verilog code generation. However, Simulink has had a limited suc-
cess with model verification [Leitner and Leue 2008; Schürenberg 2012], and (more
importantly), due to Simulink’s deterministic execution semantics, it currently does
not support verification of non-deterministic systems; this is a significant limitation in
closed-loop CPS, where behavior of the environment is usually nondeterministic.

In this paper, we demonstrate the use of the framework on a detailed case study for
the development of a safety-critical system medical system – an implantable cardiac
pacemaker. We focus on the pacemaker case study as there is a need to develop a
methodology for the design and analysis of safety critical closed-loop medical device
software and systems [Lee et al. 2006]. From 1990-2000, firmware issues resulted in
over 200,000 implantable device recalls [rec 2010]. From 1996-2006, the percentage
of software-related causes in medical device recalls have grown from 10% to 21% [rec
2010]. Furthermore, during the period January-June of 2010, at least six recalls of
defective devices, issued by the US Food and Drug Administration (FDA), were caused
by some sort of software issues [Sandler et al. 2010]. These recalls were categorized as
Class I, which means that there is a “reasonable probability that use of these products
will cause serious adverse health consequences or death.”

We start the case study from informal pacemaker requirements [Boston Scientific
2007], which we formalize, and use for verification by designing an appropriate set of
monitors in UPPAAL. We also show how a WCET estimation can be done in the early
stage in UPPAAL, before the verified model is translated to Simulink. Furthermore,
we illustrate the approach used toward modular code synthesis – extracting the con-
troller’s Stateflow model by decoupling the controller (i.e., pacemaker) from environ-
ment (i.e., the heart). Finally, we extend the method for testing real-time requirements
from [Clarke and Lee 1995] to validate the physical implementation of the device.

The paper is organized as follows: in Sec. 2 and 4, we present brief overviews of
UPPAAL and Stateflow. In Sec. 3, we show that for a large class of UPPAAAL mod-
els, a run can be obtained by evaluating transitions at integer time-points only. Sec. 5
presents the model translation procedure, while in Sec. 6 we show that the UPP2SF-
derived chart has the execution trace that corresponds to one of the maximal progress
assumption runs of the initial UPPAAL model. Sec. 7 introduces the pacemaker case
study and presents a set of formal pacemaker specifications, which we verified in UP-
PAAL using the developed pacemaker model (Sec. 7.2). Finally, we present the obtained
Stateflow closed-loop system model and the procedure used to decouple the controller
and environment (Sec. 8), followed by device implementation on an RTOS (Sec. 9).

1.0.1. Notation. We use the standard notation where Z,N,N0 denote the sets of inte-
gers, natural numbers and nonnegative integers, respectively, while R

+ is the set of
nonnegative reals. Finally, ⌊z⌋ denotes the largest integer that is not larger than z.

2. A BRIEF OVERVIEW OF UPPAAL

In this section, we present an overview of the UPPAAL tool, including some of the
UPPAAL extensions [Larsen et al. 1997; Behrmann et al. 2004; Bengtsson and Yi 2004]
of the timed-automata formalism from [Alur 1999]. Also, to illustrate the need for a tool
like UPP2SF we survey existing tools for code synthesis from UPPAAL models.
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2.1. UPPAAL Modeling of Real-time Systems

UPPAAL supports networks of timed automata. Each automaton is a state machine,
equipped with special real-valued variables called clocks. Clocks spontaneously in-
crease their values with time, at the same fixed rate. Locations (i.e., states) in au-
tomata have invariants that are predicates over clocks. A location in an automaton
can be active as long as its invariant is satisfied. Transitions in automata have guards
that are predicates over clocks and variables. A transition can be taken only if its
guard is true. Because clock values increase, an initially false guard can eventually
become true, allowing us to model time-dependent behaviors, such as delays and time-
outs. When a transition is taken, an associated action is executed, which can update
variable values and reset clocks to integer values (possibly non-zero).

Automata in the network execute concurrently. They can communicate via shared
variables, as well as via events over synchronous channels. If c is a channel, c? repre-
sents receiving an event from c, while c! stands for sending an event on c. In the general

case, an edge from location l1 to location l2 can be described in a form l1
g,τ,r
−−−→ l2, if there

is no synchronization over channels (τ denotes an ’empty’ action), or l1
g,c∗,r
−−−−→ l2. Here,

c∗ denotes a synchronization label over channel c (i.e., ∗ ∈ {!, ?}), g represents a guard
for the edge and r denotes the reset operations performed when the transition occurs.

2.1.1. Timed-Automata Semantics in UPPAAL. We denote with C the set of all clocks and
with V the set of all data (i.e., boolean and integer) variables. A clock valuation is a
function u : C → R

+, and we use R
C to denote the set of all clock valuations. A simple

valuation is the function u0(x) = 0, for all x ∈ C. Similarly, a data valuation is a
function v : V → Z, while Z

V denotes the set of all data valuations. A valuation w,
denoted by w = (u, v), is a function w : C × V → R

+ × Z such that w(x, i) = (u(x), v(i)),
for clock valuation u and data valuation v. Also, for a valuation w = (u, v), w+d denotes
the valuation where (w + d)(x) = (u+ d)(x) = u(x) + d for x ∈ C, and (w + d)(i) = v(i)
for i ∈ Z. In the rest of the paper, a clock valuation u that satisfies that for all x ∈ C,
u(x) ∈ N0 will be referred to as integer clock valuation, while a valuation w = (u, v),
where u is an integer clock valuation will be referred to as an integer valuation.

Furthermore, let B(C, V ) denote the set of conjunctions over simple clock and vari-
able conditions of the form x ⊲⊳ n, x− y ⊲⊳ n or i− j ⊲⊳ k, where n ∈ N, x, y ∈ C, i, j ∈ V ,
k ∈ Z and ⊲⊳∈ {≤,≥,=, <,>}.1 Similarly, B(C) denotes the set of all conjunctions over

the clock variable conditions. Thus, a guard can be defined as an element of B(C, V ).2

Reset operations are used to manipulate clocks and data variables. They have the form
x = n or i = c1 ∗ j + c2, where x ∈ C, i, j ∈ V , c1, c2 ∈ Z and n ∈ N0. We use R to denote
the set of all possible reset operations, and for a reset operation r ∈ R and valuation w,
r(w) is the valuation obtained from w where all clocks and data variables specified in r
are assigned to the values obtained from the appropriate expressions. Finally, we use
K to denote the set of all channels, and A = {α?|α ∈ K} ∪ {α!|α ∈ K} ∪ {τ} to denote
the set of all actions. Here, τ denotes an ’empty’ action – without synchronization.

Definition 2.1. An automaton A is a tuple (L, l0, A, C, V,E, I) where L denotes the
set of locations in the timed automaton, l0 is the initial location, A is a set of of actions,
C a set of clocks, V is a set of data variables, and E ⊆ L×A×B(C, V )×R×L denotes
the set of edges, while I assigns invariants to locations (i.e., I : L → B(C) is a mapping
of each location to a constraint over some clocks).

1In the latest UPPAAL versions n can also denote an expression over integer variables. Since all results
from this section are valid in the latter case, we use the simplified notation where n is a constant integer.
2The default guard is true.
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l1l0

t<=10

e2?
t=2

t>=10
e1!
t=0

(a) P0 automaton

l1l0

e2!

e1?

(b) P1 automaton (c) A run of the model

Fig. 2. An UPPAAL model example.

If a clock valuation u satisfies the invariants at location l, we abuse the notation and
write u ∈ I(l). Similarly, we denote with w ∈ I(l), if w = (u, v) and u ∈ I(l). Also, if a
valuation w satisfies a condition g ∈ B(C, V ) we write w ∈ g.

A network of n timed automata is obtained by composing Ai = (Li, l
0
i , C,A, V,Ei, Ii),

i ∈ {1, ..., n}. In this case, a location vector is defined as l̄ = (l1, l2, ..., ln). In addition,
the invariant for location vector l̄ is defined as I(l̄) = ∧iIi(li). To denote the vector
where ith element of vector l̄ (i.e., li) is substituted with l′i we use the notation l̄[l′i/li].

Definition 2.2. Let A = {A1,A2...,An} be a network of n timed automata, and let
l̄0 = (l01, l

0
2, ..., l

0
n) be the initial location vector. The semantics of the network is defined

as a transition system 〈S, s0,→〉, where S = (L1 × L2 × ...× Ln)× (RC × Z
V ) is the set

of states, s0 = (l̄0, w0) is the initial state, where w0 = (u0, v0) and v0 is any initial data
valuation, and →⊆ S × S is the transition relation defined by:

(1) (l̄, w) → (l̄, w + d) if for all d′ such that 0 ≤ d′ ≤ d, it follows that w + d′ ∈ I(l̄);

(2) (l̄, w) → (l̄[l′i/li], w
′) if exists li

g,τ,r
−−−→ l′i such that w ∈ g, w′ = r(w) and w′ ∈ I(l̄[l′i/li]);

(3) (l̄, w) → (l̄[l′j/lj , l
′
i/li], w

′) if there exist li
gi,c?,ri
−−−−−→ l′i and lj

gj ,c!,rj
−−−−→ l′j such that

w ∈ (gi ∧ gj), w
′ = (ri ∪ rj)(w) and w′ ∈ I(l̄[l′j/lj , l

′
i/li]).

Since the first type of transitions is the result of time-passing, unless otherwise stated,
in the rest of the paper when we use the term UPPAAL transition we will refer to either
case (2) or (3) of the above definition.

To illustrate the above definition, consider the model from Figure 2, where both au-
tomata have separate local clocks t. Location P0.l0 has invariant t ≤ 10, while the edge
P0.l0 → P0.l1 has the guard condition t ≥ 10, reset action t = 0, and transmission over
channel e1. Hence, synchronization over the channel e1 ensures that the transitions
P0.l0 → P0.l1 and P1.l0 → P1.l1 occur simultaneously. Finally, note that clocks do not
have to be reset to zero (e.g., as on the edge P0.l1 → P0.l0).

For semantics 〈S, s0,→〉, a sequence R := (l̄0, w0) → (l̄1, w1) → ... → (l̄i, wi) → ..., is
called a run, and we use notation wR

k = wk, l̄Rk = l̄k, for all k ≥ 0. An example run for
the model from Figure 2 is shown in Figure 2(c). To simplify the notation, we assume
that in each run R no two consecutive transitions are result of time-elapsing (case (1)
of Def. 2.2), since these transitions can be merged into a single transition of that type.

2.1.2. Additional UPPAAL Extensions of the Timed-Automata Formalism. Beside integer vari-
ables and synchronization channels, UPPAAL extends timed-automata with commit-
ted and urgent locations where time is not allowed to pass (i.e., no delay is allowed).
Committed locations are more restrictive and they are usually used to model atomic
sequences of actions. In a network of timed automata, if some automata are in commit-
ted locations then only transitions outgoing from the committed locations are allowed.
UPPAAL also introduces broadcast channels, where one sender can synchronize with
multiple receivers (e.g., zero, one, or more than one). Furthermore, urgent channels can
be used for synchronization, to specify that if a transition with synchronization over
an urgent channel is enabled, then the transition should occur without any delay.
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2.2. Code Synthesis from UPPAAL Models

There are only few tools that can be used for automatic implementation of timed-
automata models designed in UPPAAL (e.g., [Amnell et al. 2004; Hendriks 2001]). A
commonly used tool is Times [Amnell et al. 2004] that supports code generation for
general platforms, extended with task support for Lego MindstormTMplatform.

The code synthesized using Times has a very simple structure, where all transitions
are stored in an array. Each transition is represented with four fields: an activity flag,
source and destination location ids, and a synchronization id. The transitions are eval-
uated in automatically generated check trans function, and for the code to operate
correctly the values for all clocks should be updated in a separate procedure, triggered
by the system timers. Since check trans performs a single evaluation for each transi-
tion (in the order specified by the array structure), to ensure that no transitions are
missed the check trans function has to be continuously invoked within an infinite loop,
unless the code is executed on a LEGO Mindstorm RCX brick running brickOS. Thus,
in the general case, the code generated with Times completely utilizes the CPU, disal-
lowing instantiation of any other tasks. As we will show later in the paper, this is not
the case for the code that is synthesized using our development framework.

Due to this array-based structure, with the code obtained using Times it is not
straightforward to decouple the controller (in our case the pacemaker) and the environ-
ment (e.g., the heart) in scenarios described in Figure 1(a). For example, to facilitate
the decoupling [Kim et al. 2011] propose a modification of the initial UPPAAL model by
specifying the interaction between the controller and the environment using boolean
shared variables. Although the solution preserves behaviors of the initial model, as
pointed out by the authors, this type of manual modifications is effectively one of the
most error prone aspects of the model-based development. Hence, to avoid this type of
errors, it is necessary to provide modular code synthesis from verified UPPAAL mod-
els. We will later show that UPP2SF resolves this issue, since the obtained code has a
modular structure (instead of maintaining an array of transitions).

Finally, the code generated from Times models does not guarantee that some aspects
of the UPPAAL timed-automata semantics will be preserved [Ayoub et al. 2010]. For
example, it does not ensure that the requirement for committed states is satisfied.

3. EXTRACTING RUNS FROM UPPAAL MODELS

To develop the UPP2SF model translation tool, we consider the problem of extracting
runs for UPPAAL models. We focus on a large class of UPPAAL models without clock
conditions of the form x > E, where x is a clock and E an expression. The restriction,
while not limiting in modeling of real control system, guarantees that all invariants
and guards are expressed as intersections of left semi-closed (LSC) intervals. Thus, we
refer to this class as Class LSC, and in this work we consider only this type of models.

To obtain a run of an UPPAAL model it is sufficient to simulate the model only
at integer time points [Pajic et al. 2012a], which allows for the use of discrete-time
based tools for model simulation. Since the execution of UPPAAL models is non-
deterministic, a transition in UPPAAL can occur at any point at which it is enabled.
However, at each time instance it may not be straightforward to determine whether a
currently enabled transition will still be enabled at the next integer-time point. There-
fore, to simplify the translation procedure we consider runs of UPPAAL models that
are obtained using the maximal progress assumption (MPA).

Definition 3.1. For semantics 〈S, s0,→〉, a run R := (l̄0, w0) → ... → (l̄i, wi) → ... ,
satisfies the maximal progress assumption (MPA) if for all k ≥ 0 such that

(1) l̄k+1 = l̄k and wk+1 = wk + d for some d > 0, and
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(2) (l̄k+1, wk+1) → (l̄k+2, wk+2) satisfies either case (2) or (3) of Def. 2.2,

there does not exist a d′, 0 ≤ d′ < d, for which there exist a transition (l̄k, wk + d′) →
(l̄k[l

′
j/lj ], w

′) or a transition (l̄k, wk + d′) → (l̄k[l
′
p/lp, l

′
q/lq], w

′) for the given semantics.

A run that satisfies the MPA will be referred to as an MPA run. Note that from the
definition, if some transitions in an MPA run are enabled, one of them should occur.

THEOREM 3.2. Consider an UPPAAL model from the Class LSC. For every MPA
run R of the model and for all k ≥ 0, the clock valuation uR

k satisfies that for each

clock x, uR

k (x) ∈ N0 (i.e., all transitions of R occur at integer time points).

PROOF. Lets assume that the theorem does not holds – i.e., there exists an MPA
run R for which there exists k ≥ 0 and a clock x such that uR

k (x) /∈ N0. By k0 we
denote the first (i.e., lowest) such k. Since all clocks are initialized to zero, k0 > 0 and
wk0−1 = (uk0−1, vk0−1) is an integer valuation. Thus, consider the part (l̄k0−1, wk0−1) →
(l̄k0

, wk0
) → (l̄k0+1, wk0+1) of the run R. From Def. 2.2 one of the following cases is valid:

(1) (l̄k0−1, wk0−1) → (l̄k0
, wk0

) satisfies case (1) of Def. 2.2 (i.e., time passing). Then
from the definition of a run, the transition (l̄k0

, wk0
) → (l̄k0+1, wk0+1) is described by

either case (2) or (3) from Def. 2.2. In the former case l̄k0+1 = l̄k0
[l′i/li], meaning that

there exists li
g,τ,r
−−−→ l′i such that wk0

= (uk0
, vk0

) ∈ g, wk0+1 = r(wk0
), and wk0+1 ∈

I(l̄k0+1). Consider the valuation w′

k0
= ⌊wk0

⌋ = (⌊uk0
⌋, vk0

). Since wk0
∈ g then w′

k0

also satisfies all variable conditions from g. For each clock x, if uk0
(x) satisfies the

clock guard conditions of the form x ⊲⊳ n, where n ∈ N0 and ⊲⊳∈ {≤,≥,=, <}, then
uk0

(x) belongs to an intersection of left-closed intervals with integer boundaries.
Thus, ⌊uk0

(x)⌋ belongs to the same intersection of the intervals, meaning that u′

k0
=

⌊uk0
⌋ satisfies this type of clock constraints from g. Furthermore, if for some clocks

x and y, valuation uk0
satisfies constraints of the form x − y ⊲⊳ n, it follows that

uk0
(x) − uk0

(y) ⊲⊳ n. From uk0
= uk0−1 + d (where d is the elapsed time), we have:

u′

k0
(x)−u′

k0
(y) = ⌊uk0

(x)⌋−⌊uk0
(y)⌋ = uk0−1(x)+⌊d⌋− (uk0−1(y)+⌊d⌋) = uk0−1(x)−

uk0−1(y) = uk0−1(x)+d−uk0−1(y)−d = uk0
(x)−uk0

(y). Thus, u′

k0
(x)−u′

k0
(y) ⊲⊳ n is

true, and all clock constraints of this form are also satisfied, implying that w′

k0
∈ g.

Similarly, for w′

k0+1 = r(w′

k0
) = (u′

k0+1, v
′

k0+1), from w′

k0
= ⌊wk0

⌋ and wk0+1 = r(wk0
)

it follows that v′k0+1 = vk0+1 and u′

k0+1 = ⌊uk0+1⌋ (all reset clocks are equal, since

clocks are reset to integer values). Therefore, as for the guard, it can be shown that
wk0+1 ∈ I(l̄k0+1) implies that w′

k0+1 ∈ I(l̄k0+1), which proves that the transition

(l̄k0
, w′

k0
) → (l̄k0+1, w

′

k0+1) was also enabled. Since w′

k0
(x) < wk0

(x) it follows that in

this case R is not an MPA run, which violates our initial assumption.
A similar proof can be used in the latter case when (l̄k0

, wk0
) → (l̄k0+1, wk0

) satisfies
case (3) of Def. 2.2, by showing the existence of a transition enabled for ⌊uk0

⌋. Since
⌊uk(x)⌋ < uk(x), the transition (l̄k0

, wk0
) → (l̄k0+1, wk0+1) cannot be in an MPA run.

(2) (l̄k0−1, wk0−1) → (l̄k0
, wk0

) satisfies either case (2) or (3) of Def. 2.2. Then, there ex-
ists a transition with reset r such that wk0

= r(wk0−1), or a synchronized transition
with resets ri, rj such that wk0

= (ri∪rj)(wk0−1). However, since wk0−1 is an integer
valuation, in both cases uk0

(x) ∈ N because no clock can be reset to a non-integer
value. This conflicts our initial assumption, and thus concludes the proof.

The theorem presents the basis for the translation procedure. It allows us to obtain
an MPA run by evaluating transitions from active locations in each automaton only at
integer time points. Note that each automaton may be evaluated more than once, as
more than one transition could occur within a single automaton at any integer time.
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Theorem 3.2 can be easily extended for UPPAAL models with committed and urgent
locations, and urgent and broadcast channels. For example, urgent locations can be
modeled by adding an extra clock xu that is reset to zero on all incoming edges to urgent
locations, and adding condition xu ≤ 0 to invariants in all urgent locations. Yet, this
does not affect the proof of Theorem 3.2, and thus the theorem is still valid. In addition,
semantics for UPPAAL models that employ urgent channels is similar to the semantics
from Def. 2.2, with an additional condition in case (1) of the definition. In this case
(l̄, w) → (l̄, w + d), if for all d′, 0 ≤ d′ < d it holds that w + d′ ∈ I(l̄), and for any urgent

channel c there does not exist li
gi,c?,ri
−−−−−→ l′i and lj

gj ,c!,rj
−−−−→ l′j such that w + d′ ∈ (gi ∧ gj)

and (ri ∪ rj)(w+ d′) ∈ I(l̄[l′j/lj , l
′
i/li]). Similarly, broadcast channels semantics does not

require that exactly one transition with receiving channel occurs simultaneously with
a transition that contains a transmission over the channel – with broadcast channels
none, one or more than one ’receiving’ transitions could occur. Thus, Theorem 3.2 is
also satisfied even if urgent and broadcast channels are used.

4. BRIEF OVERVIEW OF STATEFLOW

A Stateflow chart (i.e., model) employs a concept of finite state machines extended with
additional features, including support for different data types and events that trigger
actions in a part or the whole chart. Here, we present a small subset of the Stateflow
features used in the translation procedure. Detailed descriptions of other features can
be found in [sta 2012; Scaife et al. 2004; Hamon and Rushby 2007; Hamon 2005].

A state in a Stateflow chart can be active or inactive, and the activity dynamically
changes based on events and conditions. States can be defined hierarchically – i.e., a
state can contain other states (referred to as substates). A decomposition of a chart (or
a state) determines if its states (substates) are exclusive or parallel states. Within a
chart (or a state), no two exclusive states can be active at the same time, while any
number of parallel states can be simultaneously activate (but executed sequentially).

Unlike in UPPAAL, transitions between states in Stateflow are taken as soon as
enabled. They are described in the form (where each part of the description is optional)

Event[condition]{condition actions}/{transition actions} (1)

Event identifies the event that enables the transition (which is enabled by default if
Event is not stated), if the condition (if specified, by default it is true) is valid. The
condition is described using basic logical operations on conditions over chart variables
and Stateflow operators. Actions in condition actions and transition actions include
event broadcasting and operations on data variables. The Stateflow semantics specifies
that when a transition from a state si to state sj occurs, then condition action are
executed first, before the state si becomes inactive. This is followed by the execution
of transition actions, and finally activation of the state sj (i.e., during the execution of
transition actions none of the states is active).

A Stateflow chart runs on a single thread and it is executed only when an event
occurs. All actions that occur during an execution triggered by an event are atomic to
that event. After all activities that take place based on the event are finished, the exe-
cution returns to its prior activity (i.e., activity before receiving the event). All parallel
states within a chart (and similarly, all parallel substates in a state) are assigned with
a unique execution order. Furthermore, all outgoing transitions from a state have dif-
ferent execution indices. Thus, the execution of a Stateflow chart is fully deterministic
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– Stateflow semantics specifies that active states are scheduled, and state transitions
are evaluated in the execution order (starting from the lowest execution index).3

4.0.1. Notion of Time in Stateflow. Stateflow temporal logic can be used to control execu-
tion of a discrete-time chart in terms of time. It defines time periods using absolute-
time operators based on the simulation time, or event-based operators that use the
number of event occurrences. Absolute-time logic defines operators after, before as

after(n, sec) =

{
0, if t < n
1, if t ≥ n

, before(n, sec) = not(after(n, sec)) (2)

where t denotes the time that has elapsed since the activation of the associated state
(i.e., from the last transition to the state - including self-transitions). The value for
time t can be obtained using the operator temporalCount(sec). Similarly, event-based
temporal logic operators are used for event counting – e.g., after(n, clk) returns 1 if the
event clk has occurred more than (n− 1) times after the state has been activated.

5. UPP2SF: MODEL TRANSLATION PROCEDURE

In this section, we present an overview of the UPP2SF translation procedure. We also
describe the translation rules for UPPAAL models with urgent and broadcast channels,
urgent and committed locations, and local clocks, as these functionalities are used for
the pacemaker modeling. For the full UPP2SF description refer to [Pajic et al. 2012b].

5.1. Overview of UPP2SF

Consider an UPPAAL model with automata P1, ..., Pn. The UPP2SF translation pro-
cedure would produce a two-level Stateflow chart as in Figure 3, with parallel states
P1, ..., Pn (referred to as the parent states) derived from the automata, parallel states
Gc x1, ..., Gc xm (referred to as clock states) that model all global clocks x1, ..., xm from
the UPPAAL model,4 and the state Eng that is used as the chart’s control execution
engine. In addition, the chart has predefined global data variables (and constants)
with appropriate variable ranges and initial values obtained from the UPPAAL model.
Since all automata in UPPAAL are simultaneously active, the obtained Stateflow chart
is a collection of parallel states with unique execution orders. Also, in every UPPAAL
automaton exactly one location is active at a time. Thus, each of the parent states is a
collection of exclusive states, extracted from locations in the UPPAAL automaton.

To ensure that the extracted chart is simulated at integer time points, input trigger
event clk is added to the chart and a signal generator block is added to the parent
Simulink model. We call a clk execution the execution of the chart from the moment the
chart is triggered by a clk event, until processing of the event has been finished. Since
our goal is to derive a Stateflow chart whose execution is one of the MPA runs of the
initial UPPAAL model, it is possible that more than one transition within the model
(and even within a single automaton) occur at any time point. Therefore, the chart
can (re)activate itself by transmitting local (within the scope of the chart) events from
the additional parallel state Eng, which is executed last of all chart’s parallel states.
Processing of the events triggered during a clk execution is considered a part of the clk
execution. Since event processing is atomic in Stateflow, no time elapses (in Simulink)
during a clk execution regardless how many additional event broadcasts have occurred.
With this approach, a single activation of the chart triggers all transitions enabled at
that integer time point, effectively extracting an MPA execution trace of the model.

3The user can specify the execution index for each transition and state – default values are assigned by the
order of instantiation. Parallel states (or transitions from a state) must have different execution indices.
4Note that if no global clocks are used in the UPPAAL model, the obtained Stateflow chart would not contain
parallel global clocks states Gc xj .
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Fig. 3. Structure of Stateflow charts derived by UPP2SF. Parent states P1, ..., Pn are derived from au-
tomata, while the clock states Gc x1, ..., Gc xm model all global clocks x1, ..., xm from the UPPAAL model.
The state Eng is used to control execution of the chart.

Finally, any UPPAAL edge from location lki
to lkj

in any automaton Pk, which does
not use global clocks and synchronization over binary channels, is mapped into a State-
flow transition Pk.lki

→ Pk.lkj
between the corresponding substates in the parent state

Pk. In the rest of the section we provide a description of the edge translation procedure.

Remark 5.1. In the general case, the edge lki

g,α,r
−−−→ lkj

(where α ∈ {τ, c!, c?} and c is
a binary or broadcast channel) is mapped into a more complex structure in Stateflow
between the substates Pk.lki

and Pk.lkj
. If the edge uses global clocks then a junction

Jij and transition Pk.lki
→ Pk.Jij are introduced to update global clock values used

in the edge’s guard and invariants. Also, if α does not use a binary channel, a single
transition is introduced from Jij to Pk.lkj

. However, if α uses a binary channel, to
preserve the semantics three edges and a junction are added between Jij and Pk.lkj

.

5.2. Mapping UPPAAL Edges Without Synchronization

Consider an UPPAAL edge lki

g,τ,r
−−−→ lkj

in automaton Pk. The guard g can be split into
a conjunction of data and clock conditions, and thus during the translation UPP2SF
introduces a Stateflow transition Pk.lki

→ Pk.lkj
of the form:

[GC(I(lki
) ∧ g) ∧GV (g) ∧GC(r, I(lkj

))
︸ ︷︷ ︸

GC,V (lki
,lkj

,g,r)

]/{RV (r);RC(r);
︸ ︷︷ ︸

RC,V (r)

RS(r); } (3)

where:

(1) GC(h) (GV (h)) translates the clock (data) conditions from UPPAAL condition h into
an equivalent Stateflow condition,

(2) RC(r) (RV (r)) maps clock (data) resets in r to an equivalent Stateflow assignment,
(3) GC(r, I(lkj

)) maps the condition that the clock valuation after the reset r satisfies
the invariant at the ‘new’ location lkj

,
(4) RS(r) controls execution of the chart.

Data resets (RV (r)) and guard conditions (GV (g)) are directly mapped into the iden-
tical Stateflow expressions. Mapping local clocks’ resets and guards is described below.

5.2.1. Mapping Clock Conditions and Resets. In UPPAAL, each clock condition h ∈ B(C)
is specified as h = h1 ∧ h2 ∧ ... ∧ hM , where hi’s are basic clock conditions. Therefore,
GC(h) = GC(h1) ∧ GC(h2) ∧ ... ∧ GC(hM ), and it is only necessary to provide a set of
rules for the translation of basic clock conditions of the form x ⊲⊳ n or x− y ⊲⊳ n, where
x, y ∈ C and n ∈ Z (or an expression over integer variables and constants).

To specify conditions over clocks, UPP2SF employs event based Stateflow tempo-
ral logic operators that (only) count the number of clk event occurrences. When the
temporal logic operators are used in a chart with the two-level hierarchy shown in
Figure 3, Stateflow associates a unique counter with each parallel (i.e., parent) state.
It is important to highlight here that Stateflow semantics specifies that when the ap-
propriate event activates the chart (i.e., when clk triggers the chart) all these counters



Safety-critical Medical Device Development using the UPP2SF Model Translation Tool A:11

Table I. Mapping UPPAAL conditions over clocks into Stateflow

UPPAAL condition (x ∈ C, n ∈ N0) Stateflow condition – x is replaced with uS(x)
x ≤ n (temporalCount(clk) ≤ n− nx)
x < n before(n− nx, clk)
x = n (temporalCount(clk) == n− nx)
x ≥ n after(n− nx, clk)
x− y ⊲⊳ n nx − ny ⊲⊳ n

are incremented at the beginning of the chart’s execution - i.e., even before the first
parallel state begins its execution. Consequently, when each of the parallel states is
executed, the counter value is equal to the number of the event’s appearances from
the activation of its currently active substate. For each parent state Pk this values
is temporalCount(clk), and thus we denote this value by tCPk . In addition, we define
tCx = tCPk if x is a local clock defined in the automaton Pk.

Unlike in UPPAAL where clocks might not be reset to zero during a transition, for a
parallel state in the Stateflow chart the aforementioned counter is always reset when
a transition occurs (when the associated substate is activated). Thus, while mapping
edges from the automaton Pk, we explicitly model each local (from Pk) clock x by in-
troducing the accounting variable nx that maintains the clock value from the moment
of the last state activation. This is done using RC(r) from (3), which is specified as

[RC(r)](x) =

{
nx = nx + temporalCount(clk), if x /∈ r
nx = r(x), if x ∈ r

(4)

Our goal is that at integer time points UPPAAL valuation u of the clock x (i.e., u(x))
is equal to the value uS(x) defined as uS(x) = nx + tCx (we will show this in the next
section). Note that a single counter value is used for all local clocks defined within the
same automaton (i.e., tCx = tCy if x, y are local clocks defined in automaton Pk).

The transformation of the basic clock conditions presented in Table I employs event-
based temporal logic operators while taking into account the values of the accounting
variables for all used clocks. In the mapping each clock x is replaced with the value
uS(x). In addition, we used a relationship between Stateflow temporal logic operators
from (2) to simplify the notation. For example, the condition x < n for a local clock x
is mapped into nx + temporalCount(clk) < n, which is equivalent to before(n− nx, clk)
(since before(n− nx, clk) = 1 ⇔ temporalCount(clk) < n− nx).

Finally, as specified in Def. 2.2, the requirement that the new clock valuation satis-
fies the invariant at the (new) location lkj

is equivalent to the condition that both the
non-reset and the reset clock values satisfy the clock invariants at location lkj

. Hence,
if I(lkj

) = h1 ∧ ... ∧ hk, then GC(r, I(lkj
)) = GC(r, h1)) ∧ ... ∧GC(r, hk)) where

GC(r, x ⊲⊳ n) =

{

r(x) ⊲⊳ n, if x ∈ r
uS(x) ⊲⊳ n if x /∈ r

, GC(r, x− y ⊲⊳ n) =















r(x)− r(y) ⊲⊳ n, if x, y ∈ r
r(x)− uS(y) ⊲⊳ n, if x ∈ r, y /∈ r
uS(x)− r(y) ⊲⊳ n, if x /∈ r, y ∈ r
uS(x)− uS(y) ⊲⊳ n if x, y /∈ r

(5)

The expression for GC(r, I(lkj
)) can be significantly simplified. If r(x) resets the clock

x to a constant (which is the prevailing case in UPPAAL), conditions from (5) can be
evaluated during the translation and can be replaced with fixed terms (false or true).

5.3. Obtaining an MPA Execution of the Chart

The execution semantics of Stateflow ensures that in each of the parent states tran-
sitions from the active state will be evaluated at least once during a clk execution.
However, to obtain an MPA run of the model, after a transition occurs it is necessary
that in each parent state transitions from the active state are reevaluated. We guar-
antee this by reactivating the chart if at least one transition has occurred. Thus, in
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Table II. Mapping UPPAAL edges from automaton Pk into Stateflow transitions

UPPAAL edge Stateflow transition

li
g,τ,r
−−−→ lj [(sent == 0) ∧GC,V (li, g, r, lj)]/{RC,V (r);RS(r); }

li
gj ,c!,rj
−−−−−→ lj [(sent == 0) ∧GC,V (li, g, r, lj)]/{RC,V (r); sent = ID(c); }

li
gi,c?,ri−−−−−→ lj c[(sent ∼= −ExO(Pk)) ∧GC,V (li, g, r, lj)]/{RC,V (r); }

the chart, UPP2SF introduces the parallel state Eng (Figure 3), which is executed last
among the parent (and clock) states. Furthermore, additional chart event tt and flag
act are defined, and as a part of each transition, by adding act = 1; to RS(r) from (3),
act is set to 1. Finally, Eng contains a single substate and it broadcasts the event tt to
the chart if act has been set to 1, using the lowest priority self-transition of the form

[act == 1]{act = 0; send(tt)} (6)

5.4. Translating Broadcast Channels

Events in Stateflow are a good semantic match for broadcast channels in UPPAAL.
Therefore, for each broadcast channel c, UPP2SF defines a Stateflow event c assigned

with a unique positive integer ID(c). To translate edge li
g,c!,r
−−−→ lj from automaton

Pk, UPP2SF uses a centralized approach where the Eng state broadcasts events and
controls execution of the chart by using additional variable sent that can have the
following values (here, ExO(Pk) > 0 is the execution order of the parent state Pk)

sent =

{
ID(c), event c is scheduled for broadcast
0, no event scheduled for broadcast
−ExO(Pk), an event is broadcast, only receiving edges are enabled

(7)

Note that ID(c) > 0, and ExO(Pi) 6= ExO(Pj) if Pi 6= Pj .
Table II shows the mapping of UPPAAL edges into Stateflow. Action c! is mapped into

sent = ID(C) assignment, thus disabling all ‘non-receiving’ transitions due to their
condition (sent == 0). Similarly, condition (sent ∼= −ExO(Pk)) disables all ‘receiving’
transitions in the parent state Pk, ensuring that the parent state does not synchronize
with itself. Finally, the Eng state is used to broadcast events by adding for each event
c the following self-transition in the state:

[(sent == ID(c))]{sent = −ExO(Pk); send(c); } (8)

In addition, to reset sent and to ensure that all previously disabled transitions are
reevaluated by reactivating the chart after the event is processed (i.e., after all parent
states are re-executed), UPP2SF adds the following self-transition in the state Eng

[(sent < 0)]{sent = 0; send(tt); } (9)

Transitions (8), (9) have precedence (i.e., lower execution order) over the transition (6).

Remark 5.2. In general, more than one UPPAAL automaton could transmit over a
shared broadcast channel. In this case, Eng state would not always be able to deter-
mine the parent state Pk that has initiated the event broadcast. Thus, variable ExOP
would have to be defined along with additional reset action ExOP = ExO(Pk) in tran-
sitions with sent = ID(c); (from Table II). Also, transition (8) would take the form
[(sent == ID(c))]{sent = −ExOP ; send(c); }. However, since this case does not occur in
most UPPAAL models, due to the space limitation we present the simpler formulation.

5.5. Translating Urgent and Committed States

UPP2SF also preserves semantics of urgent and committed states, and urgent chan-
nels. By extracting MPA runs of the UPPAAL model we ensure that no time passes
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in the states from which there exists an enabled transitions. Thus, as a byproduct,
semantics of urgent channels and locations are preserved. On the other hand, if some
automata in UPPAAL are in committed locations, then only transitions outgoing from
one of the committed locations are allowed. Thus, to deal with committed locations
we introduce a new ‘control’ variable comm that always contains the number of ac-
tive committed states. For all transitions incoming to a committed state expression
comm = comm+ 1; is added to the reset operations (i.e., RS(r) from (3)). Similarly, for
all outgoing transitions from a committed state comm = comm− 1; is added to the re-
set. To disable transitions from non-committed states when there exists an active com-
mitted state, guard condition (comm == 0) is added to all ‘non-receiving’ transitions
outgoing from a non-committed state. Note that setting act to 1 (as specified in (6), for
all transitions in parent states) reactivates the chart to ensure that all transitions are
reevaluated, including the ones that have been disabled due to (comm == 0) condition.

5.6. Stateflow Chart Optimization

Stateflow charts obtained using the described set of rules can usually be significantly
simplified. For example, clock guards and invariants specify fixed left-closed intervals
if in conditions from Table I n denotes a constant. These intervals can be expressed in
Stateflow with maximum two terms from Table I (e.g., invariant t ≤ n and guard t ≥ n
can be combined into a single Stateflow condition temporalCount(clk) == n − nt). In
addition, it is possible to remove updates to an accounting variable nx from transitions
incoming to a state, if on all paths from the state there exist resets of the clock x before
the clock is used in a transition guard or invariant. Similarly, due to (9) there is no
need to reactivate the chart with the act = 1 reset on transitions to a committed/urgent
state that are conditioned with event receiving. The same holds if outgoing transitions
from a new state are disabled (which is a common case) at the time of activation, and
no shared variable has been updated on the incoming transition. For example, in the
buffer from Figure 5(f), for dL a > 0, after l1 is entered the clock guard disables the
outgoing transition. Thus, the assignment act = 1 does not have to be added to the
Stateflow transitions from l1 to l0. Finally, transitions between two states with the
same conditions and transition actions can be combined into a single transition.

6. CORRECTNESS OF THE TRANSLATION PROCEDURE

In this section, we show that the set of rules specified in the previous section preserves
the UPPAAL semantics. Specifically, we show that the execution of the obtained State-
flow chart presents one of MPA runs of the initial UPPAAL model. However, since the
Stateflow semantics is informally defined, formally proving correctness of the trans-
lation procedure is not possible. For a subset of Simulink features, there exist some
attempts to derive formal semantics (e.g., [Hamon and Rushby 2007; Hamon 2005]),
which have been validated by testing on many examples. We follow a similar approach
in this work. We start by formulating basic assumptions on the semantics of the State-
flow charts obtained by UPP2SF – i.e., with the structure shown in Figure 3 and which
utilize only a small subset of Stateflow functionalities.

Consider a deadlock-free UPPAAL model with automata P1, ..., Pn, where each au-
tomaton has at least one location, and the extracted two-level Stateflow chart as in
Figure 3, with parent states P1, ..., Pn and the parallel state Eng. Since none of the
chart’s parallel states has transitions5 the following proposition holds.

PROPOSITION 6.1. All parallel states in the chart will always be active.

5Parallel states in Stateflow do not typically use transitions [sta 2012; Hamon and Rushby 2007].
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The translation rules specify that all transitions in parent states do not have
condition action (from (1)), and no event broadcasting is specified in transition actions.
Thus, when a transition Pk.l → Pk.l

′ occurs in a parent state Pk, substate l′ will be
directly activated (i.e., activity will be directly passed from l to l′).6 In addition, transi-
tions in the Eng state do not have transition actions and they broadcast events as part
of condition actions.7 That means that the state Eng.l0 will never be deactivated.

PROPOSITION 6.2. Each parallel state in the chart always has an active substate.

In the general case, event broadcasting to the whole chart introduces recursive be-
havior (we will also see this later, in Section 9.1, during the analysis of the pacemaker
code – Listing 5, Figure 6). These recursions are in general very difficult to control and
analyze, and [Hamon and Rushby 2007] restricted the use of events to the definition
of sequencing behaviors. In UPP2SF-derived charts only Eng can broadcast events, on
self-transitions from the (only) substate Eng.l0. Since Eng state is executed last within
each chart activation, and within its execution only a single transition may occur, lo-
cal event broadcasts can only occur at the end of chart activations. Therefore,
although event broadcasts from the self-transitions in Eng state introduce recursive
behavior to the chart, we can consider these recursive runs as series of sequential chart
activations with different active events – i.e., we can disregard the recursive behavior.

Consequently, we can describe the state of the chart as θS = (l̄S , wS , fS), where l̄S

is the vector of size n containing active substates for each of the n parent states.8 In
addition, wS = (uS , vS) where uS is defined in (5.2.1) and vS denotes the Stateflow
variables mapped from UPPAAL variables – i.e., vS(i) is the value of the Stateflow
variable i. Finally, fS = (act, sent, comm,AE, k) denotes the values of all control flags
introduced by UPP2SF. AE (AE ∈ {clk, tt, φ, SCE} ∪ {c|c ∈ K}) is the currently active

event being processed by the chart,9 while k, k ∈ {0, 1, ..., n, n + 1}, is the state index

of the currently executed parallel state.10 We denote by l̄S [lkj
/lki

] a vector where the

active substate of the parent state Pk in vector l̄S has changed from lki
to lkj

, and use a

similar notation for wS and fS updates – e.g., fS [k = k + 1] denotes fS where only k is
increased by 1. For UPPAAL models we use the notation from Sec. 2, and for w = (u, v)
we write w = wS (and u = uS , v = vS ) if ∀x ∈ C, i ∈ V , u(x) = uS(x) and v(i) = vS(i).

We can now formalize the behavior (i.e., semantics) of extracted Stateflow charts.
From translation rules, the initial vector of active substates l̄S0 is equal to the initial
location vector in UPPAAL (i.e., l̄S0 = l̄0), and wS

0 = w0 (w0 is the initial UPPAAL valu-
ation), fS

0 = (0, 0, 0, SCE, 1) (AE = SCE, as charts are executed during initialization).

Definition 6.3. A transition relation for a UPP2SF-derived chart is defined as:

(1) (l̄S , wS , fS) → (l̄S , wS [uS = uS + 1], fS [k = k + 1]) if k = 0 and AE = clk,
(2) (l̄S , wS , fS) → (l̄S , wS , fS [AE = clk]) if k = 0 and AE = φ,
(3) (l̄S , wS , fS) → (l̄S , wS , fS [k = k + 1]) if k = 0 and AE /∈ {clk, φ},

6Broadcasting events in transition actions would result in deactivation of the substate l and event broad-
casting before the substate l′ is activated. Thus, during the event’s processing (including processing events
sent during the event’s processing) the parent state Pk would not have active substates and would be ef-
fectively removed from the execution. On the other hand, broadcasting events in condition actions would
usually result in an infinite behavior (since in most cases the condition would still be satisfied) [sta 2012].
7Note that in this case infinite cycle behavior does not occur, since the data values enabling a transition
guard are changed before broadcasts – this disables the transition in the next activation.
8Note that since Eng state has a single substate that is always active, we do not specify it in the vector l̄S .
9Here, φ denotes the case when no event is active - when the chart is sleeping, between consecutive clk exe-
cutions, while SCE is the Simulink Call Event, an intrinsic way for Simulink to activate a Stateflow chart.
10In general, f should also contain a transition index denoting the transition (from the active substate of
the parallel state k) which is being evaluated. However, to simplify our notation we have omitted this term.
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(4) (l̄S , wS , fS) → (l̄S1 , w
S
1 , f

S
1 ) if k ∈ {1, ..., n}, where

(l̄S1 , w
S

1 , f
S

1 ) =







(l̄S [lki0
/lk], R

i0
C,V [w

S ], Ri0
S [fS ][k = k + 1]), ∃i, (Gi

s ∧Gi
C,V ) = True, and

(ei not specified or AE = ei)
i0 = min i

(l̄S , wS , fS [k = k + 1]), otherwise

and all transitions outgoing from the active substate lk (in Pk) are represented as

ei[Gi
s ∧Gi

C,V ]/{R
i
C,V ;R

i
S ; } (i is the transition index, and for example, Ri0

C,V [w
S ] de-

notes the value of wS after reset operations specified in Ri0
C,V are performed on wS);

(5) (l̄S , wS , fS) → (l̄S , wS , fS
1 ) if k = n+ 1, where

fS

1 =

{

Ri0
S [fS ][k = 0, AE = ei], ∃i, Gi

s = True, where i0 = min i
fS [k = 0, AE = φ]), otherwise

and all self-transitions in Eng state are described as [Gi
s]{R

i
S ; send(e

i); }.

We define the chart’s execution trace RS as a sequence of consecutive chart states

θS0 → θS1 . . . → θSt → . . . . We also denote by θSt0
∗
−→ θSti (referred to as an SF-transition) a

sequence θSt0 → θSt1 . . . → θSti of the execution such that one of the following holds:

— the sequence does not contain any transitions mapped from UPPAAL edges, and

k = 1, AE = clk in θSti ; in this case we denote the sequence by θSt0
∗(+d)
−−−−→ θSti , since (as

none of the transitions in parent states has occurred during the sequence) for some
d ∈ N (when i > 0), for all x, y ∈ C, uS

ti
(x)− uS

t0
(x) = uS

ti
(y)− uS

t0
(y) = d.

— k 6= 0 or AE 6= clk in all θStj , j ≤ i − 1; also, θSti−1 → θSti is a transition mapped from

some UPPAAL edge lf
g,τ,r
−−−→ lj , and it is the only transition in the sequence mapped

from any UPPAAL edge; in this case we also use the notation θSt0
∗τ
−→ θSti ,

— k 6= 0 or AE 6= clk in all θStj , j ≤ i − 1, and the sequence contains exactly one tran-

sition mapped from some UPPAAL edge lf
g,b!,r
−−−→ lj , which is the first transition

in the sequence that is mapped from any UPPAAL edge; followed by a number of

transitions (i.e., 0, 1 or more) mapped from UPPAAL edges of the form lp
g,b?,r
−−−→ lq

(i.e., receiving over channel b), where θSti−1 → θSti is the last of them; in addition, the
next transition in the execution trace which is mapped from an UPPAAL edge is not

mapped from an edge ln
g,b?,r
−−−→ lm; here, we also use the notation θSt0

∗b!?
−−→ θSti .

From the above definition, the following lemma follows directly.

LEMMA 6.4. If θSt0
∗τ
−→ θSti then for all n ∈ {t0, ..., ti − 1}, l̄Sn = l̄St0 and wS

n = wS
t0

.

PROPOSITION 6.5. Assume that θSt0
∗τ
−→ θSti , and l̄St0 = l̄ and wS

t0
= w. If θSti−1 → θSti

is a transition mapped from UPPAAL edge lkf

g,τ,r
−−−→ lkj

in automaton Pk (k is the state

index from f ), then (l̄, w) → (l̄[lkj
/lkf

], r(w)) in UPPAAL, and r(w) = wS
ti
, l̄[lkj

/lkf
] = l̄Sti .

PROOF. From Lemma 6.4, l̄Sti−1 = l̄St0 = l̄ and wS
ti−1 = wS

t0
= w. Since θSti−1 → θSti

is a transition mapped from lkf

g,τ,r
−−−→ lkj

, it follows that l̄[lkj
/lkf

] = l̄Sti , and from (3)

GC(I(lkf
)∧g)∧GV (g)∧GC(r, I(lkj

)) is satisfied. GV (g) presents the identical conditions

over data variables as in the UPPAAL guard g, and since vSti−1 satisfies GV (g), then v

satisfies data conditions in g. Similarly, since uS
ti−1 satisfies GC(I(lkf

)∧g) from Table I,

then from uS
ti−1 = u we have that u satisfies the guard and invariant at lkf

– i.e., u ∈ g
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and u ∈ I(lkf
). Finally, uS

ti−1 satisfies GC(r, I(lkj
)) defined in (5), and using the same

reasoning we have that r(u) ∈ I(I(lkj
)), implying w ∈ g and r(w) ∈ I(I(lkj

)).

In addition, wS
ti

= (uS
ti
, vSti), where vSti = RV (r)[v

S
ti−1] and uS

ti
= RC(r)[u

S
ti−1]. Since

RV (r) specifies the identical data expressions as r, vSti = r(vSti−1) = r(v). On the other

hand, when a transition occurs temporalCount(clk) is reset. Thus, for all x ∈ C, uS
ti
(x) =

nx, and if x ∈ r from (4) uS
ti
(x) = r(x); otherwise nx = uS

ti−1(x), meaning that uS
ti
(x) =

uS
ti−1(x). Consequently, uS

ti
= r(u), and wS

ti
= r(w), which concludes the proof.

The following results can be proven using similar approaches as in the above proof.

PROPOSITION 6.6. Assume that θSt0
∗b!?
−−→ θSti , for a broadcast channel b, and l̄St0 = l̄

and wS
t0

= w. If the sequence contains transitions mapped from UPPAAL edges

lj
gj ,b!,rj
−−−−→ l′j in automaton Pj , and lji

gji ,b?,rji−−−−−−→ l′ji in automata Pji (i = 0, ...,m), then

(l̄, w) → (l̄[l′j/lj , l
′
j0
/lj0 , ..., l

′
jm

/ljm ], (rj ∪
m
i=0 rji)(w)) in UPPAAL. Furthermore,

(rj ∪
m
i=0 rji)(w) = wS

ti
and l̄[l′j/lj , l

′
j0
/lj0 , ..., l

′
jm

/ljm ] = l̄Sti .

PROOF SKETCH. We first show that after the transition mapped from the edge

lj
gj ,b!,rj
−−−−→ l′j occurs it is not possible in the obtained chart to have a ’non-receiving’

transition, or a ’receiving’ transition conditioned with an event c, where c 6= b. We
prove then that j 6= ji for i = 0, ...,m, and jp 6= jq for p, q = 0, ...,m and p 6= q (i.e., an au-
tomaton cannot synchronize with itself, or synchronize twice with another automaton
for a single broadcast). After showing these properties, using a similar approach as for
Prop. 6.5 we show that the UPPAAL semantics for broadcast channels is preserved.

PROPOSITION 6.7. Consider a sequence θSt0
∗(+d)
−−−−→ θSti , for some d ∈ N, and lets

assume l̄St0 = l̄ and wS
t0

= w. Then wS
ti

= w + d, and (l̄, w) → (l̄, w + d) is the only

transition relation in the semantics of the UPPAAL model from (l̄, w) – i.e., there does
not exist a transition (l̄, w) → (l̄1, w1) specified by either case (2) or (3) of Def. 2.2.

Note that the chart’s execution trace RS can be decomposed into a sequence of SF-
transitions. Therefore, since the initial UPPAAL location vector l̄0 and valuation w0 are
equal to the initial Stateflow vector of active states and valuation wS , from the above
three propositions and Theorem 3.2 we have that the sequence of SF-transitions for the
UPP2SF-derived chart corresponds to an MPA run of the initial UPPAAL model. Fur-
thermore, it is worth noting that these proofs can be easily extended to show that the
semantics of committed locations is also preserved by the translation rules (semantics
of urgent channels and locations are guaranteed by the MPA-runs requirement).

In the rest of the paper, we will demonstrate the use of the UPP2SF-based MDD
framework on the pacemaker case study.

7. IMPLANTABLE CARDIAC PACEMAKERS

The primary function of an implantable pacemaker is to maintain an adequate heart
rate, and ensure safe and efficient cardiac output. Pacemakers usually have two leads
placed in the atrium and ventricle, capable of both sensing electrical activity in the
heart and pacing the heart. To illustrate the UPP2SF-enabled MDD framework, we
developed the most commonly used pacemaker mode, the DDD mode that paces both
the atrium and ventricle, senses both, and employs the dual tracked response that syn-
chronizes the chambers. We start by presenting DDD mode requirements from [Boston
Scientific 2007], followed by the pacemaker modeling and verification in UPPAAL (UP-
PAAL modeling of more complex pacemaker modes can be found in [Jiang et al. 2012]).
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Fig. 4. (a) Pacemaker timing cycles [Jiang et al. 2012]; (b) Structure of the pacemaker model in UPPAAL,
including the interaction between the pacemaker and heart, and the monitors used for verification.

7.1. Pacemaker Specification

We use the term ventricular event to specify either a pace in the ventricle (denoted VP)
or a sense of electrical pulse (i.e., ventricular sense - VS). Similarly, we use atrial event
to denote either atrial sense (AS) or pace (AP). However, not every intrinsic electrical
activity will be registered as a sense in a chamber because some of the intrinsic pulses
might fall within time intervals where sensing is disabled (refractory periods).

For heart therapy in DDD mode, the following requirements are defined:

— Lowest Rate Interval (LRI) defines the longest allowable VP interval if no VS is
detected; the interval should start when a ventricular event occurs.

— Upper Rate Interval (URI) specifies the minimum time between a ventricular event
and the next VP.

— Atrio-Ventricular Interval (AVI) is the time period from an atrial event to a VP.
— Ventricular Refractory Period (VRP) specifies the time interval following a ventricu-

lar event when intrinsic ventricular activity does not inhibit paces.
— Post Ventricular Atrial Refractory Period (PVARP) is the time interval following a

ventricular event during which atrial cardiac event should not trigger a delayed VP.

Figure 4(a) illustrates the pacemaker’s basic timing cycles. Beside imposing limits
on the heart-rate and the synchronization requirement between the atrium and ven-
tricle, the above specifications introduce refractory periods after ventricular events.
These intervals are used to filter noise, ventricular signal reflections, and early events
which could otherwise cause undesired pacemaker behavior. To achieve this, during a
refractory interval sensing in the appropriate chamber (atrium for PVARP and ventri-
cle for VRP) should be disabled. For example, in Figure 4(a) AR denotes intrinsic atrial
activity that is not taken into account since it occurs within the PVARP interval.

To be able to perform system verification we used the above (informal) system re-
quirements to derive a set of formal specifications. Due to space constraint, the de-
scription of the formal pacemaker specifications can be found in online appendix A.

7.2. Pacemaker Modeling and Verification in UPPAAL

To obtain a pacemaker model in UPPAAL, we modeled each of the (informal) require-
ments from Section 7.1 as a separate timed-automaton. Furthermore, as described
in the introduction, to enable closed-loop system verification in UPPAAL it is nec-
essary to provide models of the environment (i.e., the heart), along with the models
of the interfaces (i.e., interaction) between the environment and controller (as shown
in Figure 4(b)). Thus, the UPPAAL pacemaker model contains the following software
components, shown in Figure 5, where each automaton only uses its own local clocks.

1. LRI automaton (Figure 5(a)) models the LRI requirement that keeps the heart
rate above a minimum value by delivering atrial pace events (AP). The LRI timer is
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Fig. 5. DDD pacemaker model in UPPAAL - each automaton uses its local clock; two Random Heart tem-
plates were instantiated for Atrium (Pulse:=Ain, Art pace:=a p) and Ventricle (Pulse:=Vin, Art pace:=v p).

reset after a ventricular event (VP or VS). Also, if no atrial event has been sensed (AS)
before the timer runs out, the pacing event will be delivered from the atrial lead (AP).

2. AVI automaton from Figure 5(b) models the AVI requirement, by mimicking
the intrinsic AV delay to synchronize the atrial and ventricular events. The timer is
started by a sensed or paced atrial event (AP or AS) and can be terminated by a sensed
ventricular event (VS). If no ventricular event is sensed before the timer times out, the
pacemaker generates a ventricular pace (VP) if the Upper Rate Limit is not violated.
Guarantees for this are provided by the URI component.

3. URI automaton in Figure 5(c) limits the ventricular pacing rate by enforcing a
lower bound on the time between consecutive ventricle events.

4. PVARP and VRP automata are used to model the refractory periods. The
PVARP and VRP automata generate atrial (AS) and ventricular (VS) sensing events
from the buffered atrial and ventricular inputs (AinB and VinB, respectively). The
PVARP automaton (Figure 5(d)) models the blocking interval after each ventricular
event (VP or VS) where the atrial sensing (AS) cannot occur. The VRP automaton
(Figure 5(e)) models the blocking interval for ventricular events. The interval follows
ventricular events and no ventricular sensing should occur during the interval.

5. Inputs buffers (Fig. 6(d),(h)) are used to model delays imposed by processing
inputs Ain and Vin from the heart. For example, these delays can be introduced by the
design of the analog interface between the heart and device.

6. Random Heart (RH) automata (Figure 5(h)) model the heart as two (for both
chambers) uncorrelated random pulse generators with a single constraint that in each
chamber the times between two consecutive events are within the predefined interval.

The descried pacemaker model was used to verify the formal pacemaker specifica-
tions in UPPAAL. We present the verification approach in online appendix B.

8. PACEMAKER STATEFLOW DESIGN

From the model shown in Figure 5, using the UPP2SF tool we obtained the pace-
maker Stateflow chart presented in Figure 6. For closed-loop verification in UPPAAL
we modeled both the heart and pacemaker, and therefore the obtained chart contains
both models of the controller (i.e., pacemaker) and environment (i.e., the heart). To be
able to use the obtained Stateflow chart for both simulation and code generation it was
necessary to decouple the pacemaker from the heart model.
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Fig. 6. Pacemaker Stateflow chart extracted using UPP2SF from the UPPAAL model in Figure 5; the heart
and buffer models are highlighted.

Note that the verified UPPAAL model also contains several monitors used to specify
verification queries. Since none of these monitors uses shared variables, and they only
interact with the rest of the model by receiving synchronization over broadcast chan-
nels, they do not affect behavior of the basic automata from Figure 5. Thus, to simplify
Figure 6, we did not show the parallel states that were obtained from them.

8.1. Decoupling the Controller and Environment

Here we present the approach used to decouple the pacemaker and heart. The same
approach can be used to decouple models of the environment and controllers in most
commonly used scenarios where they only interact by broadcasting events.

Figure 4(b) shows the interaction between the pacemaker and the heart. Since the
interaction is modeled using synchronization over broadcast channels, the pacemaker
model can be easily extracted from the chart shown in Figure 6. This is done by remov-
ing the parent states that model the heart and buffers (RH a, RH b, ASbuf, VSbuf),
and by defining AinB and V inB as input events. Also, the Eng state has to be modified
to remove the transitions used to broadcast these input events. In our case we removed
the transitions that broadcast AinB or BinB (highlighted in red in Figure 6).

Stateflow does not allow the use of output events to condition internal transitions.
Hence, it is necessary to define additional output events from the chart, and in our case
for local events a p and v p two output events (AP and VP) were defined. These events
are broadcast on the same transitions used to broadcast a p and v p, respectively. In
addition, to deal with some implementation issues (details are provided in Section 9),
for each output Event an empty C function sendHW Event is added using Simulink fea-
tures for integrating custom C code. The function does not affect Simulink chart sim-
ulations, but allows for the correct output generation from the synthesized code. For
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Fig. 7. Structure of the pacemaker code obtained from the Stateflow chart shown in Figure 6.

example, the Eng transition highlighted with dotted green rectangle was modified to

[(sent == 3)]{sent = −1; send(V P ); sendHW V P (); send(v p); }

Note that if the user specifies all components that are part of the controller, UPP2SF
can automatically perform the above actions to decouple it from the environment.

It is interesting to compare the chart from Figure 6 with the manually designed
Stateflow model of the DDD pacemaker [Jiang et al. 2010], which is slightly simpler as
it does not use event broadcasting. Thus, each clk execution has a single chart activa-
tion, causing a violation of several of the pacemaker requirements from Sec. 7.1 (and
appendix A). For example, the URI requirement is not satisfied because URI state is
always scheduled after AV I state; since the chart is not reactivated within a clk exe-
cution, after URI period expires, AP will be generated late – in the next clk activation.

Since the UPP2SF mapping has been validated, we ensure that the chart’s execution
will be equivalent to one of the MPA runs of the initial UPPAAL model. However, the
chart also contains the model the environment and has no inputs and outputs, and
thus we performed validation of the pacemaker Stateflow chart after the decoupling,
by extending the approach for testing real-time constraints by [Clarke and Lee 1995].
Due to space limitations, more details can be found in online appendix C.

9. PACEMAKER IMPLEMENTATION

We generated C code from the pacemaker Stateflow chart using the Simulink Real-
Time Workshop Embedded Coder (RTWEC).11,12 The code was generated for the gen-
eral embedded real-time target and as a result we obtained the main procedure,
rt OneStep, which processes the three input events, V inB, AinB and clk. To ensure
that the model semantics is preserved (modulo the execution time), clk input events
should be created every 1ms, followed by the procedure’s activation.13 This makes it
suitable for implementation on top of a real-time operating system (RTOS).

9.0.1. Code Structure. The structure of the code is straightforward. The current state
of the procedure and all variables defined in the chart are maintained in the structure
rtDWork, along with counter values used for temporal logic operators (i.e., a counter
per parallel state). In addition, rtDWork contains a structure (List. 1, Figure 7) that for

11Since Matlab 2011b, RTWEC toolbox is referred to as Simulink Embedded Coder.
12Although we focus on a specific implementation, code with the same structure would be generated from
all Stateflow charts obtained from UPPAAL models using UPP2SF (due to the derived charts’ structure).
13In this case, the procedure’s execution corresponds to the clk execution.



Safety-critical Medical Device Development using the UPP2SF Model Translation Tool A:21

each parent state specifies if it is active, along with which of its substates is active.
For example, for the state AVI variable is active AVI describes whether the state is
active, while is AVI specifies which of its exclusive substates is active.14

The structure of rt OneStep is shown in List. 2, Figure 7. After detecting active
input events, an execution of the chart procedure c1 ChartName is invoked for each
active input event. The variable sfEvent is used to denote the event that is processed
during the chart execution. As in Stateflow, starting from input events with lower
indices, the events are processed in a prespecified order (using c1 ChartName function).
After all events are processed the procedure updates the outputs and event states in
the prespecified order. This means that although we broadcast output events and the
local events corresponding to them (e.g., VP and v p) as a part of same transitions, the
outputs will be actually updated at the end of rt OneStep procedure. This can cause a
couple of problems. First, ordering of the generated output events can differ from the
order of the corresponding local events. Note that this does not affect simulations in
Simulink, since all actions within a clk execution are atomic from perspective of the
rest of the Simulink model. The second problem is that with this approach, for each
output event only a single output trigger can be generated at the end of a clk execution.
Thus, if an output event is broadcast more than once within a single clk execution, the
corresponding output events will be actually generated one by one, at the end of the
consecutive clk executions (i.e., separated by the duration of clk period).

These issues are resolved using the aforementioned SendHW EventName functions.15

Using Simulink features for integrating custom C code with Stateflow charts in
Simulink, we define empty C functions for each output event (e.g., for VP we define
SendWH VP). When the code is implemented on a particular hardware platform, the
user needs to define these functions. For example, the simplest implementation would
include toggling a particular CPU pin every time the function is invoked.

At the beginning of the chart execution procedure (List. 3, Figure 7) all counters as-
sociated with the event (stored in sfEvent ) are increased. Since the pacemaker code
uses only clk event in temporal logic operators, the five counters will be incremented
only when clk is processed. After this, the functions associated with each of the parallel
states are called in the order specified by the execution order.

List. 4 from Figure 7 presents a pseudo-code for processing each of the parallel
states. If the state is active, all transitions outgoing from its active substate are eval-
uated in the prespecified execution order. The first enabled transition is taken and as-
sociated transition actions are executed. In the generated code only Eng state, which
is executed last, is used to broadcast events as part of its transition actions. As shown
in List. 5, Figure 7, broadcasting an event associates the (current event) variable
sfEvent with the event, before it reactivates the chart (by calling c1 ChartName()).

9.1. Platform Implementation

The pacemaker code generated by the Simulink RTWEC was executed on nanoRK [nan
2013], a fixed-priority preemptive RTOS that runs on a variety of resource constrained
platforms. We tested the implementation on the TI MSP-EXP430F5438 Experimenter
Board interfaced with a signal generator that provides inputs for the pacemaker code
(Figure 8). The compiled (without optimization) pacemaker procedure uses 2536 B for

14Note that since all parent states are decomposed into exclusive states, activity status for all of the sub-
states within a parent state can be specified with a single variable. However, in the general case, if a state
consists of a group of parallel states, RTWEC would define a new variable for each of the parallel states.
15These issues do not present a problem for the pacemaker design from Figure 6, since only a single AP
or a single VP can be broadcast within one clk execution. However, in this paper we describe the general
approach that allows utilization of the UPP2SF translation tool for all UPPAAL models.
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Fig. 8. Hardware setup with MSP430F5438 experimenters board.

code and additional 180 B for data. To interface the code with the environment, each
of the inputs (AinB, V inB) triggers an interrupt routine used to set the appropriate
event for rt OneStep function.

The pacemaker code was run as a task with period 1ms. Table III shows measured
execution times for the pacemaker tasks, for two different CPU frequencies. As ex-
pected, an increase in CPU frequency scales into a reduction in the task’s execution
time. Note that the measurements from Table III can be mapped to CPU utilization
for the pacemaker task. With the average utilization of 9.2% for an 8MHz CPU, we
can run multiple tasks on the RTOS. More details about platform testing, including
testing of the pacemaker formal requirements can be found in online appendix D.

9.2. Decoupling the Controller and the Environment

In Sec. 8 and 9.1 we have described the method we used to decouple models of the
pacemaker and the heart. The solution guarantees that the implemented code gener-
ates output events as soon as the corresponding local events are generated. However,
our implementation introduces some problems regarding processing of input signals.
By introducing an interrupt routine that sets a flag if the input occurs, we effectively
synchronize asynchronous input signals. This has a twofold effect on the implemented
code. First, each input signal will be processed at most once even if it appears more
than one time between consecutive task’s activations. This is not a problem for the
pacemaker, since in the initial UPPAAL model, due to the buffers, all inputs after the
first input in a cycle are disregarded until at least dL a (or dL v) time. Second, it in-
troduces a latency up to the task’s period (i.e., clk interval, in our case 1ms) before the
input signals are processed. To solve this issue, the extracted procedure could be acti-
vated as soon as an input appears. Beside problems with tasks scheduling, if the input
signal could affect clock valuations in the initial UPPAAL model this would introduce
a time measurement error in the code. For example, if Ain occurs 0.5ms before the
next clk activation and the procedure is instantaneously activated as a result of the
input, the clock in ASbuf would be reset to zero. Thus, the next clk activation of the
procedure would set t to 1, although only 0.5 ms have passed since the input.

This problem occurs even if the code has been generated using Times, or any other
tool, since the number of clocks used in models is usually greater than the number of

Table III. Execution times for the pacemaker procedure; OL de-
notes open-loop, without inputs from the signal generator.

CPU Average Minimal Maximal Standard
frequency ex. time ex. time ex. time deviation
4MHz, OL 176.1µs 167.6µs 462.9µs 14.2µs
4MHz 180.9µs 167.6µs 738.2µs 17.3µs
8MHz, OL 89.5µs 84.7µs 234.6µs 7.2µs
8MHz 92.0µs 84.9µs 370.4µs 13.7µs
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Fig. 9. Transition monitors (TrMonitor) used for the worst-case execution time estimation.

timers that CPU provides. To avoid this type of errors, we opted to use the aforemen-
tioned approach where input events only set a flag to indicate the need to process input
events in the following procedure activation. To take this into account in the initial
UPPAAL model, we reverified the safety properties for the model where input buffers
increase the upper bound on the introduced delay (i.e., dH a, dH v). The bounds are
increased to incorporate the maximal input latency introduced by synchronous pro-
cessing of the input events (in our case 1ms).

9.3. Worst Case Execution Time Estimation in UPPAAL

Correctness of the generated code relies on the assumption that execution of the code
completes before the next external activation. To make sure that it does, we need to
estimate the WCET of the code execution, taking into account that the c1 ChartName
procedure (i.e., the chart) may be internally activated multiple times. We propose an
approach that does not require translation from UPPAAL to Stateflow. Rather it uses
the initial UPPAAL model to calculate an upper bound on the maximal number of
internal activations Ni within an external activation (i.e., per clk execution). This en-
ables a WCET estimation at an early stage, during system modeling in UPPAAL.

Since the chart is reactivated with event broadcasts and some transitions, to deter-
mine the bound for Ni we extend the model with the following accounting features:

— Global variable tr cnt and the automaton TrMonitor (Figure 9) that resets the vari-
able at integer time points,

— In the controller part of the UPPAAL model, reset operation tr cnt = tr cnt+1 should
be added to all edges with transmissions over a broadcast channel, or edges that
would be translated into Stateflow transitions with act = 1 reset (i.e., the transition
for which Eng state would reactivate the chart),

— Reset tr cnt = tr cnt + 1 to the edges with transmissions over broadcast channels
that present inputs to the controller,

— Introduce UPPAAL temporal formula A✷ tr cnt ≤ Ñi.

With the above changes the variable tr cnt bounds the number of internal activa-

tions of the chart. Therefore, if the above proposition is satisfied, the value Ñi + 1
provides an upper bound for the number of chart executions within a single clk execu-
tion (1 is due to external activation). For the pacemaker UPPAAL model from Figure 5
we added the reset operation to 8 transitions. We proved that the formula holds for

Ñi = 5. Note that since the UPPAAL model contains a model of the environment (i.e.,

the heart), Ñi takes into account chart activations caused by inputs. On the other hand,
when we considered open-loop execution of the pacemaker (without input events from
the heart), using the pacemaker model Figure 5 without the model of the environment

(i.e., RH automata) we proved that the formula holds for Ñol
i = 1. Thus, in this case at

most two chart executions can occur within a single clk execution (i.e., task activation).
If these results are compared with the execution time measurements from Table III,

we can notice that for the open-loop experiments, the ratio between the maximal and
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minimal execution time is less than 3. Similarly, for the experiments with the test
generator, the ratio is less than 5. Since in our case the minimal execution time corre-
sponds to a single chart execution during the task’s activation (which in general might
not be the case), we can infer that Nol

i = 1 and Ni = 3. Therefore, our WCET analysis
provided the exact bound for the open-loop scenario and a conservative bound for the
closed-loop case.

The reason for this is that the transition monitor from Figure 9(a) does not take into
consideration the order of the input events processing, and if both AinB! and V inB!
occur at the same time instance, the UPPAAL model might synchronize over the chan-
nel AinB first. On the other hand, the pacemaker model in Stateflow, and thus the ob-
tained code, have a fixed input ordering, meaning that the inputs are always processed
in the predefined order; in the pacemaker code V inB is always processed before AinB
(and the clk event is processed last). To take this into account we used the monitor

from Figure 9(b) and specified the proposition as A✷ ((tr cnt ≤ Ñi) || (TrMonitor.l2)).
This effectively disregards scenarios in which AinB is processed before V inB within

a task execution. We proved that this formula holds for Ñi = 4, thus improving the
bound. Note that if the obtained code has more than two inputs (beside clk) it is nec-
essary to specify all possible invalid combinations of the inputs’ ordering, which might
significantly increase the verification time.

10. CONCLUSION

We have described the design of the UPP2SF tool for automatic translation of UP-
PAAL models in Stateflow. We have shown that for a large class of UPPAAL models,
UPP2SF preserves behavior of the initial UPPAAL model. Furthermore, we have pre-
sented an UPP2SF-enabled Model-Driven Development framework for safety-critical
system design. By applying the UPP2SF model translation tool on the dual-chamber,
implantable cardiac pacemaker case study, we have demonstrated the process start-
ing from the formalization of the device specifications, followed by system modeling
and verification in UPPAAL, to closed-loop system simulation in Simulink/Stateflow
and testing of the physical implementation. We have also shown how the translation
tool provides a way to estimate WCET during modeling and verification stage in UP-
PAAL, and facilitates development of modular code from UPPAAL timed-automata
based models. The presented case-study fits into the scenarios where the system is
controlled using a single, centralized, controller. We plan to investigate the use of the
UPP2SF-based MDD framework for code synthesis for distributed applications.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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Max Schürenberg. 2012. Scalability Analysis of the Simulink Design Verifier on an Avionic System. (2012).



Online Appendix to:
Safety-critical Medical Device Development using the UPP2SF Model
Translation Tool

MIROSLAV PAJIC, University of Pennsylvania

ZHIHAO JIANG, University of Pennsylvania

INSUP LEE, University of Pennsylvania

OLEG SOKOLSKY, University of Pennsylvania

RAHUL MANGHARAM, University of Pennsylvania

A. FORMAL PACEMAKER SPECIFICATION

We classified the real-time constraints for the pacemaker into two categories: behav-
ioral constraints that describe time intervals that end when the required input is ap-
plied, and performance constraints describing intervals that end when the required
output is produced. For example, a behavioral constraint is that a certain input E1

must occur within time interval [t1, t2) and as a result it should produce output E2.
Similarly, a performance constraint is a requirement that output has to occur within
time interval [t1, t2). From the system requirements it can be noted that pacemakers
exert a highly repetitive behavior, where every requirement needs to be satisfied in
each time interval between consecutive ventricular and/or atrial events. Therefore, to
formalize the specifications for DDD pacemaker it is necessary to consider two time
axes, tv and ta that measure the time since the last ventricular event (VP or VS)
and the last atrial event (AP or AS), respectively. Now, we can define a set of formal
pacemaker requirements (performance constraints are denoted by P and behavioral
with B):

1. Pacing in the atrium:
P1.1. AP cannot occur during the interval tv ∈ [0, LRId −AV Id);
B1.1. If AS does not occur within interval tv ∈ [0, LRId −AV Id), an AP should occur at
tv = LRId −AV Id;
B1.2. If AS occurs at tv ∈ [0, LRId − AV Id), AP should not be applied at tv =
LRId −AV Id.

2. Pacing in Ventricle:
P2.1. VP cannot occur during the interval ta ∈ (0, AV Id);
P2.2. VP cannot be generated within tv ∈ (0, URIdef );

16

B2.1. If VS does not occur in intervals ta ∈ (0, AV Id) and tv ≥ URId, VP should occur
at ta = AV Id;
B2.2. If VS occurs at ta ∈ (0, AV Id), a VP should not be generated at ta = AV Id.

3. Atrial Sensing (requirements for ARP):
P3.1. AS cannot occur within the interval tv ∈ (0, ARPd];
B3.1. If atrial input (Ain) occurs within interval tv ∈ (0, ARPd), it should be disre-
garded (no AS is generated within tv ∈ (0, ARPd));
B3.2 If Ain occurs at tv ≥ ARPd, AS is to be created at tv.

4. Ventricular Sensing (requirements for VRP):
P4.1. A ventricular sense (VS) cannot be generated within interval tv ∈ (0, V RPd);
B4.1. If a ventricular input (Vin) occurs at time tv ∈ (0, V RPd) it should be ignored (no

16The requirement specifies a lower bound on intervals between consecutive events in ventricle – the re-
quirement for URI component.
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VS is generated within tv ∈ (0, V RPd));
B4.2 If Vin occurs at tv ≥ V RPd, VS is to be created at tv.

A.0.1. Pacemaker Specifications with Tolerances. The above specifications are referred to
as the ideal pacemaker specification. However, each of the intervals is assigned with a
certain level of tolerance [Boston Scientific 2007]. Thus, we define realistic pacemaker
specifications, where each of the real-time constraints is modified to incorporate a tol-
erance. For example, we modify constraints P1.1 and B1.1 for pacing in the atrium to:
P1.1: AP cannot occur during at tv ∈ [0, LRId −AV Id −∆ap);
B1.1: If AS does not occur within interval tv ∈ [0, LRId − AV Id − ∆ap), an AP should
occur at tv, tv ∈ [LRId −AV Id, LRId −AV Id +∆ap];

In the above formulations ∆ap defines the tolerance for the atrial pacing require-
ments. Similarly, we (re)define all of the remaining specification using the tolerances:
∆vp - tolerance for ventricular pacing; ∆as - tolerance for atrial sensing; ∆vs - toler-
ance for ventricular sensing. A set of parameters values, along with their tolerances,
is specified in [Boston Scientific 2007] for each of the aforementioned intervals.

B. PACEMAKER VERIFICATION IN UPPAAL

The first sanity check that was done for the model is to verify the absence of deadlocks
in the model.17 Furthermore, we verified the formal properties from Section A by de-
signing a set of monitors to specify the corresponding UPPAAL queries. We express
the queries in the subset of the Computational Tree Logic (CTL) [Clarke and Emerson
1981] used by UPPAAL. The main temporal operators of this logic that we use are
A✷φ, which means that φ is satisfied in every state along every execution path from
the current state, and A♦φ, meaning that φ is satisfied eventually along every path.

In this section we present the verification procedure for the representative prop-
erties, performance P1.1 and behavioral B2.1 specifications. A similar approach was
used to verify the rest of the formal specifications. To verify these two properties we de-
veloped monitors Event occur(Hevent)), T imer(Sense, Pulse) and URI mon from Fig-

ure 10.18 Automata Event occur and URI mon can be used to specify propositions that
require information related to occurrences of certain events, while the clock t defined
for the monitor T imer measures the time from the last pulse or sense signal. For ex-
ample, in automaton T imer(a s, a p) the clock t has the value of the previously defined
time ta - the time since the last atrial activity.

To specify the property P1.1 in UPPAAL we used monitors ME ap =
Event occur(a p)) from Figure 10(a) and MT v = T imer(v s, v p) from Figure 10(b).
Furthermore, we specified the property as:

A✷(ME ap.occur ⇒ (MT v.t ≥ LRId−AV Id)), (10)

and verified it in UPPAAL. Similarly, for the property B2.1 we used monitors ME vp =
Event occur(v p)), MT a = T imer(a s, a p), and URI mon (Figure 10(c)). The verified
query was formulated as:

A✷(ME vp.occur ∧ not(URI mon.vped) ⇒ (MT a.t ≤ AV Id)). (11)

C. STATEFLOW MODEL VALIDATION

We performed validation of the pacemaker Stateflow chart after the decoupling by ex-
tending the approach for testing real-time constraints described in [Clarke and Lee

17It is worth noting that the initial UPPAAL model must be deadlock-free to guarantee that the UPP2SF
will derive a Stateflow chart with execution that corresponds to an MPA run of the UPPAAL model.
18In the UPPAAL notation, input parameters for a component are specified between brackets.For example,
Event occur(a p) denotes the automaton Event occur where Hevent := a p.



Safety-critical Medical Device Development using the UPP2SF Model Translation Tool App–3

occurIdle Hevent?

(a) Event occur(Hevnt)
monitor

rec t=0t=0

Pace? Sense?

t=0

(b) T imer(Sense, Pace)
monitor

vped

uriedstart

VP?

uri_s?

(c) URI monitor

Fig. 10. Monitors used for verification of the pacemaker model in UPPAAL - each automaton uses its own
local clock.

Fig. 11. Test points for behavioral real-time constraints.

1995]. The same approach was also used for the testing of the final physical imple-
mentation (Section D).

In [Clarke and Lee 1995], the authors proposed a testing procedure for behavioral
and performance constraints (as the ones specified in Section A) if the following as-
sumptions are satisfied:

(1) All output sequences of a system under test must be eventually distinguishable.
(2) All time bounds must be constant.
(3) There is no sharing of resources between concurrent threads.
(4) Specification intervals are implemented in software as continuous, linear domains.

In our case, all of the assumptions are inherently satisfied, and thus we adapted
the method for the pacemaker testing. From the formal specifications we derived an
appropriate set of tests to validate correctness of the obtained pacemaker design. For
each performance constraint we used a test that validates whether the appropriate
output has been generated within the required interval. On the other hand, testing
behavioral constraints was more complex. For each interval boundary we generated
two tests. For closed boundaries we applied inputs that were exactly at the boundary
point and tests that were outside the interval, at the distance ǫ from the boundary
point (see Figure 11). For open boundaries we generated inputs that were inside and
outside the interval, at the distance ǫ from the boundary point.

To perform validation of the Stateflow chart and the physical implementation, we
used the model parameters from Table IV. For testing in Simulink we considered only
tests for the ideal system specifications. Since the chart was activated every 1ms, and
transitions in Stateflow are instantaneous (all transition actions are atomic) we used
ǫ = 0.5ms and ǫ = 1ms for simulations. All the ‘ideal’ real-time constraints (and thus,
the constraints with tolerances) were satisfied in Simulink. This was expected since all
actions within a clk execution are atomic to the event and no simulation time elapses
during them.

In addition, the chart exhibited the same behaviors as the initial UPPAAL model.
For example, for the aforementioned model parameters, when no inputs were applied
the chart generated AP and VP pulses at the same time points as the UPPAAL model
(i.e., AP were generated at tapi = (850 + 1000(i − 1))ms, i = 1, 2, ..., and VP at tvpi =
(1000i)ms, i = 1, 2, ...). Similarly, no time was spent in committed states st3C CC in
AVI, and inter CC states in PVARP and VRP parallel states, and outgoing transitions
from the states would occur immediately after the states were activated. To illustrate
a more complex behavior we also showed that, as in UPPAAL, if st3 state in AVI parent
state was active when the transition URIst1 → URIst2 occurred (causing broadcast
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Fig. 12. A test screen shot for property B4.2; clk pulses are highlighted.

of uri s event), then no time had elapsed in the URIst2 state, before the transition
URIst2 → URIst1 conditioned with v p took place.

D. TESTING OF THE PHYSICAL IMPLEMENTATION

We validated the physical implementation using the procedure from Section C. Unlike
validation of the Stateflow chart, for physical testing we considered two types of tests.
For the ideal system specifications we used ǫ ≤ 80µs, since 84.9µs was the chart’s
minimal execution time (Table III). Similarly, since the values for all the predefined
tolerances are ±4ms, for the second set of tests we used 4ms < ǫ ≤ 4.08ms.

Table V presents testing results for the pacemaker implementation executed on the
MSP430 Experimenter Board. When the tolerances are not taken into account some
of the properties that were verified in UPPAAL and validated in Simulink were vio-
lated during the tests. The reason is that the UPPAAL semantics uses an unrealistic
assumption that the machine executing the code is infinitely fast (i.e., no time elapses
during transitions) and the system’s reaction to synchronization is instantaneous. In
the general case, the execution delays can cause violation of the UPPAAL semantics in
the obtained physical implementation, which is the main reason for violation of some
of the verified safety properties. However, when interval tolerances are taken into ac-
count, all properties were satisfied, as shown in Table V.

For example, consider the property B4.2. Figure 12 presents one of the oscilloscope
screenshots obtained during the testing. The signals shown are Ain (top), AS (middle)
and clk (bottom). As shown, Ain appeared right after the first clk occurrence. It sets the
appropriate flag in the interrupt routine, but the processing of the corresponding event
occurred with the next clk. The event processing takes approximately 232µs before AS

Table IV. Pacemakers parameters.

Parameter Range Value Tolerance
LRId 343-1200 ms 1000ms ±4ms
AV Id 70-300 ms 150ms ±4ms
URId 1000 ms 400ms ±4ms
V RPd 150-500 ms 150ms ±4ms
ARPd 150-500 ms 200ms ±4ms

Table V. Results of the tests performed on the setup from Figure 8.

Requirement P1.1 B1.1 B1.2 P2.1 P2.2 B2.1 B2.2
Ideal Pass Fail Pass Pass Pass Fail Fail
With tolerance Pass Pass Pass Pass Pass Pass Pass

Requirement P3.1 B3.1 B3.2 P4.1 B4.1 B4.2
Ideal Pass Fail Fail Pass Fail Fail
With tolerance Pass Pass Pass Pass Pass Pass
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is generated. This, along with the time (up to 1ms) between Ain and the following clk,
results in delay of up to 1.232ms. Thus, ideal requirement B4.2 is violated. However,
since the delay is within the tolerance bound, the requirement is satisfied when the
tolerances are taken into account.
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